ECDNETOR

Make Your Publications Visible.

Article

SOME EFFECTIVE ESTIMATION PROCEDURES UNDER NON-RESPONSE IN TWO-PHASE SUCCESSIVE SAMPLING

Statistics in Transition New Series

Provided in Cooperation with:

Polish Statistical Association

Suggested Citation: Singh, G. N.; Khetan, M.; Maurya, S. (2016) : SOME EFFECTIVE ESTIMATION PROCEDURES UNDER NON-RESPONSE IN TWO-PHASE SUCCESSIVE SAMPLING, Statistics in Transition New Series, ISSN 2450-0291, Exeley, New York, NY, Vol. 17, Iss. 2, pp. 163-182, https://doi.org/10.21307/stattrans-2016-012

This Version is available at: https://hdl.handle.net/10419/207805

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

SOME EFFECTIVE ESTIMATION PROCEDURES UNDER NON-RESPONSE IN TWO-PHASE SUCCESSIVE SAMPLING

G. N. Singh ${ }^{1}$, M. Khetan ${ }^{2}$, S. Maurya ${ }^{3}$

Abstract

This work is designed to assess the effect of non-response in estimation of the current population mean in two-phase successive sampling on two occasions. Sub-sampling technique of non-respondents has been used and exponential methods of estimation under two-phase successive sampling arrangement have been proposed. Properties of the proposed estimation procedures have been examined. Empirical studies are carried out to justify the suggested estimation procedures and suitable recommendations have been made to the survey practitioners.

Key words: non-response, successive sampling, two-phase sampling, mean square error, optimum replacement strategy.

1. Introduction

In collecting information through sample surveys, there may arise numerous problems; one of them is non-response. It frequently occurs in mail surveys, where some of the selected units may refuse to return back the filled in questionnaires. An estimate obtained from such an incomplete survey may be misleading, especially when the respondents differ significantly from the non-respondents, because the estimate may be a biased one. Hansen and Hurwitz (1946) suggested a technique of sub-sampling of non-respondents to handle the problem of nonresponse. Cochran (1977) and Fabian and Hyunshik (2000) extended the Hansen and Hurwitz (1946) technique for the situation when besides the information on the character under study, information on auxiliary character is also available. Recently, Choudhary et al. (2004) Singh and Priyanka (2007), Singh and Kumar

[^0](2009, 2010), Singh et al. (2011) and Garcia Luengo (2013) used the Hansen and Hurwitz (1946) technique for the estimation of population mean on the current occasion in two-occasion successive sampling.

If the study character of a finite population is subject to change over time, a single occasion survey is insufficient. For such a situation successive sampling provides a strong tool for generating reliable estimates over different occasions. Sampling on successive occasions was first considered by Jessen (1942) in the analysis of farm data. The theory of successive (rotation) sampling was further extended by Patterson (1950), Eckler (1955), Rao and Graham (1964), Sen (1971, 1972, 1973), Gupta (1979), Das (1982) and Singh and Singh (2001) among others.

In sample surveys, the use of auxiliary information has shown its significance in improving the precision of estimates of unknown population parameters. When the population parameters of auxiliary variable are unknown before start of the survey we go for two-phase (double) sampling structure to provide the reliable estimates of the unknown population parameters. Singh and Singh (1965) used two-phase (double) sampling for stratification on successive occasions. Recently, Singh and Prasad (2011) and Singh and Homa (2014) applied two-phase sampling scheme with success in the estimation of the current population mean in twooccasion successive sampling.

The aim of the present work is to study the effect of non-response when it occurs on various occasions in two-occasion successive (rotation) sampling. Recently, Bahl and Tuteja (1991), Singh and Vishwakarma (2007) and Singh and Homa (2013) suggested exponential type estimators of population mean under different realistic situations. Motivated with the dominating nature of these estimators and utilizing the information on a stable auxiliary variable with unknown population mean over both occasions, some new exponential methods of estimation have been proposed to estimate the current population mean in twophase successive (rotation) sampling arrangement.. The Hansen and Hurwitz (1946) technique of sub-sampling of non-respondents has been used to reduce the negative effects of non-response. Properties of the proposed estimators are examined and their empirical comparisons are made with the similar estimator and with the natural successive sampling estimator when complete response is observed on both occasions. Results are interpreted and followed by suitable recommendations.

2. Sample structures and symbols

Let $U=\left(U_{1}, U_{2},-,-,-, U_{N}\right)$ be the finite population of N units, which has been sampled over two occasions. The character under study is denoted by $\mathrm{x}(\mathrm{y})$ on the first (second) occasion respectively. It is assumed that the non-response occurs only in study variable $\mathrm{x}(\mathrm{y})$ and information on an auxiliary variable z (stable over occasion), whose population mean is unknown on both occasions, is available and positively correlated with study variable. Since we have assumed that non-
response occurs on both occasions, the population can be divided into two classes - those who will respond at the first attempt and those who will not on both occasions. Let the sizes of these two classes be N_{1}^{*} and N_{2}^{*} respectively on the first occasion and the corresponding sizes on the current (second) occasion be N_{1} and N_{2}, respectively. To furnish a good estimate of the population mean of the auxiliary variable z on the first occasion, a preliminary sample of size n^{\prime} is drawn from the population by the simple random sampling without replacement (SRSWOR) method, and information on z is collected. Further, a second-phase sample of $\operatorname{size} \mathrm{n}\left(\mathrm{n}^{\prime}>\mathrm{n}\right)$ is drawn from the first-phase (preliminary) sample by the SRSWOR method and henceforth the information on the study character x is gathered. We assume that out of selected n units, n_{1} units respond and n_{2} unit do not respond. Let $\mathrm{n}_{2 \mathrm{~h}}$ denote the size of sub-sample drawn from the non-responding units in the sample on first occasion. A random sub-sample s_{m} of $\mathrm{m}=\mathrm{n} \lambda$ units is retained (matched) from the responding units on the first occasion for its use on the second occasion under the assumption that these units will give complete response on the second occasion as well. Once again, to furnish a fresh estimate of the population mean of the auxiliary variable z on the second occasion, a preliminary (first-phase) sample of size u^{\prime} is drawn from the non-sampled units of the population by the SRSWOR method and information on z is collected. A second-phase sample of size $u=(n-m)=n \mu\left(u^{\prime}>u\right)$ is drawn from the firstphase (preliminary) sample by the SRSWOR method and the information on study variable y is gathered. It is obvious that the sample size on the second occasion is also n . Here λ and $\mu(\lambda+\mu=1)$ are the fractions of the matched and fresh samples, respectively, on the second (current) occasion. We assume that in the unmatched portion of the sample on the current (second) occasion u_{1} units respond and u_{2} units do not respond. Let $\mathrm{u}_{2 \mathrm{~h}}$ denote the size of the sub-sample drawn from the non-responding units in the fresh sample (s_{u}) on the current (second) occasion. Hence, onwards, we use the following notations:
$\overline{\mathrm{X}}, \overline{\mathrm{Y}}, \overline{\mathrm{Z}}$: The population means of the variables x, y and z respectively.
$\overline{\mathrm{y}}_{\mathrm{m}}, \overline{\mathrm{y}}_{\mathrm{u}}, \overline{\mathrm{y}}_{\mathrm{u}_{1}}, \overline{\mathrm{y}}_{\mathrm{u}_{2 \mathrm{~h}}}, \overline{\mathrm{x}}_{\mathrm{n}}, \overline{\mathrm{x}}_{\mathrm{n}_{1}}, \overline{\mathrm{x}}_{\mathrm{n}_{2 \mathrm{~h}}}, \overline{\mathrm{x}}_{\mathrm{m}}, \overline{\mathrm{z}}_{\mathrm{m}}, \overline{\mathrm{z}}_{\mathrm{u}}$: The sample means of the respective variables based on the sample sizes shown in suffices.
$\overline{\mathrm{z}}_{\mathrm{n}}^{\prime}, \overline{\mathrm{z}}_{\mathrm{u}}^{\prime}$: The sample means of the auxiliary variable z and based on the firstphase samples of sizes u^{\prime} and n' respectively.
$\rho_{y x}, \rho_{\mathrm{xz}}, \rho_{\mathrm{yz}}$: The population correlation coefficients between the variables shown in suffices.
$\mathrm{S}_{\mathrm{x}}^{2}, \mathrm{~S}_{\mathrm{y}}^{2}, \mathrm{~S}_{\mathrm{z}}^{2}$: The population variances of the variables x, y and z respectively.
$S_{2 x}^{2}, S_{2 y}^{2}$: The population variances of the variables x and y respectively in the non-responding units of the population.
$\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{y}}, \mathrm{C}_{\mathrm{z}}$: The coefficients of variation of the variables x, y and z respectively.
$C_{2 x}, C_{2 y}$: The coefficients of variation of the variables x and y in the nonresponding units of the population.
$\mathrm{W}^{*}=\frac{\mathrm{N}_{2}^{*}}{\mathrm{~N}}$: The proportion of non-responding units in the population at first occasion. $\mathrm{W}=\frac{\mathrm{N}_{2}}{\mathrm{~N}}$: The proportion of non-responding units in the population on the current (second) occasion.

$$
\mathrm{f}_{1}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{2 \mathrm{~h}}} \text { and } \mathrm{f}_{2}=\frac{\mathrm{u}_{2}}{\mathrm{u}_{2 \mathrm{~h}}}
$$

3. Formulation of estimation strategy

To estimate the population mean $\overline{\mathrm{Y}}$ on the current (second) occasion, two different estimators are considered - one estimator T_{u} based on sample s_{u} of size u drawn afresh on the second occasion and the second estimator T_{m} based on the sample s_{m} of size m , which is common to both occasions. Since the non-response occurs in the samples s_{n} and s_{u}, we have used the Hansen and Hurwitz (1946) technique to propose the estimators T_{u} and T_{m}. Hence, the estimators T_{u} and T_{m} for estimating the current population mean $\overline{\mathrm{Y}}$ are formulated as

$$
\mathrm{T}_{\mathrm{u}}=\overline{\mathrm{y}}_{\mathrm{u}}^{*} \exp \left(\frac{\overline{\mathrm{z}}_{\mathrm{u}}^{\prime}-\overline{\mathrm{z}}_{\mathrm{u}}}{\overline{\mathrm{z}}_{\mathrm{u}}^{\prime}+\overline{\mathrm{z}}_{\mathrm{u}}}\right) \text { and } \mathrm{T}_{\mathrm{m}}=\overline{\mathrm{y}}_{\mathrm{m}} \exp \left(\frac{\overline{\mathrm{x}}_{\mathrm{n}}^{*}-\overline{\mathrm{x}}_{\mathrm{m}}}{\overline{\mathrm{x}}_{\mathrm{n}}^{*}+\overline{\mathrm{x}}_{\mathrm{m}}}\right)\left(\frac{\overline{\mathrm{z}}_{\mathrm{n}}^{\prime}}{\overline{\mathrm{z}}_{\mathrm{m}}}\right)
$$

where

$$
\overline{\mathrm{x}}_{\mathrm{n}}^{*}=\frac{\mathrm{n}_{1} \overline{\mathrm{x}}_{\mathrm{n}_{1}}+\mathrm{n}_{2} \overline{\mathrm{x}}_{\mathrm{n}_{2 \mathrm{~h}}}}{\mathrm{n}} \text { and } \overline{\mathrm{y}}_{\mathrm{u}}^{*}=\frac{\mathrm{u}_{1} \overline{\mathrm{y}}_{\mathrm{u}_{1}}+\mathrm{u}_{2} \overline{\mathrm{y}}_{\mathrm{u}_{2 \mathrm{~h}}}}{\mathrm{u}}
$$

Combining the estimators T_{u} and T_{m}, finally we have the following estimator of population mean $\overline{\mathrm{Y}}$ on the current (second) occasion

$$
\begin{equation*}
\mathrm{T}=\varphi \mathrm{T}_{\mathrm{u}}+(1-\varphi) \mathrm{T}_{\mathrm{m}} \tag{3.1}
\end{equation*}
$$

where $\varphi(0 \leq \varphi \leq 1)$ is the unknown constant (scalar) to be determined under certain criterions.

4. Properties of the estimator T

Since the estimators T_{u} and T_{m} are exponential type estimators, the population mean $\overline{\mathrm{Y}}$ are biased, therefore the resulting estimator T defined in
equation (3.1) is also a biased estimator of $\overline{\mathrm{Y}}$. The bias B (.) and the mean square error M (.) of the estimator T are derived up to the first order of approximations using the following transformations:
$\overline{\mathrm{y}}_{\mathrm{m}}=\left(1+\mathrm{e}_{1}\right) \overline{\mathrm{Y}}, \quad \overline{\mathrm{y}}_{\mathrm{u}}=\left(1+\mathrm{e}_{2}\right) \overline{\mathrm{Y}}, \overline{\mathrm{y}}_{\mathrm{u}}^{*}=\left(1+\mathrm{e}_{3}\right) \overline{\mathrm{Y}}, \overline{\mathrm{x}}_{\mathrm{m}}=\left(1+\mathrm{e}_{4}\right) \overline{\mathrm{X}}, \quad \overline{\mathrm{x}}_{\mathrm{n}}=\left(1+\mathrm{e}_{5}\right) \overline{\mathrm{X}}$, $\overline{\mathrm{X}}_{\mathrm{n}}^{\prime}=\left(1+\mathrm{e}_{6}\right) \overline{\mathrm{X}}, \overline{\mathrm{X}}_{\mathrm{n}}^{*}=\left(1+\mathrm{e}_{7}\right) \overline{\mathrm{X}}, \overline{\mathrm{Z}}_{\mathrm{m}}=\left(1+\mathrm{e}_{8}\right) \overline{\mathrm{Z}}, \overline{\mathrm{Z}}_{\mathrm{u}}=\left(1+\mathrm{e}_{9}\right) \overline{\mathrm{Z}}, \overline{\mathrm{Z}}_{\mathrm{u}}^{\prime}=\left(1+\mathrm{e}_{10}\right) \overline{\mathrm{Z}}$, $\overline{\mathrm{Z}}_{\mathrm{n}}^{\prime}=\left(1+\mathrm{e}_{11}\right) \overline{\mathrm{Z}}$, such that $\mathrm{E}\left(\mathrm{e}_{\mathrm{i}}\right)=0$, $\left|\mathrm{e}_{\mathrm{i}}\right|<1 \forall \mathrm{i}=1,2,3,--, 11$. Under the above transformations, the estimators T_{u} and T_{m} take the following forms:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{u}}=\overline{\mathrm{Y}}\left(1+\mathrm{e}_{3}\right) \exp \left[\frac{1}{2}\left(\mathrm{e}_{10}-\mathrm{e}_{9}\right)\left(1+\frac{1}{2}\left(\mathrm{e}_{10}+\mathrm{e}_{9}\right)\right)^{-1}\right] \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=\overline{\mathrm{Y}}\left(1+\mathrm{e}_{1}\right)\left(1+\mathrm{e}_{11}\right)\left(1+\mathrm{e}_{8}\right)^{-1} \exp \left[\frac{1}{2}\left(\mathrm{e}_{7}-\mathrm{e}_{4}\right)\left(1+\frac{1}{2}\left(\mathrm{e}_{7}+\mathrm{e}_{4}\right)\right)^{-1}\right] \tag{4.2}
\end{equation*}
$$

Thus, we have the following theorems:

Theorem 4.1.

Bias of the estimator T to the first order of approximations is obtained as

$$
\begin{equation*}
B(T)=\varphi B\left(T_{u}\right)+(1-\varphi) B\left(T_{m}\right) \tag{4.3}
\end{equation*}
$$

where

$$
\mathrm{B}\left(\mathrm{~T}_{\mathrm{u}}\right)=\overline{\mathrm{Y}}\left(\frac{1}{\mathrm{u}}-\frac{1}{\mathrm{u}^{\prime}}\right)\left(\frac{3}{8} \mathrm{C}_{\mathrm{z}}^{2}-\frac{1}{2} \rho_{\mathrm{yz}} \mathrm{C}_{\mathrm{y}} \mathrm{C}_{\mathrm{z}}\right)
$$

and

$$
B\left(T_{m}\right)=\bar{Y}\left\{\begin{array}{l}
\left(\frac{1}{m}-\frac{1}{n}\right)\left(\frac{3}{8} C_{x}^{2}+\frac{1}{2} \rho_{x z} C_{x} C_{z}-\frac{1}{2} \rho_{x y} C_{y} C_{x}\right) \\
-\frac{1}{8} \frac{\left(f_{1}-1\right)}{n} W^{*} C_{2 x}^{2}+\left(\frac{1}{m}-\frac{1}{n^{\prime}}\right)\left(C_{z}^{2}-\rho_{y z} C_{y} C_{z}\right)
\end{array}\right\}
$$

Proof

The bias of the estimator T is given by

$$
\begin{align*}
\mathrm{B}(\mathrm{~T})=\mathrm{E}[\mathrm{~T}-\overline{\mathrm{Y}}] & =\varphi \mathrm{E}\left(\mathrm{~T}_{\mathrm{u}}-\overline{\mathrm{Y}}\right)+(1-\varphi) \mathrm{E}\left(\mathrm{~T}_{\mathrm{m}}-\overline{\mathrm{Y}}\right) \\
& =\varphi \mathrm{B}\left(\mathrm{~T}_{\mathrm{u}}\right)+(1-\varphi) \mathrm{B}\left(\mathrm{~T}_{\mathrm{m}}\right) \tag{4.4}
\end{align*}
$$

where

$$
\mathrm{B}\left(\mathrm{~T}_{\mathrm{u}}\right)=\mathrm{E}\left[\mathrm{~T}_{\mathrm{u}}-\overline{\mathrm{Y}}\right] \text { and } \mathrm{B}\left(\mathrm{~T}_{\mathrm{m}}\right)=\mathrm{E}\left[\mathrm{~T}_{\mathrm{m}}-\overline{\mathrm{Y}}\right] .
$$

Substituting the expressions of T_{u}, and T_{m} from equations (4.1) and (4.2) in equation (4.4), expanding the terms binomially and exponentially, taking expectations and retaining the terms up to the first order of sample sizes, we have the expressions for the bias of the estimator T as described in equation (4.3).

Theorem 4.2.

The mean square error of the estimator T to the first order of approximations is obtained as

$$
\begin{equation*}
\mathrm{M}(\mathrm{~T})=\varphi^{2} \mathrm{M}\left(\mathrm{~T}_{\mathrm{u}}\right)+(1-\varphi)^{2} \mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)+2 \varphi(1-\varphi) \mathrm{C} \tag{4.5}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{M}\left(\mathrm{~T}_{\mathrm{u}}\right)=\mathrm{E}\left(\mathrm{~T}_{\mathrm{u}}-\overline{\mathrm{Y}}\right)^{2}=\left[\left(\frac{1}{\mathrm{u}}-\frac{1}{\mathrm{u}^{\prime}}\right)\left(\frac{1}{4}-\rho_{\mathrm{yz}}\right)+\left(\frac{1}{\mathrm{u}}-\frac{1}{\mathrm{~N}}\right)+\frac{\mathrm{W}\left(\mathrm{f}_{2}-1\right)}{\mathrm{u}}\right] \mathrm{S}_{\mathrm{y}}^{2} \tag{4.6}\\
& \mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)=\mathrm{E}\left(\mathrm{~T}_{\mathrm{m}}-\overline{\mathrm{Y}}\right)^{2}=\left[\begin{array}{l}
\left\{\left(\frac{1}{\mathrm{~m}}-\frac{1}{\mathrm{n}}\right)\left(\frac{1}{4}+\rho_{\mathrm{xz}}-\rho_{\mathrm{yx}}\right)\right\}+\left(\frac{1}{\mathrm{~m}}-\frac{1}{\mathrm{~N}}\right) \\
\left.+\left\{\left(\frac{1}{\mathrm{~m}}-\frac{1}{\mathrm{n}^{\prime}}\right)\left(1-2 \rho_{\mathrm{yz}}\right)\right\}+\frac{1}{4} \frac{\left(\mathrm{f}_{1}-1\right)}{\mathrm{n}} \mathrm{~W}^{*}\right] \mathrm{S}_{\mathrm{y}}^{2}
\end{array}\right. \tag{4.7}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{C}=\mathrm{E}\left[\left(\mathrm{~T}_{\mathrm{u}}-\overline{\mathrm{Y}}\right)\left(\mathrm{T}_{\mathrm{m}}-\overline{\mathrm{Y}}\right)\right]=-\frac{\mathrm{S}_{\mathrm{y}}^{2}}{\mathrm{~N}} \tag{4.8}
\end{equation*}
$$

Proof

It is obvious that the mean square error of the estimator T is given by

$$
\begin{align*}
& \mathrm{M}(\mathrm{~T})=\mathrm{E}[\mathrm{~T}-\overline{\mathrm{Y}}]^{2}=\mathrm{E}\left[\varphi\left(\mathrm{~T}_{\mathrm{u}}-\overline{\mathrm{Y}}\right)+(1-\varphi)\left(\mathrm{T}_{\mathrm{m}}-\overline{\mathrm{Y}}\right)\right]^{2} \\
&=\varphi^{2} \mathrm{E}\left(\mathrm{~T}_{\mathrm{u}}-\overline{\mathrm{Y}}\right)^{2}+(1-\varphi)^{2} \mathrm{E}\left(\mathrm{~T}_{\mathrm{m}}-\overline{\mathrm{Y}}\right)^{2}+2 \varphi(1-\varphi) \mathrm{E}\left[\left(\mathrm{~T}_{\mathrm{u}}-\overline{\mathrm{Y}}\right)\left(\mathrm{T}_{\mathrm{m}}-\overline{\mathrm{Y}}\right)\right] \\
&=\varphi^{2} \mathrm{M}\left(\mathrm{~T}_{\mathrm{u}}\right)+(1-\varphi)^{2} \mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)+2 \varphi(1-\varphi) \mathrm{C} \tag{4.9}
\end{align*}
$$

Substituting the expressions of T_{u}, and T_{m} from equations (4.1)-(4.2) in equation (4.9), expanding the terms binomially and exponentially, taking expectations and retaining the terms up to the first order of sample sizes, we have the expression of the mean square error of the estimator T as it is given in equation (4.5).

Remark 4.1.

The expression of the mean square error in the equation (4.5) is derived under the assumptions (i) that the coefficients of variation of non-response class are similar to that of the population, i.e. $C_{2 x}=C_{x}$ and $C_{2 y}=C_{y}$, and (ii) since x and y are the same study variable over two occasions and z is the auxiliary variable correlated to x and y, looking at the stability nature of the coefficients of variation, viz. Reddy (1978), the coefficients of variation of the variables x, y and z in the population are considered equal, i.e. $\mathrm{C}_{\mathrm{x}}=\mathrm{C}_{\mathrm{y}}=\mathrm{C}_{\mathrm{z}}$.

5. Minimum mean square error of the estimator T

Since the mean square error of the estimator T in equation (4.5) is the function of unknown constant φ, it is minimized with respect to φ, and subsequently the optimum value of φ is obtained as

$$
\begin{equation*}
\varphi_{\mathrm{opt}}=\frac{\mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)-\mathrm{C}}{\mathrm{M}\left(\mathrm{~T}_{\mathrm{u}}\right)+\mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)-2 \mathrm{C}} . \tag{5.1}
\end{equation*}
$$

Now, substituting the value of $\varphi_{\text {opt }}$ in equation (4.5), we get the optimum mean square error of T as

$$
\begin{equation*}
\mathrm{M}(\mathrm{~T})_{\text {opt }}=\frac{\mathrm{M}\left(\mathrm{~T}_{u}\right) \cdot \mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)-\mathrm{C}^{2}}{\mathrm{M}\left(\mathrm{~T}_{\mathrm{u}}\right)+\mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)-2 \mathrm{C}} . \tag{5.2}
\end{equation*}
$$

Further, substituting the values from equations (4.6)-(4.8) in equation (5.2), we get the simplified value of $\mathrm{M}(\mathrm{T})_{\text {opt }}$ which is given below:

$$
\begin{equation*}
\mathrm{M}(\mathrm{~T})_{\text {opt }}=\frac{\mathrm{a}_{3}+\mu \mathrm{a}_{2}+\mu^{2} \mathrm{a}_{1}}{\mathrm{a}_{6}+\mu \mathrm{a}_{5}+\mu^{2} \mathrm{a}_{4}} \frac{S_{y}^{2}}{\mathrm{n}} . \tag{5.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{1}=a c+k^{2} f^{2}, a_{2}=a d+c b-k^{2} f^{2}, a_{3}=b d, a_{4}=c-a+2 k f, a_{5}=a-b+d-2 k f, a_{6}=b, \\
& a=-\left(f+t_{1} a_{0}\right), b=a_{0}+1+\left(f_{2}-1\right) W, c=t_{2} d_{1}+c_{1}+f-\frac{1}{4}\left(f_{1}-1\right) W^{*} \\
& d=1-f+\left(1-t_{2}\right) d_{1}+\frac{1}{4}\left(f_{1}-1\right) W^{*}, k=-1, a_{0}=\frac{1}{4}-\rho_{y z}, c_{1}=\frac{1}{4}+\rho_{x z}-\rho_{x y}, d_{1}=1-2 \rho_{y z} \\
& f=\frac{n}{N}, f_{1}=\frac{n_{2}}{n_{2 h}}, f_{2}=\frac{u_{2}}{u_{2 h}}, t_{1}=\frac{n}{u^{\prime}} \text { and } t_{2}=\frac{n}{n^{\prime}} .
\end{aligned}
$$

6. Optimum replacement strategy

Since the mean square error of the estimator T given in equation (5.3) is the function of μ (fractions of the sample to be drawn afresh at the second occasion), the optimum value of μ is determined to estimate the population mean $\overline{\mathrm{Y}}$ with maximum precision and lowest cost. To determine the optimum value of μ, we minimized the mean square error of the estimator T given in equation (5.3) with respect to μ, which results in quadratic equation in μ and the respective solutions of μ, say $\hat{\mu}$, are given below:

$$
\begin{gather*}
p_{1} \mu^{2}+2 p_{2} \mu+p_{3}=0 \tag{6.1}\\
\hat{\mu}=\frac{-p_{2} \pm \sqrt{p_{2}^{2}-p_{1} p_{3}}}{p_{1}} \tag{6.2}
\end{gather*}
$$

where

$$
\mathrm{p}_{1}=\mathrm{a}_{1} \mathrm{a}_{5}-\mathrm{a}_{2} \mathrm{a}_{4}, \mathrm{p}_{2}=\mathrm{a}_{1} \mathrm{a}_{6}-\mathrm{a}_{3} \mathrm{a}_{4} \text { and } \mathrm{p}_{3}=\mathrm{a}_{2} \mathrm{a}_{6}-\mathrm{a}_{3} \mathrm{a}_{5} .
$$

From equation (6.2) it is obvious that real values of $\hat{\mu}$ exist iff the quantities under square root are greater than or equal to zero. For any combinations of correlations $\rho_{y x}, \rho_{\mathrm{xz}}$ and ρ_{yz}, which satisfy the conditions of real solutions, two real values of $\hat{\mu}$ are possible. Hence, while choosing the values of $\hat{\mu}$, it should be remembered that $0 \leq \hat{\mu} \leq 1$. If both the values of $\hat{\mu}$ satisfy the stated condition, we chose the smaller value of $\hat{\mu}$ as it will help in reducing the cost of the survey. All other values of μ are inadmissible. Substituting the admissible value of $\hat{\mu}$, say $\mu^{(0)}$, from equation (6.2) into equation (5.3), we have the optimum value of the mean square error of T , which is shown below:

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{~T}^{0}\right)_{\mathrm{opt}}=\frac{\mathrm{a}_{3}+\mu^{(0)} \mathrm{a}_{2}+\mu^{(0) 2} \mathrm{a}_{1}}{\mathrm{a}_{6}+\mu^{(0)} \mathrm{a}_{5}+\mu^{(0) 2} \mathrm{a}_{4}} \frac{\mathrm{~S}_{\mathrm{y}}^{2}}{\mathrm{n}} \tag{6.3}
\end{equation*}
$$

7. Some special cases

Case 1: When non-response occurs only at first occasion

When non-response occurs only at first occasion, the estimator for the mean $\overline{\mathrm{Y}}$ on the current occasion may be obtained as

$$
\begin{equation*}
\mathrm{T}^{*}=\varphi^{*} \xi_{1 \mathrm{u}}+\left(1-\varphi^{*}\right) \mathrm{T}_{\mathrm{m}} \tag{7.1}
\end{equation*}
$$

where
$\xi_{1 \mathrm{u}}=\overline{\mathrm{y}}_{\mathrm{u}} \exp \left(\frac{\overline{\mathrm{z}}_{\mathrm{u}}^{\prime}-\overline{\mathrm{z}}_{\mathrm{u}}}{\overline{\mathrm{z}}_{\mathrm{u}}^{\prime}+\overline{\mathrm{z}}_{\mathrm{u}}}\right)$ and T_{m} is defined in section 3, where $\varphi^{*}\left(0 \leq \varphi^{*} \leq 1\right)$ is the unknown constant (scalar) to be determined under certain criterions.

7.1. properties of the estimator T^{*}

Since the estimator T^{*} is exponential type estimator, it is biased for the population mean $\overline{\mathrm{Y}}$. The bias B (.) and the mean square error M (.) of the estimator T^{*} are derived up to the first order of approximations similar to that of the estimator T.

Theorem 7.1.

The bias of the estimator T^{*} to the first order of approximations is obtained as

$$
\begin{equation*}
\mathrm{B}\left(\mathrm{~T}^{*}\right)=\varphi^{*} \mathrm{~B}\left(\xi_{\mathrm{lu}}\right)+\left(1-\varphi^{*}\right) \mathrm{B}\left(\mathrm{~T}_{\mathrm{m}}\right) \tag{7.2}
\end{equation*}
$$

where

$$
\mathrm{B}\left(\xi_{1 \mathrm{u}}\right)=\overline{\mathrm{Y}}\left(\frac{1}{\mathrm{u}}-\frac{1}{\mathrm{u}^{\prime}}\right)\left(\frac{3}{8} \mathrm{C}_{\mathrm{z}}^{2}-\frac{1}{2} \rho_{\mathrm{yz}} \mathrm{C}_{\mathrm{y}} \mathrm{C}_{\mathrm{z}}\right)
$$

and $\mathrm{B}\left(\mathrm{T}_{\mathrm{m}}\right)$ is defined in section 4.

Theorem 7.2.

The mean square error of the estimator T^{*} to the first order of approximations is obtained as

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{~T}^{*}\right)=\varphi^{* 2} \mathrm{M}\left(\xi_{1 \mathrm{u}}\right)+\left(1-\varphi^{*}\right)^{2} \mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)+2 \varphi^{*}\left(1-\varphi^{*}\right) \mathrm{C}^{*} \tag{7.3}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathrm{M}\left(\xi_{1 \mathrm{u}}\right)=\mathrm{E}\left(\xi_{1 \mathrm{u}}-\overline{\mathrm{Y}}\right)^{2}=\left[\left(\frac{1}{\mathrm{u}}-\frac{1}{\mathrm{u}^{\prime}}\right)\left(\frac{1}{4}-\rho_{\mathrm{yz}}\right)+\left(\frac{1}{\mathrm{u}}-\frac{1}{\mathrm{~N}}\right)\right] \mathrm{S}_{\mathrm{y}}^{2} \tag{7.4}\\
\mathrm{C}^{*}=\mathrm{E}\left[\left(\xi_{1 \mathrm{u}}-\overline{\mathrm{Y}}\right)\left(\mathrm{T}_{\mathrm{m}}-\overline{\mathrm{Y}}\right)\right]=-\frac{\mathrm{S}_{\mathrm{y}}^{2}}{\mathrm{~N}} \tag{7.5}
\end{gather*}
$$

and $\mathrm{M}\left(\mathrm{T}_{\mathrm{m}}\right)$ is defined in section 4 .
Since the mean square error of the estimator T^{*} in equation (7.3) is the function of unknown constant φ^{*}, it is minimized with respect to φ^{*}, and subsequently the optimum value of φ^{*} is obtained as

$$
\begin{equation*}
\varphi_{\mathrm{opt}}^{*}=\frac{\mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)-\mathrm{C}^{*}}{\mathrm{M}\left(\xi_{\mathrm{lu}}\right)+\mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)-2 \mathrm{C}^{*}} \tag{7.6}
\end{equation*}
$$

Now substituting the value of $\varphi^{*}{ }_{\text {opt }}$ in equation (7.6), we get the optimum mean square error of the estimator T^{*} as

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{~T}^{*}\right)_{\text {opt }}=\frac{\mathrm{M}\left(\xi_{\text {lu }}\right) \cdot \mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)-\mathrm{C}^{* 2}}{\mathrm{M}\left(\xi_{\mathrm{lu}}\right)+\mathrm{M}\left(\mathrm{~T}_{\mathrm{m}}\right)-2 \mathrm{C}^{*}}, \tag{7.7}
\end{equation*}
$$

Further, substituting the values from equations (4.7), (7.4) and (7.5) in equation (7.7), we get the simplified value of $M\left(T^{*}\right)_{\text {opt }}$, which is given below:

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{~T}^{*}\right)_{\text {opt }}=\frac{\mathrm{a}_{3}^{*}+\mu^{*} \mathrm{a}_{2}^{*}+\mu^{* 2} \mathrm{a}_{1}}{\mathrm{a}_{6}^{*}+\mu^{*} \mathrm{a}_{5}^{*}+\mu^{* 2} \mathrm{a}_{4}} \frac{S_{\mathrm{y}}^{2}}{\mathrm{n}} \tag{7.8}
\end{equation*}
$$

where
$a_{2}^{*}=a d+c b^{*}-k^{2} f^{2}, \quad a_{3}^{*}=b^{*} d, a_{5}^{*}=a-b^{*}+d-2 k f, a_{6}=b^{*}, b^{*}=a_{0}+1, a_{1}$ and a_{4} are defined in section 5 .

To determine the optimum values of μ^{*}, we minimized the mean square error of the estimator T^{*} given in equation (7.8) with respect to μ^{*}, which results in quadratic equation in μ^{*} and the respective solutions of μ^{*}, say $\hat{\mu}^{*}$, are given below:

$$
\begin{array}{r}
\mathrm{p}_{1}^{*} \mu^{* 2}+2 \mathrm{p}_{2}^{*} \mu^{*}+\mathrm{p}_{3}^{*}=0 \\
\hat{\mu}^{*}=\frac{-\mathrm{p}_{2}^{*} \pm \sqrt{\mathrm{p}_{2}^{* 2}-\mathrm{p}_{1}^{*} \mathrm{p}_{3}^{*}}}{\mathrm{p}_{1}^{*}} \tag{7.10}
\end{array}
$$

where

$$
\mathrm{p}_{1}^{*}=\mathrm{a}_{1} \mathrm{a}_{5}^{*}-\mathrm{a}_{2}^{*} \mathrm{a}_{4}, \mathrm{p}_{2}^{*}=\mathrm{a}_{1} \mathrm{a}_{6}^{*}-\mathrm{a}_{3}^{*} \mathrm{a}_{4} \text { and } \mathrm{p}_{3}^{*}=\mathrm{a}_{2}^{*} \mathrm{a}_{6}^{*}-\mathrm{a}_{3}^{*} \mathrm{a}_{5}^{*} .
$$

Substituting the admissible value of $\hat{\mu}^{*}$, say $\mu^{*(0)}$, from equation (7.10) into equation (7.8), we have the optimum value of the mean square error of the estimator T^{*}, which is shown below:

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{~T}^{* 0}\right)_{\mathrm{opt}}=\frac{\mathrm{a}_{3}^{*}+\mu^{*(0)} \mathrm{a}_{2}^{*}+\mu^{*(0)} \mathrm{a}_{1}}{\mathrm{a}_{6}^{*}+\mu^{*(0)} \mathrm{a}_{5}^{*}+\mu^{*(0) 2} \mathrm{a}_{4}} \frac{\mathrm{~S}^{2}}{\mathrm{n}} . \tag{7.11}
\end{equation*}
$$

Case 2: When non-response occurs only at second occasion

When non-response occurs only at current (second) occasion, the estimator for the mean $\overline{\mathrm{Y}}$ at current occasion may be obtained as

$$
\begin{equation*}
\mathrm{T}^{* *}=\varphi^{* *} \mathrm{~T}_{\mathrm{u}}+\left(1-\varphi^{* *}\right) \xi_{1 \mathrm{~m}} \tag{7.12}
\end{equation*}
$$

where
$\xi_{1 m}=\bar{y}_{m} \exp \left(\frac{\bar{x}_{n}-\bar{x}_{m}}{\overline{\mathrm{X}}_{\mathrm{n}}+\overline{\mathrm{X}}_{\mathrm{m}}}\right)\left(\frac{\overline{\mathrm{z}}_{\mathrm{n}}^{\prime}}{\overline{\mathrm{Z}}_{\mathrm{m}}}\right)$ and T_{u} is defined in section 3,
where $\varphi^{* *}\left(0 \leq \varphi^{* *} \leq 1\right)$ is the unknown constant (scalar) to be determined under certain criterions.

7.2. Properties of the estimator $\mathrm{T}^{* *}$

Since the estimator $\mathrm{T}^{* *}$ is exponential type estimator, it is biased for the population mean $\overline{\mathrm{Y}}$. The bias $\mathrm{B}($.$) and the mean square error \mathrm{M}$ (.) of the estimator $\mathrm{T}^{* *}$ are derived up to the first order of approximations similar to that of the estimator T.

Theorem 7.3.

The bias of the estimator $\mathrm{T}^{* *}$ to the first order of approximations is obtained as

$$
\begin{equation*}
\mathrm{B}\left(\mathrm{~T}^{* *}\right)=\varphi^{* *} \mathrm{~B}\left(\mathrm{~T}_{\mathrm{u}}\right)+\left(1-\varphi^{* *}\right) \mathrm{B}\left(\xi_{1 \mathrm{~m}}\right) \tag{7.13}
\end{equation*}
$$

where

$$
\mathrm{B}\left(\xi_{1 \mathrm{~m}}\right)=\overline{\mathrm{Y}}\left\{\left(\frac{1}{\mathrm{~m}}-\frac{1}{\mathrm{n}}\right)\left(\frac{3}{8} \mathrm{C}_{\mathrm{x}}^{2}+\frac{1}{2} \rho_{\mathrm{xz}} \mathrm{C}_{\mathrm{x}} \mathrm{C}_{\mathrm{z}}-\frac{1}{2} \rho_{\mathrm{xy}} \mathrm{C}_{\mathrm{y}} \mathrm{C}_{\mathrm{x}}\right)+\left(\frac{1}{\mathrm{~m}}-\frac{1}{\mathrm{n}^{\prime}}\right)\left(\mathrm{C}_{\mathrm{z}}^{2}-\rho_{\mathrm{yz}} \mathrm{C}_{\mathrm{y}} \mathrm{C}_{\mathrm{z}}\right)\right\}
$$

and $B\left(T_{u}\right)$ is defined in section 4.

Theorem 7.4.

The mean square error of the estimator $\mathrm{T}^{* *}$ to the first order of approximations is obtained as

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{~T}^{* *}\right)=\varphi^{* * 2} \mathrm{M}\left(\mathrm{~T}_{\mathrm{u}}\right)+\left(1-\varphi^{* *}\right)^{2} \mathrm{M}\left(\xi_{1 \mathrm{~m}}\right)+2 \varphi^{* *}\left(1-\varphi^{* *}\right) \mathrm{C}^{* *} \tag{7.14}
\end{equation*}
$$

where
$\mathrm{M}\left(\xi_{1 \mathrm{~m}}\right)=\mathrm{E}\left(\xi_{1 \mathrm{~m}}-\overline{\mathrm{Y}}\right)^{2}=\left[\left\{\left(\frac{1}{\mathrm{~m}}-\frac{1}{\mathrm{n}}\right)\left(\frac{1}{4}+\rho_{\mathrm{xz}}-\rho_{\mathrm{yx}}\right)\right\}+\left(\frac{1}{\mathrm{~m}}-\frac{1}{\mathrm{~N}}\right)+\left(\frac{1}{\mathrm{~m}}-\frac{1}{\mathrm{n}^{\prime}}\right)\left(1-2 \rho_{\mathrm{yz}}\right)\right] \mathrm{S}_{\mathrm{y}}^{2}$

$$
\begin{equation*}
\mathrm{C}^{* *}=\mathrm{E}\left[\left(\mathrm{~T}_{\mathrm{u}}-\overline{\mathrm{Y}}\right)\left(\xi_{1 \mathrm{~m}}-\overline{\mathrm{Y}}\right)\right]=-\frac{\mathrm{S}_{\mathrm{y}}^{2}}{\mathrm{~N}} \tag{7.15}
\end{equation*}
$$

and $\mathrm{M}\left(\mathrm{T}_{\mathrm{u}}\right)$ is defined in section 4.
Since the mean square error of the estimator $\mathrm{T}^{* *}$ in equation (7.14) is the function of unknown constant $\varphi^{* *}$, it is minimized with respect to $\varphi^{* *}$ and subsequently the optimum value of $\varphi^{* *}$ is obtained as

$$
\begin{equation*}
\varphi_{\mathrm{opt}}^{* *}=\frac{\mathrm{M}\left(\xi_{1 \mathrm{~m}}\right)-\mathrm{C}^{* *}}{\mathrm{M}\left(\mathrm{~T}_{\mathrm{u}}\right)+\mathrm{M}\left(\xi_{1 \mathrm{~m}}\right)-2 \mathrm{C}^{* *}} . \tag{7.17}
\end{equation*}
$$

Now substituting the value of $\varphi_{\text {opt }}^{* *}$ in equation (7.17), we get the optimum mean square error of $\mathrm{T}^{* *}$ as

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{~T}^{* * *}\right)_{\text {opt }}=\frac{\mathrm{M}\left(\mathrm{~T}_{\mathrm{u}}\right) \cdot \mathrm{M}\left(\xi_{\mathrm{lm}}\right)-\mathrm{C}^{* *+2}}{\mathrm{M}\left(\mathrm{~T}_{\mathrm{u}}\right)+\mathrm{M}\left(\xi_{\mathrm{lm}}\right)-2 \mathrm{C}^{* * *}} \tag{7.18}
\end{equation*}
$$

Further, substituting the values from equations (4.6), (7.15) and (7.16) in equation (7.18), we get the simplified value of $\mathrm{M}\left(\mathrm{T}^{* *}\right)_{\text {opt }}$ which is given below:

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{~T}^{* * *}\right)_{\text {opt }}=\frac{\mathrm{a}_{3}^{* * *}+\mu^{* * *} \mathrm{a}_{2}^{* * *}+\mu^{* * 2} \mathrm{a}_{1}^{* * *}}{\mathrm{a}_{6}+\mu^{* * *} \mathrm{a}_{5}^{* * *}+\mu^{* * 2} \mathrm{a}_{4}^{* * *}} \frac{x^{2}}{\mathrm{n}} \tag{7.19}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{1}^{* * *}=a c^{*}+k^{2} f^{2}, \quad a_{2}^{* *}=a d^{*}+c^{*} b-k^{2} f^{2}, \quad a_{3}^{* *}=b d^{*}, \quad a_{4}^{* *}=c^{*}-a+2 k f, a_{5}^{* *}=a-b+d^{*}-2 k f, \\
& a_{6}=b, c^{*}=f+c_{1}+t_{2} d_{1}, \quad d^{*}=(1-f)+d_{1}\left(1-t_{2}\right) .
\end{aligned}
$$

To determine the optimum values of $\mu^{* *}$, we minimized the mean square error of the estimator T^{*} given in equation (7.19) with respect to $\mu^{* *}$, which results in quadratic equation in $\mu^{* *}$, and the respective solutions of $\mu^{* *}$, say $\hat{\mu}^{* * *}$, are given below:

$$
\begin{align*}
& \mathrm{p}_{1}^{* * *} \mu^{* *+}+2 \mathrm{p}_{2}^{* * *} \mu^{* * *}+\mathrm{p}_{3}^{* *}=0 \tag{7.20}\\
& \hat{\mu}^{* * *}=\frac{-\mathrm{p}_{2}^{* \pm} \pm \sqrt{\mathrm{p}_{2}^{* *}-\mathrm{p}_{1}^{* * *} \mathrm{p}_{3}^{* *}}}{\mathrm{p}_{1}^{* *}} \tag{7.21}
\end{align*}
$$

where

$$
\mathrm{p}_{1}^{* *}=\mathrm{a}_{1}^{* *} \mathrm{a}_{5}^{* *}-\mathrm{a}_{2}^{* *} \mathrm{a}_{4}^{* *}, \mathrm{p}_{2}^{* *}=\mathrm{a}_{1}^{* *} \mathrm{a}_{6}-\mathrm{a}_{3}^{* * *} \mathrm{a}_{4}^{* *} \text { and } \mathrm{p}_{3}^{* *}=\mathrm{a}_{2}^{* *} \mathrm{a}_{6}-\mathrm{a}_{3}^{* *} \mathrm{a}_{5}^{* *} .
$$

Substituting the admissible values of $\hat{\mu}^{* *}$, say $\mu^{* *(0)}$, from equation (7.21) into equation (7.19), we have the optimum value of the mean square error of $\mathrm{T}^{* *}$, which is shown below:

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{~T}^{* * 0}\right)_{\text {opt }}=\frac{\mathrm{a}_{3}^{* *}+\mu^{* *(0)} \mathrm{a}_{2}^{* *}+\mu^{* *(0) 2} \mathrm{a}_{1}^{* *}}{\mathrm{a}_{6}+\mu^{* *(0)} \mathrm{a}_{5}^{* * *}+\mu^{* *(0) 2} \mathrm{a}_{4}^{* *}} \frac{\mathrm{a}_{4}}{\mathrm{n}} . \tag{7.2}
\end{equation*}
$$

8. Comparison of efficiencies

The percentage relative loss in efficiencies of the estimator $\mathrm{T}, \mathrm{T}^{*}$ and $\mathrm{T}^{* *}$ is obtained with respect to the similar estimator and natural successive sampling estimator when the non-response is not observed on any occasion. The estimator ξ_{1} is defined under similar circumstances as the estimator T but under complete response, whereas the estimator ξ_{2} is the natural successive sampling estimator, and they are given as

$$
\begin{equation*}
\xi_{\mathrm{j}}=\psi_{\mathrm{j}} \xi_{\mathrm{ju}}+\left(1-\psi_{\mathrm{j}}\right) \xi_{\mathrm{j} \mathrm{~m}} \quad ;(\mathrm{j}=1,2) \tag{8.1}
\end{equation*}
$$

where
$\xi_{1 u}=\bar{y}_{u} \exp \left(\frac{\bar{z}_{u}^{\prime}-\bar{z}_{u}}{\bar{z}_{u}^{\prime}+\bar{z}_{u}}\right), \xi_{2 u}=\bar{y}_{u}, \xi_{1 m}=\bar{y}_{m} \exp \left(\frac{\bar{x}_{n}-\bar{x}_{m}}{\bar{x}_{n}+\bar{x}_{m}}\right)\left(\frac{\bar{z}_{n}^{\prime}}{\overline{\mathrm{z}}_{\mathrm{m}}}\right), \xi_{2 m}=\bar{y}_{m}+\beta_{y x}\left(\bar{x}_{\mathrm{n}}-\bar{x}_{m}\right)$
Proceeding on a similar line as discussed for the estimator T the optimum mean square errors of the estimators $\xi_{j}(j=1,2)$ are derived as

$$
\begin{equation*}
\mathrm{M}\left(\xi_{1}^{0}\right)_{\mathrm{opt}}=\left[\frac{\mathrm{b}_{3}+\mu^{\prime} \mathrm{b}_{2}+\mu^{\prime 2} \mathrm{~b}_{1}}{\mathrm{~b}_{6}+\mu^{\prime} \mathrm{b}_{5}+\mu^{\prime 2} \mathrm{~b}_{4}}\right] \frac{S_{\mathrm{y}}^{2}}{\mathrm{n}} \tag{8.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{M}\left(\xi_{2}^{0}\right)_{\mathrm{opt}}=\left[\frac{1}{2}\left\{1+\sqrt{\left(1-\rho_{\mathrm{xy}}^{2}\right)}\right\}-\mathrm{f}\right] \frac{\mathrm{S}_{\mathrm{y}}^{2}}{\mathrm{n}} \tag{8.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu^{\prime}=\frac{-q_{2} \pm \sqrt{q_{2}^{2}-q_{1} q_{3}}}{q_{1}} \text { (fraction of the fresh sample for the estimator } \xi_{1} \text {), } \\
& b_{1}=a c^{*}+k^{2} f^{2}, \quad b_{2}=a d^{*}+c^{*} b^{*}-k^{2} f^{2}, \quad b_{3}=b^{*} d^{*}, \quad b_{4}=c^{*}-a+2 k f, \quad b_{5}=a-b^{*}+d^{*}-2 k f, \\
& b_{6}=b^{*}, q_{1}=b_{1} b_{5}-b_{2} b_{4}, q_{2}=b_{1} b_{6}-b_{3} b_{4} \text { and } q_{3}=b_{2} b_{6}-b_{3} b_{5} .
\end{aligned}
$$

Remark 8.1.

To compare the performances of the estimators $\mathrm{T}, \mathrm{T}^{*}$ and $\mathrm{T}^{* *}$ with respect to the estimators $\xi_{\mathrm{j}}(\mathrm{j}=1,2)$, we introduce the following assumptions:
(i) $\rho_{\mathrm{xz}}=\rho_{\mathrm{yz}}$, which is an intuitive assumption, also considered by Cochran (1977) and Feng and Zou (1997), (ii) $\mathrm{W}=\mathrm{W}^{*}$ (iii) $\mathrm{f}_{1}=\mathrm{f}_{2}$.

The percentage relative losses in the precision of the estimators T, T^{*} and $T^{* *}$ with respect to $\xi_{j}(j=1,2)$ under their respective optimality conditions are given by

$$
\begin{gathered}
L_{j}=\frac{M\left(T^{(0)}\right)_{\text {opt }}-M\left(\xi_{j}\right)_{\text {opt }}}{M\left(T^{(0)}\right)_{\text {opt }}} \times 100, L_{j}^{*}=\frac{M\left(T^{*(0)}\right)_{\text {opt }}-M\left(\xi_{j}\right)_{\text {opt }}}{M\left(T^{* 00}\right)_{\text {opt }}} \times 100 \\
\text { and } L_{j}^{* *}=\frac{M\left(T^{* *(0)}\right)_{\text {opt }}-M\left(\xi_{j}\right)_{\text {opt }} \times 100 ;(j=1,2)}{M\left(T^{* *(0)}\right)_{\text {opt }}} \times 100
\end{gathered}
$$

For $\mathrm{N}=5000, \mathrm{n}^{\prime}=1000, \mathrm{u}^{\prime}=1000, \mathrm{n}=500, \mathrm{t}_{1}=0.50, \mathrm{t}_{2}=0.50, \mathrm{f}=0.1$ and different choices of $f_{1,}, \rho_{y x}$ and $\rho_{y z}$, Tables 1-6 give the optimum values of
$\mu^{(0)}, \mu^{*(0)}, \mu^{* *(0)}$ and percentage relative losses L_{j}, L_{j}^{*} and $L_{j}^{* *}(j=1,2)$ in the precision of the estimators T, T^{*} and $\mathrm{T}^{* *}$ with respect to estimators $\xi_{\mathrm{j}}(\mathrm{j}=1,2)$.

Table 1. Percentage relative loss L_{1} in the precision of the estimator T with respect to ξ_{1}

W			0.05		0.10		0.15		0.20	
$\rho_{y x}$	f_{2}	$\rho_{y z}$	$\mu^{(0)}$	L_{1}	$\mu^{(0)}$	L_{1}	$\mu^{(0)}$	L_{1}	$\mu^{(0)}$	L_{1}
0.6	1.5	0.6	0.8640	3.2181	0.7182	5.9332	0.5829	8.2004	0.4580	10.0748
		0.7	0.4617	2.5435	0.3950	4.7480	0.3298	6.6502	0.2666	8.2850
		0.8	0.3161	2.5098	0.2740	4.7029	0.2320	6.6173	0.1903	8.2870
		0.9	0.2404	2.7911	0.2106	5.2223	0.1803	7.3438	0.1495	9.1988
	2.0	0.6	0.7182	5.9332	0.4580	10.0748	0.2385	12.8584	0.0558	14.6753
		0.7	0.3950	4.7480	0.2666	8.2850	0.1472	10.8815	0.0385	12.7754
		0.8	0.2740	4.7029	0.1903	8.2870	0.1087	11.0137	0.0312	13.0986
		0.9	0.2106	5.2223	0.1495	9.1988	0.0880	12.2538	0.0277	14.6331
0.8	1.5	0.6	0.5890	2.4511	0.5527	4.6664	0.5179	6.6733	0.4844	8.4959
		0.7	0.4775	2.4663	0.4511	4.7018	0.4254	6.7339	0.4004	8.5863
		0.8	0.3985	2.6439	0.3787	5.0344	0.3591	7.2037	0.3398	9.1796
		0.9	0.3381	3.0190	0.3234	5.7243	0.3085	8.1616	0.2936	10.3684
	2.0	0.6	0.5527	4.6664	0.4844	8.4959	0.4214	11.6712	0.3636	14.3348
		0.7	0.4511	4.7018	0.4004	8.5863	0.3525	11.8338	0.3077	14.5833
		0.8	0.3787	5.0344	0.3398	9.1796	0.3024	12.6435	0.2667	15.5811
		0.9	0.3234	5.7243	0.2936	10.3684	0.2640	14.2120	0.2353	17.4529

Table 2. Percentage relative loss L_{2} in the precision of the estimator T with respect to ξ_{2}

W			0.05		0.10		0.15		0.20	
$\rho_{y x}$	f_{2}	$\rho_{\text {yz }}$	$\mu^{(0)}$	L_{2}	$\mu^{(0)}$	L_{2}	$\mu^{(0)}$	L_{2}	$\mu^{(0)}$	L_{2}
0.6	1.5	0.6	0.8640	-6.7964	0.7182	-3.8003	0.5829	-1.2986	0.4580	0.7698
		0.7	0.4617	-19.2197	0.3950	-16.5229	0.3298	-14.1959	0.2666	-12.1961
		0.8	0.3161	-38.1243	0.2740	-35.0170	0.2320	-32.3048	0.1903	-29.9392
		0.9	0.2404	-65.7067	0.2106	-61.5624	0.1803	-57.9460	0.1495	-54.7839
	2.0	0.6	0.7182	-3.8003	0.4580	0.7698	0.2385	3.8414	0.0558	5.8463
		0.7	0.3950	-16.5229	0.2666	-12.1961	0.1472	-9.0197	0.0385	-6.7029
		0.8	0.2740	-35.0170	0.1903	-29.9392	0.1087	-26.0759	0.0312	-23.1220
		0.9	0.2106	-61.5624	0.1495	-54.7839	0.0880	-49.5762	0.0277	-45.5204
0.8	1.5	0.6	0.5890	2.0316	0.5527	4.2565	0.5179	6.2720	0.4844	8.1025
		0.7	0.4775	-11.1328	0.4511	-8.5855	0.4254	-6.2701	0.4004	-4.1593
		0.8	0.3985	-29.5093	0.3787	-26.3293	0.3591	-23.4436	0.3398	-20.8151
		0.9	0.3381	-56.2099	0.3234	-51.8524	0.3085	-47.9266	0.2936	-44.3720
	2.0	0.6	0.5527	4.2565	0.4844	8.1025	0.4214	11.2914	0.3636	13.9665
		0.7	0.4511	-8.5855	0.4004	-4.1593	0.3525	-0.4591	0.3077	2.6738
		0.8	0.3787	-26.3293	0.3398	-20.8151	0.3024	-16.2073	0.2667	-12.2995
		0.9	0.3234	-51.8524	0.2936	-44.3720	0.2640	-38.1811	0.2353	-32.9609

Table 3. Percentage relative loss L_{1}^{*} in the precision of the estimator T^{*} with respect to ξ_{1}

W			0.05		0.10		0.15		0.20	
$\rho_{y x}$	f_{2}	$\rho_{y z}$	$\mu^{*(0)}$	L_{1}^{*}	$\mu^{*(0)}$	L_{1}^{*}	$\mu^{*(0)}$	L_{1}^{*}	$\mu^{*(0)}$	L_{1}^{*}
0.6	1.5	$\begin{aligned} & \hline 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \hline \text { * } \\ & 0.5489 \\ & 0.3748 \\ & 0.2828 \end{aligned}$	$\begin{array}{\|l\|} \hline- \\ 0.1481 \\ 0.3426 \\ 0.5457 \end{array}$	$\begin{aligned} & \hline \text { * } \\ & 0.5667 \\ & 0.3911 \\ & 0.2961 \end{aligned}$	$\begin{aligned} & 0.2827 \\ & 0.6617 \\ & 1.0599 \end{aligned}$	$\begin{aligned} & \hline \text { * } \\ & 0.5832 \\ & 0.4065 \\ & 0.3089 \end{aligned}$	$\begin{aligned} & 0.4057 \\ & 0.9596 \\ & 1.5452 \end{aligned}$	$\begin{aligned} & \hline \text { * } \\ & 0.5984 \\ & 0.4212 \\ & 0.3212 \end{aligned}$	$\begin{aligned} & - \\ & 0.5185 \\ & 1.2385 \\ & 2.0041 \end{aligned}$
	2.0	$\begin{aligned} & \hline 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \text { * } \\ & 0.5667 \\ & 0.3911 \\ & 0.2961 \end{aligned}$	$\begin{aligned} & \hline- \\ & 0.2827 \\ & 0.6617 \\ & 1.0599 \end{aligned}$	$\begin{aligned} & 0.5984 \\ & 0.4212 \\ & 0.3212 \end{aligned}$	$\begin{aligned} & 0.5185 \\ & 1.2385 \\ & 2.0041 \end{aligned}$	$\begin{aligned} & \hline \text { * } \\ & 0.6258 \\ & 0.4484 \\ & 0.3445 \end{aligned}$	$\begin{aligned} & - \\ & 0.7180 \\ & 1.7458 \\ & 2.8508 \end{aligned}$	$\begin{aligned} & \hline \text { * } \\ & 0.6497 \\ & 0.4732 \\ & 0.3663 \end{aligned}$	$\begin{aligned} & - \\ & 0.8890 \\ & 2.1954 \\ & 3.6142 \end{aligned}$
0.8	1.5	$\begin{aligned} & \hline 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \hline 0.6356 \\ & 0.5141 \\ & 0.4277 \\ & 0.3613 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1025 \\ 0.2075 \\ 0.3345 \\ 0.4977 \\ \hline \end{array}$	$\begin{aligned} & 0.6443 \\ & 0.5234 \\ & 0.4368 \\ & 0.3698 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1997 \\ 0.4057 \\ 0.6552 \\ 0.9754 \end{array}$	$\begin{aligned} & \hline 0.6525 \\ & 0.5324 \\ & 0.4456 \\ & 0.3780 \end{aligned}$	0.2920 0.5951 0.9628 1.4345	$\begin{aligned} & \hline 0.6604 \\ & 0.5411 \\ & 0.4542 \\ & 0.3861 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.3798 \\ 0.7764 \\ 1.2582 \\ 1.8759 \\ \hline \end{array}$
	2.0	$\begin{array}{\|l\|} \hline 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \end{array}$	0.6443 0.5234 0.4368 0.3698	$\begin{aligned} & \hline 0.1997 \\ & 0.4057 \\ & 0.6552 \\ & 0.9754 \end{aligned}$	0.6604 0.5411 0.4542 0.3861	$\begin{aligned} & \hline 0.3798 \\ & 0.7764 \\ & 1.2582 \\ & 1.8759 \end{aligned}$	$\begin{aligned} & 0.6752 \\ & 0.5574 \\ & 0.4705 \\ & 0.4016 \end{aligned}$	0.5430 1.1163 1.8150 2.7098	0.6887 0.5727 0.4859 0.4163	$\begin{aligned} & 0.6916 \\ & 1.4292 \\ & 2.3308 \\ & 3.4842 \end{aligned}$

Note: '*' indicates $\mu^{*(0)}$ does not exist.

Table 4. Percentage relative loss L_{2}^{*} in the precision of the estimator T^{*} with respect to ξ_{2}

W			0.05		0.10		0.15		0.20	
$\rho_{y x}$	f_{2}	ρ^{yz}	$\mu^{*(0)}$	L_{2}	$\mu^{*(0)}$	L_{2}	$\mu^{*(0)}$	L_{2}^{*}	$\mu^{*(0)}$	L_{2}
0.6	1.5	$\begin{aligned} & 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \hline \text { * } \\ & 0.5489 \\ & 0.3748 \\ & 0.2828 \end{aligned}$	$\begin{aligned} & -22.1500 \\ & -41.1948 \\ & -69.5345 \end{aligned}$	$\begin{aligned} & 0.5667 \\ & 0.3911 \\ & 0.2961 \end{aligned}$	$\begin{array}{\|l\|} \hline- \\ -21.9853 \\ -40.7427 \\ -68.6579 \end{array}$	$\begin{aligned} & \hline \text { * } \\ & 0.5832 \\ & 0.4065 \\ & 0.3089 \end{aligned}$	$\begin{aligned} & -21.8349 \\ & -40.3205 \\ & -67.8305 \end{aligned}$	$\begin{aligned} & 0.5984 \\ & 0.4212 \\ & 0.3212 \end{aligned}$	$\begin{aligned} & -21.6969 \\ & -39.9255 \\ & -67.0482 \end{aligned}$
	2.0	$\begin{aligned} & 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \end{aligned}$	$\begin{array}{\|l\|} \hline * \\ 0.5667 \\ 0.3911 \\ 0.2961 \end{array}$	$\begin{aligned} & -21.9853 \\ & -40.7427 \\ & -68.6579 \end{aligned}$	$\begin{aligned} & 0.5984 \\ & 0.4212 \\ & 0.3212 \end{aligned}$	$\begin{array}{\|l} -21.6969 \\ -39.9255 \\ -67.0482 \end{array}$	$\begin{array}{\|l\|} \hline * \\ 0.6258 \\ 0.4484 \\ 0.3445 \end{array}$	$\left.\begin{aligned} & -21.4529 \\ & -39.2068 \\ & -65.6050 \end{aligned} \right\rvert\,$	$\begin{array}{\|l\|} \hline * \\ 0.6497 \\ 0.4732 \\ 0.3663 \end{array}$	$\left.\begin{array}{\|l\|} -21.2436 \\ -38.5697 \\ -64.3036 \end{array} \right\rvert\,$
0.8	1.5	$\begin{aligned} & 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.6356 \\ & 0.5141 \\ & 0.4277 \\ & 0.3613 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.3271 \\ -13.7064 \\ -32.5814 \\ -60.2711 \end{array}$	$\begin{aligned} & 0.6443 \\ & 0.5234 \\ & 0.4368 \\ & 0.3698 \end{aligned}$	$\begin{aligned} & \hline-0.2294 \\ & -13.4806 \\ & -32.1549 \\ & -59.5015 \end{aligned}$	$\begin{aligned} & 0.6525 \\ & 0.5324 \\ & 0.4456 \\ & 0.3780 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.1367 \\ -13.2648 \\ -31.7456 \\ -58.7621 \\ \hline \end{array}$	$\begin{aligned} & 0.6604 \\ & 0.5411 \\ & 0.4542 \\ & 0.3861 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.0486 \\ -13.0583 \\ -31.3527 \\ -58.0511 \\ \hline \end{array}$
	2.0	$\begin{aligned} & 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \hline 0.6443 \\ & 0.5234 \\ & 0.4368 \\ & 0.3698 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.2294 \\ -13.4806 \\ -32.1549 \\ -59.5015 \end{array}$	$\begin{array}{\|l\|} \hline 0.6604 \\ 0.5411 \\ 0.4542 \\ 0.3861 \\ \hline \end{array}$	$\begin{aligned} & \hline-0.0486 \\ & -13.0583 \\ & -31.3527 \\ & -58.0511 \end{aligned}$	$\begin{aligned} & \hline 0.6752 \\ & 0.5574 \\ & 0.4705 \\ & 0.4016 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1153 \\ -12.6709 \\ -30.6119 \\ -56.7079 \end{array}$	$\begin{array}{\|l\|} \hline 0.6887 \\ 0.5727 \\ 0.4859 \\ 0.4163 \end{array}$	$\begin{array}{\|l\|} \hline 0.2646 \\ -12.3144 \\ -29.9258 \\ -55.4606 \\ \hline \end{array}$

Note: '*' indicates $\mu^{*(0)}$ does not exist.

Table 5. Percentage relative loss $L_{1}^{* *}$ in the precision of the estimator $\mathrm{T}^{* *}$ with respect to ξ_{1}

W			0.05		0.10		0.15		0.20	
$\rho_{\text {yx }}$	f_{2}	ρ_{yz}	$\mu^{* *(0)}$	$\mathrm{L}_{1}^{* *}$						
0.6	1.5	0.6	0.8515	3.2070	0.6634	5.8247	0.4538	7.7922	0.2206	9.0181
		0.7	0.4376	2.3271	0.3382	4.1649	0.2312	5.5017	0.1163	6.3162
		0.8	0.2964	2.0922	0.2305	3.7242	0.1600	4.9027	0.0847	5.6273
		0.9	0.2250	2.1709	0.1772	3.8495	0.1257	5.0602	0.0707	5.8180
	2.0	0.6	0.6634	5.8247	0.2206	9.0181	*	-	*	-
		0.7	0.3382	4.1649	0.1163	6.3162	*	-	*	-
		0.8	0.2305	3.7242	0.0847	5.6273	*	-	*	-
		0.9	0.1772	3.8495	0.0707	5.8180	*	-	*	-
0.8	1.5	0.6	0.5785	2.3221	0.5297	4.3575	0.4801	6.1286	0.4298	7.6552
		0.7	0.4668	2.2289	0.4284	4.1749	0.3891	5.8623	0.3490	7.3121
		0.8	0.3883	2.2786	0.3573	4.2545	0.3254	5.9574	0.2925	7.4125
		0.9	0.3288	2.4916	0.3038	4.6280	0.2776	6.4507	0.2504	7.9947
	2.0	0.6	0.5297	4.3575	0.4298	7.6552	0.3272	10.0446	0.2222	11.6475
		0.7	0.4284	4.1749	0.3490	7.3121	0.2666	9.5722	0.1818	11.0819
		0.8	0.3573	4.2545	0.2925	7.4125	0.2245	9.6656	0.1538	11.1591
		0.9	0.3038	4.6280	0.2504	7.9947	0.1934	10.3593	0.1333	11.9082

Note: ‘*’ indicates $\mu^{* *(0)}$ does not exist.

Table 6. Percentage relative loss $L_{2}^{* *}$ in the precision of the estimator $\mathrm{T}^{* *}$ with respect to ξ_{2}

W			0.05		0.10		0.15		0.20	
$\rho_{\text {yx }}$	f_{2}	$\rho_{\text {yz }}$	$\mu^{* *(0)}$	$\mathrm{L}_{2}^{* *}$						
0.6	1.5	0.6	0.8515	-6.8086	0.6634	-3.9201	0.4538	-1.7490	0.2206	-0.3963
		0.7	0.4376	-19.4844	0.3382	-17.2361	0.2312	-15.6008	0.1163	-14.6045
		0.8	0.2964	-38.7159	0.2305	-36.4038	0.1600	-34.7341	0.0847	-33.7074
		0.9	0.2250	-66.7641	0.1772	-63.9026	0.1257	-61.8388	0.0707	-60.5469
	2.0	0.6	0.6634	-3.9201	0.2206	-0.3963	*		*	
		0.7	0.3382	-17.2361	0.1163	-14.6045	*	-	*	-
		0.8	0.2305	-36.4038	0.0847	-33.7074	*	-	*	-
		0.9	0.1772	-63.9026	0.0707	-60.5469	*		*	
0.8	1.5	0.6	0.5785	1.9021	0.5297	3.9462	0.4801	5.7249	0.4298	7.2581
		0.7	0.4668	-11.4032	0.4284	-9.1858	0.3891	-7.2633	0.3490	-5.6113
		0.8	0.3883	-29.9953	0.3573	-27.3668	0.3254	-25.1016	0.2925	-23.1658
		0.9	0.3288	-57.0593	0.3038	-53.6183	0.2776	-50.6823	0.2504	-48.1954
	2.0	0.6	0.5297	3.9462	0.4298	7.2581	0.3272	9.6578	0.2222	11.2676
		0.7	0.4284	-9.1858	0.3490	-5.6113	0.2666	-3.0360	0.1818	-1.3158
		0.8	0.3573	-27.3668	0.2925	-23.1658	0.2245	-20.1687	0.1538	-18.1818
		0.9	0.3038	-53.6183	0.2504	-48.1954	0.1934	-44.3867	0.1333	-41.8919

Note: '*' indicates $\mu^{* *(0)}$ does not exist.

9. Interpretations of results

The following conclusions may be drawn from Tables 1-6:
(1) From Tables 1 and 5 it is clear that
(a) For the fixed values of $\mathrm{W}, \rho_{y x}$ and f_{2}, the values of $\mu^{(0)}, \mu^{* *(0)}$ decrease with the increasing values of ρ_{yz}. This implies that the higher the value of ρ_{yz}, the lower the fraction of a fresh sample required on the current occasion.
(b) For the fixed values of $\mathrm{W}, \rho_{\mathrm{yx}}$ and ρ_{yz}, the values of $\mu^{(0)}, \mu^{* *(0)}$ decrease and $L_{1}, L_{1}^{* *}$ increase with the increasing values of f_{2}.
(c) For the fixed values of $\mathrm{W}, \rho_{\mathrm{yz}}$ and f_{2}, no pattern is observed with the increasing values of $\rho_{y x}$.
(d) For the fixed values of $f_{2}, \rho_{y z}$ and $\rho_{y x}$, the values of $\mu^{(0)}, \mu^{* *(0)}$ decrease and $\mathrm{L}_{1}, \mathrm{~L}_{1}^{* *}$ increase with the increasing values of W . This behaviour shows that with the higher non-response rate one may require to draw the smaller sample on the current occasion, which reduces the cost of a survey.
(2) From Tables 2 and 6 it may be seen that
(a) For the fixed values of $W, \rho_{y x}$ and f_{2}, the values of $\mu^{(0)}, \mu^{* *(0)}$ and $L_{2}, L_{2}^{* *}$ decrease with the increasing values of $\rho_{y z .}$. This implies that if one uses the information on highly correlated auxiliary variable, there is a significant gain in the precision of estimates.
(b) For the fixed values of $\mathrm{W}, \rho_{\mathrm{yx}}$ and ρ_{yz}, the values of $\mu^{(0)}, \mu^{* *(0)}$ decrease and $L_{2}, L_{2}^{* *}$ increase with the increasing values of f_{2}.
(c) For the fixed values of $W, \rho_{y z}$ and f_{2}, the values of $L_{2}, L_{2}^{* *}$ increase with the increasing values of $\rho_{y x}$.
(d) For the fixed values of $f_{2}, \rho_{y z}$ and $\rho_{y x}$, the values of $\mu^{(0)}, \mu^{* *(0)}$ decrease and $\mathrm{L}_{2}, \mathrm{~L}_{2}^{* *}$ increase with the increasing values of W . This pattern shows that the higher the non-response rate, the greater the loss. This behaviour is practically justified.
(3) From Table 3 it is clear that
(a) For the fixed values of $\mathrm{W}, \rho_{\mathrm{yx}}$ and f_{2}, the values of $\mu^{*(0)}$ decrease and L_{1}^{*} increase with the increasing values of $\rho_{y z}$. This behaviour indicates that if the information on highly correlated auxiliary variable is available, it plays an important role in improving the precision of estimates.
(b) For the fixed values of $\mathrm{W}, \rho_{\mathrm{yx}}$ and ρ_{yz}, the values of $\mu^{*(0)}$ and L_{1}^{*} increase with the increasing values of f_{2}.
(c) For the fixed values of $\mathrm{W}, \rho_{\mathrm{yz}}$ and f_{2}, no pattern is visible with the increasing values of ρ_{yx}.
(d) For the fixed values of $f_{2}, \rho_{y z}$ and $\rho_{y x}$, the values of $\mu^{*(0)}$ and L_{1}^{*} increase with the increasing values of W .
(4) From Table 4 it may be seen that
(a) For the fixed values of $W, \rho_{y x}$ and f_{2}, the values of $\mu^{*(0)}$ and L_{2}^{*} decrease with the increasing values of ρ_{yz}. This implies that negative loss is observed due to the presence of high correlation between the auxiliary variables. This behaviour is highly desirable.
(b) For the fixed values of $\mathrm{W}, \rho_{\mathrm{yx}}$ and ρ_{yz}, the values of $\mu^{*(0)}$ and L_{2}^{*} increase with the increasing values of f_{2}. This indicates that if a smaller size of sub-sample is chosen, the loss in precision increases, as it was expected.
(c) For the fixed values of $\mathrm{W}, \rho_{\mathrm{yz}}$ and f_{2} no pattern is seen with the increasing values of $\rho_{y x}$.
(d) For the fixed values of $f_{2}, \rho_{y z}$ and $\rho_{y x}$, the values of $\mu^{*(0)}$ and L_{2}^{*} increase with the increasing values of W .

10. Conclusions and recommendations

It may be seen from the above tables that for all cases the percentage relative loss in precisions is observed wherever the optimum value of μ exists, when nonresponse occurs on both occasions. From Tables 1, 3 and 5, it is seen that the loss is present due to the presence of non-response on each occasion, but the negative impact of non-response is very low, which justifies the use of Hansen and Hurwitz (1946) technique in the proposed estimation procedures. From Tables 2, 4 and 6, when the proposed estimators are compared with the natural successive sampling estimator, substantial profit is visible, which justifies the intelligible use of auxiliary information in the form of exponential methods of estimation. Finally, looking at good behaviours of the proposed estimators one may recommend them to survey statisticians and practitioners for their practical applications.

Acknowledgements

Authors are thankful to the reviewers for their valuable suggestions, which enhanced the quality of this paper. Authors are also thankful to the Indian School of Mines, Dhanbad for providing financial assistance and necessary infrastructure to carry out the present research work.

REFERENCES

BAHL, S., TUTEJA, R. K., (1991). Ratio and Product type exponential estimator. Information and Optimization sciences, XII(I), 159-163.

CHOUDHARY, R. K., BATHAL, H. V. L., SUD, U. C., (2004). On Non-response in Sampling on Two Occasions. Journal of the Indian Society of Agricultural Statistics, 58(3) 331-343.

COCHRAN, W. G., (1977). Sampling Techniques, 3rd edition, John Wiley \& Sons, New York.

DAS, A. K., (1982). Estimation of population ratio on two occasions. Journal of the Indian Society of Agricultural Statistics, 34, 1-9.

ECKLER, A. R., (1955). Rotation Sampling. Annals Mathematical Statistics, 664-685.

FABIAN, C. O., HYUNSHIK, L., (2000). Double sampling for ratio and regression estimation with sub-sampling the non-respondents. Survey Methodology, 26 (2), 183-188.

FENG, S., ZOU, G., (1997). Sample rotation method with auxiliary variable. Communication in Statistics Theory and Methods, 26 (6) 1497-1509.

GARCÍA LUENGO A. V., (2013). Improvement on the non-response in the population ratio of mean for current occasion in sampling on two occasions. Pakistan Journal of Statistics and Operation Research, 9(1), 25-51.

GUPTA, P. C., (1979). Sampling on two successive occasions. Jour. Statist. Res., 13, 7-16.

HANSEN, M. H., HURWITZ, W. N., (1946). The problem of the non-response in sample surveys. Journal of the American Statistical Association, 41, 517-529.

HANSEN, M. H., HURWITZ, W. N., MADOW, W. G., (1953). Sample surveys methods and theory, 1, 2, John Wiley and Sons, Inc., New York and London.

JESSEN, R. J., (1942). Statistical investigation of a sample survey for obtaining farm facts. Iowa Agricultural Experiment Station Road Bulletin No. 304, Ames, USA, 1-104.

PATTERSON, H. D., (1950). Sampling on successive occasions with partial replacement of units. Journal of the Royal Statistical Society Series B, 12, 241-255.

RAO, J. N. K., GRAHAM, J. E., (1964). Rotation design for sampling on repeated occasions. Journal of the American Statistical Association, 59, 492-509.

REDDY, V. N., (1978). A study on the use of prior knowledge on certain population parameters. Sankhya, 40C, 29-37.

SEN, A. R., (1971). Successive sampling with two auxiliary variables. Sankhya, Series B, 33, 371-378.

SEN, A. R., (1972). Successive sampling with p ($\mathrm{p} \geq 1$) auxiliary variables. Annals Mathematical Statistics, 43, 2031-2034.

SEN, A. R., (1973). Theory and application of sampling on repeated occasions with several auxiliary variables. Biometrics, 29, 381-385.

SINGH, D., SINGH, B. D., (1965). Double sampling for stratification on successive occasions, Journal of the American Statistical Association, 60, 784-792.

SINGH, G. N., SINGH, V. K., (2001). On the use of auxiliary information in successive sampling. Journal of the Indian Society of Agricultural Statistics, 54(1), 1-12.

SINGH, G. N., PRIYANKA, K., (2007). Effect of non-response on current occasion in search of good rotation patterns on successive occasions. Statistics in Transition-New Series, 8(2), 273-292.

SINGH, G. N., PRASAD, S., (2011). Some rotation patterns in two-phase sampling, Statistics in Transition-New Series, 12(1), 25-44.

SINGH, G. N., HOMA, F., (2013). Effective rotation patterns in successive sampling over two occasions. Journal of Statistics Theory and Practice, 7(1), 146-155.

SINGH, G. N., HOMA, F., (2014). An improved estimation procedure in twophase successive sampling. International Journal of applied mathematics and statistics, 52(2), 76-85.

SINGH, H. P., VISHWAKARMA, G. K., (2007). Modified exponential ratio and product estimators for finite population mean in double sampling. Australian Journal of Statistics, 36(3), 217-225.

SINGH, H. P., KUMAR, S., (2009). Multivariate indirect methods of estimation in presence of non-response in successive sampling. Metron, LXVII(2), 153-175.

SINGH, H. P., KUMAR, S., (2010). Estimation of population product in presence of non-response in successive sampling. Statistical Papers, 51(4), 975-996.
SINGH, H. P., KUMAR, S., BHOUGAL, S., (2011). Estimation of population mean in successive sampling by sub-sampling non-respondents. Journal of Modern Applied Statistical Methods, 10(1), 51-60.

[^0]: ${ }^{1}$ Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004. E-mail: gnsingh_ism@yahoo.com.
 ${ }^{2}$ Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004. E-mail: mukti.khetan11@gmail.com.
 ${ }^{3}$ Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004.

