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A NEW FAMILY OF ESTIMATORS OF THE 

POPULATION VARIANCE USING INFORMATION ON 

POPULATION VARIANCE OF AUXILIARY VARIABLE 

IN SAMPLE SURVEYS   

Housila P. Singh1, Surya K. Pal2 

ABSTRACT 

This paper proposes a family of estimators of population variance 
2

yS  of the 

study variable y in the presence of known population variance 
2

xS  of the 

auxiliary variable x. It is identified that in addition to many, the recently proposed 

classes of estimators due to Sharma and Singh (2014) and Singh and Pal (2016) 

are members of the proposed family of estimators. Asymptotic expressions of 

bias and mean squared error (MSE) of the suggested family of estimators have 

been obtained. Asymptotic optimum estimator (AOE) in the family of estimators 

is identified. Some subclasses of estimators of the proposed family of estimators 

have been identified along with their properties. We have also given the 

theoretical comparisons among the estimators discussed in this paper. 

ASM Classification: 62D05. 

Key words: Auxiliary variable, Study variable, Bias, Mean squared error, 

Efficiency comparison.  

1. Introduction 

The problem of estimating the population variance assumes importance in 

various fields such as industry, agriculture, medical and biological sciences etc. In 

sample surveys, auxiliary information on the finite population under investigation 

is quite often available from previous experience, census or administrative 

databases. It is well known that the auxiliary information in the theory of 

sampling is used to increase the efficiency of the estimators of the parameters 

such as mean or total, variance, coefficient of variation etc. Out of many, ratio and 

regression methods of estimation are good examples in this context. In many 
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situations of practical importance, the problem of estimating the population 

variance 
2

yS of the study variable y deserves special attention. When the 

population parameters such as population mean, variance, coefficients of 

skewness and kurtosis of the auxiliary variable are known, several authors 

including Das and Tripathi (1978), Srivastava and Jhajj (1980), Isaki (1983), 

Prasad and Singh (1990, 1992), Kadilar and Cingi (2006), Shabbir and Gupta 

(2007), Gupta and Shabbir (2008), Singh and Solanki (2013a, b), Solanki and 

Singh(2013), Singh et al. (2013, 2014), Hilal et al. (2014), Sharma and Singh 

(2014), Solanki et al. (2015), Yadav et al. (2015) and Singh and Pal (2016) etc. 

have suggested various estimators and studied their properties.  

The principal aim of this paper is to suggest a new family of estimators of the 

population variance 
2

yS of the study variable y using information on population 

variance 
2

xS  of the auxiliary variable x along with its properties under large 

sample approximation.  

Consider a finite population },...,,{ 21 NUUUU  of N units. Let y and x be 

the study and auxiliary variates respectively. We define the following parameters 

of the variates y and x: 

Population mean:  


N

i iyNY
1

1 ,  

Population mean:  


N

i ixNX
1

1 , 

Population variance /mean square:  

 
N

i iy YyNS
1

212 )()1( , 

Population variance /mean square:  

 
N

i ix XxNS
1

212 )()1( . 

iQ is the 
thi quartile (i=1, 2, 3) of the auxiliary variable x , 

13 QQQr  : the population inter-quartile range of the auxiliary variable x , 

2/)( 13 QQQd  : the population semi-quartile range of the auxiliary 

                                variable x , 

2/)( 13 QQQa  : the population semi-quartile average of the auxiliary  

          variable x . 

It is desired to estimate the population variance 
2

yS of the study variable y 

when the population variance 
2

xS of the auxiliary variable x is known. For 

estimating population variance
2

yS , a simple random sample (SRS) of size n is 

drawn without replacement (WOR) from the population U. The conventional 
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unbiased estimators of the population parameters (Y ,
2

yS , X ,
2

xS ) are 

respectively defined by  

 


n

i iyny
1

1 ,  

 
n

i iy yyns
1

212 )()1( ,  


n

i ixnx
1

1  

and  

 
n

i ix xxns
1

212 )()1( . 

When the population variance
2

xS  of the auxiliary variable x is known, Isaki 

(1983) suggested a ratio-type estimator for estimating population variance 
2

yS

defined by  













2

2
2

1

x

x
y

s

S
st .                                                (1.1) 

Upadhyaya and Singh (1986) suggested an alternative estimator for 
2

yS as 













2

2*
2

2

x

x
y

S

s
st ,                                                (1.2) 

where  )/()( 222* nNnsNSs xxx   

                 })1{( 22

xx gsSg   

and )/( nNng  . 

Das and Tripathi (1978) suggested a difference-type estimator for the 

population variance
2

yS  as  

)( 222

3 xxy sSdst  ,                                        (1.3) 

where ‘d’ is suitable chosen constant.  

Shabbir (2006) suggested a class of estimators of 
2

yS  as 













2

2*
22

4 )1(
x

x
yy

S

s
sst   ,                                   (1.4) 

where   being suitable chosen constant.  

It is well known that the estimator 
2

0 yst   is an unbiased estimator of
2

yS . The 

variance MSE of 
2

ys under SRSWOR to the first degree of approximation is given 

by  

)1()()( 40

4

00  ySftMSEtVar ,                                 (1.5) 

where            
2

204040 /   ,  

 
N

i i YyN
1

41

40 )()1( ,         

      

 
N

i i YyN
1

21

20 )()1( and  )/1()/1( Nnf  . 
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The biases and mean squared errors of the Isaki’s (1983) estimator 1t and 

Upadhyaya and Singh’s (1986) estimator 2t to the first degree of approximation 

are, respectively, given by 

)1)(1()( 40

2

1 CfStB y   ,                                   (1.6) 

CfgStB y )1()( 04

2

2   ,                                   (1.7) 

)]21)(1()1([)( 0440

4

1 CfStMSE y   ,                     (1.8) 

and 

)]2)(1()1[()( 0440

4

2 CggfStMSE y   ,             (1.9) 

where  )/( 2/

02

2/

20

qp

pqpq   ,  

 
N

i

q

i

p

ipq XxYyN
1

1 )()()1( ,  

(p, q) being non negative integers; and )1/()1( 0422  C . 

It is easy to verify that   

2

3 )( yStE   

which shows that the difference estimator 3t  is unbiased for 
2

yS . 

The variance of the difference estimator 
3t  to the first degree of 

approximation is given by  

)]2)(1()1[()()( 0440

4

33 CddSftVartMSE y                    (1.10) 

which is minimum when  

Cd  .                                                     (1.11) 

Thus the resulting minimum MSE of 3t to the first degree of approximation is 

given by  

])1()1[()(.min 2

0440

4

3 CSftMSE y    

                       )1)(1( 2*

40

4   ySf ,                                       (1.12) 

where               
)1)(1(

)1(

)()(

),(

0440

22

22

22

*











xy

xy

sVarsVar

ssCov
. 

To the first degree of approximation, the bias and MSE of the Shabbir’s 

(2006) estimator 4t  are respectively given by  

CfgStB y )1)(1()( 04

2

4   ,                                 (1.13) 

}]2)1(){1)(1()1([)( 0440

4

4 CggfStMSE y   .       (1.14) 
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The )( 4tMSE is minimum when  











g

C
opt 1 .                                            (1.15) 

Thus the resulting minimum MSE of Shabbir (2006) estimator 4t  is given by 

)1)(1()(.min 2*

40

4

4   ySftMSE                             (1.16) 

which equals to the minimum MSE of  the difference-type estimator 
3t  

)](.min)(.min..[ 34 tMSEtMSEei  . 

1.1. Sharma and Singh’s (2014) estimators 

Sharma and Singh (2014) have suggested three classes of estimators of the 

population variance 
2

yS as: 

)( 2*2

2

2

15 xxy sSwswt  ,                                     (1.17) 






















2

2*
2*2

2

2

16 2)(
x

x
xxy

S

s
sSkskt ,                             (1.18) 

and                             )( 2*2

22

2*
2

17 xx

x

x
y sSm

S

s
smt 










 ,                                 (1.19) 

where ( 21,ww ),( 21,kk )and ),( 21 mm  are suitable chosen scalars such that mean 

squared errors of 
5t ,

6t  and 
7t are respectively minimum. We note here that the 

minimum mean squared errors of the estimators
5t ,

6t  and 
7t obtained by Sharma 

and Singh (2014) are incorrect. Therefore the first objective of the authors of the 

present paper is to give the correct expressions of the minimum mean squared 

errors of the estimators 5t , 6t  and 7t  proposed by Sharma and Singh (2014).The 

derivation of the correct expressions of the minimum mean squared errors of the 

estimators 5t , 6t  and 7t  proposed by Sharma and Singh (2014) are given in the 

following theorems.  

Theorem 1.1. (a): The bias and MSE of the estimator 5t to the first degree of 

approximation, are respectively given by  

2

15 )1()( ySwtB  ,                                       (1.20) 

]2)1(2)1()}1(1{1[)( 1222104

222

240

2

1

4

5 wgrfwwfgrwfwStMSE y   , 

(1.21) 

where 
22 / yx SSr  is the ratio of two variances. 
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Proof: To obtain the bias and MSE of
5t , we write 

)1( 0

22 eSs yy   , )1( 1

22 eSs xx   

such that 

0)()( 10  eEeE  

and to the first degree of approximation,  

)1()( 40

2

0
 feE , )1()( 04

2

1
 feE and )1()( 2210  feeE . 

Expressing 
5t in terms of e’s we have  

})1()1({)1( 2

1

22

20

2

15 xxxy SegSgSweSwt   

    1

2

20

2

1 )1( egSweSw xy   

or 
2

1

2

20

2

1

2

5 )1()( yxyy SegSweSwSt   

or 

]1)1([)( 1201

22

5  grewewSSt yy .                                (1.22) 

Taking expectation of both sides of (1.22) we get the bias of 5t  to the first 

degree of approximation as 

2

15 )1()( ySwtB  .                                                (1.23) 

Squaring both sides of (1.22) we have 

2

1

222

2

2

00

2

1

422

5 )21(1[)( ergweewSSt yy   

]2)1(2)(2 120110121 greweweeegrww  .                    (1.24) 

Taking expectation of both sides of (1.24) we get the MSE of 5t to first degree 

of approximation as 

]2)1(2)1()}1(1{1[)( 1222104

222

240

2

1

4

5 wgrfwwfrgwfwStMSE y  

   (1.25) 

which proves the Theorem 1.1(a). 

Theorem 1.1. (b): The optimum values of 1w  and 2w that minimize the 

)( 5tMSE at (1.25) are respectively given by  

 
12*

4010 )]1)(1(1[  fw ,                                   (1.26) 

           
)]1)(1(1[ 2*

40

20
 


fgr

C
w ,                              (1.27) 
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and the resulting minimum )( 5tMSE is given by  

)]1)(1(1[

)1)(1(
)(.min

2*

40

2*

40

4

5









f

fS
tMSE

y
,                                    (1.28) 

                                         
















4

3

3

)(.min
1

)(.min

yS

tMSE

tMSE
,   [from (1.12)] 

Proof: Proof is simple so omitted. 

Theorem 1.2. (a): The bias and MSE of the estimator 
6t to the first degree of 

approximation, are respectively given by  

    ]1)1([)( 04

2

21

2

6  rfgkkStB y                           (1.29) 

and 

)1()}1(1{1[)( 04

222

240

2

1

4

6   fgrkfkStMSE y  

                    )]1(22))(1(2 04

2

210421   rfgkkCggrfkk .           (1.30) 

Proof: Expressing the estimator 6t in terms of e’s we have  

)]1()1(2[)1( 11

2

20

2

16 egggeSkeSkt xy   

    )1()1( 11

2

20

2

1 gegeSkeSk xy   

or 

]1)()1([)( 2

11201

22

6  geegrkekSSt yy .                       (1.31) 

Taking the expectation of both sides of (1.31) we get the bias of 6t  to the first 

degree of approximation as 

]1)1([)( 04

2

21

2

6  rfgkkStB y .                             (1.32) 

Squaring both sides of (1.31) and neglecting terms of e’s having power 

greater than two we have 

2

1

222

2

2

00

2

1

422

6 )21(1[)( ergkeekSSt yy   

             )](2)1(2)(2 2

11201

2

110121 geegrkekgeeeegrkk  .    (1.33) 
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Taking expectation of both sides of (1.33) we get the MSE of 
6t to first degree 

of approximation as 

)1()}1(1{1[)( 04

222

240

2

1

4

6   frgkfkStMSE y  

                  )]1(22))(1(2 04

2

210421   rfgkkCggrfkk       (1.34) 

which proves the Theorem1.2(a). 

Theorem 1.2. (b): The optimum values of 1k  and 2k that minimizes the 

)( 6tMSE are respectively given by  

 
]))(1()1{(1[

)]1)((1[
2

0440

04
10

Cgf

Cggf
k









,                           (1.35) 

           
}]))(1()1{(1[

])1([
2

0440

40
20

Cgfgr

Cgf
k









                      (1.36) 

and the resulting minimum )( 6tMSE is given by  

]))(1()1{(1[

])1(1)[1(
)(.min

2

0440

2*

04

2

40

4

6
Cgf

fgfS
tMSE

y









.                (1.37) 

Proof: Differentiating (1.34) partially with respect to 1k , 2k  and equating to zero 

we get the following equations:  

1))(1()}1(1{ 042401  Cggrfkfk  ,                      (1.38) 

)1()1())(1( 04042041   ggrkCgk .                      (1.39) 

Solving (1.38) and (1.39) for 1k and 2k , we get the optimum values of 1k  

and 2k , respectively as given by (1.35) and (1.36). 

Substituting the values of 10k and 20k , from (1.35) and (1.36) in (1.34) we get 

the resulting minimum MSE of 6t given by (1.37). 

This proves the Theorem 1.2(b). 

Theorem 1.3. (a): The bias and MSE of the estimator 7t to the first degree of 

approximation, are respectively given by  

    ]1)}1(1{[)( 221

2

7  gfmStB y ,                                  (1.40) 
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)]}]4)(1()1[(1{1[)( 0440

2

1

4

7 CggfmStMSE y    

  )}]1(1{2))(1(2)1( 221042104

222

2   gfmgCgrfmmfrgm . 

(1.41) 

Proof: Expressing the estimator 
7t in terms of e’s we have  

)]1()1([)]1(1)[1( 1

222

210

2

7 egSSgSmeggeSt xxxy   

    1

2

210

2 )1)(1( egSmgeeS xy   

or 

]1)1([)( 1210101

22

7  gremegegeemSSt yy .                 (1.42) 

Taking expectation of both sides of (1.42) we get the bias of 
7t  to the first 

degree of approximation as 

]1)}1(1{[)( 221

2

7  gfmStB y .                          (1.43) 

Squaring both sides of (1.42) and neglecting terms of e’s having power 

greater than two we have 

2

1

222

2

2

1

2

10

2

010

2

1

422

7 )4221(1[)( ergmegegeegeemSSt yy   

                  ]2)1(2)(2 1210101

2

110121 gremegegeemgeeeegrmm  .   

(1.44) 

Taking expectation of both sides of (1.44) we get the MSE of 
7t to first degree 

of approximation as 

)]}4)(1()}1[(1{1[)( 0440

2

1

4

7 CggfmStMSE y    

)}]1(1{2))(1(2)1( 221042104

222

2
  gfmgCgrfmmfrgm . 

This is same as given in (1.40). Thus the theorem is proved.  

Theorem 1.3. (b): The optimum values of 1m  and 2m that minimizes the 

)( 7tMSE  given by  

 
)}]2()1()1{(1[

])1(1[

0440

04
10

CgCf

Cgf
m









,                    (1.45) 

           
)}]2()1()1{(1[

)]()1(1[

0440

04
20

CgCfgr

gCCgf
m









             (1.46) 
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and the resulting minimum )( 7tMSE is given by  

)}]2()1()1{(1[

)}]1(1{1)[1(
)(.min

0440

04

22*

40

4

7
CgCf

fgfS
tMSE

y









.          (1.47) 

Proof: Differentiating (1.40) partially with resects to  1m  , 2m  and equating to 

zero we get the following equations:  














)1())(1(

))(1()]}4)(1()1[(1{

04

22

04

040440





frggCgrf

gCgrfCggf









2

1

m

m
= 








 

0

)1(1 04 Cgf 
.                                           (1.48) 

Solving (1.48) we get the optimum values of 1m and 2m  as given in (1.44) 

and (1.45) respectively. Substituting the optimum values of 
10m and

20m  of 1m and 

2m respectively in the )( 7tMSE  at (1.41), we get the minimum MSE of 7t as 

given by (1.47). 

Thus the theorem is proved. 

1.2. Efficiency comparison 

This section compares some existing known estimators of the population 

variance
2

yS . 

From (1.5), (1.8), (1.9), (1.12) and (1.16) we have  

2*

40

4

0 )1()(.min)(   yj SftMintVar  ,                                               (1.49) 

   4,3j             0 , 

2

0440

*4

1 ])1()1([)(.min)(  yj SftMintMSE                  (1.50) 

   4,3j               0 , 

2

0440

*4

2 ])1()1([)(.min)(   gSftMintMSE yj           (1.51) 

   4,3j               0 . 

It follows from (1.49) to (1.51) that the difference estimator 3t [Das and 

Tripathi (1978)] and Shabbir (2006) estimator 4t (at optimum condition) are better 

than the usual unbiased estimator
2

ys , Isaki’s (1983) estimator 1t and Upadhyaya 

and Singh’s (1986) estimator 2t . 
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Now, we present the comparison of the estimators 
5t , 

6t  and 
7t  due to 

Sharma and Singh (2014) with that of Das and Tripathi’s (1978) difference 

estimator 
3t and Shabbir (2006) estimator 4t . From (1.12), (1.16), (1.28), (1.37) 

and (1.47) we have  













)}1)(1(1{

1
1)1)(1()(.min)(.min

2*

40

2*

40

4

5



f

SftMintMSE yj

   (1.52) 

   4,3j            0 , 








 










D

fg

D
SftMintMSE yj

)1(1
1)1()1()(.min)(.min 04

2
2*

40

4

6




         (1.53) 

   4,3j            0 , 








 










*

04

22*

*

2*

40

4

7

)1(1
1)1()1()(.min)(.min

D

fg

D
SftMintMSE yj


  

(1.54) 

   4,3j            0 , 

where  

}]))(1()1{(1[ 2

0440 CgfD      and

)}]2()1()1{(1[ 0440

* CgCfD   .        

It follows from (1.52) to (1.54) that the estimators 5t , 6t  and 7t  due to 

Sharma and Singh (2014) are better than Das and Tripathi’s (1978) difference 

estimator 3t and Shabbir (2006) estimator 4t and hence better than the usual 

unbiased estimator 
2

ys , Isaki’s (1983) estimator 1t and Upadhyaya and Singh’s 

(1986) estimator 2t . 

2. The suggested class of estimators for the population variance 2

yS   

Keeping the form of Das and Tripathi’s (1978) difference type estimator, 

Isaki’s (1983) ratio-type estimator, Upadhyaya and Singh’s (1986) estimators , 

Singh et al.’s (1988) estimator, Shabbir’s (2006) estimator, Kadilar and Cingi’s 

(2006, 2007) estimators, Shabbir and Gupta’s (2007) estimator, Singh and 
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Solanki’s (2013a, b) estimator, Solanki and Singh (2013) estimator, Singh et al.’s 

(2013, 2014) estimator, Sharma and Singh’s (2014), Solanki et al. (2015) 

estimator and Singh and Pal (2016) estimators in view, we define a generalized 

class of estimators for 
2

yS as: 
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baxx
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x

bax

sS

sSq

S

s
 ,             (2.1)  

where )/()( 222

),( babsaSs xxbax  , ),( 21  being suitable chosen constants, 

),,,(  are suitable chosen scalars such that 1),,(0   ,  may be equal 

to )1/()1( 2

xxy CC   with nf /)1(  and Nnf / ; ),,,( qp are 

scalars taking real values to generate ratio and product- type acceptable 

estimators; and  ),( ba are either real numbers or the functions of the known 

parameters of the study variable y such as yC   coefficient of variation, (see Searls 

(1964), Lee (1981) and Singh (1986)), )(2 y (
40 ) (coefficient of kurtosis of 

the study variable y see Singh et al. (1973) and Searls and Intarapanich (1990)), 

coefficient of skewness )(1 y (
2

30 ) of y, )1)()(()( 12  yyy   (see, 

Sen (1978), Upadhyaya and Singh (1984) and Singh and Agnihotri (2008)) or the 

functions of auxiliary variable x such as population mean X , coefficient of 

variation xC , coefficients of skewness )(1 x (
2

03 ) and kurtosis )(2 x (
04 ) 

and the parameter )1)()(()( 12  xxx  or the population correlation 

coefficient  between the study variable y and the auxiliary variable x. 

We would like to remark that for various values of the parameters in (2.1), we 

get some existing known estimators as shown in Table 2.1. Many other estimators 

can also be generated from the proposed family of estimators 
SPt for suitable 

values of scalars ( 1 ,  , ,  , a , b , 2 ,  ,  ,  , p , q ). 

Table 2.1. Some known members of proposed class of estimators 

Values of the constants 
Estimator 

( , 1 , 2 ,  ,  ,  ,  ,  , p , q , a , b ) 

(1, 1, 0, -, -, -, 0, -, 0, 0, -, -) 
2

)1( ySP st   

(-, 1, d , -, 1, -, -, 0, 0, 0, 0, -) 
)( 222

)2( xxySP sSdst   

Das and Tripathi’s (1978) estimator 
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(1, 1, 0, -, 0, -, - , -, 0, 0, 0, -) 


















2

2

2

)3(

x

x

ySP
s

S
st  

Das and Tripathi’s (1978) estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 1-b, b) 
















)( 222

2

2

)4(

xxx

x

ySP
Ssbs

S
st  

Das and Tripathi’s (1978) estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 0, -) 
)/( 222

)5( xxySP sSst   

Isaki’s (1983) ratio  estimator 

(1, 1, 0, -, 0, -,1, -, 0, 0, )1( g , g ) 
)/( 22*2

)6( xxySP Ssst   

Upadhyaya and Singh’s (1986) estimator 

(1, 1 , 2 , -, -, -, 0, 0, 0, 0, 0, -) 
)( 22

2

2

1)7( xxySP sSst    

Singh et al.’s(1988) estimator 

(1, 1 , 0, -, 0, -, -1, -, 0, 0, 0, -) 
)/( 222

1)8( xxySP sSst   

Prasad and Singh’s (1990) estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

2 )(

xS

x , 1) 


















)(

)(

2

2

2

2

2

)9(
xs

xS
st

x

x

ySP


  

Upadhyaya and Singh’s (1999) estimator 

(1, 1, 0, -, A, -, -1, -, 0, 0, 
2

2 )(

xS

x
, 1) 



















)(

)(
)1(

2

2

2

2

22

)10(
xs

xS
sAAst

x

x

yySP


  

Chandra  and Singh’s(2001) estimator  

(1, 1, 0, -, w1 , -,1, -, 0, 0, 
2

2 )(

xS

x , 1) 
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)(
)1(

2

2

2

2
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)11(
xS

xs
wsswt

x

x
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Chandra and  Singh’s(2001) estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

x

x

S

C


, 1) 
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ySP
Cs

CS
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2

2

2

)12(
 

Kadilar and Cingi’s (2005) estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

2 )(

xS

x
  ,1) 
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2

2

2

2

2

)13(
xs

xS
st

x

x

ySP


  

Kadilar and Cingi’s (2005) estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

x

x

S

C


, )(2 x ) 



















xx

xx

ySP
Cxs

CxS
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)(

)(

2

2

2

2

2

)14(


  

Kadilar and Cingi’s (2005) estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

2 )(

xS

x
 , 

xC ) 


















)(

)(

2

2

2

2

2

)15(
xCs

xCS
st

xx

xx

ySP


  

Kadilar and Cingi’s (2005) estimator 

(1, 1, 0, -,  , -1, -, 0, 0, )1( g , g ) 














2

2*

22

)16( )1(
x

x

yySP
S

s
sst   

Shabbir’s (2006) estimator 

( , 1, 0, -,  , -, -1, -, 0, 0, 0, -) 
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)17( )1(
x

x

yySP
s

S
sst  

Kadilar and Cingi’s (2006) estimators 
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(1, 
1 , 

2 , -, -, -, 0, 0, 0, 1, 0, -) 












22

22

22

2

2

1)18( exp)]([
xx

xx

xxySP
sS

sS
sSst 

Shabbir and Gupta’s (2007) estimator 

(1, 1 , 
2 , 2, -, -, 0, 0, p , 0, 0, -) 





























p

x

x

xxySP
S

s
sSst

2

2
22

2

2

1)19( 2)]([ 

Gupta and Shabbir’s (2008) estimator 

(1, 1 , 2 , 2, -, -, 0, 0, 1, 0, 0, -) 
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1)20( 2)]([
x

x

xxySP
S

s
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Gupta and Shabbir’s (2008) estimator 

(1, 1 , 
2 , 2, -, -, 0, 0, -1, 0, 0, -) 



























2

2
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2

2

1)21( 2)]([
x

x

xxySP
s

S
sSst 

Gupta and Shabbir’s (2008) estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

2* ))1(

x

x

S

S   ,  * ) )})(1()({

)(
2*2*

2

2

)22(









xx

x

ySP
Ss

S
st

Yadav and Pandey’s  (2012) type estimator 

 and Singh and Malik’s (2014) type estimator 

(1, k, 0, -, 0, -, -1, -, 0, 0, 
2

2* ))1(

x

x

S

S   ,  * ) 
)})(1()({

)(
2*2*

2

2

)23(









xx

x

ySP
Ss

S
kst

Yadav and Pandey ‘s(2012) type estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

1

xS

Q , 1) 


















1

2

1

2

2

)24(
Qs

QS
st

x

x

ySP
 

Subramani and Kumarapandiyan’s (2012b) 

estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

3

xS

Q , 1) 


















3

2
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2

)25(
Qs
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Subramani and Kumarapandiyan’s (2012b) 

estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

2

xS

Q , 1) 


















2

2

2

2

2

)26(
Qs
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x

x
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Subramani and Kumarapandiyan’s (2012b) 

estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

x

d

S

Q , 1) 


















dx

dx

ySP
Qs

QS
st

2

2

2

)27(

 

Subramani and Kumarapandiyan’s (2012b) 

estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

x

a

S

Q , 1) 


















ax

ax

ySP
Qs

QS
st

2

2

2

)28(

 

Subramani and Kumarapandiyan’s (2012b) 

estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

x

d

S

M , 1) 


















dx

dx

ySP
Ms

MS
st

2

2

2

)29(

 

Subramani and Kumarapandiyan’s (2012a) 

estimator 
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where ( A , w , * , h , 1w , 2w , 1k , 2k ) are suitable chosen constants and ( * , L )  

are either real constants or function of known parameter of an auxiliary variable x  

and * being a constant such that 1*  . 

(1, 
1w ,

b

ba
w

)(
2


, 0, -, -, 0, 0, -1, 0, 

2

xS

h , b) 


















hbs

hbS
sSwswt

x

x
xxySP 2

2

22

2

2

1)30( )]([  

Singh and Solanki’s (2013a) estimator  

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

x

x

S

C , 1) 


















xx

xx

ySP
Cs

CS
st

2

2

2

)31(

 

Singh and Solanki’s (2013a) estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

x

x

S

C , )(2 x ) 


















xx

xx

ySP
Cxs

CxS
st

)(

)(

2

2

2

2

2

)32(


  

Singh and Solanki’s (2013a) estimator 

(1, 1, 0, -, 0 -, -1, -, 0, 0, 
2

2 )(

xS

x , 
xC ) 



















)(

)(

2

2

2

2

2

)33(
xCs

xCS
st

xx

xx

ySP


  

Singh and Solanki’s (2013a) estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0, 
2

3

xS

Q ,  ) 


















3

2

3

2

2

)34(
Qs

QS
st

x

x

ySP


  

Khan  and Shabbir’s (2013)  estimator 

(1, 1, 0, -, 0, -, -1, -, 0, 0,
2

2

x

i

S

L
, 1) 

 being a constant such that 10    

 




















22
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2

)35(

ix

ix

ySP
Ls

LS
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i= 1 to 6, 

11
QL  , 

22
QL  , 

33
QL  , 

r
QL 

4

, 
d

QL 
5

, 
a

QL 
6

, 

where  
1Q  (first quartile),

2Q  (second range), 

3Q

 

(third quartile ), 2/)( 13 QQQd  , 

2/)( 13 QQQa  . 

 Singh et al.’s (2013) estimator  

(1, 1w , 2w , -, -, -, 0, 0, 0, 0, )1( g , g ) 
)( 2*2

2

2

1)36( xxySP sSwswt   

Sharma and Singh’s (2014) estimator 

(1, 1k , 2k , -, -, 2, 0, 1, 0, 0, )1( g , g ) 
)]/(2)[( 22*2*2

2

2

1)37( xxxxySP SssSkskt   

Sharma and Singh’s (2014) estimator 

(1, 1m , 2m , -, 0, -, 1, 0, 0, 0, )1( g , g ) 
)()/( 2*2

2

22*2

1)38( xxxxySP sSmSssmt   

Sharma and Singh’s (2014) estimator 

(1, 1w ,

b

ba
w

)(
2

 , 0, -, -, 0, 0, -1, 0, 
2

2*

xS

L , * ) 


















2*2*

2*2*

22

2

2

1)39( )]([
Ls

LS
sSwswt

x

x
xxySP



  

Singh and Pal ‘s (2016) estimator 

(1, 1w , 
b

ba
w

)(
2

 , -, -, -, 0, 0, 0, 1, 
2

2*

xS

L , * ) 


















2*22*

22*

22

2

2

1)40(
2)(

)(
exp)]([

LsS
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sSwswt

xx
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xxySP




Singh and Pal’s (2016) estimator 
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2.1. Derivation of the expressions of bias and mean squared error (MSE) of  

the class of estimators 
SPt  

To obtain the bias and MSE of the class of estimators
SPt  at (2.1) in terms of 

e’s we have  
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where )/(* babb  . 
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are expandable. Now expanding the right hand side of (2.2), we have 
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Neglecting terms of e’s in (2.3) having power greater than two, we have                 
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Taking expectation of both sides of (2.4) we get the bias of 
SPt  to the first 

degree of approximation as  
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(2.5) 

Squaring both sides of (2.4) and neglecting terms of e’s having power greater 

than two, we have  
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Taking expectation of both sides of (2.6) we get the MSE of 
SPt  to the first 

degree of approximation as  
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Differentiating (2.7) partially with respect to 1 and  2  and equating to zero, 

we have   
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Solving (2.8) we get the optimum values of 1  and 2 as 
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Putting (2.9) in (2.8) we get the resulting minimum MSE of 
SPt  as   
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Thus we established the following theorem.   

Theorem 2.1: Up to the first degree of approximation, 
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with equality holding if  
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where 0i ’s (i=1, 2)are defined in  (2.9). 

2.2. Special Case-I  )1(   

Putting 1 in (2.1) we get the class of estimators of
2

yS  as  
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Substitution of 1  in (2.5) and (2.7) yields the bias and MSE of the class of 

estimators to the first degree of approximation, respectively as                        
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Thus the resulting minimum )( )1(

SP
tMSE is given by  
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Thus we established the following corollary.   

Corollary 2.1: Up to the first degree of approximation, 
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with equation holding if       
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From (2.10) and (2.15) we have  
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which is positive if 
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.          (2.16) 

Thus the proposed family of estimators 
SPt  would be more efficient than the 

family of estimators
)1(

SP
t  as long as inequality (2.16) is satisfied.  
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2.3. Special Case-II  )1,1(),( 1   

Putting )1,1(),( 1  in (2.1) we get class of estimators of
2

yS  as  
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Inserting )1,1(),( 1   in (2.5) and (2.7) yield the bias and MSE of 
)2(

SP
t  to 

the first degree of approximation, respectively given by 





























 **

2

*

1

*

1

*

04

*2)2(

2
)1()( 


 rbC

b
fbStB ySP

                            (2.18) 

and 
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The )( )2(
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tMSE is minimized for    
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 .                                        (2.20) 

Thus the resulting minimum )( )2(

SP
tMSE is given by  
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                         )1)(1( 2*

40

4   yfS  

which equals to the minimum MSE of the difference estimator 3t defined in (1.3). 

Now, we state the following corollary.  

Corollary 2.2: Up to the first degree of approximation, 

)1)(1()( 2*

40

4)2(   ySP
fStMSE  

with equality holding if       
*

202   . 
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From (2.15) and (2.21) we have  
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which is always  positive. It follows that the proposed family of estimators 
)1(

SP
t  is 

better than the family of estimators 
)2(

SP
t and the difference type estimators

3t  in 

(1.3) at their optimum conditions.  

2.4. Special Case-III )1( 1   

For 11  , the suggested class of  estimators SPt  reduces to the class of 

estimators  
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Putting 11   in (2.5) and (2.7) we get the bias and MSE of the estimator  
)3(

SP
t  to the first degree of approximation, respectively given by                        
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Thus the resulting minimum )( )3(
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tMSE is given by  
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Now, we state the following corollary.  
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Corollary 2.3. To the first degree of approximation, 
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with equality holding if       
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From (2.10) and (2.27) we have  
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which clearly indicates that the SPt  family of estimators is more efficient than 

that of the 
)3(

SP
t   family of estimators . 

Concluding remarks 

This paper intends to suggest a new family of estimators for the variance 
2

yS

of the variable y of interest when the population variance
2

xS  of the auxiliary 

variable x is known. The proposed family generalizes that of the several 

estimators ( )(iSPt , i= 1 to 38) as listed in Table 2.1. We have obtained the bias and 

mean squared error (MSE) expressions up to first order of approximation in 

simple random sampling without replacement (SRSWOR). From the bias and MSE 

expressions of the suggested family, one can easily derive the bias and MSE 

expressions of existing known estimators as well as those of potential new 

proposals. The present study unifies several results at one place. 

The family is certainly not exhaustive but it can act as different against the 

proliferation of equivalent proposals that could be appearing in the future. Three 

subclasses of the proposed family are identified and their properties are studied. 

We have also given the comparisons among the proposed class of estimators and 

the three subclasses of estimators. It has been theoretically shown that the 

proposed class of estimators is more efficient than the difference type estimator 

3t due to Das and Tripathi (1978) and hence the usual unbiased estimator 
2

ys and 

Isaki (1983) ratio estimator 1t  and several other estimators. This paper also 

provides the correct MSE expressions of the estimators ( 5t , 6t , 7t ) recently 

proposed by Sharma and Singh(2014). Indeed, improvement upon the difference 

type estimators 3t as well as upon other estimators can be achieved when the 

theoretical expressions of the minimum mean squared error are considered. These 

expressions are based on the knowledge of population parameters which can be 
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obtained either through past data or experience gathered in due course of time. 

For more discussion on this issue, the reader is referred to Das and Tripathi 

(1978) and Srivastava and Jhajj (1980). However, more light on this study can be 

focused if one would have included an empirical study. Overall this study is of 

academic interest as well as of practical importance, see, Diana et al. (2011), 

Singh et al. (2013) and Singh and Solanki (2013 a, b), Solanki and Singh(2013), 

Singh et al. (2013), Singh et al.(2014), Solanki et al. (2015) and Singh and Pal 

(2016) etc.    
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