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STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

Joint Issue: Small Area Estimation 2014 

Vol. 17, No. 1, pp. 9–24 

SMALL AREA PREDICTION UNDER ALTERNATIVE 

MODEL SPECIFICATIONS 

 Andreea L. Erciulescu1, Wayne A. Fuller2  

ABSTRACT 

Construction of small area predictors and estimation of the prediction mean 

squared error, given different types of auxiliary information are illustrated for a 

unit level model. Of interest are situations where the mean and variance of an 

auxiliary variable are subject to estimation error. Fixed and random specifications 

for the auxiliary variables are considered. The efficiency gains associated with the 

random specification for the auxiliary variable measured with error are 

demonstrated. A parametric bootstrap procedure is proposed for the mean squared 

error of the predictor based on a logit model. The proposed bootstrap procedure 

has smaller bootstrap error than a classical double bootstrap procedure with the 

same number of samples. 

Key words: unit level model, parametric bootstrap, double bootstrap, 

measurement error, auxiliary information.   

1. Introduction 

Small area estimation procedures use models and auxiliary data to construct 

estimates for subpopulations that are more efficient than the direct estimators for 

those subpopulations. Modeling provides potential for gains by postulating a 

distribution for the unknown parameters. The presence of variables that are 

correlated with the variable of interest provides potential for efficiency gains 

when there is knowledge about the distribution of those variables. In most of the 

small area literature the small area population means of the auxiliary variables are 

assumed to be known. We are interested in the situation where only estimates of 

the parameters of the distribution of the auxiliary variables are available. Our 

study was motivated by a situation where the sample used for small area 

estimation was a subsample of a larger survey. The larger survey furnished 

estimates of the distribution of the auxiliary variables. 

                                                           
1 National Institute of Statistical Sciences and USDA NASS, 1400 Independence Ave. SW, Room 

6040 F, Washington, DC 20250. 
2 Iowa State University, 1214 Department of Statistics, Ames, IA 50010. 
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A number of papers consider measurement error in the auxiliary variables 

used in the linear regression model. See Fuller and Harter (1987), Ghosh, Sinha 

and Kim (2006), Ghosh and Sinha (2008), Torabi, Datta and Rao (2009), Ybarra 

and Lohr (2008) and Datta, Rao and Torabi (2010). In contrast, we study unit 

level mixed models where the observed explanatory variables are measured 

without error, but the parameters of the distribution of the auxiliary variables are 

known subject to estimation error. We consider auxiliary information obtained 

from a sample, including the limit case of a complete sample. 

Because there are no closed-form estimators for the prediction mean squared 

error (MSE) for most nonlinear models, bootstrap methods have been suggested. 

See Hall and Maiti (2006) and Pfeffermann and Correa (2012). We propose 

parametric bootstrap procedures based on the work of Davidson and MacKinnon 

(2007).  

This paper is organized in sections. In Section 2.2 we present predictors of 

small area means assuming a unit level generalized linear mixed model, with 

alternative specifications for the auxiliary information. In Section 2.4 we describe 

parametric double bootstrap procedures for MSE estimation. Section 3.2 contains 

simulation results comparing the prediction MSEs for the logit model under 

alternative model specifications and alternative types of data for the auxiliary 

variables. Simulation comparisons of alternative bootstrap prediction MSE 

estimators are given in Section 3.3. 

2. Unit Level Nonlinear Models 

2.1. Introduction 

The unit level generalized linear mixed model considered in this study is 

𝐸[𝑦𝑖𝑗|𝒙𝑖𝑗, 𝑏𝑖] = 𝑔(𝒙𝑖𝑗𝜷 , 𝑏𝑖), (1) 

 𝒙𝑖𝑗 =  𝝁 𝑥𝑖 +  𝜺 𝑖𝑗 , (2) 

𝑖 = 1, . . . , 𝑚, where 𝑚 is the number of areas, 𝑗 is the index for units in the area, 𝜷 

is a vector of coefficients,  𝝁 𝑥𝑖 is the area mean of the auxiliary variable, and 𝑏𝑖 is 

the area random effect. It is assumed that the 𝑏𝑖 are independent and identically 

distributed, with a density 𝑓𝑏 with mean 0 and variance 𝜎𝑏
2, mutually independent 

of 휀𝑖𝑗, where the 휀𝑖𝑗 are independent and identically distributed random variables 

with a density 𝑓  with mean 0 and variance 𝜎2. The vector (𝑦𝑖𝑗 , 𝒙𝑖𝑗), 𝑖 =

1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛𝑖 is observed.  

Additional information on the distribution of 𝒙𝑖𝑗 may be available. 

Possibilities include a second sample of 𝒙𝑖𝑗 observations, or an estimator of  𝝁 𝑥𝑖, 
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or complete knowledge of the distribution function. The area means of 𝒙 can be 

treated as fixed or as random variables. If random, we assume  

 𝝁 𝑥𝑖 =  𝝁 𝑥 +  𝜹 𝑖 , (3) 

where 𝛿𝑖 are independent and identically distributed, with a density 𝑓𝛿 with mean 

0 and variance 𝜎𝛿
2. Assume 𝛿𝑖 are independent of 𝑏𝑘, 𝑒𝑖𝑗 , 휀𝑟𝑡, for all 𝑖, 𝑘, 𝑟 and 𝑡, 

where 𝑒𝑖𝑗 = 𝑦𝑖𝑗 − 𝑔(𝒙𝑖𝑗𝜷 , 𝑏𝑖). 

Of interest is the 𝑖𝑡ℎ small area mean of 𝒚  

𝜃𝑖 = ∫ 𝑔(𝒙𝜷 , 𝑏𝑖)𝑑𝐹𝒙𝑖
(𝒙), (4) 

where 𝐹𝒙𝑖
(𝒙) is the distribution of 𝒙 in area 𝑖. Also of interest is the prediction 

mean squared error  

𝛼𝑖 = 𝐸(𝜃𝑖 − 𝜃𝑖)2, (5) 

where 𝜃𝑖 is the predictor. We assume throughout that the area population is large 

so that we need not consider finite population corrections.  

The nature of the estimation-prediction problem is determined by the 

distributional properties of the vector (𝑏𝑖, 𝜹 𝑖, 𝜺 𝑖𝑗). The nonlinear model is more 

complicated than the linear model for several reasons. First, parameter estimation 

is more difficult because no closed form estimator exists. Likewise, closed form 

estimators of the mean squared error do not exist. Lastly, the small area mean of 

the auxiliary variable is not sufficient for the estimation of 𝜃𝑖. 

As an example of model (1), consider a Bernoulli response variable 𝒚, with 

realizations 𝑦𝑖𝑗 for 𝑚 different areas and 𝑛𝑖 different units within each area. To 

simplify the presentation, we consider scalar 𝑥𝑖𝑗 for the remainder of our 

discussion. Let 𝑥𝑖𝑗 be independent and identically distributed, following a 

distribution 𝐹𝒙𝑖
. Let the expected value of 𝑦𝑖𝑗 given (𝒙𝑖𝑗 , 𝑏𝑖) be  

𝑔(𝒙𝑖𝑗𝜷 , 𝑏𝑖) =
𝑒𝑥𝑝(𝒙𝑖𝑗 𝜷 +𝑏𝑖)

1+𝑒𝑥𝑝(𝒙𝑖𝑗 𝜷 +𝑏𝑖)
, (6) 

where 𝒙𝑖𝑗 = (1, 𝑥𝑖𝑗) and  𝜷 = (𝛽0, 𝛽1)′. The model is the generalized linear 

mixed model with logit link. 
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2.2. Predictors of 𝜽𝒊 

 We present predictors of 𝜃𝑖 for model (6), under alternative specifications for 

𝒙𝒊𝒋 and for different levels of auxiliary information, given known parameters 

(𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥). 

2.2.1. Known Covariate Distribution 

 Let the distribution of 𝑥𝑖𝑗 be known and let (𝒙𝑖, 𝒚𝑖) be a random sample of 

(𝑥𝑖𝑗 , 𝑦𝑖𝑗), where 𝒙𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑛𝑖
), 𝒚𝑖 = (𝑦𝑖,1, 𝑦𝑖,2, . . . , 𝑦𝑖,𝑛𝑖

). Then, given 

known parameters, the minimum mean squared error (MMSE) predictor of the 𝑖𝑡ℎ 

small area mean of 𝒚 is  

𝜃𝑖 = 𝐸[𝜃𝑖(𝑏)|(𝒙𝑖, 𝒚𝑖)]

=
∫𝑏

𝜃𝑖(𝑏) ∏
𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑑𝐹𝑏(𝑏)

∫𝑏
∏

𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑑𝐹𝑏(𝑏)

,

 (7) 

 where  

𝜃𝑖(𝑏) = ∫ 𝑔(𝒙𝜷 , 𝑏)𝑑𝐹𝒙𝑖
(𝒙). 

In some finite population situations, the entire finite population of 𝒙 values 

may be known and the integral expression for 𝜃𝑖(𝑏) in (7) is the sum over the 

population. In the simulations for this model we assume 𝑥𝑖𝑗~𝑁𝐼(𝜇𝑥𝑖, 𝜎2) with 𝜇𝑥𝑖 

known and 𝜎2 known. 

2.2.2. Sample Estimated Covariate Distribution 

Let an estimator of the distribution of 𝑥𝑖𝑗 be given by a sample (𝑥𝑖𝑗, 𝑤𝑖𝑗), 𝑗 =

1, . . . , 𝑟𝑖, where 𝑤𝑖𝑗 are weights such that the sample cumulative distribution 

function (CDF) is unbiased for the population CDF. Then, given known (𝜎𝑏
2, 𝜷 ), 

the predictor of the 𝑖𝑡ℎ small area mean of 𝒚 is  

𝜃𝑖 = 𝐸[𝜃𝑖(𝑏)|(𝒙𝑖, 𝒚𝑖)]

=
∫𝑏

𝜃𝑖(𝑏) ∏
𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑑𝐹𝑏(𝑏)

∫𝑏
∏

𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑑𝐹𝑏(𝑏)

,
 (8) 

 where  

 𝜃𝑖(𝑏) = ∑𝑟𝑖
𝑗=1 𝑤𝑖𝑗𝑔(𝒙𝒊𝒋𝜷 , 𝑏). 

The sample used to estimate the CDF could be the original sample with 𝑟𝑖 =
𝑛𝑖 or the estimation sample could be the original sample augmented by an 
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additional probability sample of size 𝑛𝑖
′ selected from the area population. See 

Ghosh et al. (2009) for an example using the sample CDF. 

2.2.3. Unknown Random Covariate Mean 

Assume the form of the distribution of 𝒙 for area 𝑖 is known, with unknown 

parameters (𝜇𝑥𝑖, 𝜎2). Assume 𝜇𝑥𝑖 satisfies (3). Then, given known 

(𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥), the MMSE predictor of the 𝑖𝑡ℎ small area mean of 𝒚 is  

𝜃𝑖 = 𝐸[𝜃𝑖(𝑏, 𝛿)|(𝒙𝑖, 𝒚𝑖)]

=
∫𝑏 ∫𝛿

𝜃𝑖(𝑏,𝛿) ∏
𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

∫𝑏 ∫𝛿
∏

𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

,
               (9) 

 where  

𝜃𝑖(𝑏, 𝛿) = ∫ 𝑔[(𝜇𝑥 + 𝛿 + 𝜺) 𝜷 , 𝑏]𝑑𝐹 𝜺 𝑖(𝜺). 

In the simulations we assume 𝑥𝑖𝑗~𝑁𝐼(𝜇𝑥𝑖, 𝜎2) and 𝛿𝑖~𝑁𝐼(0, 𝜎𝛿
2). 

2.2.4. Unknown Random Covariate Mean, Additional Information �̃�𝒊 

Let the random model assumptions of Section 2.2.3 hold. Let a vector of 𝑛𝑖
′ 

observations on 𝑥𝑖𝑗, denoted by �̃�𝒊, be available. Then, given known 

(𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥), the MMSE predictor of the 𝑖𝑡ℎ small area mean of 𝒚 is  

 

𝜃𝑖 = 𝐸[𝜃𝑖(𝑏, 𝛿))|(𝒙𝑖, 𝒚𝑖, �̃�𝒊)],

=
∫𝑏 ∫𝛿

𝜃𝑖(𝑏,𝛿) ∏
𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿) ∏

𝑛𝑖
′

𝑡′=1
𝑓(�̃�

𝑖𝑡′|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

∫𝑏 ∫𝛿
∏

𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿) ∏

𝑛𝑖
′

𝑡′=1
𝑓(�̃�𝑖𝑡′|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

,
 

where  

 𝜃𝑖(𝑏, 𝛿) = ∫ 𝑔[(𝜇𝑥 + 𝛿 + 𝜺)𝜷 , 𝑏] 𝑑𝐹 𝜺 𝑖(𝜺). 

In the simulations we assume �̃�𝑖𝑗′~𝑁𝐼(𝜇𝑥𝑖, 𝜎2), so �̃�𝑥𝑖 = (𝑛𝑖
′)−1 ∑

𝑛𝑖
′

𝑗′=1
�̃�𝑖𝑗′  is 

a sufficient statistic for 𝜇𝑥𝑖 and the predictor simplifies to  

𝜃𝑖 =
∫𝑏 ∫𝛿

𝜃𝑖(𝑏,𝛿) ∏
𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿)𝑓(�̃�𝑥𝑖|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

∫𝑏 ∫𝛿
∏

𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿)𝑓(�̃�𝑥𝑖|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

. (10) 
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2.3. Estimation 

In practice, the vector of parameters 𝝍 = (𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥) is not known 

and needs to be estimated. Consider the model specified by (1), (2), (3), (6), with 

additional information �̃�𝒊 available, as described in Section 2.2.4. The likelihood 

is  

 𝐿(𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥|𝒙, 𝒚, �̃�) = ∏𝑚
𝑖=1 𝐿𝑖 , 

where  

 

𝐿𝑖 = ∫𝑏 ∫𝛿
∏

𝑛𝑖,𝑛𝑖
′

𝑗=1,𝑗′=1
𝑓(𝑦𝑖𝑗 , 𝑥𝑖𝑗 , �̃�𝑖𝑗′|𝑏, 𝛿, 𝜓)𝑓(𝑏|𝜓)𝑓(𝛿|𝜓)𝑑𝛿𝑑𝑏

= ∫𝑏
∏𝑛𝑖

𝑗=1 𝑓(𝑦𝑖𝑗|𝑏, 𝑥𝑖𝑗, 𝛽 )𝑓(𝑏|𝜎𝑏
2)𝑑𝑏 ∫𝛿

∏
𝑛𝑖+𝑛𝑖

′

𝑗=1 𝑓(𝑥𝑖𝑗
∗ |𝛿, 𝜇𝑥 , 𝜎2)𝑓(𝛿|𝜎𝛿

2)𝑑𝛿,
 

and 𝒙∗ = (𝒙, �̃�) is the vector of all available auxiliary information.  

Notice that the likelihood 𝐿(𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥|𝒙, 𝒚, �̃�) factors into 

𝐿(𝜎𝑏
2, 𝜷 |𝒚, 𝒙) and 𝐿(𝜎2, 𝜎𝛿

2, 𝜇𝑥|𝒙, �̃�). Hence, the parameters (𝜎2, 𝜎𝛿
2, 𝜇𝑥) can be 

estimated separately from the estimation of the parameters (𝜎𝑏
2, 𝜷 ). Estimation of 

(𝜎2, 𝜎𝛿
2, 𝜇𝑥) can be based on maximizing the likelihood for the linear mixed 

model specified in (2) and (3), with additional information �̃�𝒊 available.  

Numerical integration methods are required for construction of estimates and 

predictions. 

2.4. Bootstrap MSE Estimation 

In this section we consider estimation of the MSE of 𝜃𝑖 as a predictor of 𝜃𝑖. 

Let  𝝍  be the parameter that defines the distribution of the sample observations, 

and let  𝝍 ̂ be an estimator of  𝝍 . Let  𝜶  be a vector of parameters of interest and 

let  𝜶 ∗ be a parametric bootstrap (simulation) estimator of  𝜶 . For the models 

considered in Section 2.2, let 𝛼𝑖 be the MSE of the prediction error for area 𝑖, as 

defined in (5). For the nonlinear small area model with known distribution for 𝑥𝑖𝑗, 

the vector of parameters is  𝝍 = (𝜎𝑏
2, 𝜷 ). For the nonlinear small area models 

with unknown random 𝜇𝑥𝑖, the vector of parameters is  𝝍 = (𝜎𝑏
2, 𝜷 , 𝜎2, 𝜇𝑥 , 𝜎𝛿

2). 

Because there is no closed form expression for the prediction MSE given in (5), 

we consider bootstrap MSE estimation.  

A sample generated with  𝝍  and random number seed 𝑟 is said to be created 

with data generator ( 𝝍 , 𝑟), denoted 𝐷𝐺( 𝝍 , 𝑟). Let 𝐵1 bootstrap samples be 

generated using random number seeds 𝑟1,1, 𝑟1,2, . . . , 𝑟1,𝐵1
. Let  𝝍 𝑘

∗  be the estimator 

of  𝝍  from the 𝑘th bootstrap sample generated using 𝐷𝐺(  𝝍 ̂ , 𝑟1,𝑘). The 

bootstrap estimator of prediction MSE for area 𝑖 is  

�̂�𝑖
∗ = 𝐵1

−1 ∑𝐵1
𝑘=1 (𝜃𝑖,𝑘

∗ − 𝜃𝑖,𝑘
∗ )2 =: 𝐵1

−1 ∑𝐵1
𝑘=1 𝛼𝑖,𝑘

∗ = �̅�𝑖
∗, (11) 
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 where 𝜃𝑖,𝑘
∗  is the true small area mean generated for the 𝑘th bootstrap sample, 𝜃𝑖,𝑘

∗  

is the sample predictor of 𝜃𝑖,𝑘
∗  and 𝛼𝑖,𝑘

∗  is the prediction squared error for the 𝑘th 

bootstrap sample. The estimator (11) is called the level-one bootstrap estimator.  

In the double bootstrap, a sample estimator, denoted by 𝛼𝑖
∗∗, is generated 

using  𝝍 ∗ from the level-one generated sample. Typically a large number of 𝛼𝑖
∗∗ 

is generated for each 𝛼𝑖
∗ and the bias adjusted estimator is  

�̃�𝑖
∗∗ = 𝐵1

−1 ∑𝐵1
𝑘=1 2𝛼𝑖,𝑘

∗ − 𝐵1
−1𝐵2

−1 ∑𝐵1
𝑘=1 ∑𝐵2

𝑡=1 𝛼𝑖,𝑘,𝑡
∗∗ . (12) 

 where 𝛼𝑖,𝑘,𝑡
∗∗  is generated using 𝐷𝐺( 𝝍 𝑘

∗ , 𝑟2,𝑘,𝑡), 𝐵1 is the number of level-one 

bootstrap samples, 𝐵2 is the number of level-two bootstrap samples per level-one 

sample, and the 𝑟2,𝑘,𝑡, 𝑘 = 1,2, . . . , 𝐵1, 𝑡 = 1,2, . . . , 𝐵2, are independent random 

numbers, independent of 𝑟1,𝑘.  

We use a double bootstrap estimator based on the work of Davidson and 

MacKinnon (2007) who give a fast double bootstrap procedure for bootstrap 

testing. See also Giacomini, Politis and White (2013). In the fast double 

bootstrap, a single 𝛼𝑖
∗∗ is generated for each 𝛼𝑖

∗. Let 𝑟2,1, 𝑟2,2, . . . , 𝑟2,𝐵1
 be a second 

independent sequence of random numbers. Given the sequence of random 

numbers, define 𝛼𝑖,𝑘
∗∗  to be calculated from data generated with 𝐷𝐺( 𝝍 𝑘

∗ , 𝑟2,𝑘). 

The (classic) double bootstrap estimator used in this study is  

�̃�𝑖,𝐶
∗∗ = 𝐵1

−1 ∑𝐵1
𝑘=1 (2𝛼𝑖,𝑘

∗ − 𝛼𝑖,𝑘
∗∗ ) = 2�̅�𝑖

∗ − �̅�𝑖
∗∗. (13) 

To construct an even more efficient bootstrap estimator, define 𝛼𝑖,𝑘,2
∗  to be 

calculated from data generated with 𝐷𝐺(  𝝍 ̂ , 𝑟2,𝑘). Then a bias adjusted (double 

bootstrap) estimator is  

�̂�𝑖
∗∗ = 𝐵1

−1 ∑𝐵1
𝑘=1 (𝛼𝑖,𝑘

∗ + 𝛼𝑖,𝑘,2
∗ − 𝛼𝑖,𝑘

∗∗ ), (14) 

 where the quantity 𝛼𝑖,𝑘
∗∗ − 𝛼𝑖,𝑘

∗  is a one-degree-of-freedom estimator of the bias. If 

one uses 𝑟2,1 as 𝑟1,2, 𝑟2,2 as 𝑟1,3, etc., a form of (14) becomes  

�̃�𝑖,𝑇
∗∗ = 𝐵1

−1 ∑𝐵1
𝑘=1 (𝛼𝑖,𝑘

∗ + 𝛼𝑖,𝑘+1
∗ − 𝛼𝑖,𝑘

∗∗ ), (15) 

 where 𝛼𝑖,𝑘+1
∗  is generated with 𝐷𝐺(  𝝍 ̂ , 𝑟1,𝑘+1) and 𝛼𝑖,𝑘

∗∗  is generated with 

𝐷𝐺( 𝝍 𝑘
∗ , 𝑟1,𝑘+1). We call the estimator (15) a telescoping bootstrap because it is 

of the form (14) using lagged values of 𝛼𝑖,𝑘
∗ . If the use of 𝑟2,𝑘 in place of an 
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independent random number results in positive correlation between 𝛼𝑖,𝑘
∗  and 

𝛼𝑖,𝑘−1
∗∗ , then �̃�𝑖,𝑇

∗∗  will have smaller simulation variance than �̃�𝑖,𝐶
∗∗  of (13). 

3. Simulations 

In the simulation study we consider 𝑚 = 36 areas with unit level observations 

𝑥𝑖𝑗 in three groups of 12 areas, with sizes 𝑛𝑖 ∈ {2,10,40}. The number of 

additional unit level observations is 𝑛𝑖′ = 10, for each area 𝑖. Each 

sample, (𝒚, 𝒙, �̃�), is generated using model (1 - 3) with 𝜎𝑏
2 = 0.25, 𝜇𝑥 = 0, 𝜎𝛿

2 =
0.16, and 𝜎2 = 0.36. The vector of coefficients for the fixed effects is (𝛽0, 𝛽1) =

(−0.8,1) and 𝒙𝑖𝑗 = (1, 𝑥𝑖𝑗). For each unit, the probability that 𝑦𝑖𝑗 = 1 is  

𝑔(𝒙𝒊𝒋𝜷 , 𝑏𝑖) =
exp(−0.8+𝑥𝑖𝑗+𝑏𝑖)

1+exp(−0.8+𝑥𝑖𝑗+𝑏𝑖)
. (16) 

The population mean of 𝑔(𝒙𝒊𝒋𝜷 , 𝑏𝑖) is 0.334 with variance 0.029. An area 

with 𝜇𝑥𝑖 = 0.4 has mean 0.412 with variance 0.028. Four hundred Monte Carlo 

samples were generated satisfying the model. 

The estimation models are:   

• Model 1: Specified by (1) and (6) and described in Section 2.2.1. Known 

normal distribution for 𝑥𝑖𝑗. The distribution of 𝑦𝑖𝑗 is  

𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑏𝑖) = 𝐼(𝑦𝑖𝑗 , 1)𝑔(𝒙𝒊𝒋𝜷 , 𝑏𝑖) + 𝐼(𝑦𝑖𝑗 , 0)(1 − 𝑔(𝒙𝒊𝒋𝜷 , 𝑏𝑖)), 

where 𝐼(𝑦𝑖𝑗 , . ) is the indicator function, and 𝑔(𝒙𝒊𝒋𝜷 , 𝑏𝑖) is defined in (16). 

The distribution of 𝑏𝑖 is 𝑁(0,0.25). 

• Model 2: Specified by (1) and (6) and described in Section 2.2.2. Sample 

estimated distribution of 𝒙 based on the original sample 𝒙. 

• Model 2*: Specified by (1) and (6) and described in Section 2.2.2. Sample 

estimated distribution of 𝒙 based on the original sample 𝒙 augmented by a 

sample �̃� = (�̃�1, �̃�2, . . . , �̃�𝑚). 

• Model 3: Specified by (1), (2), (6) and described in Section 2.2.3. Unknown 

random auxiliary mean 𝜇𝑥𝑖. Distributions of 𝑦𝑖𝑗 and 𝑏𝑖 are the same as those 

for Model 1. The distribution of 𝑥𝑖𝑗 is defined by the random model given in 

Section 2.2.3. 

• Model 4: Specified by (1), (2), (3), (6) and described in Section 2.2.4. 

Unknown random auxiliary mean 𝜇𝑥𝑖 and observed �̃� = (�̃�1, �̃�2, . . . , �̃�𝑚). 
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The models are fitted as generalized linear mixed models, using the lmer and 

glmer functions in the lme4 package in R. The true 𝑖𝑡ℎ small area mean of 𝒚 is 

given by (4) and the predicted 𝑖𝑡ℎ area means of 𝒚 are given in (7 - 10), with 

estimated (𝜇𝑥 , 𝛽0, 𝛽1, 𝜎𝑏
2, 𝜎𝛿

2, 𝜎2). The integrals in (4, 7 - 10) were approximated 

using a 26-point approximation to the normal distribution.  

3.1. Refinement of Prediction MSE Estimators 

Wang and Fuller (2003) suggested the estimator of 𝜎𝛿
2 be bounded by  

 𝐾𝛿,𝑠 = 0.5[�̂�(�̂�𝛿
2|𝜎𝛿

2 = 0)]
0.5

, 

where �̂�(�̂�𝛿
2|𝜎𝛿

2 = 0) is the estimated variance of �̂�𝛿
2, given 𝜎𝛿

2 = 0. Because of 

the large degrees of freedom for �̂�2, we set 𝐾𝛿,𝑠 equal to the true value of 0.008 in 

the simulations,  

 𝐾𝛿,𝑠 = 0.5[2𝑚(𝑚 − 1)−1(∑𝑚
𝑖=1 ((𝑛𝑖 + 𝑛𝑖′)

−1𝜎2)−2)−1]0.5 = 0.008. 

Similarly, we bound the estimator of 𝜎𝑏
2 by  

 𝐾𝑏,𝑠 = 0.5[𝑉(�̂�𝑏
2|𝜎𝑏

2 = 0)]
0.5

= 0.006. 

The proportion of sample estimators �̂�𝑏
2 that hit the bound is 0.025, the 

proportion of level one estimators of �̂�𝑏
2∗ that hit the bound is 0.111. If �̂�𝑏,𝑘

2 =

0.006 we set 𝛼𝑖,𝑘
∗∗  equal to 𝛼𝑖,𝑘

∗ . That is, the estimated bias is zero for such 

samples. 

Using (13), one can obtain an unacceptable double bootstrap prediction MSE 

estimator, where the estimated bias for a sample is greater than the estimate. In 

practice, one would increase the number of bootstrap samples. Rather than build 

such a procedure into our Monte Carlo algorithm, we defined bounds for the 

estimator. Thus, the final estimator is 

 

    �̂�𝑖,𝐶
∗∗ = {

1.60�̅�𝑖
∗,    𝑖𝑓   �̅�𝑖

∗−1
�̅�𝑖

∗∗ > 1.60

0.83�̅�𝑖
∗,    𝑖𝑓   �̅�𝑖

∗−1
�̅�𝑖

∗∗ < 0.83

�̃�𝑖,𝐶
∗∗ ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   ,

         (17) 

where 0.83 and 1.60 are the 0.025 and 0.975 points of the chi-square distribution 

with 199    (𝐵1 − 1) degrees of freedom, and �̃�𝑖,𝐶
∗∗  is defined in (13). The 

analogous definition holds for the telescoping estimator of (14). See Hall and 

Maiti (2006) for an alternative definition of the direct double bootstrap estimates.  
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The proportions of sample estimators of �̂�𝑖,𝑇
∗∗  that hit the lower bound defined 

in (17) are 0.016, 0.016 and 0.013, for the areas of sizes 2, 10 and 40, 

respectively. The proportions of sample estimators of �̂�𝑖,𝑇
∗∗  that hit the upper bound 

defined in (17) are 0.026, 0.069 and 0.084, for the areas of sizes 2, 10 and 40, 

respectively. Due to larger variability in the classic double bootstrap estimators, 

the proportions of sample estimators of �̂�𝑖,𝐶
∗∗  that hit the lower bound defined in 

(17) are 0.058, 0.048 and 0.041, for the areas of sizes 2, 10 and 40, respectively, 

and the proportions of sample estimators of �̂�𝑖,𝐶
∗∗  that hit the upper bound defined 

in (17) are 0.155, 0.201 and 0.183, for the areas of sizes 2, 10 and 40, 

respectively. 

3.2. MSE for Different Types of Auxiliary Information 

The coefficient of variation for �̂�𝑏
2 calculated for the 400 Monte Carlo 

samples is about 0.64, approximately the CV of a Chi-square with five degrees of 

freedom. The Monte Carlo relative bias of the estimator of �̂�𝑏
2 is about −0.12, 

which is approximately equal to eighteen Monte Carlo standard errors.  

Table 1 contains estimates of the prediction MSE, denoted by 𝛼, for fixed and 

random models with different amounts of auxiliary information. The simulation 

MSE standard errors are presented in parantheses below the MSE values. The 

smallest MSE is for Model 1, where the covariate distribution is known. The next 

smallest MSE is for Model 4, where the form of the covariate distribution is 

known, the covariate mean is random and the auxiliary information is available. 

The largest MSE is for Model 2, where the covariate distribution is not specified. 

The small area mean predictor for Model 3 is the conditional expected value 

formula given in (9). Notice that in the construction of the small area predictor for 

Model 4, given in (10), the conditioning is also on the additional source of 

information, 𝒙, available for the areas. 

The extra observations on 𝑥𝑖𝑗 represent additional information available about 

the distribution of 𝒙 for the area. Hence, the large gain in efficiency associated 

with 𝒙 for sample size two (compare 10.94 for Model 2∗ to 17.29 for Model 2). 

Model 3 differs from Model 2 in that the distribution of 𝑥𝑖𝑗 is assumed to be 

normal and the area mean is also assumed to be normally distributed. Adding 

these distributional assumptions changes the MSE from 17.29 to 13.22 for sample 

size two. The effect of added information is smaller for the random 𝜇𝑥𝑖 models 

(models 2∗ and 4) than for the fixed 𝜇𝑥𝑖 models (models 2 and 3). 

The contribution of the variance of the estimation error in the mean of 𝒙 to the 

MSE depends on the importance of 𝒙 in the model and on the size of the samples. 

With 𝑛𝑖 = 2, the MSE with known area mean of 𝒙 is 57% of the MSE with no 

additional information on the distribution of 𝒙. The reduction in MSE from 

adding independent observations on 𝒙 is related to the sizes of the two samples 

and to the model. If the small area mean of 𝒙 is fixed, the original sample is ten 

observations and the added sample is ten observations, the MSE falls midway 
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between that with no additional information and that with complete information. 

With fixed small area mean of 𝒙, an original sample of size 2 and an added 

sample of size 10, the expected added variance is one sixth of that of the original 

sample. In this simulation the effect of treating the mean as random is equivalent 

to adding 2.25 observations on 𝒙. 

Table 1.  MSE for different types auxiliary information (entries multiplied  

by 103) 

 Size  �̅�  Model 1  Model 2   Model 2*  Model 3  Model 4  

2  102.14  

 (6.13)  

 9.88 

(0.71) 

 17.29 

 (1.24) 

 10.94 

 (0.79) 

 13.22  

 (0.92)  

 10.72  

 (0.76)  

10  20.15  

 (1.40)  

7.15 

(0.52)  

 8.56 

 (0.63) 

 7.87  

 (0.57) 

 8.26  

 (0.60)  

 7.76  

 (0.56)  

40 5.14 

(0.37) 

 3.46  

 (0.25)  

 3.81 

 (0.27) 

 3.74  

(0.27)  

 3.78  

 (0.27)  

 3.72 

 (0.27) 

 

Model 1: known distribution for 𝑥𝑖𝑗,  

Model 2: unknown distribution for 𝑥𝑖𝑗, with no �̃�,  

Model 2*: unknown distribution for 𝑥𝑖𝑗, with observed �̃�,  

Model 3: random 𝜇𝑥𝑖, with no �̃� ,  

Model 4: random 𝜇𝑥𝑖, with observed �̃�  

3.3. Monte Carlo Properties of Prediction MSE Estimators 

The relative performances of bootstrap prediction MSE estimators under the 

different types of auxiliary information are similar. Therefore, we only present 

properties of prediction MSE estimators for Model 4, where the area mean 𝜇𝑥𝑖 is 

random and auxiliary information �̃� is available. 

Table 2 contains results for (�̂�∗, �̂�𝑇
∗∗, �̂�𝐶

∗∗) for the three area sample sizes, in 

groups of five lines. Each line is the average of the results for the 12 areas with 

the same sample size. The first line is the Monte Carlo estimates of the prediction 

MSE, �̂�. The next four lines are of the bias relative to the mean, the coefficient of 

variation, the bias relative to the standard deviation and the bias relative to the 

standard error. The definitions are  

𝑅𝑒𝑙𝐵𝑖𝑎𝑠 = ∑

12

𝑖𝑠=1

(�̂�.,𝑖𝑠
𝐸𝑆𝑇

− �̂�.,𝑖𝑠) ∑

12

𝑖𝑠=1

�̂�.,𝑖𝑠⁄  , 

 

𝐶𝑉 = ∑

12

𝑖𝑠=1

√(400 − 1)−1 ∑

400

=1

(�̂� ,𝑖𝑠
𝐸𝑆𝑇 − �̂�.,𝑖𝑠

𝐸𝑆𝑇)2 ∑

12

𝑖𝑠=1

�̂�.,𝑖𝑠⁄  , 
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𝐵𝑖𝑎𝑠

𝑠𝑑
= ∑

12

𝑖𝑠=1

(�̂�.,𝑖𝑠
𝐸𝑆𝑇

− �̂�.,𝑖𝑠) ∑

12

𝑖𝑠=1

√(400 − 1)−1 ∑

400

휁=1

(�̂�휁,𝑖𝑠
𝐸𝑆𝑇

− �̂�.,𝑖𝑠
𝐸𝑆𝑇

)2⁄   , 

 
𝐵𝑖𝑎𝑠

𝑠𝑒
= 𝐵𝑖𝑎𝑠 (20𝑠𝑑⁄ )  , 

where 휁 indexes the Monte Carlo samples, 𝑖 denotes an area from a group of areas 

of sample size 𝑠, �̂�.,𝑖𝑠 = (400)−1 ∑400
=1 �̂� ,𝑖𝑠 is the average of the Monte Carlo 

prediction error estimators, �̂�.,𝑖𝑠
𝐸𝑆𝑇 = (400)−1 ∑400

=1 �̂� ,𝑖𝑠
𝐸𝑆𝑇 is the average of the 

bootstrap prediction MSE estimators, and �̂�𝐸𝑆𝑇 ∈ {�̂�∗, �̂�𝑇
∗∗, �̂�𝐶

∗∗} is the bootstrap 

estimator for an area. The estimated prediction MSEs have CVs of about 

40%, 32% and 22% for 200 bootstrap samples for sample sizes 2, 10, and 40, 

respectively.  

In all cases the telescoping double bootstrap, denoted with a subscript T, has 

lower MSE than the classic double bootstrap, denoted with a subscript C. The 

estimators �̂�𝑇
∗∗ and �̂�𝐶

∗∗ have the same bias if the bound (17) is not used. The 

double bootstrap reduces the absolute value of the bias for all the sample sizes. 

However, the absolute bias of the double bootstrap is about 6% of the true value 

for sample size 2.  

Table 2.  Monte Carlo properties of prediction MSE estimators  

 (𝐵1 = 200, 𝐵2 = 1 and 400 MC samples, variances multiplied by 103) 

 Size   Measure �̂�∗  �̂�𝑇
∗∗   �̂�𝐶

∗∗  

2  𝑉(𝜃 − 𝜃) 

RelBias 

𝐶𝑉(�̂�) 

Bias/sd 

Bias/se 

 10.723  

 -0.143  

  0.403  

 -0.355  

 -7.097  

 10.723  

 -0.058  

  0.456  

 -0.127  

 -2.537  

 10.723 

 -0.062  

  0.477 

 -0.130  

 -2.609 

10  𝑉(𝜃 − 𝜃) 
RelBias 

𝐶𝑉(�̂�) 

Bias/sd 

Bias/se 

  7.758  

 -0.133 

  0.318  

 -0.417  

 -8.336  

  7.758  

 -0.032  

  0.365  

 -0.087  

 -1.738  

  7.758 

 -0.039 

  0.385 

 -0.102 

 -2.034 

40 𝑉(�̂� − 𝜃) 

RelBias 

𝐶𝑉(�̂�) 

Bias/sd 

Bias/se 

  3.721  

 -0.082  

  0.222  

 -0.372  

 -7.430  

  3.721  

  0.016  

  0.260  

  0.062  

  1.249  

  3.721 

  0.009 

  0.286 

  0.032 

  0.636 

The variance of an estimator of the prediction MSE has two components. The 

first, that we call between, is the variance one would obtain if one used an infinite 

number of bootstrap samples. The second, that we call within, is the variability 

due to the fact that our set of bootstrap samples is a sample of samples.  
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We estimate these two components using two independent sets of bootstrap 

samples. That is, for each Monte Carlo sample, we generate two sets of (𝐵1 =
100, 𝐵2 = 1) samples. The sequences of random seeds 𝑟1,𝑘′, 𝑟2,𝑘′, 𝑘 = 1, . . . , 𝐵1 

for the second set are independent of the sequences of random seeds 𝑟1,𝑘, 𝑟2,𝑘, 𝑘 =
1, . . . , 𝐵1 for the first set. Let (�̂�∗, �̂�∗∗, �̂�𝑇

∗∗, �̂�𝐶
∗∗) be the prediction MSE estimates 

for the first group of bootstrap samples and let (�̂�2
∗ , �̂�2

∗∗, �̂�𝑇2
∗∗ , �̂�𝐶2

∗∗ ) be the 

prediction MSE estimates for the second group of bootstrap samples. The within 

variance component for 𝐵1 = 100 is estimated by half of the mean of squared 

differences between the two prediction MSE estimates,  

 𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛
𝐸𝑆𝑇 = (12)−1 ∑12

𝑖𝑠=1 ((400)−1 ∑400
=1 (�̂� ,𝑖𝑠

𝐸𝑆𝑇 − �̂�2, ,𝑖𝑠
𝐸𝑆𝑇 )2)/2. 

The variance components for the prediction MSE estimators (�̂�∗, �̂�𝑇
∗∗, �̂�𝐶

∗∗) are 

given in Table 3 for (𝐵1 = 100, 𝐵2 = 1). The estimated between variance 

component is the difference between the estimated total variance and the 

estimated within variance component. The entries in the table are averages over 

the areas of the same sample size and over the Monte Carlo samples. 

Table 3. Estimated variance components for variance of estimated prediction 

MSE 

 (Within is for 100 bootstrap samples. All variances have been 

multiplied by 106) 

Source of 

Variation 
Size 𝛼∗ 𝛼𝑇

∗∗ 𝛼𝐶
∗∗ 

     

Between 

Within 

Total 

2 

 

 

17.886 

 2.099 

19.985 

23.040 

 3.903 

26.943 

23.040 

10.599 

33.639 

Between 

Within 

Total 

10 

 

 

 5.562 

 1.099 

 6.661 

 7.267 

 2.324 

 9.591 

 7.267 

 5.376 

12.643 

Between 

Within  

Total  

40 

 

 

 0.544 

 0.264 

 0.808 

 0.725 

 0.613 

 1.338 

 0.725 

 1.300 

 2.025 

The between component for the level one bootstrap is about 75% of the 

between component for the double bootstrap procedures. This is not surprising as 

bias reduction procedures often increase the variance. The bootstrap sampling 

variance, the within component, for the classic double bootstrap is about five 

times that of the level one bootstrap. The telescoping bootstrap is 2.1 to 2.7 times 

as efficient as the classic double bootstrap. 
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4. Summary 

We used a simulation study of a unit level logistic model to compare the 

impact of different levels of auxiliary information. The minimum mean squared 

error predictors for the small area means were obtained by conditioning on the 

information available for an area. That information is the unit level response 

realizations, the unit level covariate observations, and the sometimes available 

additional unit level auxiliary information. We considered fixed and random mean 

models for the covariates, as well as known and unknown distribution for the 

covariates. The percentage effect on the prediction MSE of including auxiliary 

information in the estimation is smaller for the random mean model than for the 

fixed mean model for the covariates because using a random model is equivalent 

to adding observations.  

We presented a parametric double bootstrap procedure for the prediction MSE 

for the unit level logistic model. The fast double bootstrap procedure, where the 

number of level-two bootstrap samples is 𝐵2 = 1, has superior bootstrap 

efficiency relative to the classic double bootstrap procedure with 𝐵2 > 1. The 

double bootstrap reduces the prediction MSE estimation bias to less than 50% of 

the bias of the level-one bootstrap. The double bootstrap increases the standard 

error of the prediction MSE estimator by 13 to 17% relative to that of the level-

one bootstrap.  
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