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LINDLEY PARETO DISTRIBUTION

Halim Zeghdoudi1, Lazri Nouara2, Djabrane Yahia3

ABSTRACT

In this paper, we introduce a new Lindley Pareto distribution, which offers
a more flexible model for modelling lifetime data. Some of its mathematical
properties like density function, cumulative distribution, mode, mean, vari-
ance, and Shannon entropy are established. A simulation study is carried
out to examine the bias and mean square error of the maximum likelihood
estimators of the unknown parameters. Three real data sets are fitted to
illustrate the importance and the flexibility of the proposed distribution.
Key words: T-X family, Lindley distribution, Pareto distribution.

1 Introduction

Statistical distributions (Lifetime distributions) are commonly applied to de-
scribe real world phenomena and are most frequently used in many applied
sciences such as reliability, engineering, actuarial sciences, demography,
economics, hydrology, biological studies, insurance, medicine and finance.
Recently this issue has received much attention from researchers and prac-
titioners. The quality and effectiveness of the procedures used in a statistical
analysis are determined by the assumed probability distribution. Recently,
one parameter Lindley distribution has attracted the researchers for its use
in stress-strength reliability modelling, and it has been observed in several
papers that this distribution has performed excellently. The Lindley distribu-
tion was introduced by Lindley (1958) as a new distribution useful to ana-
lyze lifetime data. Sankaran (1970) introduced the discrete Poisson-Lindley
distribution by combining the Poisson and Lindley distributions. Many gen-
eralizations of the Lindley distribution have been proposed in recent years.
Asgharzadeh et al. (2013), Ghitany et al. (2008a,2008b) rediscovered and
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studied the new generalizations of Lindley distribution, what they derived is
known as Zero-truncated Poisson- Lindley and Pareto Poisson-Lindley dis-
tributions. There still remain many important problems where the real data
does not follow any of the existing probability distributions. Considerable
effort has been expended in the development of large classes of new prob-
ability distributions along with relevant statistical methodologies.

Furthermore, Pareto distribution was pioneered by V. Pareto (1896) to
explore the unequal distribution of wealth. It is widely used in actuarial sci-
ence. (e.g. reinsurance) because of its heavy tail properties. To add flexibil-
ity to the Pareto distribution, various generalizations of the distribution have
been derived, including the generalized Pareto distribution (Pickands, 1975),
the beta-Pareto distribution (Akinsete et al., 2008), and the beta generalized
Pareto distribution (Mahmoudi, 2011).

The mixing method is one of the most important ideas for obtaining a
new distribution. For example, Sharma and Shanker (2013) used a mix-
ture of exponential (θ) and gamma (2,θ) to create a two-parameter Lindley
distribution. Another example includes Zakerzadeh and Dolati (2010), who
used gamma (α,θ) and gamma (α + 1,θ) to create a generalized Lindley
distribution. Recently, Zeghdoudi and Nedjar (2016a,2016b) introduced a
new distribution, named gamma Lindley distribution, based on mixtures of
gamma (2,θ) and one-parameter Lindley distributions.

Gomes-Silva et al. (2017) introduce a new generator of continuous dis-
tributions with one extra positive parameter called the odd Lindley-G fam-
ily. Some special cases are given (Odd Lindley Weibull, Odd Lindley Ku-
maraswamy, Odd Lindley half-logistic and Odd Lindley Burr XII), where the
hazard rate function of the Odd Lindley Burr XII distribution can be constant,
increasing, decreasing, unimodal or bathtub shape. For more details on this
last distribution function we refer the reader to Abouelmagd et al. (2018).

In addition, the cumulative distribution function (cdf) of the T-X family of
distributions defined by Alzaatreh et al. (2013) is given by

G(x) =
∫ W (F(x))

0
r (t)dt, (1)

where W (F(x)) satisfies the following conditions:
- W (F(x)) ∈ [a,b],
-W (F(x)) is differentiable and monotonically non-decreasing,
- W (F(x))→ a as x→−∞ and W (F(x))→ b as x→ ∞.
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In this paper, we propose a new wider class of continuous distribu-
tions called the Lindley Pareto (LP for short) by taking W (F(x)) = F(x)

1−F(x) and

r (t) = θ 2

1+θ
(1+ t)exp(−θ t), x > 0, θ > 0, where F (x) corresponding to Pareto

distribution: F (x) = 1−
(

α

x

)k
, x > α. Its cdf is given by

G(x) = 1−
(
αk + xkθ

)
(θ +1)αk exp

(
−θ

(
xk

αk −1
))

, (2)

with corresponding density

g(x) =
kθ 2eθ x2k−1

(θ +1)α2k exp
(
−θ

( x
α

)k
)
,x > α. (3)

We can see the plots of the density function and the distribution function of
LP distribution for some parameter values in Appendix 1. We refer to the cdf
in equation (1) as Lindley Pareto (LP) distribution with parameters θ , α, k,
which we denote by LP(θ ,α,k). The objective of this work is to study some
mathematical properties of the Lindley Pareto model with the hope that it
will attract wider applications in reliability, engineering and other areas of
research.

The LP distribution is motivated by the following: the LP distribution use
may be restricted to the tail of a distribution, but it is easy to apply. The
formulas of the mean, variance, mean deviation, entropy and the quantile
function are simple in form and may be used as quick approximations in
many cases. Also, the LP distribution can be viewed as a special case of
odd Lindley-G family introduced by Gomes-Silva et al.(2017). Also, this new
distribution has advantages including a number of parameters (three) which
we can modelled physical phenomena inspired in Cooray (2006). Further-
more, LP distribution can be used quite effectively in analyzing many real
lifetime data sets: application to waiting times in a queue, Wheaton River
Data and application to bladder cancer patients. Moreover, the actuarial
literature has discussed hundreds of univariate continuous distributions, of
which log-normal, Weibull, multi-parameter Pareto, gamma distributions as
well as others.

The remainder of the article is unfolded as follows: in Section 2, vari-
ous properties of LP distribution are examined, including survival and haz-
ard functions, reliability, mean deviation, entropy and quantile function. The
model parameters are estimated via the maximum likelihood estimates (MLEs)
and some simulations are proposed in Section 3. In Section 4, the impor-
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tance and potentiality of LP distribution are shown using three real lifetime
data sets. Finally, some concluding notes are provided in Section 5.

2 Main properties

2.1 Survival and hazard functions

The survival and hazard functions corresponding to the cdf defined in (1)
are given by

S(x) = 1−G(x) =

(
αk + xkθ

)
(θ +1)αk exp

(
−θ

(
xk

αk −1
))

and

h(x) =
kθ 2x2k−1

αk(θxk +αk)
.

2.2 Reliability

The measure of reliability has many applications, especially in the area of
engineering. The component fails at the instant that the random stress X2

applied to it exceeds the random strength X1, and the component will func-
tion satisfactorily whenever X1 > X2. Hence, R = P [X2 < X1] is a measure of
component reliability. We derive the reliability R when X1 and X2 have inde-
pendent LP(θ1,α,k) and LP(θ2,α,k) distributions. The reliability is defined
by

R =
∫

∞

0
g1 (x)G2 (x)dx = ∑

i, j,k,l=0

pi, j (θ1)qk,l (θ2)

i+ j+ k+ l +2
,

where

pi, j (θ1) =
(−1) j

θ
2+ j
1 Γ(i+ j+3)

i! j!(θ1 +1)Γ( j+3)

and

qk,l (θ2) =
(−1)l

θ
2+l
2 Γ(k+ l +3)

k!l!(θ2 +1)(k+ l +1)Γ(l +3)
.

2.3 Mean deviations

The deviation from the mean and the median are used to measure the dis-
persion and spread in a population from the centre. If the median is denoted
by M, then the mean deviation from the mean, D(µ), and the mean deviation
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from the median, D(M), can be written as

D(µ) =
∫

∞

α

|x−µ|g(x)dx = 2µG(µ)−2
∫

µ

α

xg(x)dx,

D(M) =
∫

∞

α

|x−M|g(x)dx = µ−2
∫ M

α

xg(x)dx.

Consider the integral

∫ b

α

xg(x)dx=
∫ b

α

kθ 2eθ

(θ +1)α2k x2k exp
(
−θ

( x
α

)k
)

dx =

(
− eθ

(θ +1)
αΓ(2k+1

k ,θ xk

αk )

θ
1
k

∣∣∣∣∣
b

a

we obtain,

D(µ) = 2µG(µ)−
∫

µ

α

xg(x)dx

= 2µG(µ)− αeθ

(θ +1)θ
1
k

(
Γ(

1
k
+2,θ)−Γ(

1
k
+2,θ

(
µ

α

)k
)

)
,

D(M) = µ−2
∫ M

α

xg(x)dx

= µ−2
αeθ

(θ +1)θ
1
k

(
Γ(

1
k
+2,θ)−Γ(

1
k
+2,θ

(
M
α

)k

)

)
.

2.4 Entropy

The entropy of a random variable X is a measure of variation of uncertainty
(see, Rényi, 1961), that of the LP distribution is given by

IR (s) =
1

1− s
ln

(
ksθ 2sesθ

θ
1−s

k s
2ks−s+1

k (θ +1)s
αs−1

Γ
(2ks−s+1

k ,θs
)

k

)
s > 0,s 6= 1.

Shannon entropy (Shannon, 1948) for a random variable X with density g(x)
is defined as E {− ln(g(x))}.

E {− ln(g(X))}= lnk+2lnθ +θ − ln(θ +1)−2k lnα +2kE (lnx)− θ

αk E
(

xk
)
,
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E {− ln(g(X))}= θ +lnk+2lnθ−ln(θ +1)+
2
(
1+Ei(θ)e−θ

)
−
(
θ 2 +2θ +2

)
(θ +1)

.

where, Ei is the exponential integral function.

2.5 Quantile function

The quantile function of the LP distribution X is

xγ = α

(
− 1

θ
− 1

θ
LAMBERTW(X)

(
−1,(γ−1)(θ +1)e−θ−1

)) 1
k

, 0 < γ < 1,

(4)
where θ ,α,k > 0 and LAMBERTW(X) denotes the negative branch of the
LAMBERTW(X) function (W (z)exp(W (z)) = z, where z is a complex number).
For more details we refer the reader to Lazri and Zeghdoudi (2016) .

3 Estimation and Simulation

3.1 Maximum Likelihood Estimates (ML)

Let Xi ∼ LP(θ ,α,k), i = 1, ...,n be n random variables. The ln-likelihood func-
tion, ln l(xi;θ ,α,k) is:

L(Θ) = ln l(x;θ ,α,k) = n lnk+2n lnθ +nθ −2kn lnα−n ln(θ +1)+(2k−1)
n

∑
i=1

lnxi−θ

n

∑
i=1

(
xk

αk

)
.

To simplify, we assume that α is known, the derivatives of L(Θ) with respect
to θ and k are:

dL(Θ)

dθ
=

2n
θ

+n− n
(θ +1)

− 1
αk

n

∑
i=1

xk
i , (5)

dL(Θ)

dk
=

n
k
−2n lnα +2

n

∑
i=1

lnxi−
θ

αk

n

∑
i=1

xk
i lnxi +

θ lnα

αk

n

∑
i=1

xk
i . (6)

The two equations (5) and (6) cannot be solved directly, we must used the
Fisher scoring method. We have[

∂ 2L(Θ)
∂θ 2

∂ 2L(Θ)
∂θ∂k

∂ 2L(Θ)
∂k∂θ

∂ 2L(Θ)
∂k2

]
θ̂=θ0
k̂=k0

[
θ̂ −θ0

k̂− k0

]
=

[
dL(Θ)

dθ
dL(Θ)

dk

]
θ̂=θ0
k̂=k0

, (7)
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where,
∂ 2L(Θ)

∂θ 2 =−2n
θ 2 +

n

(θ +1)2 ,

∂ 2L(Θ)

∂k2 =
−n
k2 −θ

n

∑
i=1

(
xk

i
αk

)
ln2 xi

α
,

and
∂ 2L(Θ)

∂θ∂k
=

∂ 2L(Θ)

∂k∂θ
=−

n

∑
i=1

(
ln

xi

α

)( xk
i

αk

)
.

The equation (7) can be solved iteratively where θ0,k0 are the initial values
of θ ,k.

Existence and uniqueness of the MLE’s

Lemma 1. For any given η > 0, there exists a compact subset K ≡ K (η)

⊂ (0,∞)× (0,∞) such that

{(θ ,k) : L(Θ)≥−η} ⊂ K. (*)

Theorem 2. Suppose that Xi ∼ LP(θ ,α,k), i = 1, ...,n , then the MLEs of
parameters θ and k of Pareto Lindley distribution uniquely exist.

Proof. We need only to show that the MLEs of parameters θ and k
uniquely exist. According to the results of Mäkeläinen et al. (1981), in order
to show the existence and uniqueness of the MLEs of θ and k , it is sufficient
to verify the following two conditions:
i) For any given η > 0, (∗) holds.
ii) The Hessian matrix of L(Θ) is negative definite at every point (θ ,k) ∈
(0,∞)× (0,∞). Condition i is certainly satisfied by Lemma 1. Therefore, to
prove the theorem, we need only to show ii. Then,

xtHx =−2x1x2

n

∑
i=1

(
ln

xi

α

)( xk
i

αk

)
+

(
−2n

θ 2 +
n

(θ +1)2

)
x2

1

+

(
−n
k2 −θ

n

∑
i=1

(
xk

i
αk

)
ln2 xi

α

)
x2

2,

where xt = (x1 x2) and H =

[
∂ 2L(Θ)

∂θ 2
∂ 2L(Θ)
∂θ∂k

∂ 2L(Θ)
∂k∂θ

∂ 2L(Θ)
∂k2

]
, we can check that xtHx ≤ 0,

(H is negative definite).
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3.2 Simulation

In this section, we investigate the behaviour of the ML estimators for a finite
sample size (n). A simulation study consisting of the following steps is being
carried out for each quadruplets ( θ ,α,k,n ), where θ = 0.5,1,2, α = 0.3,0.5,1,
k = 0.75,1,2 and n = 30,50,100.

- Choose the initial values of θ0,α0,k0 for the corresponding elements of
the parameter vector Θ = (θ ,α,k) to specify LP(θ ,α,k ) distribution;

- choose sample size n;
- generate N independent samples of size n from LP( θ ,α,k );
- compute the ML estimate Θ̂n of Θ0 for each of the N samples;
- compute the mean of the obtained estimators over all N samples,

average bias(θ) =
1
N

N

∑
i=1

(
Θ̂i−Θ0

)
,

and the average square error

MSE (θ) =
1
N

N

∑
i=1

(
Θ̂i−Θ0

)2
, see Tables 1and 2.
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Table 1. Average bias of the simulated estimates
θ = 0.75 α = 0.3 k = 1.5 θ = 1.25 α = 0.3 k = 2

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 0.2034 0.0192 −0.0768 0.3261 0.0071 0.0210

n=50 0.0788 0.0087 0.02108 0.1460 0.0040 0.0589

n=100 0.0653 0.0058 −0.0066 0.0894 0.0022 −0.0117

θ = 1 α = 1.25 k = 1.5 θ = 1 α = 2 k = 5

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 0.5084 0.0494 −0.1130 0.2532 0.0238 −0.0237

n=50 0.1784 0.0269 −0.0220 0.1130 0.0165 0.0132

n=100 0.1048 0.0167 −0.0326 0.0993 0.0066 −0.0567

θ = 1.5 α = 1 k = 1.25 θ = 2 α = 3 k = 1.25

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 0.5046 0.0239 0.1046 0.2366 2.05867 10−3 1.6487 10−2

n=50 0.3976 0.0117 0.0826 0.0323 1.5698 10−3 6.2404 10−3

n=100 0.2004 0.0073 0.0095 0.0789 3.7259 10−5 1.9747 10−3

θ = 4 α = 3 k = 3 θ = 1.5 α = 5 k = 7

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 1.4481 0.0094 0.5102 0.4280 0.0251 −0.3361

n=50 0.7441 0.0071 0.5010 0.2127 0.0136 −0.0616

n=100 0.6058 0.0033 0.1447 0.0499 0.0069 0.2307

θ = 0.5 α = 0.3 k = 0.9 θ = 1 α = 0.8 k = 0.5

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 0.3240 0.0668 −0.0991 0.1971 0.0896 0.0151

n=50 0.1088 0.0394 0.00431 0.1445 0.0680 0.0057

n=100 0.0520 0.0186 −0.0046 0.0521 0.0376 0.0091

θ = 0.75 α = 0.5 k = 1.25 θ = 3 α = 1.5 k = 2

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 0.155 0.0355 −0.0150 1.5423 0.0097 0.1401

n=50 0.1595 0.0258 −0.0374 0.9111 0.0066 0.0729

n=100 0.0827 0.0128 −0.0172 0.5035 0.0032 0.0244
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Table 2. Average MSE of the simulated estimates
θ = 0.75 α = 0.3 k = 1.5 θ = 1.25 α = 0.3 k = 2

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 0.0414 3.6786 10−4 5.9026 10−3 0.1063 5.0350 10−5 4.4275 10−4

n=50 6.2155 10−3 7.4996 10−5 4.4426 10−4 2.1316 10−2 1.5794 10−5 3.3969 10−3

n=100 4.2580 10−3 3.3405 10−5 4.3903 10−5 7.9979 10−5 5.0401 10−6 1.3671 10−4

θ = 1 α = 1.25 k = 1.5 θ = 1 α = 2 k = 5

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 0.2584 2.4364 10−3 1.2763 10−2 6.4092 10−2 5.6487 10−4 5.6327 10−4

n=50 0.0318 7.2359 10−4 4.8501 10−4 1.2762 10−2 2.7312 10−4 1.7385 10−4

n=100 0.0110 2.7785 10−4 1.065110−3 9.8506 10−3 4.3718 10−5 3.2146 10−3

θ = 1.5 α = 1 k = 1.25 θ = 2 α = 3 k = 1.25

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 0.2546 5.7258 10−4 1.093510−2 0.2366 2.05867 10−3 1.6487 10−2

n=50 0.1581 1.3610 10−4 6.8303 10−3 0.0323 1.5698 10−3 6.2404 10−3

n=100 0.0401 5.3779 10−5 9.0554 10−5 0.0789 3.7259 10−5 1.9747 10−3

θ = 4 α = 3 k = 3 θ = 1.5 α = 5 k = 7

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 2.0969 8.8911 10−5 0.2603 0.1832 6.3244 10−4 0.1130

n=50 0.5537 5.0155 10−5 0.2510 4.5248 10−2 1.8568 10−4 3.7919 10−3

n=100 0.3670 1.1140 10−5 2.0932 10−2 2.4916 10−3 4.7630 10−5 5.3214 10−2

θ = 0.5 α = 0.3 k = 0.9 θ = 1 α = 0.8 k = 0.5

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 0.1050 4.4654 10−3 9.8114 10−5 0.0388 8.0237 10−3 2.2877 10−4

n=50 0.0118 1.5552 10−3 1.8561 10−5 0.0209 4.6262 10−3 3.3000 10−5

n=100 0.0027 3.4546 10−4 2.1128 10−5 0.0027 1.4167 10−3 8.3529 10−5

θ = 0.75 α = 0.5 k = 1.25 θ = 3 α = 1.5 k = 2

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 0.0240 1.2623 10−3 2.2451 10−4 2.3788 9.3359 10−5 0.01964

n=50 0.0254 6.6638 10−4 1.4017 10−3 0.8301 4.3801 10−5 5.3191 10−3

n=100 0.0069 1.6307 10−4 2.9504 10−4 0.2535 1.0024 10−5 5.9578 10−4

Table 1 shows how the four biases vary with respect to n. Table 2 shows
how the mean squared errors vary with respect to n. The mean squared
errors for each parameter decrease to zero as n→ ∞. These numerical
results coincide with the established theoretical results.
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4 Application to real data sets

In this section, we give the applicability of LP distribution by considering
three different data sets used by different researchers: Application to wait-
ing times in a queue, Wheaton River Data, Application to bladder cancer
patients, and compare them with different distribution, of which Lindley ex-
ponential, Lindley Weibull, Lindley, Power Lindley (see, Cooray, 2006), ex-
ponential Pareto, Pareto and gamma Lindley distributions. In each case, the
parameters are estimated by maximum likelihood, as described in Section
6, using the R software.

In order to compare the above distributions with Lindley Pareto distribu-
tion, we consider criteria like −2l , AIC (Akaike information criterion), AICC
(corrected Akaike information criterion), BIC (Bayesian information criterion)
and HQIC (Hannan-Quinn information criterion) for the data set. The model
selection is carried out using the following statistics:

AIC =−2LL+2p,CAIC =−2LL+
2pn

n− p−1

BIC =−2LL+ p log(n) and HQIC =−2LL+2p log(log(n))

For instance, it is well known that the AIC statistics favours models with
large number of parameters in contrast to the Bayesian Information Crite-
rion (BIC), which tends to present a better balance between the (negative)
likelihood function and the number of parameters or model complexity.

Remark 3. Kolmogorov Smirnov test cannot be used in this case because
the parameters are being estimated.

4.1 Illustration 1: Application to waiting times in a queue

We consider 100 observations on waiting time as a real example that hap-
pens before the customer received service in a bank. The data set repre-
sents the waiting time (mins) of one hundred (100) bank customers before
service is being rendered. This data has previously been used by Ghitany et
al. (2008a). Table 3 provides the estimated values of the model parameters.
The information criterion values are given in Table 4.
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Table 3. Parameter estimates for 100 bank customers

Distribution Parameters
LP θ̂ = 0.1586 α̂ = 0.801 k̂ = 1.0048
LE θ̂ = 2.6501 λ̂ = 0.152
EP k̂ = 1.5137 α̂ = 0.801 λ̂ = 0.0183
GaL θ̂ = 0.2024 β̂ = 217.72
L θ̂ = 0.187
P α̂ = 0.801 k̂ = 0.4367
LW θ̂ = 0.0003 a = 1.0096 b = 0.0014
PL θ̂ = 0.153 α̂ = 1.0832

Table 4. The -LL, AIC, CAIC, BIC, HQIC for 100 bank customers
Distribution -LL AIC CAIC BIC HQIC
LP 308.9731 621.9462 622.0874 627.6346 623.9423
LE 317.005 638.01 638.1337 643.2203 640.1187
EP 312.1154 628.2308 628.372 633.9192 630.2269
GaL 317.3066 638.6132 638.7369 643.8235 640.7219
L 319.00 640.00 640.0408 642.6052 641.0544
P 381.7586 765.5172 765.5637 767.9945 766.5153
LW 317.3267 640.6534 640.9034 648.4689 643.8165
PL 318.3186 640.6372 641.9156 645.8475 642.7459

4.2 Illustration 2: Wheaton River Data

In this subsection we illustrate the flexibility of the new distribution to model
both heavy tailed and approximately symmetric data, which correspond to
the exceedance of food peaks (in m3/s) of the Wheaton river near Carcross
in Yukon Territory (Canada) of 72 exceedance measures for the years 1958-
1984. These data were analyzed by many authors (see for instance, Akin-
sete et al., 2008). We have chosen the same data in order to compare our
results with other models proposed by these authors. Table 5 provides the
estimated values. The -LL, AIC, CAIC, BIC and HQIC statistics for each
model is provided in Table 6. It can be seen that our proposed distribution
leads to a better fit than any of alternative approaches.
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Figure 1: Estimated densities of the models for data set 1

Table 5. Parameter estimates for Wheaton river flood data
Distribution Parameters
LP θ̂ = 0.1320 α̂ = 0.1001 k̂ = 0.5921
LE θ̂ = 1.1210 β̂ = 0.0622
EP k̂ = 0.9320 λ̂ = 0.0115 α̂ = 0.1001
GaL θ̂ = 0.0821 β̂ = 0.0760
L θ̂ = 0.1531
P α̂ = 0.1002 k̂ = 0.2405
WL θ̂ = 0.0035 a = 0.5922 b = 0.0002
PL θ̂ = 0.3386 α̂ = 0.7001

Table 6. The statistics -LL, AIC, CAIC, BIC, HQIC for Wheaton river flood
data

Distribution -LL AIC CAIC BIC HQIC
LP 249.3267 502.6534 502.7502 508.3418 504.9645
LE 251.5364 507.0728 507.1688 512.7769 509.3904
EP 249.3288 502.6576 502.7544 508.346 504.9687
GaL 252.128 508.256 508.352 513.9601 510.5736
L 264.2118 530.4236 530.4553 533.2756 531.5824
P 303.9486 609.8972 609.9292 612.7414 611.0528
LW 252.3039 510.6078 510.8013 519.1639 514.0842
PL 252.2218 508.4436 508.5396 514.1477 510.7612
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Figure 2: Estimated densities of the models for data set 2

4.3 Illustration 3: Application to bladder cancer patients

We consider a non-controlled data set corresponding to the remission times
(in months) of a random sample of (128) bladder cancer patients. This can-
cer is a disease in which aberrant cells increase without control in the blad-
der and its application in survival analysis has been identified. The data set
was given by Lee and Wang (2003). The results for these data are presented
in Tables 7 and 8.
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Table 7. Parameter estimates for bladder cancer data
Distribution Parameters
LP θ̂ = 0.1229 α̂ = 0.0801 k̂ = 0.6243
LE θ̂ = 1.2292 λ̂ = 0.0962
EP k̂ = 0.9379 λ̂ = 0.0128 α̂ = 0.08
GaL θ̂ = 0.1167 β̂ = 0.1045
L θ̂ = 0.1961
P α̂ = 0.0801 k̂ = 0.2458
WL θ̂ = 0.0027 a = 0.6316 b = 0.0002
PL θ̂ = 0.3855 α̂ = 0.7443

Table 8. The statistics -LL, AIC, CAIC, BIC, HQIC for bladder cancer data
Distribution -LL AIC CAIC BIC HQIC
LP 398.0184 800.0368 800.1336 805.7252 802.3479
LE 401.78 807.564 807.656 813.2641 809.8776
EP 400.3128 804.6256 804.7224 810.314 806.9367
GaL 402.9596 809.9192 810.0152 815.6233 812.2368
L 419.52 841.040 841.0717 843.892 842.1988
P 501.1292 1004.258 1004.29 1007.103 1005.414
WL 401.196 808.392 808.5855 816.9481 811.8684
PL 402.2373 808.4746 808.5706 814.1787 810.7922

According to Tables 4, 6, 8 and Figures 1, 2, 3, we can observe that
LP distribution provide smallest -LL, AIC, CAIC, BIC and HQIC values as
compared to Lindley exponential, Lindley Weibull, Lindley, Power Lindley,
exponential Pareto, Pareto and gamma Lindley distributions, and hence best
fits the data among all the models considered.

5 Conclusion

This work proposes more properties and simulations of the Lindley Pareto
distribution generated by Lindley distribution. We investigate several of its
structural properties such as an expansion for the density function and ex-
plicit expressions for the quantile function, maximum likelihood estimators of
the parameters, mean deviation, and entropy. A simulation study is carried
out to examine the bias and mean square error of the maximum likelihood
estimators of the parameters. Several applications of the model to a real
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Figure 3: Estimated densities of the models for data set 3

data set are presented finally and compared with the fit attained by some
other well-known one, two, three and four parameters. The adequacy of
fits was assessed in terms AIC values, BIC values and density plots. We
can show that the Lindley Pareto distribution can be used quite effectively in
analyzing real lifetime data and actuarial science.
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APPENDIX

(1) Power Lindley distribution

f1(x)= αθ2
(θ+1) (1+xα )xα−1 exp(−θxα )

(2)Lindley Weibull Distribution

f5(x)= αθ2
b(θ+1)(

x
b)

α−1
(

1+( x
b)

α
)

exp
(
−θ( x

b)
α
)

(3) Lindley Distribution

f3(x)= θ2
1+θ

(1+x)exp(−θx)

(4) Lindley Exponential distribution

f4(x)=
λθ2 exp(−λx)

(θ+1) (1−exp(−λx))θ−1(1−ln(1−exp(−λx)))

(5) Pareto Distribution

f6(x)=k αk

xk+1

(6) Exponential Pareto Distribution

f6(x)= λα

k (
x
k )

α−1
e
−λ( x

k )
α

(7) Gamma Lindley distribution

f2(x)=
θ 2((β+βθ−θ)x+1)e−θx

β (1+θ)
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Figure 4: PDF plot for various values of parameters

Figure 5: PDF plot for various values of parameters
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Figure 6: CDF plot for various values of parameters


