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An inventory model for deteriorating items with 
partial backlogging using linear demand in fuzzy 
environment
Neeraj Kumar1 and Sanjey Kumar1*

Abstract: This model presents the invention scheduling difficulty in industry with 
different operational constraints, as well as strategic plan of the business, revenue 
purpose, and limit on finishing. In this article, we have studied an inventory model 
for deteriorating items with shortages under partially backlogging. The aim of pres-
ent study is to minimize the total cost function in fuzzy environment. Graded mean 
representation, signed distance, and centroid methods are used to defuzzify the to-
tal cost function over the planning horizon. Further, all costs are defuzzified with the 
help of triangular fuzzy numbers. Finally, sensitivity analysis is also given to show 
the effect of the costs.

Subjects: Mathematics & Statistics; Advanced Mathematics; Mathematics Education; 
Statistics & Probability

Keywords: inventory; linear demand rate; partial backlogging; triangular fuzzy number; 
graded mean representation method; signed distance method; centroid method

1. Introduction
Inventory is a physical stock or resource that stockiest keep in hand in order to promote the smooth 
and efficient running of the business. It is assumed that all products like volatile, liquid, medicines, 
materials, etc. have certain life period and after that deterioration will take place. In real-life inven-
tory system, deterioration is a critical point. So it cannot be ignored. Generally, deterioration is de-
fined as decay, damage, evaporation, spoilage, obsolescence, loss of utility, pilferage, or loss of 
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marginal values of a commodity and the item cannot be used for its original purpose. This leads to 
decreases in the usefulness of the product. In our daily life, most of the physical goods like volatile 
liquids, medicine, food grains, alcohols, fresh products, flowers, fruits, vegetables, blood banks, and 
seafoods undergo decay or deterioration over time. There are various types of uncertainties mixed 
up in any inventory system. Still, these uncertainties cannot be treated by usual probabilistic model. 
For that reason, it becomes more suitable to deal such problems with fuzzy set theory rather than 
probability theory.

However, in certain situations, uncertainties are due to fuzziness, and such cases are dilated in the 
fuzzy set theory which was demonstrated by Zadeh (1965). Kaufmann and Gupta (1991) provided an 
introduction to fuzzy arithmetic operation and Zimmermann (1996) discussed the concept of the 
fuzzy set theory and its applications. Considering the fuzzy set theory in inventory modeling renders 
an authenticity to the model formulated since fuzziness is the closest possible approach to reality. 
As reality is imprecise and can only be approximated to a certain extent, same way, fuzzy theory 
helps one to incorporate uncertainties in the formulation of the model, thus bringing it closer to real-
ity. Park (1987) applied the fuzzy set concepts to EOQ formula by representing the inventory carrying 
cost with a fuzzy number and solved the economic order quantity model using fuzzy number opera-
tions based on the extension principle. Vujosevic, Petrovic, and Petrovic (1996) used trapezoidal 
fuzzy number to fuzzify the order cost in the total cost of the inventory model without backorder, 
and got fuzzy total cost. Yao and Lee (1996) developed a backorder inventory model with fuzzy order 
quantity as triangular and trapezoidal fuzzy numbers and shortage cost as a crisp parameter. Gen, 
Tsujimura, and Zheng (1997) determined their input data as fuzzy numbers, and then the interval 
mean value concept was introduced to solve the inventory problem. Chang, Yao, and Lee (1998) 
determined the backorder inventory problem with fuzzy backorder such that the backorder quantity 
is a triangular fuzzy number. Chang (1999) developed the fuzzy production inventory model for fuzz-
ify the product quantity as triangular fuzzy number. Lee and Yao (1999) refined the inventory with-
out backorder models in the fuzzy sense, where the order quantity is fuzzified as the triangular fuzzy 
number. Yao, Chang, and Su (2000) assumed to be the order quantity and the total demand rate as 
triangular fuzzy numbers and obtained the fuzzy inventory model without shortages. Yao and Chiang 
(2003) considered the total cost of inventory without backorder. They fuzzified the total demand and 
cost of storing one unit per day into triangular fuzzy numbers and defuzzify by the centroid and the 
signed distance methods. Dutta, Chakraborty, and Roy (2005) developed a model in presence of 
fuzzy random variable demand where the optimum is achieved using a graded mean integration 
representation. Chang, Yao, and Ouyang (2006) determined the mixture inventory model involving 
variable lead-time with backorders and lost sales. First, they fuzzify the random lead-time demand 
to be a fuzzy random variable and then fuzzify the total demand to be the triangular fuzzy number 
and derive the fuzzy total cost. By the centroid method of defuzzification, they estimated the total 
cost in the fuzzy sense. Wee, Yu, and Chen (2007) introduced an optimal inventory model for items 
with imperfect quality and shortage backordering. Lin (2008) developed the inventory problem for a 
periodic review model with variable lead-time and fuzzified the expected demand shortage and 
backorder rate using signed distance method to defuzzify. Roy and Samanta (2009) discussed a 
fuzzy continuous review inventory model without backorder for deteriorating items in which the 
cycle time is taken as a symmetric fuzzy number. They used the signed distance method to fuzzify 
the total cost. Gani and Maheswari (2010) developed an EOQ model with imperfect quality items 
with shortages where defective rate, demand, holding cost, ordering cost and shortage cost are 
taken as triangular fuzzy numbers. Graded mean integration method is used for defuzzification of 
the total profit. Ameli, Mirzazadeh, and Shirazi (2011) developed a new inventory model to deter-
mine ordering policy for imperfect items with fuzzy defective percentage under fuzzy discounting 
and inflationary conditions. They used the signed distance method of defuzzification to estimate the 
value of total profit. Sadi-Nezhad, Memar Nahavandi, and Nazemi (2011) developed a periodic re-
view model and a continuous review inventory model with fuzzy setup cost, holding cost and short-
age cost. They also considered the lead-time demand and the lead-time plus one period’s demand 
as random variables. They use two methods in the name of signed distance and possibility mean 
value to defuzzify. Uthayakumar and Valliathal (2011) developed an economic production model for 
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Weibull deteriorating items over an infinite horizon under fuzzy environment and considered some 
cost component as triangular fuzzy numbers and using the signed distance method to defuzzify the 
cost function. Kumar et al. developed a fuzzy inventory model with limited storage capacity. Kumari, 
Kumar, and Singh (2013) investigate a fuzzy two ware house inventory model with three component 
demand rate. Tayal, Singh, and Sharma (2014) determined an inventory model for deteriorating 
items with seasonal products and an option of an alternative market. Kumar and Rajput (2015) in-
troduced Fuzzy Inventory Model for Deteriorating Items with Time Dependent Demand and Partial 
Backlogging. Kumar and Kumar (2016a) introduced an inventory model with stock-dependent de-
mand rate for deterioration items. Kumar, Kumar, and Smarandache (2016) developed a Fuzzy 
Inventory Model with K-Release Rule. Recently Kumar and Kumar (2016b) presented an Inventory 
Model for deteriorating items stock dependent demand and partial backlogging.

In the present work, we developed an inventory model for deteriorating items with linear demand 
rate with partially backlogging. Ordering cost, holding cost, deterioration rate, and shortage cost are 
assumed as a triangular fuzzy numbers. We used for defuzzification of the total cost function by 
graded mean representation, signed distance, and centroid methods. By comparing the results ob-
tained by these methods, we get the better one as estimate of the total cost in the fuzzy sense. 
Numerical examples have been given to illustrate the model. Sensitivity analysis has also been car-
ried out to observe the effects on the optimal solution. Rest of the paper is structured as follows. In 
Section 2, we at hand some basic of fuzzy theory, triangular fuzzy number, and defuzzication tech-
niques. In Section 3, a numerical example is provided to show the feasibility of proposed model. In 
the final section, some conclusions are drawn from the obtained results and sensitive analyses with 
respect to different parameters are also made in this section.

2. Basic concepts of fuzzy set theory
In order to treat fuzzy inventory model using graded mean representation, signed distance and 
centroid to defuzzify, we need the following definitions (Figure 1).

Definition 2.1  (By Pu and Liu (1980), Definition 2.1). A fuzzy set a on R = (−∞, ∞) is called a fuzzy 
point if its membership function is

 

Where, the point a is called the support of fuzzy set a.

Definition 2.2  A fuzzy set 
[
a
�
, b

�

]
 where 0 ≤ α ≤ 1 and a < b defined on R, is called a level of a fuzzy 

interval if its membership function is

 

Definition 2.3  A fuzzy number Ā = (a, b, c), where a < b < c and defined on R, is called a triangular 
fuzzy number if its membership function is

(1)𝜇
a⃗
(x) =

{
1, x = 0

0, x ≠ 0

(2)�
[a

�
, b

�
]
(x) =

{
�, a ≤ x ≤ b
0, otherwise

Figure 1. α–cut of a triangular 
fuzzy number.
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Definition 2.4  A fuzzy number 
∼

A = (a, b, c) is a triangular fuzzy number then the graded mean inte-
gration representation of 

∼

A is defined as

With 0 < h ≤ w
A
and0 < w

A
≤ 1. 

Definition 2.5  A fuzzy number 
∼

A = (a, b, c)) is a triangular fuzzy number then the signed distance 
of 

∼

A is defined as

 

Definition 2.6  The centroid method on the triangular fuzzy number 
∼

A = (a, b, c) is defined as

 

3. Assumptions and notations
The mathematical model in this paper is developed on the basis of the following assumptions and 
notations.

3.1. Notations

(1) � D (t) is the demand rate at any time t per unit time.

(2) � A is the ordering cost per order.

(3) � θ is the deterioration rate, 0 < θ << 1.

(4) � T is the length of the Cycle.

(5) � Q is the ordering Quantity per unit.

(6) � h is the holding cost per unit per unit time.

(7) � S is the shortage Cost per unit time.

(8) � C is the unit Cost per unit time.

(9) � K (t1, T) is the total inventory cost per unit time.

(10) �
∼

D is the fuzzy demand.

(11) �
∼

� is the fuzzy deterioration rate.

(12) �
∼

h is the fuzzy holding cost per unit per unit time.

(13) �
∼

a is the fuzzy shortage Cost per unit time.

(14) �
∼

S is the fuzzy unit Cost per unit time.

(15) �
∼

C is the total fuzzy inventory cost per unit time.

(3)�
A
=

⎧⎪⎨⎪⎩

x−a

b−a
, a ≤ x ≤ b

c−x

c−b
, b ≤ x ≤ c

0, Otherwise

P(
∼

A) =

WA∫
0

h

(
L
−1

(h)+R
−1

(h)

2

)
dh

WA∫
0

hdh

,

(4)
P(

∼

A) = 1∕2

1∫
0

h[a + h(b − a) + c − h(c − a)]dh

1∫
0

hdh

=
a + 4b + c

6

(5)P

(∼

A,
∼

0

)
=

1

∫
0

d

([
A
L
(�)

�
, A

R
(�)

�

]
,
∼

0

)
=
1

4
(a + 2b + c)

(6)C(
∼

A) =
a + b + c

3
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(16) � KdG
(
t1, T

)
 is the defuzzify value of 

∼

K
dG

(
t1, T

)
 by applying Graded mean integration method.

(17) � KdS(t1, T) is the defuzzify value of 
∼

K
dS

(
t1, T

)
 by applying Signed distance method.

(18) � KdC(t1, T) is the defuzzify value of 
∼

K
dC

(
t1, T

)
 by applying Centroid method.

3.2. Assumptions

(1) � Time horizon is finite.

(2) � Replenishment is instantaneous and lead-time is zero.

(3) � Shortages are allowed and partially backlogged. Unsatisfied demand is backlogged, and the 
fraction of shortages backordered is 1/(1 + δ(T−t)), where δ is a positive constant.

(4) � Linear demand rate D(t)  =  a  +  bt is considered. Where a and b are positive constants and 
a > 0, 0 < b < 1.

(5) � There is no repair of deteriorated items occurring during the cycle.

4. Formulation of inventory model
It is considered that the q(t) be the on-hand inventory at time t with initial inventory Q. Due to reason 
of market demand and deterioration of the items, the inventory level gradually diminishes during 
the time period [0, t1]. The period [t1, T] is the period of shortages, which are partially backlogged. At 
any instant of time, the inventory level q(t) is governed by the differential equations (Figure 2).

4.1. Crisp model
Let q(t) be the inventory level at any time, which is governed by the following two differential 
equations
 

With q(0) = Q and q(t1) = 0.

 

With q(t1) = 0.

The solution of Equations (7) and (8) is given by

(7)
d q(t)

dt
+ � q(t) = −(a + bt); 0 ≤ t ≤ t1

(8)
d q(t)

dt
= −

(a + bt)

1 + �(T − t)
; t1 ≤ t ≤ T

Figure 2. Graphical 
representation inventory 
model.
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By putting q(t1) = 0, we have

 

Now, Equation (9) becomes

(Neglecting higher powers of θ).

Total average No. of holding units (IH) during period [0, T] is given by

 

Total No. of deteriorated units (ID) during period [0, T] is given by

 

Total average No. of shortage units (IS) during period [0, T] is given by

 

Total cost of the system per unit time is given by

(9)q(t) = (1 − �t)

[
Q − a

(
t +

t2

2

)
− b

(
t2

2
+ �

t3

3

)]

(10)q(t) =

(
a

�
+
b(1 + �T)

�2

)[
log {1 + �(T − t)} − log

{
1 + �

(
T − t1

)}]
+
b

�

(
t − T1

)

(11)Q = a

(
t1 +

t21
2

)
− b

(
t21
2

+ �
t31
3

)

(12)

q(t) =

[
a

{(
t
1
−
t2
1

2

)
−

(
t −

t2

2

)}
+ b

{(
t2
1

2
+ �

t3
1

3

)
−

(
t2

2
+ �

t3

3

)}

−a�t

{(
t
1
−
t2
1

2

)
−

(
t −

t2

2

)}
− b�t

(
t2
1

2
− �

t2

2

)]

(13)IH =

t1

∫
0

q(t)dt =

[
a

(
t21
2

+
t31
3

)
+ a�

(
t41
8

+
t31
6

)
−
5

24
b�t41 +

bt31
3

]

ID = Q − Total Demand

(14)ID = Q −

t1

∫
0

(a + bt)dt =
at21
2

+
b�t31
3

(15)

Is = −

T

∫
t1

(a + bt)

1 + �(T − t)
dt =

(
a

�
+
b(1 + �T)

�2

)[
log T − (T − t1) +

1

�
log

{
1 + �

(
T − t1

)}]
+
b

2�

(
t − t1

)2

K(t1, T) =
1

T

[
A + h IH + C ID + S IS

]

(16)
K
(
t1, T

)
=
1

T

[
A + h

{
a

(
t
2
1

2
−
t
3
1

3

)
+ a�

(
t
4
1

8
−
t
3
1

6

)
−
5

24
b�t41 +

bt
3
1

3

}

+ C

(
at

2
1

2
+
b�t31

3

)
+ S

{(
a

�
+
b(1 + �T)

�2

)[
log T − (T − t1) +

1

�
log

{
1 + �

(
T − t1

)}]
+
b

2�

(
t − t1

)2}
]



Page 7 of 16

Kumar & Kumar, Cogent Business & Management (2017), 4: 1307687
http://dx.doi.org/10.1080/23311975.2017.1307687

4.2. Fuzzy model
Throughout the development of EOQ models, previous authors have assumed that the deterioration 
rate is constant. In the above-developed crisp model, it was assumed that all the parameters were 
fixed or could be predicted with certainty; but in real life situations, due to uncertainly in the environ-
ment, it is not easy to define all the parameters specifically, Accordingly, we assume some of these 
parameters namely 

∼

a, 
∼

b,, 
∼

C, 
∼

S, 
∼

�, 
∼

h may change within some limits.

Let 
∼

a = (a1, a2, a3),
∼

b = (b1, b2, b3),
∼

C = (C1, C2, C3),
∼

S = (S1, S2, S3),
∼

� = (�1, �2, �3),
∼

h = (h1, h2, h3), 
are as triangular fuzzy numbers.

Total cost of the system per unit time in fuzzy sense is given by

We defuzzify the fuzzy total cost by graded mean representation, signed distance, and centroid 
method

(1) By Graded Mean Representation Method, Total Cost is given by

Where

 

(17)
K
�
t1, T

�
=
1

T

�
A +

∼

h
∼

a

�
t
2
1

2
−
t
3
1

3

�
+

∼

h
∼

a
∼

�

�
t
4
1

8
−
t
3
1

6

�
−
5

24

∼

h

∼

b

∼

� t
4
1 +

∼

h

∼

b
t
3
1

3

+
∼

C

⎛⎜⎜⎝

∼

a t
2
1

2
+

∼

b

∼

� t
3
1

3

⎞⎟⎟⎠
+

∼

S

��
∼

a

�
+

∼

b(1 + �T)

�2

��
log T − (T − t1) +

1

�
log

�
1 + �

�
T − t1

���
+

∼

b

2�

�
t − t1

�2
��

KdG(t1, T) =
1

6

[
KdG1

(t1, T), KdG2
(t1, T), KdG3

(t1, T)
]

(18)

K
dG1

(
t1, T

)
=
1

T

[
A + h1a1

(
t
2
1

2
−
t
3
1

3

)
+ h1a1�1

(
t
4
1

8
−
t
3
1

6

)
+ h1b1

t
3
1

3
−
5

24
h3b3�3t

4
1

+C1

(
a1t

2
1

2
+
b1�1t

3
1

3

)
+ S1

[{(
a

�
+
b(1 + �T)

�2

)[
log T − (T − t1) +

1

�
log

{
1 + �

(
T − t1

)}]
+
b

2�

(
t − t1

)2}
]

(19)

K
dG2

(
t1, T

)
=
1

T

[
A + h2a2

(
t
2
1

2
−
t
3
1

3

)
+ h2a2�2

(
t
4
1

8
−
t
3
1

6

)
+ h2b2

t
3
1

3
−
5

24
h2b2�2t

4
1

+C2

(
a2t

2
1

2
+
b2�2t

3
1

3

)
+ S2

[{(
a2

�
+
b2(1 + �T)

�2

)[
log T − (T − t1) +

1

�
log

{
1 + �

(
T − t1

)}]
+
b2

2�

(
t − t1

)2}
]

(20)

K
dG3

(
t1, T

)
=
1

T

[
A + h3a3

(
t
2
1

2
−
t
3
1

3

)
+ h3a3�3

(
t
4
1

8
−
t
3
1

6

)
+ h3b3

t
3
1

3
−
5

24
h1b1�1t

4
1

+C3

(
a3t

2
1

2
+
b3�3t

3
1

3

)
+ S3

[{(
a3

�
+
b3(1 + �T)

�2

)[
log T − (T − t1) +

1

�
log

{
1 + �

(
T − t1

)}]
+
b3

2�

(
t − t1

)2}
]

(21)KdG
(
t1, T

)
=
1

6

[
KdG1

(
t1, T

)
+ 4KdG2

(
t1, T

)
+ KdG3

(
t1, T

)]
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To minimize total cost function per unit time K
dG

1

(
t
1
, T

)
, the optimal value of t1 and T can be ob-

tained by solving the following equations:

 

Equation (22) is equivalent to

And

Further, for the total cost function KdG
(
t1, T

)
, to be convex, the following conditions must be 

satisfied

 

(22)
�KdG(t1, T)
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= 0;
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(24)
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(25)

𝜕2KdG(t1, T)

𝜕t21

> 0,
𝜕2KdG(t1, T)

𝜕T2
> 0;
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The second derivatives of the total cost function KdG
(
t1, T

)
 are complicated and it is very difficult to 

prove the convexity mathematically.

(2) By Signed Distance Method, Total cost is given by

Where

 

The total cost function KdS(t1, T) has been minimized following the same process as has been stated 
in case (i). To minimize total cost function per unit time KdS(t1, T), the optimal value of t1 and T can 
be obtained by solving the following equations:

 

Equation (31) is equivalent to
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(
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(31)
�KdS(t1, T)

�t1
= 0and

�KdS(t1, T)

�T
= 0;
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And

 

Further, for the total cost function KdG(t1, T), to be convex, the following conditions must be 
satisfied

 

The second derivatives of the total cost function KdS(t1, T) are complicated and it is very difficult to 
prove the convexity mathematically.

(32)
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(3) By Centroid Method, Total cost is given by

Where

 

The total cost function KdC(t1, T) has been minimized following the same process as has been stat-
ed in case (i). To minimize total cost function per unit time KdC(t1, T), the optimal value of t1 and T 
can be obtained by solving the following equations:

 

Equation (40) is equivalent to

And
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Further, for the total cost function KdC
(
t1, T

)
, to be convex, the following conditions must be 

satisfied

 

 

The second derivatives of the total cost function KdC(t1, T) are complicated and it is very difficult to 
prove the convexity mathematically.

5. Numerical example
Consider an inventory system with following parametric values.

5.1. Crisp model
A = Rs. 180/order, C = Rs. 18/unit, h = Rs. 4/unit/year, a = 100 units/year, b = .1 units/year, θ = .01/
year, S = Rs. 13/unit/year.

The solution of crisp model is K(t1, T) = Rs. 394.2524, t1 = . 6547 year, T = .8695 year.

5.2. Fuzzy model
∼

a = (48, 80, 112), 
∼

b = (.04, .8, .10), 
∼

C = (15, 20, 22), 
∼

S = (12, 14, 16), 
∼

� = (.006, .010, .012), 
∼

h = (3, 4, 6)

The solution of fuzzy model can be determined by following three methods.
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2
+
t
3
1

3

)
+ h3a3�3

(
t
4
1

8
+
t
3
1

6

)
+ h3b3

t
3
1

3
−
5

24
h1b1�1t

4
1 + C3

(
a3t

2
1

2
+
b3�3t

3
1

3

)

+ S3

[{(
a3

�
+
b3(1 + �T)

�2

)[
log T − (T − t1) +

1

�
log

{
1 + �

(
T − t1

)}]
+
b3

2�

(
t − t1

)2}]
= 0

(43)
𝜕2KdC

(
t1, T

)

𝜕t21

> 0,
𝜕2KdC

(
t1, T

)

𝜕T2
> 0;

(44)And

(
𝜕2KdC

(
t1, T

)

𝜕t21

)(
𝜕2KdC

(
t1, T

)

𝜕T2

)
−

(
𝜕2KdC

(
t1, T

)
𝜕t1𝜕T

)
> 0;
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By Graded Mean Representation Method, we have

(1) � When 
∼

a, 
∼

b, 
∼

C, 
∼

S, 
∼

�, 
∼

h all are triangular fuzzy numbers KdG
(
t1, T

)
 = Rs. 394.2084, t1 = .5807 year, 

T = .9123 year.

(2) � When 
∼

a, 
∼

b, 
∼

C, 
∼

S, 
∼

�, are triangular fuzzy numbers KdG
(
t1, T

)
 = Rs. 386.7852, t1 =  .7245 year, 

T = .9460 year.

(3) � When 
∼

a, 
∼

b, 
∼

C, 
∼

�, are triangular fuzzy numbers KdG
(
t1, T

)
  =  Rs. 384.5274, t1  =  .7017  year, 

T = .8496 year.

(4) � When 
∼

a, 
∼

b and 
∼

� are triangular fuzzy numbers KdG
(
t1, T

)
  =  Rs. 384.2250, t1  =  .6920  year, 

T = .8603 year.

(5) � When 
∼

a and 
∼

b are triangular fuzzy numbers KdG
(
t1, T

)
  =  Rs. 381.8978, t1  =  .6135  year, 

T = .8612 year.

By Signed Distance Method, we have

(1) � When 
∼

a, 
∼

b, 
∼

C, 
∼

S, 
∼

�, 
∼

h all are triangular fuzzy numbers KdS
(
t1, T

)
 = Rs. 414.6096, t1 = .6508 year, 

T = .8385 year.

(2) � When 
∼

a, 
∼

b, 
∼

C, 
∼

S, 
∼

�, are triangular fuzzy numbers KdS
(
t1, T

)
 = Rs. 401.7852, t1 =  .6835 year, 

T = .8460 year.

(3) � When 
∼

a, 
∼

b, 
∼

C, 
∼

�, are triangular fuzzy numbers KdS
(
t1, T

)
  =  Rs. 398.5274, t1  =  .7015  year, 

T = .8596 year.

(4) � When 
∼

a, 
∼

b, and 
∼

�, are triangular fuzzy numbers KdS
(
t1, T

)
  =  Rs. 398.5254, t1  =  .7120  year, 

T = .8605 year.

(5) � When 
∼

a and 
∼

b are triangular fuzzy numbers KdS
(
t1, T

)
  =  Rs. 397.8978, t1  =  .7131  year, 

T = .8561 year.

By Centroid Method, we have

(1) � When 
∼

a, 
∼

b, 
∼

C, 
∼

S, 
∼

�, 
∼

h all are triangular fuzzy numbers KdC
(
t1, T

)
 = Rs. 417.6576, t1 = .6245 year, 

T = .8987 year.

(2) � When 
∼

a, 
∼

b, 
∼

C, 
∼

S, 
∼

�, are triangular fuzzy numbers KdC
(
t1, T

)
 = Rs. 408.9852, t1 =  .7155 year, 

T = .9166 year.

(3) � When 
∼

a, 
∼

b, 
∼

C, 
∼

�, are triangular fuzzy numbers KdC
(
t1, T

)
  =  Rs. 405.6284, t1  =  .6815  year, 

T = .8596 year.

(4) � When 
∼

a, 
∼

b, and 
∼

�, are triangular fuzzy numbers KdC
(
t1, T

)
  =  Rs. 404.2651, t1  =  .6720  year, 

T = .8603 year.

(5) � When 
∼

a and 
∼

b are triangular fuzzy numbers KdC
(
t1, T

)
  =  Rs. 403.6478, t1  =  .6834  year, 

T = .8623 year.

5.3. Sensitivity analysis
A sensitivity analysis is performed to study the effects of changes in fuzzy parameters 

∼

a, 
∼

b and 
∼

� on 
the optimal solution by taking the defuzzify values of these parameters (Figures 3–5). The results are 
shown in tables.
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5.4. Observations

(1) � From Table 1, as we increase the parameter a, the optimum values of t1 and T decreases. By 
this effect, the total fuzzy cost KdG

(
t1, T

)
 increases.

(2) � From Table 2, as we decrease the parameter b, the optimum values of t1 decrease and T 
decrease. By this effect, the total fuzzy cost KdG

(
t1, T

)
 increases.

(3) � From Table 3, as we increase the parameter θ, the optimum values of t1 decrease and T 
decrease. By this effect, the total fuzzy cost KdG

(
t1, T

)
 increases.

Figure 3. Effect of the demand 
parameter a on total fuzzy cost.
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Figure 4. Effect of the demand 
parameter b on total fuzzy cost.
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Figure 5. Effect of the demand 
parameter θ on total fuzzy cost.
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Table 1. Sensitivity analysis on parameter a
a (units/year) t1 (year) T (year) K

dG
(t
1
, T) (Rs)

48 .8412 1.1642 315.6482

67 .7326 1.0249 356.1471

80 .6402 .9182 415.7485

96 .6146 .8514 454.7462

112 .5498 .7646 489.3586



Page 15 of 16

Kumar & Kumar, Cogent Business & Management (2017), 4: 1307687
http://dx.doi.org/10.1080/23311975.2017.1307687

6. Conclusion
In this present model we developed an EOQ model for deteriorating items with linear demand rate 
in fuzzy environment. Shortages are allowed and partially backlogged. The deterioration cost, order-
ing cost, holding cost, and shortage cost are represented by triangular fuzzy numbers. For defuzzifi-
cation, we used graded mean, signed distance, and centroid method to evaluate the optimal time 
period of optimistic stock t1 and total cycle length T which minimizes the total cost. The numerical 
example shows that graded mean representation method offer minimum cost as compared to 
signed distance method and centroid method. A sensitivity analysis is also conducted on the param-
eters a, b, and θ to investigate the effects of fuzziness. Finding suggest that the change in parame-
ters a, b, and θ will result the change in fuzzy cost with some changes in t1 and T. The increase in 
values of these parameters will result in increase in fuzzy cost, but decreases t1 and T. Similarly the 
decrease in values of these parameters will result in decrease in fuzzy cost, but increases t1 and T.

The proposed model can be extended for stock-dependent demand, price-dependent demand, 
two warehouse systems, and the effect of inflations in fuzzy environment and many more.

Table 2. Sensitivity analysis on parameter b
b (units/year) t1 (year) T (year) K

dG
(t
1
, T) (Rs)

.05 .6413 .9542 414.3487

.07 .6526 .9247 416.4472

.09 .6505 .9124 417.6482

.11 .6845 .9214 418.6462

.13 .6798 .9241 419.5581

Table 3. Sensitivity analysis on parameter θ
θ t1 (year) T (year) K

dG
(t
1
, T) (Rs)

.005 .6873 .9342 410.2483

.007 .6846 .9347 411.4172

.009 .6705 .9184 413.6182

.011 .6644 .9154 414.6862

.013 .6696 .9121 415.9582
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