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1 Introduction

This paper targets one of the most pervasive but probably least understood mechanisms

in the process of stock price formation, which is rather in tension with the classical eco-

nomic notion of rationality and efficient markets: the emergence of price momentum and

reversal. The literature considers reversal as market over-reaction, while momentum is

interpreted as both a consequence of market under-reaction (e.g., Jegadeesh & Titman,

1993) as well as the result of market over-reaction (e.g., Lee & Swaminathan, 2000). We

provide an explanation for the existence of momentum (reversal) patterns in a compet-

itive rational expectations model. In our model, momentum and reversal occur in the

aftermath of the initial under- and over-reaction of equilibrium prices.

The main building block is a noisy rational expectations economy in the style of

Grossman and Stiglitz (1980). In this setting, risk-averse agents trade a risky asset based

on private as well as public information. We extend the model by adding an additional

layer of information allowing for different types of private information. Hence, we assume

that private information has two major components. First, the intrinsic value of the

information itself, defined by simply being granted access to information. This covers the

classical notion of information in the literature, mostly modeled by observing the realiza-

tion of a private signal. Second, we regard the ability to evaluate the received information

appropriately, as an autonomous component. In most models, this constitutes an implicit

assumption. We challenge the existing notion of information as a homogeneous signal

that everyone involved is always capable to process correctly.

In reality, information is far too diverse and complex as to be regarded as homo-

geneous. Many different types of information exist, which might each require specific

methods of evaluation. For instance, information could differ along the lines of qual-

ity or thematic content, to name just two possibilities. It seems appropriate that these

distinctions have to be taken into account when trying to process information properly.

Our model allows for the suggested diversity within the information structure and agents

have to cope with the issue when exploiting their information. We mimic the diversity

of information by introducing two different signal regimes: one providing information

connected with a rather low uncertainty level and the other with a relatively higher level

of uncertainty. These two signal regimes fit the above interpretation of information hav-

ing a different quality or thematic content. Intuitively, in such a context the optimal

reaction to private as well as public information depends on the respective signal regime.

Without making the prevailing signal regime public knowledge, it is easy to guess that it

is impossible for the price system to convey all information and be strong-form efficient.1

1An equilibrium price is said to be strong-form efficient if it is a sufficient statistic for all of the
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This posits a problem to the agents, who gather their information from the price system.

The lack of awareness concerning the different types of information is at the heart

of our model. In the first part of the paper, we show that signals with low variance are

responsible for under-reaction, while signals associated with a higher variance are rather

connected to over-reaction. In the second part of the paper, we demonstrate that it is

actually sufficient to impose uncertainty regarding the signal regime to establish the de-

scribed price patterns. The underlying value of the signal can be common knowledge. As

an illustration, suppose that a risk-averse agent observes a signal, but has no idea about

its quality. He will either a priori make a guess and opt for a specific quality or value the

information somewhere in between its potential states of quality. Both strategies result

in a systematic deviation from optimal behavior given full information. In the latter sit-

uation, the agent will always either overstate the quality of the signal in the event of the

high-variance signal translating into an over-reaction, or understate the quality of the

low-variance signal resulting in an under-reaction. Opting for the low-variance regime

ex ante, the agent overstates signal precision if the high-variance regime is in place. By

contrast, deciding for the high-variance regime ex ante, he will understate signal precision

in the low-variance regime. The described mechanics induce price momentum and price

reversal (under- and over-reaction) without relying on further assumptions like behavioral

biases or the existence of momentum traders.

We show that given the described signal structure, there exists an equilibrium that

fulfills the conditions of a noisy rational expectations equilibrium (REE) and produces

the desired price patterns when

• the economy exhibits asymmetric information regarding both types of information,

i.e. signal value and signal regime; and

• the economy exhibits asymmetric information only regarding the signal regime.

Furthermore, we prove that in neither of the above-stated scenarios are prices strong-form

efficient and able to convey all information inherited in the economy. Additionally, we

show that knowing about the type of information and how to correctly use it posits a

valuable asset.

The idea to distinguish thematic content along the lines of signal uncertainty is in line

with a prominent strand of empirical literature. It combines the idea of Odean (1998)

that people on the one hand are prone to place too much trust in information that is

low in precision and on the other hand place insufficient trust in information that is high

information in the economy.
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in precision, with empirical evidence on price momentum and reversal owing to certain

kinds of events. More precisely, evidence of price momentum has been detected for events

like earnings announcements (e.g., Bernard & Thomas, 1990), analyst forecast revisions

(e.g., L. K. C. Chan, Jegadeesh, & Lakonishok, 1996; Gleason & Lee, 2003) and share

repurchases (e.g., Lakonishok & Vermaelen, 1990), to name just a few, while reversal is

attributed to events like initial public offerings (Ritter, 1991), acquiring firms in merg-

ers (Agrawal, Jaffe, & Mandelker, 1992) or new exchange listings (Dharan & Ikenberry,

1995). It seems comprehensible that in general events producing momentum carry a dif-

ferent level of inherent uncertainty regarding their future implications than events giving

rise to reversals. Earnings announcements or share repurchases state hard facts with

respect to the situation of a company compared to announcements of an acquisition or

IPO, which could have several different implications and are complex to evaluate precisely.

Among the recent strand of literature attempting to explain price anomalies like

momentum and reversal with rational theories, our paper is most closely related to Holden

and Subrahmanyam (2002) and Cespa and Vives (2012). They attribute momentum to

an increase in information precision. This is comparable to the technical effect when the

uncertainty about the low-variance regime resolves. However, the intuitive ideas of the

two models are rather different. While our model concentrates on an additional feature

of information, Cespa and Vives (2012) assume information precision to increase with the

arrival of further fundamental information.

Andrei and Cujean (2017) also build on a Grossman and Stiglitz (1980) type of econ-

omy, although their economic intuition as well as their technical setting strongly differ

from our model. They model momentum as the consequence of a special type of informa-

tion diffusion, namely word-of-mouth communication. For this purpose, they introduce a

mechanism of information percolation originally developed by Duffie and Manso (2007)

into their noisy rational expectations model.

Our model further has a sharp distinction to Banerjee, Kaniel, and Kremer (2009),

who reason momentum with the existence of higher-order beliefs, which imply that agents

do not use prices correctly. They impose different beliefs, which in the literature is framed

that agents ”agree to disagree”. Upon first glance, it seems rather familiar with our setting

of having different signals that could not be distinguished precisely. However, there is

an economic difference if material information differs regarding its characteristics or if

agents cannot agree on the characteristics of a homogeneous signal.

Another popular method in the literature is to use growth-option models like Berk,

Green, and Naik (1999), Johnson (2002) and Sagi and Seasholes (2007). We significantly

distinguish our model from this strand of the literature as we solely concentrate on one

market and do not rely on the existence of additional derivative markets to establish our
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results.

Furthermore, our model does not contradict the well-established behavioral literature

related to momentum and reversal, (e.g. Barberis, Shleifer, & Vishny, 1998; Hong &

Stein, 1999; Daniel, Hirshleifer, & Subrahmanyam, 1998). However, we do not rely on

biases that are standard in this strand of the literature to generate the desired price

patterns. Nevertheless, these models seem complementary to ours. We could allow for

these biases in our model without annihilating the main results regarding the development

of prices but rather amplifying them.

In terms of the empirical literature, our model is also able to incorporate the view

of W. S. Chan (2003), who argues that investors under-react to informative information

signals while over-reacting to signals that are not informative. The model incorporates

this setting as a kind of corner solution when increasing the variance in the high-variance

regime to a sufficiently high level. Given this calibration, one of the signals is actually

non-informative. However, the established equilibrium results do not change given this

calibration.

The organization of the paper is as follows. In the next section, we provide a brief

overview of the most important features of noisy rational expectations models, as well as

how to solve for equilibrium in such a framework. In section 3, we introduce a one-period

static benchmark model and prove the existence of a general noisy REE in the defined

setup. Section 4 adds an additional trading period and establishes the price patterns of

over- and under-reaction in equilibrium prices given more than one trading round. Section

5 presents an extension of the model in which the uninformed agents observe the signal

but not its precision. Further equilibrium prices and price dynamics of the extended

model are derived and discussed. Concluding remarks are provided in section 6. All

derivations and proofs as well as computational details are relegated to the appendix.

2 General overview of the model

This section first rather generally outlines the most important features of REE models

and how they are connected to the model analyzed in this paper. Subsequently, we

provide a brief informal overview of the most important features of the model that we

present.

2.1 Rational Expectations Equilibria (REE)

The model is set up as a classical noisy REE model and is closely connected to Grossman

and Stiglitz (1980). In noisy REE models, all agents behave competitively and act as price

takers. According to Brunnermeier (2001, p. 66), each group of agents can be thought of
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as a ”continuum of clones” possessing identical private information. Assume an economy

with two kinds of assets: a riskless asset with a pay off of one, as well as a risky asset,

which has a stochastic pay off. Furthermore, there are two groups of different agents:

informed, I and uninformed, U . The informed agents observe a noisy signal S about the

pay off of the risky asset, while the uninformed do not. All distributional assumptions

made are common knowledge among all agents in the economy. Each agent maximizes

his expected utility by submitting demand schedules contingent on his information set.

Simultaneously submitting demand schedules allows traders to take prices as given since

it enables agents to submit a specific demand for each possible price. In addition to the

informed and uninformed agents, there exists noisy aggregate supply u, which is often

referred to as noise traders’ demand in the literature. The noisy aggregate supply prevents

the price system in the economy from being fully revealing (and is responsible for the

”noisy” in the term noisy REE). Denoting the demand of the informed agents by XI(S, p)

and the demand of the uninformed agents as XU(p), a REE equilibrium exists if both

agents submit demand schedules that maximize their expected utilities E [UI(XI(S, p))]

and E [UU(XU(p))] and there exists a price, p, which clears the market. In equilibrium,

the following two conditions have to hold.

1. Market Clearing:

XI(S, p) +XU(p) = u. (1)

2. Agents Optimization:

XI(S, p) ∈ arg maxE [UI(XI(S, p))|S, p] ,
XU(p) ∈ arg maxE [UU(XI(p))|p] .

(2)

A possible closed-form REE solution to the above-outlined setting is usually derived

applying a five-step procedure. First, conjecture a price function, which is simply a

mapping of the information sets of all agents into the price space. Second, derive the

posterior beliefs of all agents regarding the unknown variables of the economy, taking the

price conjecture of step one as given. Third, determine each agent’s optimal demand,

given the price conjecture and the posterior beliefs. Fourth, impose market clearing.

Finally, impose rationality by checking whether the conjectured price function of step

1 coincides with the actual price function derived in step 4. If the price conjecture is

confirmed to be self-fulfilling in step 5, the solution worked out constitutes an REE.

However, for some economies REEs do not exist.2 For their existence, it is crucial that

2For some economies, REEs do not exist. A detailed discussion of the necessary conditions for the
existence of equilibria in rational expectations models is given in O’hara (1995).
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agents recognize the information structure, e.g. that prices convey information and that

the information is measurable in excess demand functions.

The setting examined in this paper distinguishes itself from the above-outlined ”clas-

sical” framework by introducing heterogeneous information. The signal structure is no

longer limited to one kind of noisy signal, but rather allows for different kinds of signals

all having different characteristics. More specifically, we allow for two types of noisy sig-

nals that differ regarding their quality. We introduce one signal that is rather precise and

reliable and another signal that incorporates more uncertainty and hence is less precise.

Which type of signal actually occurs is determined exogenously and is not within the

responsibility of the agents.

One way to think of this in reality is having different sources of information that

discriminate concerning their quality, e.g. due to the skills of the analyst filing the infor-

mation. Since not every analyst covers every topic, the agent’s influence on the quality

of the information that he receives is limited. Nevertheless, to process the information

optimally, it is essential to have an idea about its quality. Another possible interpreta-

tion is the existence of different kinds of events, which are at the basis of the information

incorporated in the signal. The more precise signal could be e.g. thought of as an event

like an earnings announcement. Earnings announcements depict rather precise informa-

tion and thus they are assumed to be straightforward to analyze as they offer limited

room for interpretation. On the other hand, M&A announcements could be exemplified

as information containing a higher level of uncertainty. M&A announcements constitute

important information, but are very difficult to interpret. Reality has shown that the

actual consequences of mergers are a priori hard to predict.

In the remainder of the paper, we refer to the more reliable signal as the signal with

lower uncertainty. The situation in which the signal materializes is denoted as the low

uncertainty state or regime. The lower quality signal is referred to as the signal with high

uncertainty. The economy is labeled as being in the high uncertainty state or regime if this

signal occurs. The informed agent receives one of the two signals with an exogenously-

specified probability. However, he knows which of the two signals he observes. The

information set of the uninformed agent is analyzed along two different scenarios. In the

first scenario, the uninformed agent does not receive any signal at all, meaning that he

neither knows the value nor the quality of the signal; rather, he simply knows the signal

structure of the model, the distributional assumptions and that the informed agent has

observed one of two possible signals. In the second scenario, the uninformed agent is able

to observe the value of the signal but does not have any information about its type. We

analyze both settings separately, the former in sections 3 and 4, the latter in section 5.
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In the analysis, we intend to deflect the focus from the existence of equilibrium in

general to the implications of the signal structure on the equilibrium price. Nevertheless,

we will prove the existence and say something about uniqueness as well as the potential

equilibria’s most important properties. The focus is placed on the price process implied

by the existing equilibria. We concentrate on the possibility to generate price patterns of

over- and under-reaction, which are also discussed in the empirical literature. The idea

is to explain these patterns by a simple alteration of the signal structure within a noisy

REE.

2.2 Informal description of the model

In the economy analyzed in the following, the informed agents conduct their optimization

using the information inherited in the signal that they have received. The uninformed

do not know the value of the signal, nor do they know if the signal is of the high or low

uncertainty type. The supply of the risky asset—which in the literature is labeled noise

trader demand or aggregate endowment—is random. We assume that it is not observable

by the uninformed agents. However, this is not due to the usual reason of preventing

the price system from being fully revealing. Owing to the heterogeneous signal structure

incorporating two different signal regimes, the price system would not be revealing even

if the uninformed were able to observe aggregate demand. The technical reason is that

the mapping from the signal space into the price space is not ”one-to-one” and thus not

invertible. This can be thought of as the informed agents having two different demand

schedules for each realization of the signal, depending on the signal type. The uninformed

do not know with which of the two demand schedules of the informed they are compet-

ing. It is intuitively reasonable that a high-quality signal should not support the same

price as a low-quality signal, although they might have the same numeric value. This

mechanism is independent of noise trader demand. As long as the uninformed agents are

unable to somehow infer the state of the economy, the price system is not fully revealing

in the classical notion.3 However, if noise traders’ demand were public knowledge, the

uninformed could trick the system by playing a clever strategy. They could simply place

a market order and ask exactly their relative share of the observed noise trader demand.

As the proportion of informed and uninformed agents is common knowledge, such a strat-

egy is feasible. Doing so would implicitly force the informed agents to clear the market

by absorbing their relative share of aggregate demand. The resulting equilibrium would

support the full information price by applying the informed agents’ price schedule and

imposing its corresponding price for the respective demand. The information asymme-

try in the economy would not be material for the uninformed agents as the information

3Fully revealing in the classical sense means that the uninformed can infer the signal value from
simply observing price by inverting the price function (Vives, 2008).
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problem could be bypassed by applying this simple trick. Completely prohibiting agents

from placing market orders and forcing them to submit demand schedules would be the

only way in which this mechanism could be avoided. However, every market order could

be framed as a demand schedule that makes the restriction highly artificial and difficult

to justify. It is vital to know that the fact that aggregate demand must not be known to

the uninformed agent is not to prevent the price system from being fully revealing but

rather to motivate the uninformed to somehow evaluate and utilize the existing funda-

mental information in the economy instead of freeriding on the informed agents’ demand

schedule.

However, given the described setting, it is not trivial to draw inference from the price

system or other statistics of the economy. The signal structure— with two uncertainty

regimes—not only breaks apart the one-to-one mapping between price and the expected

pay off of the risky asset for the uninformed agents; moreover, it also makes it impos-

sible for the uninformed agents to pin down the price function a priori. This limitation

translates to the fact that the uninformed agents’ posterior beliefs are not specified and

the REE has no tractable closed-form solution. Thus, simply relying on price is insuffi-

cient for the uninformed agents to determine their optimal strategy. Facing this severe

problem, the uninformed are left with two possibilities: first, they can always decide

to ignore the potential information inherited in the price system and submit a demand

schedule based on their unconditional expectations or even remain completely away from

the market; or second, the uninformed could try to utilize their information set. In order

to draw inference from the price system, they have to somehow pin down the mapping

between the price and expected pay off before they enter the market and submit their

demand schedules. This set of options translates into four intuitive strategies that the

uninformed could think of.

1. unconditional strategy {Un} The uninformed agents do not try to infer information

from the price system and simply optimize given their unconditional expectations.

2. conservative strategy H The uninformed agents behave as if the signal would al-

ways be drawn from the distribution with the higher variance, regardless which

distribution the actual signal comes from.

3. progressive strategy L The uninformed agents act as if the signal would always be

drawn from the distribution with the low-variance, regardless which distribution

the actual signal comes from.

4. mixed strategies Mx The uninformed make use of their knowledge about the prob-

ability of the two different uncertainty regimes and play a mixed strategy by ran-

domizing over the possible uncertainty regimes with the respective probabilities.
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A strategy is said to be feasible if its expected utility over final wealth exceeds the

utility of the uninformed when staying at home and not participating in the market. In

this case of non-attendance, the informed agents would absorb all noise trader demand

and the uninformed would not enter the market. At the end of the period, they would

be left with the utility over their initial wealth. Hence, the expected utility of the unin-

formed has to exceed their final utility over their initial wealth. The mixed strategy can

be ruled out a priori as it is by definition a linear combination of strategies two and three

and thus always dominated by the better of the two strategies.

We solve for equilibrium in the standard five-step approach outlined in section 2.1

above based on the uninformed agents’ beliefs implied by their strategy. First, we propose

a conjecture of the price function. Second, we derive beliefs of the agents given the

conjectured price function as well as the private signal. Third, we derive the optimal

demand of the risky asset for the different agents, given their information sets. Fourth,

we impose market clearing and solve for price. Finally, we impose rationality by matching

the coefficients of the proposed price function with the price function derived in step four.

3 A Static benchmark model

In this section, we present a simple static model with only one trading period that high-

lights the main mechanisms at work in the economy when introducing a heterogeneous

signal structure.

3.1 The Environment

Consider an economy with two kinds of assets: a risk-free and a risky asset. The risk-

free asset has a price normalized to one and a pay off of R. The risky asset has a pay

off of θ and is distributed N (θ̂, σ2
θ). There exist three different groups of agents. A

continuum of two ex-ante identical risk-averse agents with common risk aversion α and

CARA utility over wealth at the liquidation date t = 2, U(W2) = −e−αW . The risk-averse

agents differ along their information sets. A fraction λ of the continuum of risk-averse

agents—the informed agents—receive a signal Si with i ∈ {H,L} about the true value

of θ. The two possible noisy signals, Si with i ∈ {H,L}, about the true value of θ are

SH = θ + εH and SL = θ + εL, and they differ in their noise term, ε. Both noise terms

are normally distributed with mean zero, but have different variances σ2
εH

and σ2
εL

. Their

relationship is restricted by the inequality σ2
εH

> σ2
εL

. This implies that SL is a more

valuable signal than SH . It has higher precision and hence incorporates less uncertainty.

The informed agents always observe only one signal, either SH or SL with probability

p and 1 − p, respectively. However, they know whether the signal that they observe is

9



t0 t1 t2

Informed agents
receive their signal

noistraders’ demand
realizes
Agents trade
competitively

Payoff is realized

Figure 1: The time line shows the sequence of events in the model. At t = 0, the informed agents
receive their private signal Si. In the next step at t = 1, financial markets open, noise traders enter and
risk-averse agents trade competitively. Uncertainty is resolved at t = 3 and the pay off of the risky asset
θ materializes

SH or SL. The remaining fraction, (1 − λ), of the risk-averse agents do not receive any

further information about θ and are hence called the uninformed agents. Furthermore,

there is a group of noise traders who do not maximize their utility but trade for reasons

outside of the model. Their demand typically stems from information that is not of

common interest, such as from their need to hedge against endowment shocks or private

investment opportunities in an incomplete market setting (Brunnermeier, 2005). Some

models also work with the assumption of random aggregate demand, which is technically

identical to the noise trader assumption. In order to be consistent throughout this paper,

we stick to the notion of noise trader demand.4. The noise traders’ demand per trading

sequence is denoted by u and normally distributed with mean zero and variance σ2
u. It

enters the market in period t = 1. The uninformed agents know neither the exact value

of Si nor which kind of signal, SH or SL the informed agents have received. Furthermore,

they are unaware of the realization of noise traders’ demand u. However, they can use all

public information to make inference. All probability distributions and other parameters

of the model are common knowledge. One trading sequence has three dates t ∈ {0, 1, 2}.
At t = 0, the informed agents receive their signal Si with i ∈ {H,L} and noise traders’

demand, u realizes. At t = 1, financial markets open, the noise traders enter the market

and the informed and uninformed agents trade competitively. At the final date, t = 2 the

risky asset pays its liquidating dividend. Figure 1 shows a timeline of the trade protocol.

Signal structure

The terminal value of the risky asset is given by θ ∼ N (θ̂, σ2
θ). The informed traders

observe one of two possible noisy signals Si with i ∈ {H,L} of the terminal value of the

risky asset with probability p and 1−p, respectively. According to this setup, the signals

4The assumption of liquidity or noise traders who trade for reasons outside of the model and do
not optimize their utility is common in this literature. For a detailed discussion of possible reasons why
liquidity traders trade as well as an examination of the distinction between information of common versus
private interest, see Brunnermeier (2001) or O’hara (1995). Furthermore, it is possible to rationalize noise
traders as risk-averse hedgers. For a detailed analysis of the topic, see Manzano and Vives (2011) and
Medran and Vives (2004)
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follow a normal mixture distribution.

f(S) = pfSH (S) + (1− p)fSL(S) (3)

The components of the mixture distribution are defined as follows

SL = θ + εL εL ∼ N (0, σ2
εL

) and hence SL ∼ N (θ̂, σ2
θ + σ2

εL
)

SH = θ + εH εH ∼ N (0, σ2
εH

) and hence SH ∼ N (θ̂, σ2
θ + σ2

εH
),

(4)

with σ2
εH

> σ2
εL

. θ and SL as well as θ and SH are distributed bivariate normal N ∼
(µSL

,ΣSL
) and N ∼ (µSH

,ΣSH
), with

µSL
= µSH

=

(
θ̂

θ̂

)
ΣSL

=

(
σ2
θ σ2

θ

σ2
θ σ2

θ + σ2
εL

)
ΣSH

=

(
σ2
θ σ2

θ

σ2
θ σ2

θ + σ2
εH

)

Given the above distributions, one can calculate the values of E[θ|SH ], V ar[θ|SH ], E[θ|SL]

and V ar[θ|SL].5

E[θ|SL] = θ̂ +
σ2
θ

σ2
θ + σ2

εL︸ ︷︷ ︸
FL

(SL − θ̂) and V ar[θ|SL] = σ2
θ −

σ4
θ

σ2
θ + σ2

εL

=
σ2
θσ

2
εL

σ2
θ + σ2

εL

E[θ|SH ] = θ̂ +
σ2
θ

σ2
θ + σ2

εH︸ ︷︷ ︸
FH

(SH − θ̂) and V ar[θ|SH ] = σ2
θ −

σ4
θ

σ2
θ + σ2

εH

=
σ2
θσ

2
εH

σ2
θ + σ2

εH

3.2 Optimization of the agents

This chapter guides to the optimization problem faced by the different agents and provides

a first intuition of the signal structure’s implications on the optimization mechanics of

competitive rational expectations models.

The Agent’s budget constraint

Each of risk-averse agent is endowed with an initial wealth, W0, which he can invest in

the two different kinds of assets. Because a CARA investor’s demand is independent of

initial wealth, the actual amount of W0 does not influence the economics of the model. Pt

is the price of the risky asset in period t. The price of the risk-free asset is normalized to

one for all periods. Without loss of generality, the pay off of the risk-free asset R is also

assumed to be one throughout the paper. Each unit of the risky asset has a pay off of θ

5The results are derived applying the projection theorem for jointly normal variables.
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”dollars” at the end of the period. A ∈ {I, U} stands for the informed I or uninformed

U agent. Dt,A is agent A’s position in the risk-free asset at time t and Xt,A agent A’s

demand of the risky asset in period t. The initial budget constraint writes

W0,A = D1,A + P1X1,A. (5)

The wealth of the agent in period one in terms of pay off is given by

W1,A = RD1,A + θX1,A. (6)

Replacing the demand for the risky asset D1,A and expressing W1,A in terms of W0,A, the

final wealth of the agents is

W1,A = RW0,A + (θ −RP )X1,A. (7)

As already mentioned, all agents have the same utility function over final wealth V (W1,A)

of the CARA class,

V (W1,A) = −e−αW1,A , α > 0,

where α is the coefficient of absolute risk aversion. Each agent desires maximizing his

expected utility conditional on his information set.

Informed Agent

The informed trader maximizes his expected utility conditional on his information set,

F I = {Si}, which comprises the realization of the signal, Si, with i ∈ {H,L}

E[V (W1I)|Si] = E[−e−αW1I |Si]. (8)

Knowing the distribution of SH and SL, W1I is normally distributed conditional on the

respective Signal. Using log normal properties 6, we can rewrite equation 8 as

E[V (W1I)|Si] = −exp(−α(E[W1I |Si]−
α

2
V ar[W1I |Si])). (9)

Given the properties of exponential utility, E[V (W1I)|Si] is maximized by maximizing

E[W1I |Si]−
α

2
V ar[W1I |Si]. (10)

6If ln(x) ∼ N (µx, σ
2
x), then E[ex] = eµ+

1
2σ

2
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Plugging in W1I from equation 7 yields

E[W1I |Si] = RW0I + (E[θ|Si]−RP )XI,i (11)

V ar[W1I |Si] = X2
I,iV ar[θ|Si]. (12)

Equations 11 and 12 are due to the fact that W0I and R are known when the agent

conducts his optimization. P is treated as if it is known, as the informed agent submits

a complete demand schedule rather than a single order. He actually places his demand

for each possible price. The optimization problem of the informed agent writes

max
XI,i>0

RW0I + (E[θ|Si]−RP )XI,i −
α

2
X2
I,iV ar[θ|Si]. (13)

The resulting FOC is

E[θ|Si]−RP − αXI,iV ar[θ|Si] = 0, (14)

and informed demand is given by

XI,i =
E[θ|Si]−RP
α ∗ V ar[θ|Si]

. (15)

Uninformed agent

The general mechanism of the optimization of the uninformed agents is independent of

their beliefs and hence the strategy they are playing. Essentially, it always follows the

same principles. The uninformed agents do not observe the signal, nor do they know the

specific distribution that it comes from. However, they know that there is a signal and

that it has to be drawn from one of two possible components of a mixture distribution

with known parameters. Furthermore, they understand how the demand of the informed

is affected by the signal. The uninformed will capitalize these insights to infer some

indication about the liquidation value of the asset, given the price that they observe.

For this purpose, they have to conjecture a price function based on their information set,

FU . When the uninformed conduct their optimization, besides price, P , they always have

access to signed trading volume. The latter denotes the net order flow of the informed and

noise traders (combined demand of the informed and noise traders). This information is

available, as it is always possible for the uninformed to check the aggregate position in the

order book. Signed trading volume is defined as υi = λE[θ|Si]−RPθ
α∗V ar[θ|Si] − u. For mathematical

convenience and in line with the literature, we introduce another variable called adjusted
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volume, νi, a simple transformation of signed volume.7 In the setup of this paper, adjusted

volume crucially depends on the strategy of the uninformed and whether their strategy

matches the true signal state i, or not. The strategy of the uninformed is indicated by

j, with j ∈ {Un,H,L}. We compute adjusted volume by starting with υi, subtracting

the mean exogenous supply û, which in our case is zero, multiplying the result by the

constant
α∗V ar[θ|Sj ]

λ
, which depends on the strategy of the uninformed and adding the

price Pλ,ij.
8

With Pλ,ij denoting the equilibrium price of the risky asset for a given fraction of

informed agents λ, a given signal i and a strategy played by the uninformed j, the

adjusted volume that the uninformed base their decision on is defined as

νji =
V ar[θ|Sj]
V ar[θ|Si]

(E[θ|Si]− Pλ,ij)−
α ∗ V ar[θ|Sj]

λ
(u− û) + Pλ,ij. (16)

If the true state of the signal regime coincides with the strategy of the uninformed, i = j,

in the following adjusted volume will be defined as νi and takes the form as in Grossman

and Stiglitz (1980) and Breon-Drish (2015) given by

νji = νi = E[θ|Si]−
α ∗ V ar[θ|Si]

λ
(u− û). (17)

According to 17, conditioning uninformed beliefs on price is equivalent to conditioning

uninformed beliefs on a linear function of the signal S and aggregate demand u only. If

the true state of the signal regime does not match the action of the uninformed, i 6= j,

this is no longer true and adjusted volume is given by

νji =
V ar[θ|Sj]
V ar[θ|Si]

E[θ|Si]−
α ∗ V ar[θ|Sj]

λ
(u− û) +

(
V ar[θ|Si]− V ar[θ|Sj]

V ar[θ|Si]

)
Pλ,ij. (18)

It is easy to see that νji can always be framed solely in terms of νiandPλ,ij, using νji =

νi + (νji − νi)

νji = νi +
V ar[θ|Sj]− V ar[θ|Si]

V ar[θ|Si]
(νi − Pλ,ij). (19)

Knowing the distributional assumptions on Si and u, one can work out the exact distri-

bution of νi as well as the joint distribution of νi and θ. A detailed description of the

distributions is given in appendix A.1. Furthermore, ν inherits the mixture structure of

7The variable ωλ in the original model of Grossman and Stiglitz (1980) is nothing but adjusted trading
volume.

8In this setting, signed volume is informationally equivalent to observing price and provides no addi-
tional information. Although more general settings exist, signed volume may enhance the information
contained in price. See Breon-Drish (2015) for a more detailed elaboration on the issue.
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S. Each value of signed trading volume, υi can potentially cause two different values of

adjusted volume, νji depending on the strategy of the uninformed and the signal type

SH or SL. Each of the two signal values gives rise to a different realization of adjusted

volume.

The uninformed agent conducts his maximization based on his information set comprising

adjusted volume as well as price, FU = {νji , Pλ,ij}.

E[V (W1U)|νji , Pλ,ij] = E[−e−αW1U |νji , Pλ,ij], (20)

Given that θ, W and νi are normal and νji can be always written as a function of νi and

Pλ,ij, the conditional distribution of W1U given νji and Pλ,ij is also normal. Therefore,

expected utility can be written

E[V (W1U)|νji , Pλ,ij] = −exp(−α(E[W1U |νji , Pλ,ij]−
α

2
V ar[W1U |νji , Pλ,ij])). (21)

The above equation is maximized by maximizing

E[W1U |νji , Pλ,ij]−
α

2
V ar[W1U |νji , Pλ,ij], (22)

resulting in the maximization problem of

max
XU>0

RW0U + (E[θ|νji , Pλ,ij]−RP )XU −
α

2
X2
UV ar[θ|ν

j
i , Pλ,ij]. (23)

The FOC is given by

E[θ|νji , Pλ,ij]−RP − αXUV ar[θ|νji , Pλ,ij] = 0 (24)

and the demand of the uninformed writes

XU =
E[θ|νji , Pλ,ij]−RPλ,ij
α ∗ V ar[θ|νji , Pλ,ij]

. (25)

In this paragraph, we show that the general mechanism of the optimization of the unin-

formed agents is independent of their beliefs and hence the strategy that they are playing.

Like the informed agent, the uninformed knows W0I and R and acts as if he knew Pλ,ij,

when conducting his optimization. Due to the CARA utility structure, uninformed de-

mand is independent of the initial endowment.
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3.3 Equilibrium price

The maximization reveals that the demand function of the informed depends on the

signal regime, while the demand function of the uninformed agents additionally depends

on their strategy. The demand functions write

XI =
E[θ|Si]− Pλ,ij
α ∗ V ar[θ|Si]

and XU =
E[θ|νji , Pλ,ij]− Pλ,ij
α ∗ V ar[θ|νji , Pλ,ij]

. (26)

Again, i denotes the actual signal regime and j indicates the strategy of the uninformed

agents. We imply market clearing with λ being the fraction of informed and (1− λ) the

fraction of uninformed agents such that the demand of the risky asset equals supply

λXI + (1− λ)XU = u. (27)

Substituting 26 into 27 yields

λ
E[θ|Si]− Pλ,ij
α ∗ V ar[θ|Si]

+ (1− λ)
E[θ|νji , Pλ,ij]− Pλ,ij
α ∗ V ar[θ|νji , Pλ,ij]

= u. (28)

Solving 28 for Pλ,ij, if i = j yields

Pλ;i,j=i = Pλ,i =

λ

αV ar[θ|Si]
E[θ|Si]− u+

(1− λ)

αV ar[θ|νi]
E[θ|νi]

λ

αV ar[θ|Si]
+

(1− λ)

αV ar[θ|νi]

(29)

which can be rewritten as a linear function of νi

Pλ,i =

λ

αV ar[θ|Si]
νi +

(1− λ)

αV ar[θ|νi]
E[θ|νi]

λ

αV ar[θ|Si]
+

(1− λ)

αV ar[θ|νi]

. (30)

Solving 28 for Pλ,ij, if i 6= j yields

Pλ;i,j =

λ

αV ar[θ|Si]
E[θ|Si]− u+

(1− λ)

αV ar[θ|νj]
[θ̂ +Gj(1 +

V ar[θ|Sj]− V ar[θ|Si]
V ar[θ|Si]

)νi − θ̂)]

λ

αV ar[θ|Si]
+

(1− λ)

αV ar[θ|νj]
(1 +Gj(

V ar[θ|Sj]− V ar[θ|Si]
V ar[θ|Si]

)

.

(31)
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Rewritten as a function of νi, we get

Pλ;i,j =

λ

αV ar[θ|Si]
νi +

(1− λ)

αV ar[θ|νj]
[θ̂ +Gj(1 +

V ar[θ|Sj]− V ar[θ|Si]
V ar[θ|Si]

)νi − θ̂)]

λ

αV ar[θ|Si]
+

(1− λ)

αV ar[θ|νj]
(1 +Gj(

V ar[θ|Sj]− V ar[θ|Si]
V ar[θ|Si]

)

(32)

One can infer from equation 15 that the demand of the informed is not unique in S, but

rather can have two different values depending on i. This spills over to signed trading

volume υ and materializes in the two different values of adjusted volume described by 17

and 18 for each observation of υ. According to equations 30 and 32, either of the possible

νs implies a different price. Hence, the mapping from S to P , P (S) is not single valued

and P (S)−1 does not exist. Given this structure, it is impossible for the uninformed to

infer the signal regime by simply observing price.

Solving the model for the uninformed playing the conservative strategy (H)

In this paragraph, we work through the above-described mechanics in further detail and

try to give some intuition by solving the model for the scenario when the uninformed

plays the conservative strategy H. Applying this strategy, the uninformed agent acts as

if the signal would only be drawn from the mixture component with the high-variance;

hence, as if SH were the only possible signal in the economy. If the true signal corresponds

to SH , the uninformed gets everything right and the resulting equilibrium is analogous

to that in Grossman and Stiglitz (1980). The economy is described by the following

equations:

Signed volume is given by

υ = λ
E[θ|SH ]−RPλ,H
α ∗ V ar[θ|SH ]

− u, (33)

adjusted volume by

νH = E[θ|SH ]− α ∗ V ar[θ|SH ]

λ
(u− û). (34)

The equilibrium price is

Pλ,H =

λ

αV ar[θ|SH ]
νH +

(1− λ)

αV ar[θ|νH ]
E[θ|νH ]

λ

αV ar[θ|SH ]
+

(1− λ)

αV ar[θ|νH ]

. (35)
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However, if the true signal is SL and the uninformed acts as if the signal were SH , he

makes a mistake. The mistake materializes by the conversion from signed volume to

adjusted volume. Adjusted volume in case of the true signal is SL, but the uninformed

plays SH , which is labeled as νHL and is defined as

νHL =
V ar[θ|SH ]

V ar[θ|SL]
(E[θ|SL]− Pλ;L,H)− α ∗ V ar[θ|SH ]

λ
(u− û). (36)

Knowing νL = E[θ|SL]− α∗V ar[θ|SL]
λ

(u− û) and V ar[θ|SH ] > V ar[θ|SL], it is obvious that

νHL > νL. Thus, νHL can be framed in terms of νL, as νHL = νL+(νHL −νL). Using equation

19,

νHL = νL +
V ar[θ|SH ]− V ar[θ|SL]

V ar[θ|SL]
(νL − Pλ;L,H). (37)

The resulting equilibrium price according to 32 is

Pλ;L,H =

λ

αV ar[θ|SL]
νL +

(1− λ)

αV ar[θ|νH ]
[θ̂ +GH(1 +

V ar[θ|SH ]− V ar[θ|SL]

V ar[θ|SL]
)νL − θ̂)]

λ

αV ar[θ|SL]
+

(1− λ)

αV ar[θ|νH ]
(1 +GH(

V ar[θ|SH ]− V ar[θ|SL]

V ar[θ|SL]
)

.

(38)

The mistake of the uninformed has two direct implications on price. First, the signal,

νHL , upon which the conditional expectation is based is larger than it would have been

in a setting without asymmetric information. Second, the update factor, GH , is smaller

than it should be due to the overestimated variance of the signal. These two affects work

opposite to each other but will never offset each other exactly as the effect owing to GH

is stronger. This gives rise to the price effects of the model stated in theorem 4.1.

3.4 Utility of the agents in equilibrium

The main emphasis of this paper is on studying the price dynamics incurred by heteroge-

neous information. We do not primarily focus on the analysis of potential equilibria in the

information market, the difference in utility between the informed and uninformed agents

or the price of information implied by this difference in utility. We mainly investigate the

utility of the uninformed agents—especially the difference in utility—if the uninformed

face a world with two different levels of uncertainty versus a world with only one level

of uncertainty. Furthermore, it is investigated how the different strategies influence the

utility of the uninformed. On can think of this as the price of information having two

components. First, the difference between knowing and not knowing the exact value of
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the signal, hence reflecting the classical information asymmetry between the informed

and uninformed agents referred to in the literature. Second, the difference in utility if the

uninformed agents face two different uncertainty regimes and do not know which one they

are currently in compared to a situation with only one uncertainty regime. In the latter,

the uninformed know the prevailing uncertainty regime by construction. The following

analysis concentrates on the second component of uncertainty as it determines which

strategy the uninformed will play. Nevertheless, for completion we start by investigating

the utility of the informed agent.

Utility of informed agents

To calculate the utility of the informed agent, we start at the basis of the utility of the

uninformed and calculate the ex-ante expected utility of being informed given the in-

formation set of the uninformed. This approach comes with two major benefits: first,

it simplifies the comparison between the utility of the informed and uninformed; and

second, it makes the calculations technically more tractable. The detailed calculations

are relegated to appendix A.2.

According to equation 9, the utility of the informed agent writes

E[V (W1I)|Si] = −exp
[
− α

(
E[W1I |Si]−

α

2
V ar[W1I |Si]

)]
(39)

with W1I being

W1I = RW0I + (θ −RP )XI,i,

Using 39 and plugging in W1I and XI,i after simplifying, one obtains

E[V (W1I)|Si] = −exp
[
− αRW0I

]
∗ exp

[
− 1

2

(E[θ|Si]−RPλ;i,j)2

V ar[θ|Si]

]
. (40)

As the first part on the right hand side of equation 40 is independent of the signal, the

second term has to be key. To determine the ex-ante utility of the informed, we evaluate

the expectation given adjusted volume

E [E[V (W1I)|Si]|νi] = V (RW0I) ∗ E
[
exp
(
− 1

2

(E[θ|Si]−RPλ;i,j)2

V ar[θ|Si]

)∣∣∣∣νi]. (41)
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After some algebra, the solution to equation 41 is given by

E [E[V (W1I)|Si]|νi] = V (RW0I)

√
V ar[θ|Si]
V ar[θ|νi]

∗ exp
[
−

(
E[θ|νi]−RPλ;i,j

)2
2V ar[θ|νi]

]
. (42)

Notice that CARA utility is negative. Hence, the smaller the ratio
√

V ar[θ|Si]
V ar[θ|νi] , the higher

the utility of the informed. Equation 42 states that the difference between informed and

uninformed utility induced by knowing the value of the signal is governed by the ratio

of conditional variances, which can be interpreted as the relative value of the quality of

information. The more precise the signal of the informed compared to the information

carried in adjusted volume, the greater its informational advantage. As the informed do

not know a priori which signal regime will materialize, their expected utility is given by

a weighted average of both regimes governed by the mixture weights. E
[
E[V (W1I)|S]

]
,

combined with the facts on normal mixtures yields

E
[
E[V (W1I)|S]

∣∣νi] = p ∗ E
[
E[V (W1I)|SH ]

∣∣νi]+ (1− p)E
[
E[V (W1I)|SL]

∣∣νi] (43)

which results in the expression for overall utility of the informed being

E [E[V (W1I)|S]] = V (RW0I)

(
p ·

√
V ar[θ|SH ]

V ar[θ|νH ]
∗ E

[
exp

[
−

(
E[θ|νH ]−RPλ;H,j

)2
2V ar[θ|νH ]

]]

+ (1− p) ·

√
V ar[θ|SL]

V ar[θ|νL]
∗ E

[
exp

[
−

(
E[θ|νL]−RPλ;L,j

)2
2V ar[θ|νL]

]])
.

(44)

Utility of the uninformed agents

Calculating the utility of the uninformed agents, we approach as follows. We define the

utility of the uninformed without uncertainty regarding the signal regime as ”first best”.

This constitutes the max utility level that the uninformed can reach without knowing

the signal. Subsequently, we compare the different strategies with the ”first-best” level

and each other to identify dominant strategies that are feasible for the uninformed. It is

always possible to frame the utility of the uninformed as a function of νi and θ̂, enabling

a closed-form solution and making the calculations much easier to interpret. The ex-ante

utility of the uninformed in the respective uncertainty regime can be calculated along the

following steps. The detailed calculations are relegated to appendix A.3.
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The expected utility of the uninformed agent is defined by

E[V (W1U)|νi] = −exp
[
− α

(
E[W1U |νi]−

α

2
V ar[W1U |νi]

)]
(45)

with W1U being

W1U = RW0U + (θ −RP )XU ,

Using 45, plugging in W1U and XU and simplifying defines expected utility as

E [E[V (W1U )|νi]] = −exp [−αRW0U ] ∗

E

[
exp

[
−
E[θ|νji , Pλ;i,j ]−RPλ;i,j
α ∗ V ar[θ|νji , Pλ;i,j ]

(
(E[θ|νi]−RPλ;i,j)−

1

2

(
E[θ|νji , Pλ;i,j ]−RPλ;i,j

) V ar
[
θ
∣∣νi]

V ar[θ|νji , Pλ;i,j ]

)]]
(46)

The expression in the first line of 46 is a constant and in the second line the term

in the exponential can be rewritten as a linear function of (νi − θ̂)2. Hence, expected

utility of the uninformed can be calculated analytically and in closed form, by plugging

in Pλ;i,j, E[θ|νji , Pλ;i,j], E[θ|νi], V ar[θ|νji , Pλ;i,j] and V ar
[
θ
∣∣νi] and realizing the fact that

the resulting expression follows a central chi-square distribution with one df. For i = j,

46 reduces to the standard form given by

E[V (W1U)|νi] = V (RW0U) ∗ exp
[
− 1

2

(E[θ|νi]−RPλ;i)2

V ar[θ|νi]

]
. (47)

Difference in utility

As the informed agents receive a signal and know the uncertainty regime due to their

informational advantage, their expected utility exceeds the expected utility of the unin-

formed. In order to calculate the difference in utility, we introduce a new variable called

E[V (Waux)|νi]. It describes the expected utility of the uninformed if they were informed

about the signal regime, but the price in the economy would still allow for the possibility

that the strategy of the uninformed and the true state of the signal do not match. This

allows splitting the connection between information and utility into two components: one

regarding the value of the observed signal and the second regarding the advantage implied

by knowing the signal regime. The new variable is defined as

E[V (Waux)|νi] = eαRV (RW0I) ∗ exp
[
−

(
E[θ|νi]−RPλ;i,j

)2
2V ar[θ|νi]

]
. (48)
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The difference in expected utility between the informed and uninformed agents is then

calculated with the help of the new variable according to

E[V (W1I)]− E[V (W1U)] = E[V (W1I)]− E[V (Waux)] + (E[V (Waux)]− E[V (W1U)])

(49)

For i = j, E[V (W1U)] = E[V (Waux)] and the utility difference between informed and

uninformed is mainly governed by the ratio
√

V ar[θ|Si]
V ar[θ|νi] . However, if i 6= j, the utility

difference between the informed and uninformed incorporates the two aforementioned

components: first, the ratio
√

V ar[θ|Si]
V ar[θ|νi] , which governs the informational advantage of the

signal Si compared to the price system νi if there were no uncertainty concerning the

signal regime; and second, the difference between E[V (Waux)]−E[V (W1U)], which takes

into account the loss in utility of the uninformed for not knowing the uncertainty regime

and hence making a strategic mistake when updating conditional on the adjusted volume

that they observe. Pλ;i,j affects both elements of the utility calculation and guarantees a

further distinction from the standard results of the literature.9

3.5 General equilibrium

Next we determine the optimal strategy of the uninformed facing the described economy

and the set of possible actions defined in section 2.2. Furthermore, we investigate whether

the actions of the uninformed lead to a REE that meets the conditions stated in equations

1 and 2 and analyze the main properties of the potential equilibrium.

Theorem 3.1. There always exists a noisy REE that fulfills conditions 1 and 2 contingent

on the set of possible strategies described

1. in which the uninformed agent plays either strategy L or H

2. there exists a threshold level p∗ as a function of the parameters of the model p∗ =

f(σεL , σεH , σθ, σu, α, λ) with the domain 1
2
< p∗ < 1 ∀ λ < 1

2
, which determines

the optimal strategy for the uninformed. It defines an optimal strategy for any

parametrization of the economy

3. if p < p∗ it is optimal for the uninformed to play strategy L

4. if p∗ < p it is optimal for the uninformed to play strategy H

Proof. We prove the above theorem in two steps. First, we show that playing strategy

H is always superior compared with staying out of the market or participating without

9This setup would also allow solving for an equilibrium in the information market. However, as
already mentioned, this is beyond the scope of this paper.
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trying to learn from the price system. Next, we consider the expected utility of the

uninformed for both strategies and demonstrate that the two functions intersect only

once. Finally, equating the expected utility of both strategies yields the expression for p∗

in terms of the parameters of the model. For the detailed proof, see appendix A.4

It seems reasonable that it is beneficial to use information that one possesses but is

not 100 percent sure about its quality cautiously rather than not using it at all. Thus,

the first part of the theorem is in line with intuition. However, part two appears to

be not as obvious. While it seems logical for very high values of p that strategy H

dominates strategy L and vice versa, determining the critical values of p ex ante by

economic intuition is not straightforward. One possible way of reasoning is along the

lines of risk aversion. Confronted with information of rather unknown quality, utilizing

this information more cautiously should accommodate the general idea of risk aversion.

This argues in favor of playing strategy H. Accordingly, the uninformed get everything

right in the high signal regime. In the low signal regime, they base their decisions on the

assumption of higher uncertainty and thus discount their information at a higher rate than

required. This can simply be interpreted as being overly cautious. Against the backdrop

of this line of reasoning, we expect the optimal region supporting strategy H to be larger

than that in support of strategy L materializing in the fact of p∗ < 1
2
. However, looking

at theorem 3.1, this is not true. The parameter space supporting L strictly exceeds the

parameter space supporting H. It emerges that the optimal behavior of an agent is not

to be cautious, but rather to minimize his relative informational disadvantage compared

to the informed agent. As the value of information decreases with its variance, the utility

that the informed can extract from his information in the high-variance regime is smaller

than in the low-variance regime. Therefore, the informed is able to more efficiently exploit

his informational advantage given the low-variance regime. Thus, it is much costlier for

the uninformed to make a mistake in the low uncertainty regime compared to the high

uncertainty regime, as the informed is able to capitalize on the mistake of the uninformed

more aggressively. In everyday language, this translates into the desire that it is beneficial

to get the high impact things right while being more laissez-faire with the minor issues.

The low-variance regime is more efficient in the way that the informational disadvantage

of the uninformed is higher. The high-variance regime is more forgiving when making a

mistake.

Numerical comparative statics

In this section, we discuss the consequences of perturbations of the model parameters on

the agents’ utility and their optimal strategies. The parameters of the model can roughly

be divided into two groups: one having primarily a level effect and influencing both

strategies in the same direction with rather equal strength, and the other mainly governing

23



0-plane ΔVU 0-plane ΔVU

Figure 2: Development of the utility difference of the uninformed between the two possible strategies
V (UL)− V (UH) with respect to changes λ and p for two different levels of variance in the noise term of
the high-variance signal SH , namely σεH = 2 and σεH = 3. The value of the variance in the noise term
of the low-variance signal SL, namely σεL and the values of σθ, σu as well as α are fixed at 1.

the difference between the two strategies and hence defining optimality, p∗. The factors

belonging to the latter group—hence primarily determining the utility difference between

the two strategies—are the variance of the noise terms of the signal, more precisely their

difference, σ2
εH
−σ2

εL
, and the variance of the pay off of the risky asset, σ2

θ . Figure 2 shows

the utility difference of the informed agents between playing strategy L and strategy

H, V (WU,L) − V (WU,H) plotted against the horizontal zero-plane. The graph visualizes

the development of the utility difference given an increase in the difference of the signal

precision for all possible mixture weights p and different shares of informed agents λ. The

variance of the risky pay off, noise trading, risk aversion as well as the noise term of the

low-variance signal are held constant at 1, σ2
u = 1, σ2

θ = 1, σ2
εL

= 1 and α = 1. As long as

the red plane is below the gray, it is beneficial for the uninformed agent to play strategy

L. As soon as the red plane crosses the gray zero-plane from below, it is beneficial to

obey strategy H. Notice that due to CARA utility, the more negative the value in the

graph, the greater the advantage of playing strategy L and vice versa. One can clearly

infer from the two pictures that an increase in the variance of the noise term in the high-

variance regime ceteris paribus significantly increases the utility difference between the

two strategies and reduces the feasible region of strategy H, hence leading to increasing

values of p∗. The mechanism at hand is that an increase in the difference of signal noise

by increasing σεH reduces the relative informational advantage of the informed in the

high-variance regime, while the situation in the low-variance regime remains unchanged.

This effects the utility difference between the two strategies in two ways: on the one hand,

when playing strategy H, the mistake in the low signal regime is more severe; and on

the other hand, the relative benefits of getting the signal right in the high signal regime
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0-plane ΔVU 0-plane ΔVU

Figure 3: Development of the utility difference of the uninformed between the two possible strategies
V (UL) − V (UH) with respect to changes λ and p for two different variance levels of the pay off of the
risky asset, σθ = 1 and σθ = 3. The values of the noise term in the high-variance regime is set to two,
σεH = 2 and the values of σεL , σu as well as α are fixed at 1.

have decreased as the overall quality of the signal has decreased. The opposite is true

for strategy L. Here, the benefits of getting the L signal right remain stable, while the

problem of making a mistake in the high-variance regime declines as the scenario as a

whole is less favorable for both informed as well as uninformed agents. These dynamics

yield the observed increase in the utility difference between the two strategies and the

decline in the feasible region of strategy H. Notice that the red area above the zero-plane

is significantly smaller in the right picture compared to the left.

The second main force driving the utility difference is the variance of the asset pay

off σ2
θ . An increase in σ2

θ ceteris paribus diminishes the difference in utility between the

two strategies. This development is depicted in figure 3 for σ2
u = 1, σ2

εL
= 1, σ2

εH
= 4 and

α = 1. With increasing σ2
θ , signal noise implicitly decreases relative to the asset variance.

This constitutes nothing but a relative increase in signal quality in both signal regimes

with the relative difference between the regimes simultaneously decreasing. Therefore,

with increasing volatility in the asset pay off, both strategies kind of converge, the utility

difference declines and the feasible region of strategy H increases. The development is

nicely depicted by the increase of the red area above the zero-plane in the right graph of

figure 3 compared with the left.

The remaining variables can be attributed to group one. Their effect is depicted in

figure 4 using the overall utility of strategy L as an example. The left graph in figure

4 portrays the influence of an increase in noise trading on the overall utility of the un-

informed agents. The other parameters of the model are calibrated as σ2
θ = 1, σ2

εL
= 1,

σ2
εH

= 4 and α = 1. An increase in noise trading measured by an increase in σ2
u theoreti-

25



σu=1 σu=3 α=1 α=3

Figure 4: The left graph depicts the development of the utility level of the uninformed agents playing
strategy ”L” given an increase in the variance of noise trading from σu = 1 to σu = 3. The right
graph depicts the development of the utility level of the uninformed agents playing strategy ”L” given
an increase in risk aversion from α = 1 to α = 3. The values of the noise term in the high-variance
regime is set to two, σεH = 2. All other parameters of the model σεL , σθ are fixed at 1.

cally induces two effects: one on the utility difference between informed and uninformed

and the other on the overall utility of the uninformed. Concerning the former, it reduces

the general informativeness of the price system and hence increases the informational

advantage of the informed. However, overall it reduces the equilibrium price and thus

generally increases the utility of all agents in the economy. For the uninformed, the latter

effect more than overcompensates the decrease in the informativeness of the price system.

This can be thought of in two ways. The higher supply reduces the price and as noise

traders are not maximizing utility they thus kind of pay the bill in this economy. In turn,

the fraction of people who could be exploited by the maximizing agents increases. This

positive effect on the utility level shifts the utility plane downwards and is depicted by

the difference between the gray and the red plane in the left graph of figure 4. Remember

that due to CARA utility, the closer the planes are to zero, the higher the utility of the

uninformed agents.

Increasing risk aversion has a similar effect on overall utility. The right graph of figure

4 shows the development of utility for an increase in risk aversion from α = 1 to α = 2.

The rationale behind the presented dynamics is that the higher the risk aversion, the less

aggressively the informed agents exploit their informational advantage. Furthermore, the

certainty discount on the equilibrium price is higher, which in turn is positive for the

uninformed agents as a lower price ceteris paribus increases their overall utility. In both

cases, the level effects reduce the overall utility difference between the two strategies.
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t0 t1 t2 t3

Informed agents
receive their signal

1st half noistrader-
demand realizes
Agents trade
competitively

2nd half noistrader-
demand realizes
signal uncertaity
resolves
Agents trade
competitively

Payoff is realized

Figure 5: The timeline shows the sequence of events in the model. At t = 0, the informed agents receive
their private signal Si. At t = 1, the first half of noise traders enters the market and the agents trade
competitively. In the next step at t = 2, the uncertainty about the signal structure i = H/L is revealed,
the second half of noise traders enter the market and agents trade again. Uncertainty is resolved at t = 3
and the pay off of the risky asset θ materializes

4 The two-period market

In this section, we extend the static model of section 3 for an additional trading period

and examine the equilibrium implications as well as the resulting price dynamics.

4.1 Equilibrium in the two-period market

Paragraph 3 depicts and explains the basic mechanisms of the model. However, in order

to investigate price dynamics, one has to look at a model with more than one round of

trading. For tractability, we restrict our attention to the case with two trading periods.

This allows us to describe and analyze the underlying price dynamics given heterogeneous

information. The basic setting is not altered much. In the extended model, the uncer-

tainty regarding the signal regime is resolved after the first round of trading and financial

markets open for a second time. Furthermore, noise traders’ demand—still denoted by

u and normally distributed with mean zero and variance σ2
u—enters the market by equal

parts in two steps. One trading sequence has four dates t ∈ {0, 1, 2, 3}. At t = 0, the

informed agents receive their signal Si with i ∈ {H,L} and noise traders’ demand, u

realizes. At t = 1, financial markets open, half of the noise traders enter the market and

the informed and uninformed agents trade competitively. At the second trading round,

t = 2 the true state of the signal is revealed to the uninformed agents, and markets open

again. The remaining half of the noise traders now enter the market and informed and

uninformed agents trade competitively given the new information set of the uninformed.

The informed agents do not receive any new information in the second round of trading.

At the final date, t = 3 the risky asset pays its liquidating dividend. Figure 5 shows a

timeline of the trade protocol.

No additional fundamental information regarding the pay off of the risky asset enters

the market as the informed agents do not receive an additional signal. Agents maximize

their expected end-of-period wealth W3 and due to CARA utility their wealth level—
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expected trading gain from period one—does not influence their optimization in period

two. Therefore, the optimization and hence the demand of informed agents does not

change in the two-period model as they face an identical information set in both periods.

Regarding the uninformed agents, the situation is considerably different: when the signal

regime is unveiled in period two, the information set of the uninformed is affected and

they incorporate the new information when conducting their optimization. Notice that

as they are optimizing end-of-period wealth W3, their optimal strategy in period one has

no implications on their optimal strategy in period two. Accordingly, the first-period

behavior of the uninformed does not influence their second-period choices. This is a very

nice property as it no longer requires solving the model backwards over two periods but

allows us to evaluate each period separately as if it were independent.

In the second round of trading, the signal regime is known to all agents. The equi-

librium solutions of the second trading period are given by the equations satisfying i = j

and fit a classical noisy REE for both uncertainty regimes.

4.2 Price dynamics

We know the properties of the equilibria in the two periods and the resulting market-

clearing equilibrium prices. The next result shows that the behavior of the equilibrium

prices from one period to another is systematic and crucially depends on the parametriza-

tion of the economy and hence the optimal strategy of the uninformed agents. Overall,

two distinct price patterns can be measured across the economy: on the one hand, the

economy exhibits momentum, which is triggered by the price movement when observing

a low-variance signal but the uninformed opts to see himself in a high-variance regime;

and on the other hand, the economy exhibits reversal triggered by the reaction of the

uninformed to high-variance signals when he opts to behave as if he were in a low-variance

world. There are admissible regions for over- as well as under-reaction patterns in this

economy depending on the parameters of the model. The bounds of these regions are

mainly governed by the difference in the information quality of the two different signals

and the variance of the risky asset. The exact results are stated in the next theorem.

Theorem 4.1. For each parametrization of the model, there exists a value p∗ that de-

termines whether the development of stock prices between the first and second round of

trading shows a momentum or reversal pattern.

1. If p < p∗ the uninformed agent plays strategy L and the economy is in the reversal

region;

• Whenever the signal regime is SH , |P1,SH | > |P2,SH | and

cor(∆P1,SH∆P2,SH ) < 0
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• The overall correlation of price changes between the periods is negative,

cor(∆P1∆P2) < 0

2. If p > p∗ the uninformed agent plays strategy H and the economy is in the momen-

tum region

• Whenever the signal regime is SL, |P1,SL| < |P2,SL| and

cor(∆P1,SL∆P2,SL) > 0

• the overall correlation of price changes between the periods is positive,

cor(∆P1∆P2) > 0

Proof. See Appendix A.5

The economic intuition underlying the price patterns is straightforward. Playing

strategy L, the price effect materializes in the presence of the high-variance regime. In

such a situation, the actual demand of the uninformed agents exceeds their optimal

demand in the prevailing signal regime. The over-reaction owing to a presumably high

signal quality shifts up the entire demand schedule of the uninformed, implying a higher

demand for each given price. Following the classical mechanics of markets, this excess

demand from one side directly translates into a higher market-clearing price in equilibrium

compared to a situation without uncertainty regarding the signal regime. As there is no

longer signal uncertainty in the second trading period, the over-reaction resolves, leading

to a price reversal to its efficient level. Given strategy H, the price effect follows a

signal realization from the low-variance regime and the mechanics are vice versa. The

uniformed underestimates the quality of his information and reacts too tentatively. The

resulting demand induced by the signal is too low, which results in a downward shift of

the entire demand schedule. It is easy to see that less demand from the uninformed yields

lower prices in equilibrium. The second-period demand will not suffer this bias and thus

exceeds the demand in the first period. This results in a higher market price, the initial

under-reaction is corrected and a momentum effect occurs.

These price patterns occur without inducing any behavioral biases on the uninformed.

As theorem 3.1 shows, the uninformed agents behave fully rationally given their infor-

mation set and possible choice of actions. They are completely aware of the described

mechanism, although ex-ante they are unable to anticipate its occurrence and hence

unable to avoid it.

Theorem 4.1 further states that each calibration supports either the over- or under-

reaction of prices. However, it is easy to extend the setting in a way that it generally

allows for both price patterns independent of the calibration of parameters. As soon

as the mixture probabilities are no longer fixed but are allowed to change over time, it

is possible to introduce both price patterns in the economy, as the realizations of the
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t0 t1 t2

Informed and
uninformd agents
receive their signal

Noistraders’ demand
realizes
Agents trade
competitively

Payoff is realized

Figure 6: The time line shows the sequence of events in the model when the uninformed receive
information about the value of the signal but not about its quality. At t = 0, the informed and uninformed
agents receive their private signal Si and S, respectively. In the next step at t = 1, financial markets
open, noise traders enter and risk-averse agents trade competitively based on their signals. Uncertainty
is resolved at t = 3 and the pay off of the risky asset θ materializes

mixture weights are common knowledge. Given situations in which the realization equals

p < p∗ reversal occurs and if p > p∗ prices exhibit a momentum pattern. Thus, even the

scope of the economy seems limited at first, it is easy to allow for both kinds of price

reaction without altering the intuition of the model.

Remark The assumption of the behavior of the noise traders as well as the fact that

the informed do not observe a second signal seems a little artificial. However, these

assumptions are not essential for the inherent dynamics of the model. The price effect

would still be existent but only on average and much more tedious to prove. Therefore,

I stick to the above outline, which also makes the basic dynamics of the model much

clearer.

5 The Extended model

In the following extension, we study the implications on the equilibrium if the uninformed

agents observe the realization of the signal but still remain uninformed regarding the

prevailing signal regime.

5.1 General setting

The setting is analogous to that in 3 with the only difference being that the uninformed

agents also get to know the realization of the signal Si. However, they do not know

whether the signal that they observe is SL or SH . Hence, they simply observe S without

having further information. The time line of events is very similar to that described in

chapter 3.1 and is given in figure 6
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Signal structure

The signal structure is equal to that described at the beginning of chapter 3, with the

only difference being that knowing the realization of the signal Si, the uniformed are now

able to make Bayesian inference regarding the probability of the prevailing uncertainty

regime. They can assign probabilities to the different mixture components—the part of

the distribution the signal comes from—and do not have to stick to the prior weights

of the mixture distribution. The prior distribution of S is given by equation 3. The

uninformed agents’ posterior distribution is given by

f(S) = ωLfSL(S) + ωHfSH (S), (50)

with the weights of the mixture after observing the realization of S being given according

to Bayes’ theorem and writing

ωH =
pfSH (S)

(1− p)fSL(S) + pfSH (S)
and ωL =

(1− p)fSL(S)

(1− p)fSL(S) + pfSH (S)
. (51)

ωL and ωH are the relative probabilities the observed Signal S can be attributed to SL

or SH .

5.2 Optimization and equilibrium demand

The optimization of the informed does not change as their information set is not affected

by the alterations in the setup of the economy. By contrast, the optimization of the unin-

formed differs due to their additional signal. The signal S is a superior statistic regarding

the future pay off of the risky asset compared to the adjusted volume or price. Hence, the

uninformed no longer try to draw any inference from price or adjusted volume, but con-

dition directly on the realization of the signal. Although the uninformed know the value

of S, the price system of the economy is not fully revealing as they still cannot observe

noise trader demand u. Informed demand is still camouflaged by the noise traders. Each

value of S can give rise to two different expressions of informed demand XI , depending

on the signal regime. One can think of this as a second layer of uncertainty, impeding

that the economy remains fully informationally efficient.

Optimization of the uninformed

The uninformed are optimizing their expected utility. Nevertheless, their ex-ante infor-

mation set is no longer empty, but rather contains the value of their signal, FU{S}. Thus,
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they condition their maximization on the signal S that they have observed.

E[V (W1U)|S] = E[−e−αW1U |S] (52)

As the uninformed agents do not know the detailed properties of the signal, they have to

update their beliefs about the signal type according to Bayes’ theorem, using the weights

defined in 51.

E[V (W1U)|S] = ωLE[−e−αW1U |SL] + ωHE[−e−αW1U |SH ] (53)

Given that a mixture distribution is a weighted sum of normals, the result for log normal

distributions can be used and the respective parts of the expected utility of the uninformed

agents can be written as

E[V (W1U)|SL] = −exp
(
−α
(
E[W1U |SL]− α

2
V ar[W1U |SL]

))
, (54)

and

E[V (W1U)|SH ] = −exp
(
−α
(
E[W1U |SH ]− α

2
V ar[W1U |SH ]

))
. (55)

Adding everything up, the expected utility of the uninformed given S writes

E[V (W1U)|S] =− ωL · exp
(
−α
(
E[W1U |SL]− α

2
V ar[W1U |SL]

))
− ωH · exp

(
−α
(
E[W1U |SH ]− α

2
V ar[W1U |SH ]

))
.

(56)

Substituting the expressions for E[W1U |SL], E[W1U |SH ], V ar[W1U |SL] and V ar[W1U |SH ],

one gets

E[V (W1U )|S] =− ωL · exp
(
−α

(
RW0U + (E[θ|SL]−RP )XU −

αX2
U

2
V ar[θ|SL]

))
− ωH · exp

(
−α

(
RW0U + (E[θ|SH ]−RP )XU −

αX2
U

2
V ar[θ|SH ]

))
.

(57)

The maximization problem of the uninformed agents and the corresponding FOC write

max
XU

− ωL · exp
(
−α
(
RW0U + (E[θ|SL]−RP )XU −

αX2
U

2
V ar[θ|SL]

))
− ωH · exp

(
−α
(
RW0U + (E[θ|SH ]−RP )XU −

αX2
U

2
V ar[θ|SH ]

))
.

(58)
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FOC:

0 = ωL · (α ((E[θ|SL]−RP )− αXUV ar[θ|SL])) exp (ΘSL)

+ ωH · (α ((E[θ|SH ]−RP )− αXUV ar[θ|SH ])) exp (ΘSH )
(59)

with

ΘSL = −α
(
RW0U + (E[θ|SL]−RP )XU −

αX2
U

2
V ar[θ|SL]

)
ΘSH = −α

(
RW0U + (E[θ|SH ]−RP )XU −

αX2
U

2
V ar[θ|SH ]

) (60)

The uninformed cannot distinguish the different signals’ regimes. Therefore, they are

unable to maximize their utility dependent on the respective signal regime, but rather

have to maximize over their expectation of the signal regime. They are searching for

an optimal demand given their signal, which fulfills optimality regardless of the signal

regime in place. Contrary to the informed agent, this translates into only one maximiza-

tion problem and one FOC. Unfortunately, the resulting expression for the FOC has no

analytical solution and can only be solved numerically.

Equilibrium demand

Despite the challenges posed above, it is possible to prove existence and characterize the

different features of the equilibrium in closed form. As this paper places its focus on

the price dynamics that exist in the market, a proof and characterization of equilibrium

should be sufficient. The following proposition postulates the existence of optimal demand

and pins down its most important characteristics.

Proposition 1.

1. There exists a unique XU that fulfills the conditions of optimal demand stated in 2.

2. For each signal, the optimal demand of the uninformed agent, XU , is situated within

a specified interval (
¯
X, X̄), with the demand of the informed agents XIH and XIL

being the boundaries of that interval.

3. For equilibrium demand, the following relations hold. XI,H > XU < XI,L,∀S > 0

and XI,L > XU < XI,H ,∀S < 0.

Proof. The proof of proposition 1 is organized in three parts. We first prove that the FOC

given by 59 is a continuous function, monotonically decreasing with XU . Second, we show

that optimal demand of the uninformed is bounded by the interval XU ∈ (
¯
X, X̄) with

the boundaries being XI,L and XI,H and FOC(
¯
X) < 0 and FOC(X̄) > 0. Finally, the

result follows from the intermediate value theorem. For the detailed proof, see A.6

33



As XI,i is the optimal demand of the informed agents, it always equates the respective

signal congruent part of the FOC to zero by definition. After substituting XI,H = XU ,

the second part of the FOC is zero and one is left with the first part, which constitutes

the situation for the opposite signal. Being left with the first part of the FOC, we know

from the optimization of the informed that the demand XI,H is too low, as the reaction on

the signal information implied by XI,H is too cautious and the optimal response should

be stronger. Along these lines, XI,H can intuitively be interpreted as the lower bound

on XU . By contrast, plugging in XI,L = XU , we are left with the second part of the

FOC. In this part, the reaction to Si implied by XI,L is too strong and should have

been more modest. Hence, XI,L intuitively constitutes an upper bound on XU . Facing

these two relationships, the truth about the optimal XU has to be situated somewhere

in between XI,H and XI,L. Compared with the first setting, in which it is optimal for

the agent to stick to one strategy, here the optimal solution to the problem is to choose

a middle strategy. However, the strategy cannot be pinned down analytically in terms of

the parameters of the model.

5.3 Equilibrium price

After having guaranteed a solution to the FOC, thus the existence of optimal demand

and describing its main features, the next step is to characterize the equilibrium price.

We start by proving the existence of an equilibrium price that clears the market. Sub-

sequently, we analyze and evaluate the characteristics of the equilibrium price trying to

detect systematic price patterns. The market-clearing condition 1 requires that the de-

mand of the uninformed investor equals noise trader’s demand less the demand of the

informed investors. This enables us to define uninformed demand as a function of in-

formed and noise trader demand, XU(XI , u). Notice that informed demand is a function

of the signal and price, XI(Si, Pλ,i).

XU(Pλ,i, Si, u) =

[
u

1− λ
− λ

1− λ
E[θ|Si]−RPλ,i
αV ar[θ|Si]

]
(61)

Furthermore, we define the uninformed agents’ utility in the respective regimes as a

function of Si and XU(Pλ,i,u) with

ΛL(Si, XU (Pλ,i)) = −α
(
RW0U + (E[θ|SL]−RP )XU (Pλ,i)−

αXU (Pλ,i)
2

2
V ar[θ|SL]

)
,

ΛH(Si, XU (Pλ,i)) = −α
(
RW0U + (E[θ|SH ]−RP )XU (Pλ,i)−

αXU (Pλ,i)
2

2
V ar[θ|SH ]

)
.

(62)
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Substituting expressions 61 and 62 into the FOC produces an expression that implicitly

characterizes the equilibrium price for each signal regime. Given Si = SH , this yields

0 = ωL ·
(
α

(
(E[θ|SL]−RP )− αV ar[θ|SL]

[
u

1− λ
− λ

1− λ
E[θ|SH ]−RP
αV ar[θ|SH ]

]))
exp (ΛL(SH , Pλ,H)) ,

+ωH ·
(
α

(
(E[θ|SH ]−RP )− αV ar[θ|SH ]

[
u

1− λ
− λ

1− λ
E[θ|SH ]−RP
αV ar[θ|SH ]

]))
exp (ΛH(SH , Pλ,H)) .

(63)

Proposition 2.

1. There exists an equilibrium price function for each signal regime that fulfills condi-

tion 1 and is implicitly defined as

• if Si = SH

Pλ,H = ωL

(
(1− λ)E[θ|SL] +

λV ar[θ|SL]

V ar[θ|SH ]
(E[θ|SH ]− αuV ar[θ|SL]

)
· exp (ΛL(SH , Pλ,H))(

ωL
V ar[θ|SH ]− λ(V ar[θ|SH ]− V ar[θ|SL])

V ar[θ|SH ]
· exp (ΛL(SH , Pλ,H)) + ωH · exp (ΛH(SH , Pλ,H))

)
+ ωH

(E[θ|SH ]− αuV ar[θ|SH ]) · exp (ΛH(SH , Pλ,H))(
ωL

V ar[θ|SH ]− λ(V ar[θ|SH ]− V ar[θ|SL])

V ar[θ|SH ]
· exp (ΛL(SH , Pλ,H)) + ωH · exp (ΛH(SH , Pλ,H))

)
(64)

• if Si = SL

Pλ,L = ωL
(E[θ|SL]− αuV ar[θ|SL]) · exp (ΛL(SL, Pλ,L))(

ωH
V ar[θ|SL] + λ(V ar[θ|SH ]− V ar[θ|SL])

V ar[θ|SL]
· exp (ΛH(SL, Pλ,L)) + ωL · exp (ΛL(SL, Pλ,L))

)

+ ωH

(
(1− λ)E[θ|SH ] +

λV ar[θ|SH ]

V ar[θ|SL]
(E[θ|SL]− αuV ar[θ|SH ]

)
· exp (Λh(Sl, Pλ,l))(

ωH
V ar[θ|SL] + λ(V ar[θ|SH ]− V ar[θ|SL])

V ar[θ|SL]
· exp (ΛH(SL, Pλ,L)) + ωL · exp (ΛL(SL, Pλ,L))

)
(65)

2. The boundaries for the equilibrium prices of the economy, Pλ,Si ∈ (
¯
P, P̄ ), are given

by the full information prices of the economy.

• If Si > θ̂,
¯
P = ˆPλ,H and P̄ = ˆPλ,L for all S > θ̂

• If Si < θ̂,
¯
P = ˆPλ,L and P̄ = ˆPλ,H for all S < θ̂

Proof. The proof of existence proceeds very similar to the proof of proposition 1 applying

an intermediate value theorem argument. We show that the function specified in 63 is
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continuous and crosses zero at least once. The price functions stated in the first part of

proposition 2 are derived by simplifying 63 and collecting all Pλ,i that are not part of

the exponential function on one side. The second part of proposition 2 is obtained by

plugging in the full information prices into the implicit price function and evaluating the

function for each signal regime. The function implicitly characterizing the equilibrium

demand is again the derivative of a weighted sum of two moment-generating functions

and hence continuous.

Together, propositions 1 and 2 guarantee the existence of a noisy REE and describe

its most important characteristics. Looking at the expression that indirectly defines

uninformed demand and knowing from proposition 1 that the optimal demand of the

uninformed is unique given S and independent of the signal regime H or L equation

61 elicits that this does not hold for price. If demand is unique and not signal-regime

dependent, then the market-clearing equilibrium price has to be dependent on not only

the signal but also the signal regime. Two potential prices support equation 61 holding

constant the values of u and Si, which only depend on the kind of signal i ∈ {H,L}. This

dichotomy of the market-clearing equilibrium price is at the center of the model. The

demand of the uninformed induces two different prices depending on the signal regime.

Furthermore, we show in proposition 2 that the market price is bounded by the full

information prices but never equals them. Combining these two facts, by definition there

have to be two different price paths whenever the price in the economy converges to the

full information price.

5.4 Price dynamics

In order to make a statement about the price dynamics, it is again necessary to look

at more than one period. We assume an extension of the model towards an additional

trading period, in which the uncertainty of the signal regime is resolved. The setting is

completely analogous to that described in paragraph 4 with the hitherto-known alteration

that the uninformed observe the realization of the signal. In the second period, after the

signal type is revealed there is no uncertainty left in the economy and the full information

price materializes. This gives rise to the price dynamics described in the next proposition.

Proposition 3.

• If Si = SL, the price difference ∆PL will always satisfy ∆P > 0 for all SL > θ̂ and

∆P < 0 for all SL < θ̂. In such a case, the economy will experience under-reaction

• If Si = SH , the price difference ∆PH will always satisfy ∆P < 0 for all SH > θ̂ and

∆P > 0 for all SH < θ̂. In such a case, the economy will experience over-reaction
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Proof. Proposition 3 follows immediately from the second part of proposition 2.

According to proposition 3, the observable price pattern is purely driven by the signal

regime. Notice that the uninformed agent is unable to distinguish the signal regimes.

As soon as he observes the signal, he does not have to decide in advance which strategy

to play, but according to proposition 1 there exists an optimal demand for each signal

independent of its type. This demand never resembles the demand of the informed agent

but is either above or below it. In comparison to the first part of the paper, when the

uninformed has to choose his strategy a priori, his demand is either too high or too low in

only one state of the economy. The deviation—either over- or under-reaction to a specific

signal regime—depends on the strategy of the uninformed and hence the parametriza-

tion of the economy. It is not possible to generate both over- and under-reaction given

a specific calibration of parameters without introducing variation in mixture weights p.

By contrast, both patterns are feasible in this economy and are solely dependent on the

signal type. They occur as soon as the variances of the two signals differ. Neither the

amount of informed agents λ or the amount of noise trading u nor the variance of the pay

off of the risky asset σθ or the mixture weights have an influence on the existence of these

price pattern. In the first setting, the combination of these parameter values decided

whether the economy experiences under- or over-reaction, while in the extended model

this is no longer true. Here, the cited parameters are simply able to influence the severity

of the movement. Prices always exhibit over-reaction following the high-variance signal

and under-reaction following the low-variance signal. Hence, both varieties are possible

in general, albeit are not equally likely.

Overall, proposition 3 states that given the low-variance regime the equilibrium price

will always be below the full information price, inducing a positive correlated price drift

between the two trading periods. The opposite is true for the high signal regime. The

intuition follows the idea that for the uninformed agents some weighted average of the

demand of the informed agents should be optimal.

6 Conclusion

We propose a rather simple but intuitively tractable model alteration of the classical noisy

rational expectations model that supports price patterns of over- and under-reaction with-

out deviating from the assumption of rationality. By expanding the basic Grossman and

Stiglitz (1980) setting and introducing a heterogeneous signal structure, we are able to

explain empirical price anomalies with the help of a noisy rational expectations model.

Accordingly, we do not rely on sophisticated mechanisms of information transmission or

the like, but rather solely work with different levels of information characteristics. The
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idea is to enrich the information structure beyond the point that one part of the agents in

the economy observes a certain signal and the reminder does not. Instead, we challenge

the idea that information is homogeneous and allow for a second dimension comprising

heterogeneity in in the information structure.

Our results show that financial markets systematically over- or under-react to different

types of signals, giving rise to certain price patterns that could not be avoided ex ante.

Furthermore, we show that the added layer of information on its own suffices to incur a

systematic deviation from the classical price building mechanism in noisy REE models.

The price system is unable to dissolve the information asymmetry in the economy in such

a setting.

The implemented information structure splits up the value of possessing information

into two distinct parts: first, the classical notion of information by introducing two noisy

signals, whose value is observed by a group of agents; and second, the ability to evaluate

the received information appropriately. We show that being able to judge the actual qual-

ity of one’s information appropriately is a valuable asset. Simply receiving information

is insufficient to make optimal inference.

Additionally, the results in the first part of the paper support the notion that it is

always beneficial to participate in the market and use the information at hand, even

though this behavior implicates getting things not exactly right. This ”second-best”

strategy of drawing inference is always superior to simply ignoring information at hand

and acting independent of one’s information set. Put briefly, according to our result

acting on information not optimally in a ”first-best” kind of way can be rational, while

not utilizing information is definitely at odds with the notion of rationality.

Taking a look at the empirical literature, our implications suit many findings on price

over- and under-reactions on financial markets. Furthermore, they do not contradict

the vast amount of behavioral biases that are said to be at the heart of price dynamics

such as over- and under-reaction. We rather view these biases as complementary to our

model. The main contribution is to highlight that over- and under-reaction also occur

if agents are fully rational without drawing on sophisticated mechanisms of information

dissemination or the existence of future markets and the like. However, an important

question that has not yet been answered is how the altered information structure affects

the equilibrium in the information market. This issue has to be investigated in further

detail as it is vital for establishing the value of information and its implications on the

information-generating process on financial markets.
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Appendices

A Derivations and proofs

A.1 Distribution of adjusted volume

In detail, adjusted volume writes:

νH = θ̂ +
σ2θ

σ2θ + σ2εH
(SH − θ̂)−

α

2λ

σ2θσ
2
εH

σ2θ + σ2εH
(u− û)

νL = θ̂ +
σ2θ

σ2θ + σ2εL
(SL − θ̂)−

α

2λ

σ2θσ
2
εL

σ2θ + σ2εL
(u− û)

which can be rewritten as

νH = θ̂ + FH(SH − θ̂ −
ασ2εH

2λ︸ ︷︷ ︸
KH

(u− û))

νL = θ̂ + FL(SL − θ̂ −
ασ2εL
2λ︸ ︷︷ ︸
KL

(u− û))

Adjusted volume ν is distributed as a Gaussian mixture with mixture weights p and 1 − p

inherited from 3 and components given by

νH ∼ N

(
θ̂, FH

2(σ2θ + σ2εH + (
ασ2εH

2λ
)2σ2u)

)
and νL ∼ N

(
θ̂, FL

2(σ2θ + σ2εL + (
ασ2εL
2λ

)2σ2u)

)

Given the distributions of νH and νL, adjusted volume νi and θ for each mixture component

are distributed jointly normal.

θ

νH
∼ N

[(
θ̂

θ̂

)
,

(
σ2θ FHσ

2
θ

FHσ
2
θ F 2

H(σ2θ + σ2εH +K2
Hσ

2
u)

)]
θ

νL
∼ N

[(
θ̂

θ̂

)
,

(
σ2θ FLσ

2
θ

FLσ
2
θ F 2

L(σ2θ + σ2εL +K2
Lσ

2
u)

)]

By the projection theorem, the expected value of θ given νi is

E[θ|νH ] = θ̂ +
1

FH

σ2θ
(σ2θ + σ2εH +K2

Hσ
2
u)

(νH − θ̂) = θ̂ +
σ2θ + σ2εH

(σ2θ + σ2εH +K2
Hσ

2
u)︸ ︷︷ ︸

GH

(νH − θ̂)

E[θ|νL] = θ̂ +
1

FL

σ2θ
(σ2θ + σ2εL +K2

Lσ
2
u)

(νL − θ̂) = θ̂ +
σ2θ + σ2εL

(σ2θ + σ2εL +K2
Lσ

2
u)︸ ︷︷ ︸

GL

(νL − θ̂)
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the variance of θ given νi is

V ar[θ|νH ] = σ2θ −
(FHσ

2
θ)

2

FH
2(σ2θ + σ2εH +KH

2σ2u)
=

σ2θ(σ
2
εH

+KH
2σ2u)

(σ2θ + σ2εH +KH
2σ2u)

V ar[θ|νL] = σ2θ −
(FLσ

2
θ)

2

FL
2(σ2θ + σ2εL +KL

2σ2u)
=

σ2θ(σ
2
εL

+KL
2σ2u)

(σ2θ + σ2εL +KL
2σ2u)

(66)

A.2 Utility of the informed

Utility of the informed is given by

E[V (W1I)|Si] = −exp
[
− α

(
E[W1I |Si]−

α

2
V ar[W1I |Si]

)]
(67)

with W1I being

W1I = RW0I + (θ −RP )XI ,

Using 39 and plugging in W1I and XI

E[W1I |Si] = E
[
RW0I + (θ −RPλ;i,j)XI

∣∣Si]
= E

[
RW0I + (θ −RPλ;i,j)

E[θ|Si]−RPλ;i,j
α ∗ V ar[θ|Si]

∣∣Si]
= RW0I +

(E[θ|Si]−RPλ;i,j)2

α ∗ V ar[θ|Si]

V ar[W1I |Si] = V ar
[
RW0I + (θ −RPλ;i,j)XI

∣∣Si]
= V ar

[
(θ −RPλ;i,j)

E[θ|Si]−RPλ;i,j
α ∗ V ar[θ|Si]

∣∣Si]
=

(E[θ|Si]−RPλ;i,j)2

α2 ∗ V ar[θ|Si]2
V ar

[
(θ −RP )

∣∣Si]
=

(E[θ|Si]−RPλ;i,j)2

α2 ∗ V ar[θ|Si]2
V ar[θ|Si]

=
(E[θ|Si]−RPλ;i,j)2

α2 ∗ V ar[θ|Si]
one gets

E[V (W1I)|Si] = −exp
[
− α

(
RW0I +

(E[θ|Si]−RPλ;i,j)2

α ∗ V ar[θ|Si]
− α

2

(E[θ|Si]−RPλ;i,j)2

α2 ∗ V ar[θ|Si]

)]
= −exp

[
− α

(
RW0I +

1

2

(E[θ|Si]−RPλ;i,j)2

α ∗ V ar[θ|Si]

)]
= −exp

[
− αRW0I −

1

2

(E[θ|Si]−RPλ;i,j)2

V ar[θ|Si]

]
= −exp

[
− αRW0I

]
∗ exp

[
− 1

2

(E[θ|Si]−RPλ;i,j)2

V ar[θ|Si]

]
.

(68)
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We proceed by evaluating the second component of 68 conditional on νi

E

[
exp
(
− 1

2

(E[θ|Si]−RPλ;i,j)2

V ar[θ|Si]

)∣∣∣∣νi]. (69)

In order to determine the above expression, it is important to establish some intermediate

results. By the law of iterated expectations

E[θ|Si] = θ̄ +
cov[θSi]

V ar[Si]
(Si − θ̂)

E
[
E[θ|Si]

∣∣νi] = E[θ|νi]
(70)

Notice the fact that the only stochastic variables are Si and u. Thus, the variance of E[θ|Si]
given νi, according to the projection theorem writes

V ar
[
E[θ|Si]

∣∣νi] = F 2
i V ar[Si]−

(
F 2
i V ar[Si]

)2
V ar[νi]

=
Fiσ

2
θ ∗Ki

2σ2u
(σ2θ + σ2εi +Ki

2σ2u)
(71)

With this in mind, we define a new variable Z as

Z =
(E[θ|Si]−RPλ;i,j)√
V ar

[
E[θ|Si]

∣∣νi] (72)

and plug it into expression 69.

E

[
exp
(
− 1

2

(E[θ|Si]−RPλ;i,j)2

V ar[θ|Si]

)∣∣∣∣νi] = E

[
exp

(
−
V ar

[
E[θ|Si]

∣∣νi]
2V ar [θ|Si]

Z2

)∣∣∣∣νi
]
. (73)

In the following we closely follow the lines of Grossman and Stiglitz (1980) Appendix B. Knowing

that Si is normal for SH and SL, E[θ|Si] is also normal. The same holds for the distribution of

E[θ|Si] conditional on νi, making Z2 the square of a standardized normal variable with some

mean µ and variance of 1 and hence distributed non-central chi-square with one df. (see Rao,

1973, p. 173). To solve 73 we use the moment-generating function of the non-central chi-square

distribution , which in our case is given by

E[etZ
2 |νi] =

1√
1− 2t

exp

[
E([Z|νi])2t

1− 2t

]
(74)

with t = −V ar[E[θ|Si]|νi]
2V ar[θ|Si] and the non-centrality parameter

(E [E[θ|Si]|νi]−RPλ;i,j)2

V ar [E[θ|Si]|νi]
. Substitut-

ing

1− 2t = 1 +
V ar

[
E[θ|Si]

∣∣νi]
V ar[θ|Si]

=
V ar

[
E[θ|Si]

∣∣νi]+ V ar[θ|Si]
V ar[θ|Si]

=
V ar[θ|νi]
V ar[θ|Si]

(75)
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and

t

1− 2t
=
V ar[θ|Si]
V ar[θ|νi]

(
−
V ar

[
E[θ|Si]

∣∣νi]
2V ar[θ|Si]

)
= −

V ar
[
E[θ|Si]

∣∣νi]
2V ar[θ|νi]

(76)

into 74 yields

E

[
exp
(
−
V ar

[
E[θ|Si]

∣∣νi]
2V ar[θ|Si]

Z2
∣∣νi)]

=

√
V ar[θ|Si]
V ar[θ|νi]

exp

[
−
V ar

[
E[θ|Si]

∣∣νi]
2V ar[θ|νi]

(
E
[
E[θ|Si]

∣∣νi]−RPλ;i,j)2
V ar

[
E[θ|Si]

∣∣νi]
]

=

√
V ar[θ|Si]
V ar[θ|νi]

exp

[
−

(
E[θ|νi]−RPλ;i,j

)2
2V ar[θ|νi]

]
(77)

Using the result of 77 and plugging in 68 yields the expected utility of the informed agent given

the νi

E [E[V (W1I)|Si]|νi] = V (RW0I)

√
V ar[θ|Si]
V ar[θ|νi]

∗ exp
[
−

(
E[θ|νi]−RPλ;i,j

)2
2V ar[θ|νi]

]
. (78)

A.3 Utility of the uninformed

Starting at

E[V (W1U )|νi] = −exp
[
− α

(
E[W1U |νi]−

α

2
V ar[W1U |νi]

)]
(79)

with W1U being

W1U = RW0U + (θ −RP )XU . (80)

Using 79 and plugging in W1U and XU

E[W1U |νi] = E
[
RW0U + (θ −RPλ;i,j)XU

∣∣νi]
= E

[
RW0U + (θ −RPλ;i,j)

E[θ|νji , Pλ;i,j ]−RPλ;i,j
α ∗ V ar[θ|νji , Pλ;i,j ]

∣∣νi]
= RW0U + E

[
(θ −RPλ;i,j)

E[θ|νji , Pλ;i,j ]−RPλ;i,j
α ∗ V ar[θ|νji , Pλ;i,j ]

∣∣νi]
(81)
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V ar[W1U |νi] = V ar
[
RW0U + (θ −RPλ;i,j)XU

∣∣νi]
= V ar

[E[θ|νji , Pλ;i,j ]−RPλ;i,j
α ∗ V ar[θ|νji , Pλ;i,j ]

(θ −RPλ;i,j)
∣∣νi]

=

(
E[θ|νji , Pλ;i,j ]−RPλ;i,j
α ∗ V ar[θ|νji , Pλ;i,j ]

)2

V ar
[
(θ −RPλ;i,j)

∣∣νi]

=

(
E[θ|νji , Pλ;i,j ]−RPλ;i,j

)2
(
α ∗ V ar[θ|νji , Pλ;i,j ]

)2 V ar
[
θ
∣∣νi]

=

(
E[θ|νji , Pλ;i,j ]−RPλ;i,j

)2
α ∗ V ar[θ|νji , Pλ;i,j ]

V ar
[
θ
∣∣νi]

α ∗ V ar[θ|νji , Pλ;i,j ]

(82)

one gets

E[V (W1U )|νi] =− exp
[
− α

(
RW0U + E

[
(θ −RPλ;i,j)

E[θ|νji , Pλ;i,j ]−RPλ;i,j
α ∗ V ar[θ|νji , Pλ;i,j ]

∣∣νi]

− α

2

(
E[θ|νji , Pλ;i,j ]−RPλ;i,j

)2
α ∗ V ar[θ|νji , Pλ;i,j ]

V ar
[
θ
∣∣νi]

α ∗ V ar[θ|νji , Pλ;i,j ]

)]
= −exp

[
− αRW0U −

E[θ|νji , Pλ;i,j ]−RPλ;i,j
α ∗ V ar[θ|νji , Pλ;i,j ](

(E[θ|νi]−RPλ;i,j)−
1

2

(
E[θ|νji , Pλ;i,j ]−RPλ;i,j

) V ar
[
θ
∣∣νi]

V ar[θ|νji , Pλ;i,j ]

)]
.

(83)

After factoring expected utility of the uninformed writes

E [E[V (W1U )|νi]] = −exp [−αRW0U ] ∗

E

[
exp

[
−
E[θ|νji , Pλ;i,j ]−RPλ;i,j
α ∗ V ar[θ|νji , Pλ;i,j ]

(
(E[θ|νi]−RPλ;i,j)−

1

2

(
E[θ|νji , Pλ;i,j ]−RPλ;i,j

) V ar
[
θ
∣∣νi]

V ar[θ|νji , Pλ;i,j ]

)]]
(84)

If i = j, 84 reduces to

E[V (W1U )|νi] = −exp
[
− αRW0U

]
∗ exp

[
− 1

2

(E[θ|νi]−RPλ;i)2

V ar[θ|νi]

]
= V (RW0U ) ∗ exp

[
− 1

2

(E[θ|νi]−RPλ;i)2

V ar[θ|νi]

]
.

(85)

A.4 Proof of Theorem 3.1

Lemma A.1. The utility of the uniformed agents after entering the market always exceeds the

end of period utility of the initial wealth of the uninformed agents. Therefore, staying out of the

market is not a feasible strategy. Furthermore, it is always superior for the uninformed agents

to play strategy (H) compared to completely staying out of the market or entering the market
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without trying to infer information from the price system.

Not trying to infer information from the price system can be thought of as maximizing based

on an unconditional information set.

Proof. For the proof, we simply consider the low uncertainty regime, as it is the scenario when

playing strategy (H) is not by definition superior to the other strategies. If the uninformed

agent gets his inference right, which is in the scenario of the high volatility regime, the expected

utility of the uninformed using his information set in the right way by definition exceeds the

utility of the uninformed if ignored the information that he receives from price. We proceed

by defining the expected utility of the uninformed for the three scenarios: (i) not entering the

market at all; (ii) entering given unconditional expectations; and (iii) playing strategy (H).

Subsequently, we show that playing strategy (H) always strictly dominates the other two op-

tions.

The utility if the uninformed stays away from the market is given by

E[V (W0U )] = −exp [−αW0U ] (86)

The utility of the uninformed when maximizing given unconditional expectations is calculated

as follows. According to equation 25 the demand of the uninformed writes

XU =
E[θ]− Pλ,H
α ∗ V ar[θ]

, (87)

and the respective price according to 30 would be given by

Pλ,L,Uc =

λ

αV ar[θ|SL]
νL +

(1− λ)

αV ar[θ]
E[θ]

λ

αV ar[θ|SL]
+

(1− λ)

αV ar[θ]

. (88)

The expected value of wealth of the uninformed conditional on the true adjusted volume is

given by plugging 87 into 80 and taking expectations

E[W1U |νL] = W0U + (E[θ|νL]− Pλ;L,Uc)
E[θ]− Pλ;L,Uc
α ∗ V ar[θ]

, (89)

while the expected variance of wealth of the uninformed conditional on the true adjusted volume

is given by plugging 87 into 80 and determining the variance which writes

V ar[W1U |νL] =
(E[θ]− Pλ;L,Uc)2

α ∗ V ar[θ]
V ar[θ|νL]

α ∗ V ar[θ]
. (90)

Plugging 89 and 82 into 46 and writing everything in terms of the parameters of the model and
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as a function of (νL − θ̂) yields

E [E[V (W1U )|νi]] = −exp [−αRW0U ] ∗

E

[
exp

[
−

λ2σ2εL
(
(λ− 2)λ+ α2σ2εLσ

2
u

)
(σ2εL + σ2θ)

2σ2θ(σ
2
εL

+ λσ2θ)
2(λ2σ2εL + α2σ4εLσ

2
u + λ2σ2θ)

(νL − θ̂)2
]]

.
(91)

Now we define a new variable ZU

ZU =
(νL − θ̂)√
V ar[νL]

. (92)

Since νL is normal with Mean θ̂, ZU is distributed standard normal and hence Z2
U is distributed

central chi-square with one degree of freedom (see Rao, 1973, p. 173). Plugging Z2
U into 91

yields

E [E[V (W1U )|νi]] = −exp [−αRW0U ] ∗

E

[
exp

[
−

λ2σ2εL
(
(λ− 2)λ+ α2σ2εLσ

2
u

)
(σ2εL + σ2θ)

2σ2θ(σ
2
εL

+ λσ2θ)
2(λ2σ2εL + α2σ4εLσ

2
u + λ2σ2θ)

∗ V ar[νL] ∗ Z2
U

]]
.

(93)

Given the distributional characteristics of Z2
U , the expectation can be solved by using the

moment-generating function of a central chi-square distribution, which is given by

E[etZ
2
] =

1√
1− 2t

, (94)

with

tUc = −
λ2σ2εL

(
(λ− 2)λ+ α2σ2εLσ

2
u

)
(σ2εL + σ2θ)

2σ2θ(σ
2
εL

+ λσ2θ)
2(λ2σ2εL + α2σ4εLσ

2
u + λ2σ2θ)

∗ V ar[νL]. (95)

If the uninformed agent plays the conservative strategy (H), the parameters of the model

are given as stated in the second part of section 3.3. The expected value and variance of

end-of-period wealth are given by

E[W1U |νHL ] = RW0U + (E [θ|νL]−RPλ;L,H)
E[θ|νHL , Pλ;L,H ]−RPλ;L,H
α ∗ V ar[θ|νHL , Pλ;L,H ]

, (96)

V ar[W1U |νHL ] =

(
E[θ|νHL , Pλ;L,H ]−RPλ;L,H

)2
α ∗ V ar[θ|νHL , Pλ;L,H ]

V ar
[
θ
∣∣νL]

α ∗ V ar[θ|νHL , Pλ;L,H ]
. (97)

Plugging 96 and 97 into 46 and writing everything in terms of the parameters of the model and
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as a function of (νL − θ̂) yields

E [E[V (W1U )|νi]] = −exp [−αRW0U ] ∗

E

[
exp

[
−

α4λ2σ2εLσ
2
εH
σ4u
(
2λσ2εL + σ2εH

(
(λ− 2)λ+ α2σ2εLσ

2
u

))
(σ2εL + σ2θ)

2

2(λ2σ2εL + α2σ4εLσ
2
u + λ2σ2θ)

(
σ2εL

(
λ2 + α2σ2εHσ

2
u

)
σθ + λ

(
λ+ α2σ2εHσ

2
u

)
σ3θ
)2 ∗ (νL − θ̂)2

]]
.

(98)

Now, one can again substitute ZU and solve the expectation using the moment-generating

function given by 94 with t defined as

tL,H = −
α4λ2σ2εLσ

2
εH
σ4u
(
2λσ2εL + σ2εH

(
(λ− 2)λ+ α2σ2εLσ

2
u

))
(σ2εL + σ2θ)

2

2(λ2σ2εL + α2σ4εLσ
2
u + λ2σ2θ)

(
σ2εL

(
λ2 + α2σ2εHσ

2
u

)
σθ + λ

(
λ+ α2σ2εHσ

2
u

)
σ3θ
)2 ∗V ar[νL].

(99)

As utility is negative due to the CARA setting, the lower the term, the higher the utility

of the uninformed agents. As the moment-generating function 94 is monotone decreasing with

the absolute value of t, we show that it generally holds that |tL,H | > |tUC . After some tedious

algebra, the problem boils down to

α4σ2εHσ
4
u

(
σ2εH

(
(λ− 2)λ+ α2σ2εLσ

2
u

)
+ 2λσ2εL

)(
σθσ2εL

(
α2σ2εHσ

2
u + λ2

)
+ λσ3θ

(
α2σ2εHσ

2
u + λ

))2 > (λ− 2)λ+ α2σ2εLσ
2
u

σ2θ
(
λσ2θ + σ2εL

)2 (100)

which is true for all ∀ σ2θ ≥ 1, σ2u ≥ 1, 1 ≤ σ2εL < σ2εH , 1 ≤ α and 0 < λ < 1.

Lemma A.2. There exists a value p∗ determined by the parameters of the model that marks the

threshold p∗, determining the overall optimality between strategies (H) and (L). Given p < p∗,

it is always superior for the uninformed agents to play strategy (L) compared to strategy (H).

Given p > p∗ it is always superior for the uninformed agents to play strategy (H) compared to

strategy (L)

Proof. If the uninformed agent plays strategy L and the true signal regime is given by H, the

parameters and variables of the model are

XU ;H,L =
E[θ|νLH , Pλ,HL]− Pλ,HL
α ∗ V ar[θ|νLH , Pλ,HL]

, (101)

νLH = νH +
V ar[θ|SL]− V ar[θ|SH ]

V ar[θ|SH ]
(νH − Pλ,HL), (102)
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Pλ;H,L =

λ

αV ar[θ|SH ]
νH +

(1− λ)

αV ar[θ|νL]
[θ̂ +GL(1 +

V ar[θ|SL]− V ar[θ|SH ]

V ar[θ|SH ]
)νH − θ̂)]

λ

αV ar[θ|SH ]
+

(1− λ)

αV ar[θ|νL]
(1 +GL(

V ar[θ|SL]− V ar[θ|SH ]

V ar[θ|SH ]
)

. (103)

The expected value and variance of end-of-period wealth are given by

E[W1U |νLH ] = RW0U + (E[θ|νH ]−RPλ;H,L)
E[θ|νLH , Pλ;H,L]−RPλ;H,L
α ∗ V ar[θ|νLH , Pλ;H,L]

, (104)

and

V ar[W1U |νLH ] =

(
E[θ|νLH , Pλ;H,L]−RPλ;H,L

)2
α ∗ V ar[θ|νLH , Pλ;H,L]

V ar
[
θ
∣∣νH]

α ∗ V ar[θ|νLH , Pλ;H,L]
. (105)

Plugging 104 and 105 into 46 and writing everything in terms of the parameters of the model

and as a function of (νL − θ̂) yields

E [E[V (W1U )|νH ]] = −exp [−αRW0U ] ∗

E

[
exp

[
−

α4λ2σ2εLσ
2
εH
σ4u
(
(λ− 2)λσ2εL + σ2εH

(
2λ+ α2σ2εLσ

2
u

))
(σ2εH + σ2θ)

2

2(λ2σ2εH + α2σ4εHσ
2
u + λ2σ2θ)

(
σ2εH

(
λ2 + α2σ2εLσ

2
u

)
σθ + λ

(
λ+ α2σ2εlσ

2
u

)
σ3θ
)2 ∗ (νH − θ̂)2

]]
.

(106)

Defining ZU,H as

ZU,H =
(νH − θ̂)√
V ar[νH ]

, (107)

and plugging in yields

E [E[V (W1U )|νH ]] = −exp [−αRW0U ] ∗

E

[
exp

[
−

α4λ2σ2εLσ
2
εH
σ4u
(
(λ− 2)λσ2εL + σ2εH

(
2λ+ α2σ2εLσ

2
u

))
(σ2εH + σ2θ)

2

2(λ2σ2εH + α2σ4εHσ
2
u + λ2σ2θ)

(
σ2εH

(
λ2 + α2σ2εLσ

2
u

)
σθ + λ

(
λ+ α2σ2εlσ

2
u

)
σ3θ
)2 ∗ V ar[νH ] ∗ Z2

U,H

]]
.

(108)

Using 94, t is given by

tH,L = −
α4λ2σ2εLσ

2
εH
σ4u
(
(λ− 2)λσ2εL + σ2εH

(
2λ+ α2σ2εLσ

2
u

))
(σ2εH + σ2θ)

2

2(λ2σ2εH + α2σ4εHσ
2
u + λ2σ2θ)

(
σ2εH

(
λ2 + α2σ2εLσ

2
u

)
σθ + λ

(
λ+ α2σ2εlσ

2
u

)
σ3θ
)2 ∗ V ar[νH ]

= −
α4σ2εLσ

2
εH
σ4u
(
(λ− 2)λσ2εL + σ2εH

(
2λ+ α2σ2εLσ

2
u

))
(σ2εH + σ2θ)

2

2
(
σ2εH

(
λ2 + α2σ2εLσ

2
u

)
σθ + λ

(
λ+ α2σ2εlσ

2
u

)
σ3θ
)2

(109)
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Remember that the utility in case the uninformed gets the signal regime right is given by 47

and writes

E[V (W1U )|νL] = V (RW0U ) ∗ exp
[
− 1

2

(E[θ|νL]−RPλ;L)2

V ar[θ|νL]

]
. (110)

The corresponding price is given by

Pλ,L =

λ

αV ar[θ|SL]
νL +

(1− λ)

αV ar[θ|νL]
E[θ|νL]

λ

αV ar[θ|SL]
+

(1− λ)

αV ar[θ|νL]

. (111)

Plugging equation 111, the model parameters and ZU,H in 110 yields

E [E[V (W1U )|νH ]] = −exp [−αRW0U ] ∗

E

[
exp

[
−

α4λ2σ6εLσ
4
u

(
λ2 + α2σ2εLσ

2
u

)
(σ2εL + σ2θ)

2

2(λ2σ2εL + α2σ4εLσ
2
u + λ2σ2θ)

(
σ2εL

(
λ2 + α2σ2εLσ

2
u

)
σθ + λ

(
λ+ α2σ2εlσ

2
u

)
σ3θ
)2 ∗ V ar[νH ] ∗ Z2

U,H

]]
,

(112)

and

tL = −
α4σ6εLσ

4
u

(
λ2 + α2σ2εLσ

2
u

)
(σ2εL + σ2θ)

2

2
(
σ2εL

(
λ2 + α2σ2εLσ

2
u

)
σθ + λ

(
λ+ α2σ2εlσ

2
u

)
σ3θ
)2 . (113)

The corresponding t = tH for the high-variance regime is given analogous to 113 and writes

tH = −
α4σ6εHσ

4
u

(
λ2 + α2σ2εHσ

2
u

)
(σ2εH + σ2θ)

2

2
(
σ2εH

(
λ2 + α2σ2εHσ

2
u

)
σθ + λ

(
λ+ α2σ2εlσ

2
u

)
σ3θ
)2 . (114)

Using 94, 109 and 113 the overall utility of the uninformed playing the more aggressive

strategy (L) is given by

E[V (W1U,L)] = V (RW0U )

(
p√

1 + 2tH,L
+

1− p√
1 + 2tL

)
, (115)

while, according to 99 and 114 the overall utility for playing the more modest strategy (H) is

given by

E[V (W1U,H)] = V (RW0U )

(
p√

1 + 2tH
+

1− p√
1 + 2tL,H

)
. (116)

As 94 is a convex function ∀ t < 0 and the sum of a convex function is also a convex function,

115 and 116 intersect at most once and they do. Thus, there exists a unique value of p, which

we denote as p∗, dependent on the parameters of the model, which decides the optimal strategy
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of the uninformed. The value of p∗ is determined by the equation

E[V (W1U,L)] = E[V (W1U,H)](
p√

1 + 2tH,L
+

1− p√
1 + 2tL

)
=

(
p√

1 + 2tH
+

1− p√
1 + 2tL,H

)
.

(117)

Solving for p yields

p∗ =

1√
1 + 2tH,L

− 1√
1 + 2tL

− 1√
1 + 2tH

+
1√

1 + 2tH,L
− 1√

1 + 2tL
+

1√
1 + 2tL,H

. (118)

As long as p < p∗, it is optimal for the uninformed agent to play the more aggressive strategy

(L). As soon as p > p∗, it is optimal for the agent to play the more conservative strategy (H).

For p = p∗, the uninformed agent is indifferent between the two strategies.

A.5 Proof of Theorem 4.1

Proof. Given that the uninformed plays strategy (L), the price movement occurs in the high-

variance regime. The first-period price P1 is given by 103, while the price in the second period

P2 is given by 35. Plugging in the parameters and rearranging the price difference between

period one and two, P2 − P1 = ∆P2 can be written as

∆P2 =

−
(1− λ)λ2α2σ2εHσ

2
u(σ2εH − σ

2
εL

)
(
σ2εH + σ2θ

)(
σ2εH

(
λ2 + α2σ2εLσ

2
u

)
+ λ

(
λ+ α2σ2εlσ

2
u

)
σ2θ
) (
α2σ4εHσ

2
u + λ2σ2θ + λσ2εH

(
λ+ α2σ2uσ

2
θ

)) · (νH − θ̂).
(119)

Hence, it holds ∆P2 < 0 ∀ νH > θ̂ and ∆P2 > 0 ∀ νH < θ̂. This translates into a

negative covariance of the price change between t1 and t2. Given E[∆P2] = 0 the covariance is

determined by E[∆P1∆P2] which writes

cov[∆P1∆P2] =

−
(1− λ)λ3α2σ2εHσ

2
u(σ2εH − σ

2
εL

)
(
σ2εH + σ2θ

)2(
σ2εH

(
λ2 + α2σ2εLσ

2
u

)
+ λ

(
λ+ α2σ2εlσ

2
u

)
σ2θ
)2 (

α2σ4εHσ
2
u + λ2σ2θ + λσ2εH

(
λ+ α2σ2uσ

2
θ

)) · V ar[νH ]

(120)

One can infer from equation 120 that the covariance in the price movement if the uninformed

plays L is always negative, cov[∆P1∆P2] < 0.

Given that the uninformed plays strategy (H) modest, the price movement occurs in the
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low-variance regime and the mechanics are vice versa. The first-period price P1 is given by

38, while the price in the second period P2 is given by 111. Plugging in the parameters and

rearranging the price difference between period one and two, P2−P1 = ∆P2 can be written as

∆P2 =

(1− λ)λ2α2σ2εLσ
2
u(σ2εH − σ

2
εL

)
(
σ2εL + σ2θ

)(
σ2εL

(
λ2 + α2σ2εHσ

2
u

)
+ λ

(
λ+ α2σ2εHσ

2
u

)
σ2θ
) (
α2σ4εLσ

2
u + λ2σ2θ + λσ2εL

(
λ+ α2σ2uσ

2
θ

)) · (νL − θ̂).
(121)

Hence it holds ∆P2 > 0 ∀ νL > θ̂ and ∆P2 < 0 ∀ νL < θ̂. This translates into a

positive covariance of the price change between t1 and t2. Given E[∆P2] = 0, the covariance is

determined by E[∆P1∆P2] which writes

cov[∆P1∆P2] =

(1− λ)λ3α2σ2εLσ
2
u(σ2εH − σ

2
εL

)
(
σ2εL + σ2θ

)2(
σ2εL

(
λ2 + α2σ2εHσ

2
u

)
+ λ

(
λ+ α2σ2εHσ

2
u

)
σ2θ
)2 (

α2σ4εLσ
2
u + λ2σ2θ + λσ2εL

(
λ+ α2σ2uσ

2
θ

)) · V ar[νH ]

(122)

One can infer from equation 122 that the covariance in the price movement if the uninformed

plays H is always positive, cov[∆P1∆P2] > 0.

A.6 Proof of Proposition 1

Proof. Notice that 57 is a weighted sum of two moment-generating functions (as shown in 3.4,

the expected utility of a CARA investor is essentially a moment-generating function). Every

moment-generating function (MGF) is continuously differentiable in its domain of existence. It

is known that the sum of continuously-differentiable functions is also continuously differentiable

and the derivative of a continuously-differentiable function is continuous. Hence, 59 is continu-

ous and the intermediate value theorem is applicable. Monotonicity is implied by the fact that
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the first derivative of 59 w.r.t XU is given by

− α2exp

(
1

2
α
(
− 4RW0U +XU (−2((E[θ|SL]−RP ) + (E[θ|SH ]−RP ))

+ αXU (V ar[θ|SL] + V ar[θ|SH ]))
))

(
ωH

(
V ar[θ|SH ] + ((E[θ|SH ]−RP )− αXUV ar[θ|SH ])2

)
exp

(
−α

(
RW0U + (E[θ|SL]−RP )XU −

αX2
U

2
V ar[θ|SL]

))
+ ωL

(
V ar[θ|SL] + ((E[θ|SL]−RP )− αXUV ar[θ|SL])2

)
exp

(
−α

(
RW0U + (E[θ|SH ]−RP )XU −

αX2
U

2
V ar[θ|SH ]

)))
.

(123)

The above expression is always smaller than 0 and thus, 59 is monotonically decreasing in XU .

Our next goal is to prove that the optimal demand of the uninformed agents is bounded by the

optimal demand of the informed agents XU ∈ (XI,H , XI,L). This is achieved in two steps: first,

by substituting the demand of the uninformed agents by the optimal demand of the informed

agents; and second, by verifying that the ratio of
FOC(XI,H)
FOC(XI,L)

< 0. We define the agent’s utility

in the respective regimes as a function of Si and XU with

Ω(Si, XU ) = −α
(
RW0U + (E[θ|Si]−RP )XU −

αX2
U

2
V ar[θ|Si]

)
. (124)

Substituting XU = XI,H into the FOC, one gets

ωL · α
(

(E[θ|SL]−RP )− (E[θ|SH ]−RP )
V ar[θ|SL]

V ar[θ|SH ]

)
· exp (Ω (Si, XU = XI,H)) (125)

which, after plugging in all parameters, reduces to

ωL · α

(
σ2θ(σ

2
εH
− σ2εL)

σ2H(σ2θ + σ2εL)
(S −RP )

)
· exp (Ω (Si, XU = XI,H)) . (126)

Since the exponential part of the expression is always positive, it is sufficient to analyze the

expression in front of the exponential function. Taking a closer look and knowing that σ2εH > σ2εL
and due to risk aversion |S| > |P |, it becomes apparent that the above expression is > 0 for

S > 0 and < 0 for S < 0.

Substituting XU = XIL the dynamics are exactly vice versa, yielding

ωH · α
(

(E[θ|SH ]−RP )− (E[θ|SL]−RP )
V ar[θ|SH ]

V ar[θ|SL]

)
· exp (Ω (Si, XU = XI,L)) , (127)
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which simplifies to

ωH · α

(
σ2θ(σ

2
εL
− σ2εH )

σ2L(σ2θ + σ2εH )
(S −RP )

)
· exp (Ω (Si, XU = XI,L)) , (128)

which is > 0 for S < 0 and < 0 for S > 0. Combining equations 128 and 126 in a ratio and

simplifying

ωL · α

(
σ2θ(σ

2
εH
− σ2εL)

σ2H(σ2θ + σ2εL)
(S −RP )

)
· exp (Ω (Si, XU = XI,H))

ωH · α

(
σ2θ(σ

2
εL
− σ2εH )

σ2L(σ2θ + σ2εH )
(S −RP )

)
· exp (Ω (Si, XU = XI,L))

=
ωL · σ2L(σ2θ + σ2εH )(σ2εH − σ

2
εL

) · exp (Ω (Si, XU = XI,H))

ωH · σ2H(σ2θ + σ2εL)(σ2εL − σ2εH ) · exp (Ω (Si, XU = XI,L))

= −
ωL · σ2L(σ2θ + σ2εH ) · exp (Ω (Si, XU = XI,H))

ωH · σ2H(σ2θ + σ2εL) · exp (Ω (Si, XU = XI,L))
,

(129)

it becomes evident that the above ratio is always < 0. This makes apparent that 0 is always in

between the two function values FOC(XI,l) and FOC(XI,H).

The intermediate value theorem states that

”If f is continuous on a closed interval [a, b], and c is any number between f(a)

and f(b) inclusive, then there is at least one number x in the closed interval such

that f(x) = c if a continuous function, f, with an interval, [x, y], as its domain

takes values f(x) and f(y) at each end of the interval, then it also takes any value

between f(x) and f(y) at some point within the interval.”

Putting together all three parts of the proof, there exists a value of XU , in a space bounded

by XI,l and XI,H for which FOC(XU ) = 0. As FOC(XU ) is monotone, 0 is crossed only once

and the optimal value of XU maximizing the agents utility is unique.

A.7 Proof of Proposition 2

Proof. Defining the uninformed agents’ utility in the respective regimes as a function of Si and

Pλ,i with

ΛL(Si, XU (Pλ,i)) = −α
(
RW0U + (E[θ|SL]−RP )XU (Pλ,i)−

αXU (Pλ,i)
2

2
V ar[θ|SL]

)
ΛH(Si, XU (Pλ,i)) = −α

(
RW0U + (E[θ|SH ]−RP )XU (Pλ,i)−

αXU (Pλ,i)
2

2
V ar[θ|SH ]

) (130)
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given S = SH plugging the indirect demand into the FOC, one gets

0 = ωL ·
(
α

(
(E[θ|SL]−RP )− αV ar[θ|SL]

[
u

1− λ
− λ

1− λ
E[θ|SH ]−RP
αV ar[θ|SH ]

]))
exp (ΛL(SH , Pλ,H))

+ωH ·
(
α

(
(E[θ|SH ]−RP )− αV ar[θ|SH ]

[
u

1− λ
− λ

1− λ
E[θ|SH ]−RP
αV ar[θ|SH ]

]))
exp (ΛH(SH , Pλ,H))

(131)

which can be reduced to

0 =
ωL · α
1− λ

(
(1− λ)(E[θ|SL]−RP ) +

λV ar[θ|SL]

V ar[θ|SH ]
(E[θ|SH ]−RP )− αuV ar[θ|SL]

)
exp (ΛL(SH , Pλ,H))

+
ωH · α
1− λ

((E[θ|SH ]−RP )− αuV ar[θ|SH ]) exp (ΛH(SH , Pλ,H)) .

(132)

Simplifying and collecting the Pλ,i that are not in the exponential on one side yields an implicit

equilibrium price function for the scenario in which Si = SH

Pλ,H = ωL

(
(1− λ)E[θ|SL] +

λV ar[θ|SL]

V ar[θ|SH ]
(E[θ|SH ]− αuV ar[θ|SL]

)
· exp (ΛL(SH , Pλ,H))(

ωL
V ar[θ|SH ]− λ(V ar[θ|SH ]− V ar[θ|SL])

V ar[θ|SH ]
· exp (ΛL(SH , Pλ,H)) + ωH · exp (ΛH(SH , Pλ,H))

)
+ ωH

(E[θ|SH ]− αuV ar[θ|SH ]) · exp (ΛH(SH , Pλ,H))(
ωL

V ar[θ|SH ]− λ(V ar[θ|SH ]− V ar[θ|SL])

V ar[θ|SH ]
· exp (ΛL(SH , Pλ,H)) + ωH · exp (ΛH(SH , Pλ,H).)

)
(133)

Plugging in Pλ,H = ˆPλ,H =
1

R
((E[θ|SH ]− αuV ar[θ|SH ]) yields

0 =
ωL · α
1− λ

((1− λ)(E[θ|SL]− E[θ|SH ]) + (1− λ)αu(V ar[θ|SH ]− V ar[θ|SL])) exp
(

ΛL(SH , ˆPλ,H)
)

0 = ωL · α ((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp
(

ΛL(SH , ˆPλ,H)
)
.

(134)

Plugging in Pλ,H = ˆPλ,L =
1

R
((E[θ|SL]− αuV ar[θ|SL]) results in

0 =
ωL · α
1− λ

λ
V ar[θ|SL]

V ar[θ|SH ]
((E[θ|SH ]− E[θ|SL])− αu(V ar[θ|SH ]− V ar[θ|SL])) exp

(
ΛL(SH , ˆPλ,L)

)
+
ωH · α
1− λ

((E[θ|SH ]− E[θ|SL])− αu(V ar[θ|SH ]− V ar[θ|SL])) exp
(

ΛH(SH , ˆPλ,L)
)
.

(135)

Setting up the ratio between 135 and 134 it becomes apparent that the two prices under perfect
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information constitute the bounds of the equilibrium price

ωL · α
1− λ

λ
V ar[θ|SL]

V ar[θ|SH ]
((E[θ|SH ]− E[θ|SL])− αu(V ar[θ|SH ]− V ar[θ|SL])) exp

(
ΛL(SH , ˆPλ,L)

)
ωL · α ((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp

(
ΛL(SH , ˆPλ,H)

)
+

ωH · α
1− λ

((E[θ|SH ]− E[θ|SL])− αu(V ar[θ|SH ]− V ar[θ|SL])) exp
(

ΛH(SH , ˆPλ,L)
)

ωL · α ((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp
(

ΛL(SH , ˆPλ,H)
) ,

(136)

which can be rearranged as

− λ

1− λ
V ar[θ|SL]

V ar[θ|SH ]
((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp

(
ΛL(SH , ˆPλ,L)

)
((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp

(
ΛL(SH , ˆPλ,H)

)
+
− ωH

1− λ
((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp

(
ΛH(SH , ˆPλ,L)

)
ωL ((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp

(
ΛL(SH , ˆPλ,H)

) ,

(137)

and simplified to

− 1

1− λ

λ V ar[θ|SL]

V ar[θ|SH ]
·
exp

(
ΛL(SH , ˆPλ,L)

)
exp

(
ΛL(SH , ˆPλ,H)

) +
ωH
ωL
·
exp

(
ΛH(SH , ˆPλ,L)

)
exp

(
ΛL(SH , ˆPλ,H)

)
 . (138)

Adapting the identical approach for S = SL

XU (Pλ,L) =
u

1− λ
− λ

1− λ
E[θ|SL]−RPλ,L
αV ar[θ|SL]

. (139)

Analogous to above plugging the indirect demand into the FOC, one gets

0 = ωL ·
(
α

(
(E[θ|SL]−RP )− αV ar[θ|SL]

[
u

1− λ
− λ

1− λ
E[θ|SL]−RP
αV ar[θ|SL]

]))
exp (ΛL(SL, Pλ,L))

+ωH ·
(
α

(
(E[θ|SH ]−RP )− αV ar[θ|SH ]

[
u

1− λ
− λ

1− λ
E[θ|SL]−RP
αV ar[θ|SL]

]))
exp (ΛH(SL, Pλ,L)) ,

(140)

which simplifies to

0 =
ωL · α
1− λ

((E[θ|SL]−RP )− αuV ar[θ|SL]) exp (ΛL(SL, Pλ,L))

+
ωH · α
1− λ

(
(1− λ)(E[θ|SH ]−RP ) + λ

V ar[θ|SH ]

V ar[θ|SL]
(E[θ|SL]−RP )− αuV ar[θ|SH ]

)
exp (ΛH(SL, Pλ,L)) .
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(141)

Plugging in Pλ,L = ˆPλ,L =
1

R
((E[θ|SL]− αuV ar[θ|SL]) one gets

0 =
ωH · α
1− λ

((1− λ)(E[θ|SH ]− E[θ|SL]) + (1− λ)αu(V ar[θ|SL]− V ar[θ|SH ])) exp
(

ΛH(SL, ˆPλ,L)
)

= ωH · α ((E[θ|SH ]− E[θ|SL]) + αu(V ar[θ|SL]− V ar[θ|SH ])) exp
(

ΛH(SL, ˆPλ,L)
)
.

(142)

Now using Pλ,L = ˆPλ,H =
1

R
((E[θ|SH ]− αuV ar[θ|SH ]) results in

0 =
ωL · α
1− λ

((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp
(

ΛL(SL, ˆPλ,H)
)

+
ωH · α
1− λ

λV ar[θ|SH ]

V ar[θ|SL]
((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp

(
ΛH(SL, ˆPλ,H)

)
.

(143)

Using rations again

=

ωL · α
1− λ

((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp
(

ΛL(SL, ˆPλ,H)
)

ωH · α ((E[θ|SH ]− E[θ|SL]) + αu(V ar[θ|SL]− V ar[θ|SH ])) exp
(

ΛH(SL, ˆPλ,L)
)

+

ωH · α
1− λ

λV ar[θ|SH ]

V ar[θ|SL]
((E[θ|SL]− E[θ|SH ]) + αu(V ar[θ|SH ]− V ar[θ|SL])) exp

(
ΛH(SL, ˆPλ,H)

)
ωH · α ((E[θ|SH ]− E[θ|SL]) + αu(V ar[θ|SL]− V ar[θ|SH ])) exp

(
ΛH(SL, ˆPλ,L)

)
(144)

− λ

1− λ
V ar[θ|SH ]

V ar[θ|SL]
((E[θ|SH ]− E[θ|SL]) + αu(V ar[θ|SL]− V ar[θ|SH ])) exp

(
ΛH(SL, ˆPλ,H)

)
((E[θ|SH ]− E[θ|SL]) + αu(V ar[θ|SL]− V ar[θ|SH ])) exp

(
ΛH(SL, ˆPλ,L)

)
+
− ωL

1− λ
((E[θ|SH ]− E[θ|SL]) + αu(V ar[θ|SL]− V ar[θ|SH ])) exp

(
ΛL(SL, ˆPλ,H)

)
ωh ((E[θ|SH ]− E[θ|SL]) + αu(V ar[θ|SL]− V ar[θ|SH ])) exp

(
ΛH(SL, ˆPλ,L)

)
(145)

which simplifies to

− 1

1− λ

λV ar[θ|SH ]

V ar[θ|SL]
·
exp

(
ΛH(SL, ˆPλ,H)

)
exp

(
ΛH(SL, ˆPλ,L)

) +
ωL
ωH
·
exp

(
ΛL(SL, ˆPλ,H)

)
exp

(
ΛH(SL, ˆPλ,L)

)
 . (146)

The function implicitly characterizing the equilibrium demand 63 is again the derivative of a
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weighted sum of two MGFs and hence continuous. As both ratios, 138 as well as 146 are always

negative, by the intermediate value theorem, the equilibriumpricefunction has to cross zero at

least once, and the equilibrium price has to be bounded by the full information prices in each

scenario.

Looking at 134, 135, 143 and 142, notice that the implicit price function is always positive

for Pλ,i = ˆPλ,H for all (Si − θ) > −αuσ2θ , while it is always negative for Pλ,i = ˆPλ,L for

all (Si − θ) < αuσ2θ in both signal regimes. Knowing that ˆPλ,L > ˆPλ,H∀(Si − θ) > −αuσ2θ ,
it becomes immediately apparent that ˆPλ,L constitutes the upper bound of the price level,

while ˆPλ,H defines the lower bound. Given (Si − θ) < −αuσ2θ , the signs switch and ˆPλ,L

constitutes the lower bound while ˆPλ,H the upper one. αuσ2θ is the amount that compensates

for the difference of the uncertainty discounts between the two full information prices given by

αu(V ar[θ|SH ]− V ar[θ|SL]).
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