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POPULATION VARIANCE ESTIMATION USING 

FACTOR TYPE IMPUTATION METHOD 

RANJITA PANDEY1, KALPANA YADAV2 

ABSTRACT 

We propose a variance estimator based on factor type imputation in the presence 

of non-response. Properties of the proposed classes of estimators are studied and 

their optimality conditions are derived. The proposed classes of factor type ratio 

estimators are shown to be more efficient than some of the existing estimators, 

namely, the usual unbiased estimator of variance, ratio-type, dual to ratio type 

and ratio cum dual to ratio estimators. Their performances are assessed on the 

basis of relative efficiencies. Findings are illustrated based on a simulated and 

real data set. 

Key words: auxiliary information, mean squared error, simple random sampling 

without replacement (SRSWOR). 

1. Introduction

Estimation of population variance is of significant importance in the theory of 

estimation. Efficient variance estimation under auxiliary information has been 

widely discussed by various authors such as Das and Tripathi (1978), 

Srivenkatramana (1980), Isaki (1983), Singh et al. (1988), Singh and Katyar 

(1991), Rao and Shao (1992), Sarndal (1992), Agrawal and Sthapit (1995), Rao 

and Sitter (1995), Garcia and Cebrain (1996), Arcos et al. (2005), Kadilar and 

Cingi (2006, 2006a), Solanki and Singh (2013) and Yadav & Kadilar (2013).  

A common aspect of data collection is the inability to record all items under a 

response variable. Amputing incomplete observations from the collected or 

available data and proceeding with statistical analysis of the restricted complete 

data set is the most common and convenient approach of handling missing data. 

However, the process of replacing missing items with plausible values called 

imputation is popular among data analysts as it enables construction of standard 

programs based on some probability sampling models, for substituting missing 

data with a point estimate. Such models have potential to reduce bias and improve 
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precision to a significant extent in comparison with the amputation approach. 

Rubin (1976), Fay (1991) and Rao (1996) have reviewed various imputation 

techniques.  

Large sample surveys are mostly accompanied either by unit non-response, 

where a sampled subject refuses/is unable to provide information for some 

variables, or item non-response, where several units on the study variable are 

missing. Variance estimation after imputation has been studied by Kim et al. 

(2001), Raghunath and Singh (2006), Beaumont at al. (2011) and Singh and 

Solanki (2009-2010) using auxiliary information in the presence of random non-

response. In the present paper, an improved factor type (FT) estimator of 

population variance based on an auxiliary variable is proposed, under non-

response. Our work is motivated by the theoretical properties of FT estimator 

introduced by Singh and Shukla (1987).    

2. Notations and estimators in literature 

Let  N,.....,,  2 1  be a finite population of N identifiable units. Let 

  Nixy ii ,...,3,2,1   ,,   be the observed value of study variable and auxiliary 

variable for ith individual from a finite population  . From a finite population of 

N identifiable units, a simple random units sample, s, of size n is drawn without 

replacement. r denotes the number of responding units in the sample s. The 

remaining (n-r) units are non-responding units. 

The following notations for the population are defined for study and auxiliary 

variables respectively: :
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,
1

11





N

i

i

N

i

i X
N

XY
N

Y  

Population mean of the variables Y and X; 



n

i

i

n

i

i x
n

xy
n

y
11

1
,

1 represent sample 

means of the study variable y and the auxiliary variable x respectively; 

    :
1

1
,

1

1

1

22

)(

1

22

)( 









N

i

iNx

N

i

iNy Xx
N

SYy
N

S  population variances of variables 

Y and X;
        :

1

1
,

1

1

1

22

1

22 









N

i

inx

N

i

iny xx
n

syy
n

s  sample variances of 

corresponding to variables Y and X;
        





 



N

i

irx

N

i

iry xx
n

syy
n

s
1

22

1

22

1

1
,

1

1  

sample variances of responding units in the respective samples;  

   






N

i

s

i

t

its PxYy
N 11

1
 , ,

2

0

2

0

s

s

t

t

ts
ts
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f   B(.) represents bias and M (.) represents mean squared error of the 

respective estimators.  
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To obtain the bias and M.S.E. of existing and suggested estimators we 

additionally consider 

. 

such that       0;210  eEeEeE        ,1eE,1eE 041
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2

2  M

           1,1,1
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The variance of the usual unbiased variance estimator 
2

)(NyS is given by: 

     140

4

1

2  NyNy SMSV          (1) 

Isaki (1982) (hereafter IK) discussed a ratio type variance estimator for 

estimating population variance and its properties. Under non-response we write 

2
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S
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The estimator IK
t is found to be biased and its M.S.E. is given by: 
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NyIK
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Srivenkataramana and Tracy (1980) (hereafter SV) have given a dual to ratio 

estimator for variance estimator in sample surveys. Under non-response it can be 

modified as: 
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Yadav and Kadilar (2013) (hereafter YK) proposed the ratio-cum-dual to ratio 

type estimator for the population variance of the study variable. The ratio-cum-

dual type variance estimator under non-response is given by: 
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The M.S.E. of YK
t  is given by: 
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22104
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The M.S.E. of the proposed estimator is minimized for the optimum value  as 
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3. Proposed estimators and their properties 

Singh and Shukla (1987) proposed a family of FT ratio estimator of 

population mean for complete sample case. Unbiased, ratio, product and dual to 

ratio estimators are its special cases. An advantage of one-parameter class of 

estimators is that it requires only knowledge of the quantity 
x

y

C

C


 for 

making the best selection of the parameter. Population correlation 
coefficient between variables Y and X is represented by  and the respective 

coefficient of variation by yC and xC . The value of function 

x

y

C

C
  does not 

fluctuate considerably in repeated surveys and therefore could be guessed 

accurately from previous data or past experience or a pilot survey or otherwise 

[(Murthy (1967); Reddy, (1978)]. The proposed variance estimator is constructed 

as a function of some factors of the parameter termed as Factor-Type (F-T) 

estimator. This process of factorization makes it possible to yield more than one 

optimum value of the parameter so that at the same time bias of the estimator can 

also be controlled. The new class of FT ratio estimator for population variance of 

the study variable under non-response is proposed as: 
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The properties of the proposed family of estimators are presented through the 

following theorems: 

Theorem 1:  

(i) The estimator 1SS
t  for population variance could be written in terms of 

 as 

   
020
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1 2
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042222
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1
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and  M.S.E.           1121
042222401

4

1
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(iii) The estimator 
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t  for population variance could be written in terms of  
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 as     (18) 
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Proof:   

Substituting the value of   3,2,1;i ik  and using the concept of large 

sample approximation, we get 
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Using Taylor’s expansion and ignoring terms of  1no  and higher order leads 

to equations (10), (14) and (18). 

Since we know that  

Therefore,  
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Substituting the values of 2,1,0; iei
 using section 2, and simplifying, 

equations (11), (15) and (19) are obtained.  

Also,  

Substituting the values of estimators and solving it, and ignoring higher order 

terms, we get  
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Substituting the expectations values of 
0e 1,e and 2e  and solving it, leads to 

equations (12), (16) and (20). 

Now, differentiating these expressions with respect to P  and then equating to 

zero yields 
 

0
dP

tMd SSi  

Substituting the value of P in equation (12), (16) and (20), corresponding 

expressions for the minimum M.S.E.s are obtained. 

Remark 1: Multiple choices of k: 

The optimality condition   provides the equation 

                 0244224526523981 23  fPfkffPkffPkP ,  

(22) 

which is a cubic equation in k . Its roots are represented by 321  , , kkk (say), for 

which mean squared error is optimum. The best choice criterion for k , which 

controls the quantum of bias in the corresponding estimator, is outlined in the 

following algorithm: 

Step I: Compute  

Step II: For given i, choose jk as     
jj kSSi

j
kSSi

tBtB
3,2,1

min


 .  

Remark 2: Factor-type ratio estimator (Singh and Shukla (1987)) for population 

variance of the study variable (without imputation) is defined as: 
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below: 

        1211 2204401

4 2  MStM ySS
    (24) 

  
    

  













1

111

04

2

220440
1

4

min 


MStM ySS

     (25) 

 
 1

1

04

22









P

P 21 

  3,2,1 ,   jifortB
jkSSi



382                                                                R. Pandey, K. Yadav: Population variance… 

 

 

4. Comparisons 

On pair-wise comparison of expressions for M.S.E.s (from section 2 and 

section 3) (i) among the proposed estimators (ii) between the proposed and some 

of the existing estimators, we obtain theoretical conditions of superiority, which 

are shown in Table 1 and Table 2. 

Table 1. Comparison within Proposed estimators 

Estimators 

(Minimum 

M.S.E.) 

More efficient than (Minimum 

M.S.E.) 
Condition 

2SS
t  

1SS
t  

122   

3SS
t  

3SS
t  

2SS
t  

 

Table 2. Comparison within Proposed estimators and Traditional estimators 

Estimators 

(Minimum 

M.S.E.) 

More efficient than (Minimum 

M.S.E.) 
Condition 

1SSt  

 
2

NyS  

122   

2SSt  

3SSt  

1SSt  

IKt  

  A
M

M

2

12

22 1   

2SSt    A
M

M

3

12

22 1   

3SSt    A
2

22 1  

1SSt  

SVt  

  B
M

M

2

12

22 1   

2SSt    B
M

M

3

12

22 1   

3SSt    B
2

22 1  

1SSt  

YKt  

122   

2SSt  122   

3SSt  is equal to 

where       1121 042204  A ;       1121 042204   ggB . 
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5. Simulation study 

An artificial population [Source: Shukla and Thakur (2008)] of size N = 200 

containing values of main variable Y and auxiliary variable X. 

Parameters of the population are given as below: 

Y  42.485; X 18.515; 2

yS 199.0598;       2

xS 48.5375;   0.8652;  

f 0.3;  22 2.47; 04 3.74;  40 2.56,     n = 60,  r = 50 

For the above data set, equation (22) provides three k -values: 1k  1.54; 

2k 2.94; 3k 6.67 

The simulation process comprises the following steps: 

Step 1: Draw a random sample of size n = 60 from the population of N  200 by 

SRSWOR. 

Step 2: Discard 10 randomly chosen units from each sample corresponding to Y. 

Step 3: Impute these discarded units of Y by the proposed methods and the 

available methods separately. Compute the value of different estimators and 

also for the proposed estimators. 

Step 4: Repeat the above steps 30,000 times, which provides multiple sample-

based estimates  

Step 5: Bias of 1̂t  is obtained by 

. 

Step 6: Mean squared error of ŷ  is computed by  

. 

Step 7: Percentage Relative efficiency (PRE) is computed from equation (26) and 

shown in Table 5: 

  
 

 
;4,3,2,1:100,

3,2,1;







j
tM

M
tPRE

iSSi

jSSi

    

(26)

 

such that   represents different existing methods. 

Bias and M.S.E.s of the existing and proposed estimators computed from 

30,000 repeated samples drawn by SRSWOR from population N  200 are 

shown in Table 3. 
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Table 3.  Bias, Mean Squared Error of Different Suggested and Traditional 

Estimators 

Traditional 

Estimators 
Bias M.S.E. 

Suggested 

Estimators 
 Bias M.S.E. 

 
2

NyS  -35.82 2417.27 

1SSt  

55.11 k  7.03 1572.64 

IKt  -40.51 1914.42 94.22 k  3.32 1800.42 

SVt  -45.04 2130.76 67.63 k  6.48 1602.47 

YKt  -43.86 1934.08 

2SSt  

55.11 k  20.61 1067.79 

   94.22 k  20.37 1047.37 

   67.63 k  20.57 1064.34 

   

3SSt  

55.11 k  1.27 1262.77 

   94.22 k  -3.79 1511.06 

   67.63 k  0.52 1293.07 

Computational results for efficiency loss due to imputation is measured as 

 
 
 SS

SSi
i

tM

tM
LI  such that,  SSitM  and  SStM  are the M.S.E.s of the proposed 

estimators with and without imputation (from Remark 2). The losses are reported 

in Table 4. 

Table 4. Loss due to Imputation 

Optimum k  55.11 k  94.22 k  67.63 k  

 1LI  0.74 0.72 0.75 

 2LI  0.68 0.75 0.70 

 3LI  0.75 0.72 0.75 
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Table 5.  P.R.E. of suggested estimators with respect to different Traditional 

estimators 

Estimators 
Optimum 

k values 
  

1

2 , SSiNy tSPRE   
2

, SSiIK ttPRE   
3

, SSiSV ttPRE   
4

, SSiYK ttPRE  

1SSt  

55.11 k  153.71 121.73 135.49 122.98 

94.22 k  134.26 106.33 118.35 107.42 

67.63 k  150.85 119.47 132.97 120.69 

2SSt  

55.11 k  226.38 179.29 199.55 181.13 

94.22 k  230.79 182.78 203.44 184.66 

67.63 k  227.11 179.87 200.19 181.72 

3SSt  

55.11 k  191.43 151.61 168.74 153.16 

94.22 k  159.97 126.69 141.01 127.99 

67.63 k  186.94 148.05 164.78 149.57 

 

5.1. Values of k  for Unbiased Estimator .3,2,1; itSSi  

For unbiased estimator, 

  03,2,1; iSSitB  

       011 0422221      (27) 

Case 1:  21   = 0 0





CfBA

CfB
0 CfB   

         043241  kkkkkf  

         03214  kkkfk               (28) 

From (27) either   04 k 4'

1  kk  (29) 

or     0652  fkfk  

the remaining two roots of k are 

     
2

6455
2

'

2




fff
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2

6455
2

'

3




fff
k      (31) 

       011 04222
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On putting the value of f for the above data set, we get 

'

2k 3.5                (32) 

'

3k 1.8                (33) 

Case 2:       011 04222              (34) 

Since we know that 02 



CfBA

C
 . Then, on equating it with 

 
 1

1

04

22
2









 , we get a cubic equation in the form of k as follows: 

     2

222204

3

0422 1819 kfk    

       021422243152623 222204220422   fkf  

(35) 

On putting the values of 22 , 04  and f we get three different values of . 

'

4k 1.72, '

5k 2.60, '

6k 6.19         (36) 

6. Real data analysis 

A real data of size N = 66 is taken from Indian Institute of Sugarcane 

Research, which comprises annual production data (in ‘000 tonnes) represented as 

the auxiliary variable X and the corresponding cultivation area (in ‘000 ha.) 

represented as the study variable Y, over the time period of 1950-51 to 2015-16.   

Parameters of the above population are given as below: 

Y  22.30; X 193558.80; 2

yS 2278933.68; 2

xS 8658527591;  0.9904;  

f 0.3;   22 1.23;   04 1.77;   40 1.35,   n = 20,   r = 10 

For the above data set, equation (22) provides three k -values: 1k  1.68, 

2k 3.09 and 3k  5.23. Initially we selected 10,000 independent random 

samples of size n =20 from the above population of size N  66 by SRSWOR.  

The empirical bias and M.S.E.s of the existing and proposed estimators 

computed from these repeated samples are shown in Table 6. 

 
 1

1

04

22
2











k
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Table 6.  Bias, Mean Squared Error of Different Suggested and Traditional 

 Estimators 

Traditional 

Estimators 
Bias M.S.E. 

Suggested 

Estimators 
 Bias M.S.E. 

 
2

NyS  -1.03E+06 1.24E+12 

1SSt  

68.11 k  -1.01E+06 1.03E+12 

IKt  -1.34E+06 1.12E+12 09.32 k  -1.02E+06 1.05E+12 

SVt  -1.04E+06 1.08E+12 23.53 k  -1.02E+06 1.05E+12 

YKt  -1.12E+06 1.27E+12 

2SSt  

68.11 k  -1.03E+06 1.04E+12 

   09.32 k  -1.03E+06 1.04E+12 

   23.53 k  -1.02E+06 1.02E+12 

   

3SSt  

68.11 k  -1.01E+06 1.03E+12 

   09.32 k  -1.02E+06 1.05E+12 

   23.53 k  -1.01E+06 1.04E+12 

Table 7. Loss due to Imputation 

Optimum k  68.11 k  09.32 k  23.53 k  

 1LI  0.70 0.72 0.75 

 2LI  0.77 0.76 0.70 

 3LI  0.73 0.77 0.75 

Table 8.  P.R.E. of suggested estimators with respect to different Traditional 

 estimators 

Estimators 
Optimum 

k values 
  

1

2 , SSiNy tSPRE   
2

, SSiIK ttPRE   
3

, SSiSV ttPRE   
4

, SSiYK ttPRE  

1SSt  

55.11 k  120.39 108.74 104.85 123.30 

94.22 k  118.10 106.67 102.86 120.95 

67.63 k  118.10 106.67 102.86 120.95 

2SSt  

55.11 k  119.23 107.69 103.85 122.12 

94.22 k  119.23 107.69 103.85 122.12 

67.63 k  121.57 109.80 105.88 124.51 

3SSt  

55.11 k  120.39 108.74 104.85 123.30 

94.22 k  118.10 106.67 102.86 120.95 

67.63 k  119.23 107.69 103.85 122.12 
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6.1 Values of k  for Unbiased Estimator .3,2,1; itSSi  

 For unbiased estimator,   03,2,1; iSSitB  

       011 0422221        …(37) 

Case 1:  21   = 0 0





CfBA

CfB 0 CfB   

        043241  kkkkkf              

        03214  kkkfk             (38) 

From (28) either   04 k 4'

1  kk               (39) 

or      0652  fkfk  

the remaining two roots of k are 

     
2

6455
2

'

2




fff
k        (40) 

     
2

6455
2

'

3




fff
k        (41) 

 On putting the value of f for the above data set, we get 

'

2k 3.5                   (42) 

'

3k 1.8                   (43) 

Case 2:       011 04222              (44) 

Since we know that 02 



CfBA

C
 . Then, on equating it with 

 
 1

1

04

22
2









 , we get a cubic equation in the form of k as follows: 

     2

222204

3

0422 1819 kfk     

       021422243152623 222204220422   fkf  

(45) 

On putting the values of 22 , 04  and f we get two different values of . 

'

4k 0.72 and '

5k 7.53            (46) 

       011 04222

2  NyS

 
 1

1

04

22
2











k



STATISTICS IN TRANSITION new series, September 2017 

 

389 

7. Conclusion 

The present paper suggests three new FT variance estimators under item non-

response on the study variable, in a bivariate sample data. FT estimator, a 

generalized class of estimators for ratio, product, dual to ratio and the usual 

unbiased estimator are found to be more efficient than some existing estimators. 

The FT variance estimator maintains an optimum balance between reduction of 

bias and that of reducing M.S.E through k. We can choose k values for different 

pair of  Pf ,  values. Thus, the FT variance estimator could be made almost 

unbiased by an appropriate choice of multiple available values. 

Table 5 and Table 8 show P.R.E. of the suggested estimators with respect to 

different traditional estimators based on simulated and real data. It is observed 

from these tables that the proposed FT estimators prove to be better than the usual 

unbiased, ratio, dual to ratio and ratio cum dual to ratio estimators, under non-

response. The proposed estimator 
2SSt  performs best among the three proposed 

estimators from the point of view of increasing efficiency. The three proposed FT 

type estimators are the best estimators in the sense of having the largest PRE 

among all the prevalent estimators discussed here. 
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