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Abstract 
We study aggregation - or sample frequencies - of time series, e.g. aggregation from weekly to 
monthly or quarterly time series. Aggregation usually gives shorter time series but spurious 
phenomena, in e.g. daily observations, can on the other hand be avoided. An important issue is the 
effect of aggregation on the adjustment coefficient in cointegrated systems. We study only first 
order vector autoregressive processes for n dimensional time series Xt, and we illustrate the theory 
by a two dimensional and a four dimensional model for prices of various grades of gasoline. 
 
 

1 Introduction 
Assume that a multivariate process Xt for integer t is observed only every k’th point in time; that is 
consider the time series Xks, for integer s. Intuitively it is clear, that the dependence in the series is 
weakened by aggregation, as e.g. autocorrelations over lag k are usually smaller than first order 
autocorrelations. Moreover the aggregated series are usually shorter as they contain a smaller 
number of observations than the basic high frequency series. A smaller number of observations and 
a less distinct autocorrelation structure imply less significantly estimated parameters and weaker 
tests. On the other hand spurious phenomena in high frequency series, which are of no practical 
interest, are avoided by the aggregation. 
 
The problems arising when multivariate time series are aggregated are studied by many authors, see 
e.g. Lütkepohl(1987) and Marcellino(1999). Assuming a known model for the time series observed 
at the highest frequency makes it possible to derive an explicit description of the model for the 
aggregated series. The most general result is given by Marcellino(1999), covering situations with 
much more general models than those considered in the present paper. His expression of the model 
for the aggregated process is, however, not very useful in practical situations as it is rather involved. 
In section 2 we present an explicit formula in the simple situation of vector autoregressive models 
of order one and present a simple example. This model is extended in section 3 to the similar 
cointegration models for VAR(1) processes. Even though this model is very simple it is often 
economically relevant as quite a few prices and price ratios will follow it. In section 4 the two 
dimensional case is considered in details and an example is presented. In section 5 this example is 
extended to a four dimensional model. The practical examples consider data for price series of 
various grades of gasoline, for which thousands of daily observations are aggregated to weekly, 
monthly and quarterly series. 
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2 Aggregation in a vector autoregressive model of order one 
In this section we shortly consider the theory for aggregation in vector autoregressive models of 
order one. Following the notation of Marcellino(1999) consider a vector autoregressive model of 
order one: 
 
G(L)Xt = (1 – G1L)Xt = Et , 
 
where Et denotes a white noise stochastic error term and G(L) is the autoregressive polynomial. 
 
Pre multiplication by the lag polynomial  
 
B(L) = (I + G1L + G1

2L2 + .. + G1
k-1Lk-1) 

 
gives  
 
C(L) = B(L)G(L) = (I – G1

kLk) 
 
and hence we have the expression 
 
(1 – G1

kLk)Xt = B(L)Et. 
 
If we consider the series X*

t which is point-in-time aggregated from the series Xt, that is the series 
Xt sampled as every k'th observation, we obtain the expression: 
 
 (1 – G1

kL)X*
t = E*

t . 
 
Here E*

t  is a white noise series as it equals B(L)Et, which is a moving average of order k -1 
sampled every k’th time unit. It is possible to extend the first order autoregressive model by moving 
average terms, but for a more precise discussion of the moving average terms see Marcellino(1999). 
 
First we assume that the singular value decomposition of G1 exist, that is 
 
G1 = AΛA-1 or Λ = A-1 G1A . 
 
Here the matrix Λ is diagonal having the eigenvalues of G1 in the diagonal and the matrix A 
consists of the eigenvectors of G1 that is the roots of the determinant equation taken in the same 
order as the eigenvalues appearing in the diagonal of the matrix Λ . This decomposition could 
involve complex numbers and it does not necessarily exist as seen in section 3.2.  
 
Notice that the characteristic equation for G1 is related to the determinant equation for the lambda 
polynomial G(λ) as 
 
det(G1 - λI) = det(G(λ)) (-λ)-n . 
 
The matrix G1

k
 is for any power k then decomposed as G1

k = AΛkA-1. This means that the 
eigenvalues of G1

k simply equal the eigenvalues of G1 raised to the power k. 
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Of course this decomposition is not generally valid for roots of multiplicity greater than one, but it 
follows from a mathematical result, e.g. Dhrymes (1984) page 47, that every square matrix is very 
close to matrix with distinct characteristic roots and hence very close to a matrix for which it is 
valid. If the matrix G1 is estimated as a stationary autoregressive model, this decomposition will be 
valid. 
 

3 Cointegration in a first order VAR model 
In a cointegration model we consider the situation where the matrix G1 has one or more unit roots. 
Following the well known theory of cointegration, see e.g. Johansen(1995), for an n dimensional 
series Xt systems we write 
 
ΔXt = (G1 - I)Xt-1 + Et = ΠXt-1 + Et . 
 
When the rank of the n × n matrix Π = - G(1) is denoted r, the matrix Π admits the rank 
factorization 
 
Π = αβT , 
 
where α and β are n × r matrices of full rank r. 
 
As the autoregressive polynomial for the aggregated process is 
   
C(L) = (I – G1

kL) = B(L)G(L) 
 
the similar rank factorization of the aggregated series is  
 
 Π* = α*β*T = - C(1) = - B(1)G(1) = B(1)Π = B(1)αβT . 
 
Hence the beta part of the factorization is independent of the aggregation, The alpha part - the 
adjustment factors - of the model for the aggregated series simply equals B(1) times the alpha part 
of the original model. 
 
α* = B(1)α 
 
for B(1) given as above (Marcellino(1999)). 
 
3.1 The structure of B(1) 
Assume first that a singular value decomposition of G1 exists 
 
G1 = AΛA-1 or Λ = A-1G1A 
 
In which case the matrix Λ is diagonal having the eigenvalues of G1 in the diagonal and the matrix 
A is composed by the eigenvectors of G1 in the right order. As 
 
Π = - G(1) = G1 - I 
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the n × n matrices Π, G(1) and G1 all have the same eigenvectors and the corresponding 
eigenvalues for Π and G(1) are the eigenvalues of G1 minus one. 
 
Using this, we get 

B(1) = I + G1 + G1
2 + .. + G1

k-1 = 
-1

-1

0

k
i

i=
∑A Λ A  = A

1

1

0

0 . . 0
0 . . . .
. . . . .
. . . . 0
0 . . 0

i

k

i

i
n

λ

λ

−

=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∑ A-1 = 

A

1

1

1 0 . . 0
1

0 . . . .
. . . . .
. . . . 0

10 . . 0
1

k

k
n

n

λ
λ

λ
λ

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ −⎝ ⎠

A-1 

 
In this relation the λ’s denote the eigenvalues of the matrix G1. If an eigenvalue λ is one, the 
corresponding diagonal element of course equals k as a sum of k ones. In section 4 we in some 
detail consider how the eigenvalues and the matrix A are related to the matrices α and β. 
 
However, as is well known from standard matrix theory, this decomposition is not generally valid. 
In practical situations the dimension of the time series is usually very low, leaving no “space” for 
the special possibilities in which the validity is violated, but for completeness these situations are to 
some extent discussed in the next section. 
 
3.2 Special situations 
a)Complex eigenvalues 
One situation is the possibility of complex eigenvalues. This situation could only happen for 
systems of dimension of at least three, as this requires at least one cointegrating relation and a pair 
of complex conjugate roots. As the complex roots fall in pairs of complex conjugates and hence the 
roots raised to any power also give pairs of complex conjugates, this possibility does not affect the 
general formula. 
 
Example 
Consider the three dimensional VAR(1) model with 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

5.05.00
5.05.00

001

1G   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=Π

5.05.00
5.05.00

000
 

 
The matrices A and Λ in the decomposition G1 = A-1ΛA are 
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1 0 0
0 1 1
0 i i

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

A  

 

1

1 0 0
0 0.5 0.5
0 0.5 0.5

i
i

−

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

A  

 

Λ = 
1 0 0
0 0.5 0.5 0
0 0 0.5 0.5

i
i

⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 
 
We find 
 

0 0
0.5 0.5
0.5 0.5

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

α        
0 0
1 0
0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

β  

 
For k = 3, that is aggregation of monthly data to quarterly data, we have 

 
3 0 0

(1) 0 1.5 1
0 1 1.5

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

B  

And hence  
 

0 0
* ( 3) 1.25 0.25

0.25 1.25
k

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥− −⎣ ⎦

α  

 
Similarly, for k = 12 we get  
 

12 0 0
(1) 0 1.015625 1.015625

0 1.015625 1.015625

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

B  

      
 
And hence 
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0 0
* ( 12) 1.015625 0

0 1.015625
k

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥−⎣ ⎦

α  

 
The main point in this example is that the adjustment for the disaggregated series and for the series 
aggregated to lag k = 3 is done in both series x2 and x3, while it for aggregation period k = 12 is 
done within the series x2 and x3 separately. It is seen that in a situation where the complex root 
raised to some power is real, that is the root is of the form 
 

2πa ±
k  

 
for integer k, the adjustment matrix α* could reduce to a matrix containing many zeroes.  
 
b)Jordan 
Another possibility arises if some characteristic roots of the matrix G1 are equal. In this situation 
factorizations like the ones above are not generally valid. 
 
The situation of characteristic roots of the matrix Π different from zero having multiplicity greater 
than one is hardly of practical relevance, as every matrix is approximated arbitrarily close to a 
matrix with different characteristic roots, see Dhrymes(1984). The case of the characteristic root 
one for G1 (zero for Π ) having larger root multiplicity than the cointegration rank could however 
happen. For this reason the following remarks are necessary. 
 
In this case the matrix G1 admits decomposition into a Jordan form  
 
G1 = AJA-1 
 
in which case the Jordan matrix has the form of a block diagonal matrix with so called Jordan 
blocks along the main diagonal. A Jordan block is a b × b quadratic matrix of the form 
 

1 . . 0
0 . . . .
. . . . .
. . . 1
0 . . 0

J

λ

λ
λ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 

 
in which the number λ in the diagonal is an eigenvalue of the matrix G1 and the superdiagonal 
consists of ones, all other entries being zero. The eigenvalues could form pairs of complex 
conjugates and the matrix A could similarly have complex entries. 
 
Following the notation in section 2 the matrix B(1) is given by 
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B(1) = I + G1 + G1
2 + .. + G1

k-1 = 
-1

-1

0

k
i

i

A J A
=
∑  

 
The i’th power of a b × b Jordan block is  
 

1

1

. .

0 . . . . .

. . . . .

0 . . . . .
. . . . .
0 . 0 . 0

i i i a i b

i i a

i

i

i i
i

a b

i
a

i

J

λ λ λ λ

λ

λ
λ

− − −

−

−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎟⎜ ⎟ ⎟⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎛ ⎞ ⎟⎜ ⎟ ⎟⎜⎜= ⎟ ⎟⎜⎜ ⎟ ⎟⎜ ⎟⎜ ⎟⎜ ⎝ ⎠ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

 

That is an upper triangular matrix having bands of the form i ai
a
λ −

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 in the a’th superdiagonal. Here 

the binomial is to be interpreted as zero for a > i. 
 
For a Jordan block we see that the sum 
 
 

1 1

0 0

1 . . 0
0 . . . .
. . . . .
. . . 1
0 . . 0

k k
i

i i

i

J

λ

λ
λ

− −

= =

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑  

 
is a band matrix of terms of the form   
 

1 1

0

k k a
i a i

i a i

i i a
a a
λ λ

− − −
−

= =

⎛ ⎞ ⎛ ⎞+⎟ ⎟⎜ ⎜⎟ = ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∑ ∑  

 
in the a’th superdiagonal, which gives a polynomial in λ of order k – a and a polynomial in the 
aggregation period k of order a.  
 
For a unit root this term equals 
 

 
1 1

0

k k a

i a i

i i a
a a

− − −

= =

⎛ ⎞ ⎛ ⎞+⎟ ⎟⎜ ⎜⎟= ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∑ ∑  

 
This is a polynomial in k of order a+1. 
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Example 1 
 
Consider the two dimensional VAR(1) model 
 

1 1

1 2

1
0

t t t

t t t

x x
y y

ελ
ελ

−

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
This is a stationary AR(1) model  
 
yt = λyt-1 + ε2t 
 
 
for the series yt when |λ| < 1 and an AR(1) with yt-1, the lagged value of the first AR(1) series, added 
of the form 
 
xt = yt-1 + λxt-1 + ε1t 
 
for the series xt. 
 
 
For this process the aggregated model is 
 
 

* * *1
1 1

* * *
1 2

( 1)
MA-terms

0

k k
t t t t

k
t t t

x xk
y y

ελ λ
ελ

−
−

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞−
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
and nothing particular happens. 
 
Example 2 
 
As a more interesting example we consider the situation λ = 1. In this case the model becomes 
 
xt = xt-1 + yt-1 + ε1t or Δxt = yt-1 + ε1t 
 
yt = yt-1 + ε2t or Δyt = ε2t 
 
 
The series of first differences of the series xt then equals a random walk yt and we then see that the 
series xt is in fact I(2). A situation with such different order of differencing is hardly to appear in 
practical modelling. This model has no parameters to be estimated.  
 
For this model  
 

0 0
and

1 1
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α β  
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and  
 

B(1) = 
1

0

( 1)1 1
2

0 1 0

ik

i

k kk

k

−

=

+⎛ ⎞⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑  

 
and hence the adjustment matrix is a polynomial of degree two in k. 
 

*
( 1) ( 1)0

2 2
10

k k k kk

k k

+ +⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

α  

 
 

3.3 Eigenvalues of Π for r = 1 
As the (n × r) matrix β is of rank r the n - r independent solutions to the equation βTz = 0 forms n - r 
eigenvectors of Π corresponding to the eigenvalue zero. If all other roots of the characteristic 
polynomial of Π are different, i.e. have root multiplicity one, the matrix Π admits a diagonalization. 
 
If  r = 1 the only solution to the eigenvalue problem except for the unit roots is the eigenvector α of 
dimension (n × 1) and the corresponding eigenvalue of the matrix Π is the number λ = βTα (of 
dimension (1 × 1)) as we trivially see 
 
Πα = αβTα . 
 
The corresponding eigenvalue of G1 is λ = 1 + βTα . If r = 1 the (n × n) matrix A has the form 
 
A = ( The n -1 eigenvectors for 1 | α ) 
 
in which the bar | means concatenation.  
 
We then have 
 

0 . . 0
0 . . . .
. . . . .
. . . 0

10 . . 0
1

k

k

k
λ
λ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ −⎝ ⎠

* -1α = A A α

 
 
As α is the last column of the matrix A we have  
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0
.
.
0
1

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

-1A α  

 
Hence  
 

0 . . 0
0

0 . . . .
.

. . . . . 1.

. . . 0 1
0

10 . . 0 1
1

k

k

k

k
*α = A αλ

λ

λ
λ

⎛ ⎞⎟⎜ ⎛ ⎞⎟⎜ ⎟ ⎟⎜⎜ ⎟ ⎟⎜⎜ ⎟ ⎟⎜⎜ ⎟ ⎟⎜⎜ ⎟ ⎟⎜⎜ ⎟ ⎟ −⎟⎜⎜ ⎟⎟⎜ ⎟⎜ =⎟ ⎟⎜⎜ ⎟ ⎟⎜ −⎜ ⎟ ⎟⎜⎜ ⎟ ⎟⎜⎜ ⎟ ⎟⎜⎜ ⎟ ⎟− ⎜⎟⎜ ⎟⎟⎜ ⎟⎜ ⎝ ⎠⎟⎜ ⎟⎟⎜ −⎝ ⎠

 

 
as α is the last column of the matrix A. 

Note that the ratio 1
1

kλ
λ

−
−

 is an exponentially increasing function of the aggregation period k as the 

eigenvalue λ = 1 + βTα of G1 is numerically greater than one. 
 
 
3.4 Eigenvalues of Π for r > 1  
By diagonalisation of the (r × r) matrix βTα there exists a matrix F (perhaps complex) and a 
diagonal matrix M such that 
 

F-1βTαF = M = 

1 0 . 0
0 . . .
. . . 0
0 . 0 r

μ

μ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
(perhaps of  Jordan form in the special situations of root multiplicity larger than the eigenspace 
multiplicity) 
The diagonal elements of M are nonzero as the matrix βTα is of full rank.  
 
We then see that letting 
 
α1 = αF  and  β1 = β F-1T  
 
defines another parameterization of 
 
Π = α1β1

T = αF(β F-1T)T. 
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As α1β1
Tα1 = α1M, we see that the non-zero eigenvalues of the matrix α1β1

T are the diagonal 
elements in M = β1

Tα1 with the columns of α1 as the corresponding eigenvectors. 
 
We further see that the diagonalisation of G1 = Π + I is   
 
G1 = A(I + D)A-1 
 
where the matrix D is of the form 
 

D =  
1

0 0 . . . 0
0 . . . . .
. . 0 . . .
. . . . .
. . . . . 0
0 0 . . 0 r

μ

μ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

and  

A = (n - r eigenvectors of Π for zero | α1 ) 
 
such that 
 

A-1 α1 = n r

r

−⎛ ⎞
⎜ ⎟
⎝ ⎠

0
I

. 

 

( )
1

1 11

0 1

. 0 0 . 0
. . . . . .
0 . 0 . 0

(1 ) 1
0 . 0 0 0(1)

. . . 0 . 0
(1 ) 1

0 . 0 0 0

kk
i

i

k
r

r

k

k
μ
μ

μ
μ

−
− −

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

+ −⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+ −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑B A I + D A A A  

 
 
This means that the α-matrix for the aggregated series corresponding to β1 is 
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α1*= ( )
1

1 1
1 1

0 1

0 . 0
. . .
0 . 0

(1 ) 1
0 0(1)

0 . 0
(1 ) 1

0 0

kk
i

i

k
r

r

μ
μ

μ
μ

−
−

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

+ −⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+ −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑B α A I + D A α A  

 
 

=  

1

1

(1 ) 1
0 0

0 . 0
(1 ) 1

0 0

k

k
r

r

μ
μ

μ
μ

⎛ ⎞+ −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

+ −⎜ ⎟
⎜ ⎟
⎝ ⎠

1α  

 
We have 
 
Π* = α1* β1

T = α1* (β F-1T)T = α1* F-1 βT 
 
and then as α1 = αF we arrive at the main result for the α-matrix of the aggregated series 
corresponding to the original β 
 

1

1

(1 ) 1
0 0

* 0 . 0
(1 ) 1

0 0

k

k
r

r

μ
μ

μ
μ

⎛ ⎞+ −
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟

+ −⎜ ⎟
⎜ ⎟
⎝ ⎠

α α  

 
 
This has the form of α multiplied by a diagonal matrix, which for one thing implies that eventual 
zeroes in the matrix α are also present in the matrix α for the aggregated series. 
 

4 Cointegration in the two dimensional VAR model of order one 
In this section we present in detail the parameter values for a two dimensional time series. 
 
In case n = 2 and with one cointegration vector present, all possible parameterizations are of the 
form 
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1
andα β

α
γ β

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= ⎟ = ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜−⎝ ⎠ ⎝ ⎠
. 

 
The matrix Π = - G(1) has the form 
 

Π = ( )1Tαβ
α α αβ

β
γ γ γβ

⎛ ⎞ ⎛ ⎞−⎟ ⎟⎜ ⎜= ⎟ − = ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ −⎝ ⎠ ⎝ ⎠
 

 
and 
 

G(L) = 
1 0 1
0 1 1

L
α αβ

γ γβ

⎛ ⎞ ⎛ ⎞+ −⎟ ⎟⎜ ⎜⎟ − ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ −⎝ ⎠ ⎝ ⎠
 . 

 
The Error Correction Model form for this model is 
 

( )1 1 1 1 1 1 1

2 2 1 2 2 1 2

1t t t t t

t t t t t

x x x
x x x

ε εα α αβ
β

ε εγ γ γβ
− −

− −

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= − + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
In this situation the hypothesis H0 : β = 1 means that the series of differences x1t – x2t is stationary. 
The hypothesis H0 : γ = 0 means that the series x2t is weakly exogenous. If α < 0 then if x1t-1 is 
larger than equilibrium then we expect Δ x1t < 0 such that we observe a movement back toward the 
long run relation. Usually we normalise the β-vector with respect to the variable that we believe do 
the adjustment if we are out of equilibrium (here x1t). 
 
The diagonalisation of Π is given by 
 

10 0
1 0 1

Π
β α β α

γ α βγ γ

−⎛ ⎞⎛ ⎞⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜= ⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜−⎝ ⎠⎝ ⎠⎝ ⎠
 

 
as the non zero eigenvalue of the matrix Π is 0 and  
 

( )1Tβ α
α

β
γ

⎛ ⎞⎟⎜= − ⎟ =⎜ ⎟⎜ ⎟⎜⎝ ⎠
 α – βγ.  

and we assume α – βγ ≠ 0. The corresponding eigenvectors are 
 

and
1
β α

γ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
 . 

 
As this is point in time aggregated for aggregation period k, we obtain the autoregressive 
polynomial  
 

C(L) =
1 0 1
0 1 1

k

L
α αβ

γ γβ

⎛ ⎞ ⎛ ⎞+ −⎟ ⎟⎜ ⎜⎟ − ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ −⎝ ⎠ ⎝ ⎠
 . 
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Using the diagonalisation of G1 we see that the coefficient matrix in C(L) equals 
 

11 0
1 0 (1 ) 1k

β α β α
γ α βγ γ

−⎛ ⎞⎛ ⎞⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜+ −⎝ ⎠⎝ ⎠⎝ ⎠
 

 

 = 
(1 ) (1 )1

(1 ) (1 )

k k

k k

βγ α α βγ αβ αβ α βγ
βγ α γ γ α βγ α βγ α βγ

⎛ ⎞− + − − + + −
⎜ ⎟− − + − − + + −⎝ ⎠

 

 
The polynomial C(L) admits the factorisation 
 
C(L) = B(L)G(L), 
 
where 
 

2 1
2 11 0 1 1 1

(L) = ...
0 1 1 1 1

k
kL L LB

α αβ α αβ α αβ
γ γβ γ γβ γ γβ

−

−
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + − + −⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ + ⎟ + ⎟ + + ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
For the polynomial B(L) we then obtain 
 

2 11 0 1 1 1
(1) = ...

0 1 1 1 1

k

B
α αβ α αβ α αβ

γ γβ γ γβ γ γβ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + − + −⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ + ⎟+ ⎟ + + ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. 

 
As the two eigenvalues of G1 are λ1 = 1 and λ2 = 1 + α - βγ we by application of the general formula 
arrive at 

10
(1) = 1 (1 )1 10

k

k
B

β α β α
α βγ

γ γ
α βγ

−⎛ ⎞⎟⎜⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎟ ⎟⎜ ⎜⎜ ⎟⎟ ⎟⎜ ⎜− + −⎜ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜⎜ ⎜⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎟⎜ − +⎝ ⎠

 

 

 = 

1 (1 ) 1 (1 )
1

1 (1 )(1 )

k k

k
k

k k

k k

α βγ α βγβγ α αβ αβ
α βγ α βγ

βγ α α βγγ γ α βγ α βγ
α βγ

⎛ ⎞− + − − + −
− − +⎜ ⎟− + − +⎜ ⎟

⎜ ⎟− − + −
− + − − +⎜ ⎟

− +⎝ ⎠

 

 
The matrix (vector) α* for the aggregated process is 
 

1
*

0
(1) 1 (1 )1 10

k

k
α B α

β α β α α
α βγ

γ γ γ
α βγ

−⎛ ⎞⎟⎜⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎜ ⎟= = ⎟ ⎟ ⎟⎜ ⎜ ⎜− + −⎜ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜⎜ ⎜ ⎜⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎟⎜ − +⎝ ⎠
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0

0
1 (1 )1 10

k

k
β α

α βγ
γ

α βγ

⎛ ⎞⎟⎜⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎟ ⎟⎜ ⎜⎜ ⎟= ⎟ ⎟⎜ ⎜− + −⎜ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜⎜ ⎜⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎟⎜ − +⎝ ⎠

 

 

 1 (1 )k αα βγ
γα βγ

⎛ ⎞− + − ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜− + ⎝ ⎠
 

 
 
For the coefficient of adjustment it is seen that aggregation over k observations multiplies the α-
matrix by the factor 
 
1 (1 )kα βγ

α βγ
− + −

−
 . 

 
If γ = 0, the α-matrix simplifies to 
 
 
(1 ) 1

0

kα⎛ ⎞+ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 . 

 
4.1 An empirical example of cointegration in a two dimensional VAR model of order one 
This example considers the log transformed price series of two grades of gasoline. Both of these are 
New York wholesale gasoline prices as quoted by Dow Jones for the period 2. January 1995 to 30. 
December 2005. Gas1 is (GSUNLRG) regular non oxygenated gasoline while GAS2 (GSOXPRE) 
is premium oxygenated gasoline - oxygenated meaning that ethanol has been added. Both are 
quoted in US cents per gallon. Later the data set is extended by GAS3 (GASSUPRE) which is 
unleaded premium, non-oxygenated gasoline and GAS4 (GASUREG) which is unleaded regular 
oxygenated gasoline. The source of the data is Data Stream. 
 
The daily and the monthly series are shown in figures A.1 and A.2 in the appendix. Both series are 
obviously integrated of order one and therefore it is relevant to study the cointegration behaviour of 
the system.. Figure A.3 and A.4 presents the log transformed relative price difference between the 
two price series. These graphs could be seen as an indication that the relative price is in fact 
stationary. In the following we follow this idea.  
 
From the leaflet “A Primer on Gasoline Prices” by the US Energy Information Administration it is 
stated that “Price levels vary by grade, but the price differential between grades is generally 
constant” and this provides us with the hypothesis that the difference of the log prices is stationary. 
This is the hypothesis of a cointegration rank of one with coefficients ± 1 in the β-matrix. 
 
The hypothesis of a cointegration rank of one is accepted at the 5% level for the daily data even 
though the series is very long as seen in Table 1. The trace test has the value 1.77 for cointegration 
rank r = 1which is below the 5% critical value of 3.84. 
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Table 1 Trace test for the daily series 
 
P-r r λ Trace Frac. P-val 

2 0 0.004 117.9 15.41 0.00 

1 1 0.001 1.8 3.84 0.18 

 
Normalising using the notation applied in the section on cointegration in a two dimensional system 
 

1
andα β

α
γ β

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= ⎟ = ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜−⎝ ⎠ ⎝ ⎠
 

 
gives the estimates α =-0.04909, β = 0.98607 and γ =  0.03027 for the daily series. 
 
Table 2 presents the estimated values of β, α and γ for daily, weekly, monthly and quarterly data. 
The estimation is performed by Proc Varmax in SAS using maximum likelihood estimation. In 
accordance with the theory the value of the parameter β is almost independent of the aggregation 
lag. The hypothesis H0:  β = 1 is accepted for all levels of aggregation. The numerical value of α is 
steadily increasing keeping the same negative sign.  
 
Table 2 Parameter estimates and p-values for various levels of aggregation. 
 
 Number of 

observations 
β p-value  

H0:  β = 1
α γ p-value  

H0:  γ = 0  
p-value  
H0:  γ = 0
and β = 1 

Daily 2870 0.98607 0.2602 -0.04909 0.03027 0.0043 0.006 
Weekly 574 0.98765 0.4874 -0.16654 0.01515 0.7719 0.719 
Monthly 132 0.98044 0.3403  -0.66036 -0.12453 0.5926 0.601 
Quaterly 44 0.97104 0.1412 -0.67205   0.29614 0.6019 0.272 
 
 
The parameter γ is also numerically increasing, but with changing sign and in fact the hypothesis of 
γ = 0 is only rejected for the daily series. The hypothesis γ = 0 is the hypothesis of exogeneity of the 
second series - the regular grade.  
 
When the series is aggregated using each aggregation level k = 1, .., 100, the parameters estimated 
under the restrictions β = 1 and γ = 0 are presented graphically in Figures 1 and 2. Under these 
restrictions the parameter α is a function  
 
α* = (1 ) 1kα+ −  
 
of the aggregation period k. Estimating α using a linear regression of log(α* + 1) as endogenous and 
k as exogenous, as shown in Figure 2 weighted according to the actual length T/k of the aggregated 
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series as above, gives α = -0.03120. This value of α is closer to zero, than the actual estimated value 
-0.04909 for the daily data. The corresponding curve is also presented in Figure 2 giving an 
acceptable fit to the actual estimated α*. The theory is seen to apply as the linear fit in Figure 2 is 
met and the fit of the curve in Figure 1 is within the 95% confidence limits. 
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Figure 1 Estimate for α* for aggregation for k = 1, ..100. 
 

-5

-4

-3

-2

-1

0

k

0 10 20 30 40 50 60 70 80 90 100

 
Figure 2 Plot of log(α* + 1) to k for k = 1 
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5 An empirical example of cointegration in a four dimensional VAR model of 
order one 
For the four dimensional vector of prices we calculate the roots of a first order fitted autoregressive 
model for aggregation periods k = 1, .., 25. The figure shows clearly that one root should be 
considered as one, while the other roots are stationary. Also the trace tests support our conclusion of 
three cointegration vectors as seen from Table 3. 
 
Figure 3 The modulus of roots of the VAR(1) polynomial for level of aggregation k = 1, .., 25. 
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Table 3 Trace test for the daily series 
 
 

P-r r λ Trace Frac. P-val 

4 0 0.111 551.8 47.71 0.00 

3 1 0.044 215.2 29.80 0.00 

2 2 0.029 85.1 15.41 0.00 

1 3 0.001 1.8 3.84 0.184 

 
 
Hence we study a model with cointegration rank three, meaning that the matrices α and β are of 
dimension (4 ×3).  
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Again our hypothesis is that the series GAS1 is the driving series leaving the other series as 
followers. This means that we test that the log relative prices of GAS2, GAS3 and GAS4 to GAS1 
are stationary. Also our hypothesis implies that GAS1 is weakly exogenous. 
 
This leaves us with the following restriction on the β matrix when the series are taken in the order 
GAS4, GAS3, GAS2, and GAS1  
 

GAS2
GAS3
GAS4
GAS1

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

 
1 0 0
0 1 0
0 0 1
1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

β  

 
The tests for this hypothesis for various levels of aggregations are given in Table 4. 
 
Table 4 Tests for the hypothesis for the β-matrix for various levels of aggregations. 
Frequency Number of 

observations. 
H0: relative prices 
stationary (the β-matrix) 

H0: weak exogeneity 
(the α-matrix) 

Daily 2870 0.137* 0.164* 

Weekly 574 0.327* 0.654* 

Monthly 132 0.749* 0.969* 

Quarterly 44 0.852* 0.965* 

  
* P-values for Bartlett corrected test statistics, see Johansen(2000). 
 
For the α matrix we first consider the most general form – first without imposing the exogeneity 
restriction. 
 

11 12 13

21 22 23

31 32 33

41 42 43

α α α
α α α
α α α
α α α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

α  
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The α matrix is estimated using aggregation levels k=1, 2, .., 25 as presented in Figures B.1 – B.12. 
Note that the entries in the α-matrix could be estimated using ordinary least squares because of 
super consistency of the β-estimates. With the present restrictions on the β-matrix we do not even 
need this (as all the β’s are constants) and we have a system with the same set of explanatory 
variables which allows the use of OLS equation wise. The figures also present 95% confidence 
limits. 
 
The hypothesis of the price of regular non-oxygenated gasoline being the driving force is the 
hypothesis that the last row in the α-matrix consists of zeroes. 
 
These graphs indicate that the entries α41, α42 and α43 in the α-matrix, B.10 – B.12, are clearly zero 
indicating that the fourth series GSUNLRG is the driving force. This conclusion is also supported 
by the tests of the hypothesis of weak exogeneity presented in the last column of Table 4. From the 
graphs we also conclude that the entries α12 α13 and α32 could be restricted to zero.  
 
This leaves us with the α-matrix 
 

11

21 22 23

31 33

0 0

0
0 0 0

α
α α α

α
α α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 . 

 
The matrices 
 

Π = αβT = 

11 11

21 22 23 21 22 23

31 33 31 33

0 0

0
0 0 0 0

α α
α α α α α α
α α α α

−⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

 

 
and 
 
 

G1 = I + Π = 

11 11

21 22 23 21 22 23

31 33 31 33

1 0 0
1

0 1
0 0 0 1

α α
α α α α α α
α α α α

+ −⎡ ⎤
⎢ ⎥+ − − −⎢ ⎥
⎢ ⎥+ − −
⎢ ⎥
⎣ ⎦

 

 
has eigenvalues 0, α11, α22 and α33 (resp. 1, 1+α11, 1+α22 and 1+α33) and the eigenvectors written as 
columns form the matrix 
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A = 

11 33

31

11 21 21 33 31 23

31 11 22

33 22

23

1 0 0

1 1 1
( )

1 1 0

1 0 0 0

α α
α

α α α α α α
α α α

α α
α

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− +
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Using the general formulas we now see 
 

B(1) = A
1

11

0 22

33

1 0 0 0
0 (1 ) 0 0
0 0 (1 ) 0
0 0 0 (1 )

ik

i
i

i

α
α

α

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥+⎣ ⎦

∑ A-1 =  

 
 
 

A

11

11

22

22

33

33

0 0 0
(1 ) 1

0 0 0

(1 ) 1
0 0 0

(1 ) 1
0 0 0

k

k

k

k
α
α

α
α

α
α

⎡ ⎤
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥⎣ ⎦

A-1 

 
and 
 

11

11

22

22

33

33

(1 ) 1
0 0

(1 ) 1
0 0

(1 ) 1
0 0

k

k

k

B(1) α α

α
α

α
α

α
α

⎛ ⎞+ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ − ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ + − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
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=  

11

3311
21 22 23

11 33

11
31 33

11

(1 ) 1 0 0
(1 ) 1(1 ) 1

(1 ) 1

(1 ) 1
0 (1 ) 1

0 0 0

k

kk
k

k
k

α

αα
α α α

α α

α
α α

α

⎡ ⎤+ −
⎢ ⎥

+ −+ −⎢ ⎥+ −⎢ ⎥
⎢ ⎥

+ −⎢ ⎥
+ −⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
For k = 1 we obtain the original matrix α. 
 
These expressions could be used as a basis for estimating some of the α’s. For instance the value for 
α*22 the value of α22 is found by a regression of log(1 + α*22) on k as indicated in the plot where the 
regression coefficient is log(1 + α22).  These plots, see Figures B.13 – B.15 in Appendix B, for the 
entries (1,1), (2,2) and (3,3), give a reasonable fit as an indication that the entries (1,1), (2,2) and 
(3,3) are clearly nonzero. The estimated values obtained by the linear regressions are 
 
α11 ≈  - 0.02941 α22 ≈ - 0.05840 and α33 ≈ - 0.05542 
 
which are actually closer to zero than the estimated values for the (disaggregated) series of daily 
prices. 
 
The other entries (2,1), (1,3) and (3,1) could at least for a moderate order of aggregation be 
accepted as being zero. One argument in favour of this point of view is that the numerical value of 
e.g.  
 

α*21 = 11
21

11

(1 ) 1kα
α

α
+ −

  

is not, as shown on Figure B.17,  increasing towards an upper limit of the form - α21/α*11 according 
to the factor  
 

11

11

(1 ) 1kα
α

+ −
 

 
in the formula. This could be seen as an indication that α21 could be restricted to zero. The same 
comments apply for α23 and α31 as well, see Figures B.19 and B.20. 

 

In a model with these further restrictions added we have 

 

11

22

33

0 0
0 0
0 0
0 0 0

α
α

α
α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

     

and hence 
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Π =  αβT =

11 11

22 22

33 33

0 0
0 0
0 0
0 0 0 0

α α
α α

α α

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

. 

 

and 

 

G1 =

11 11

22 22

33 33

1 0 0
0 1 0
0 0 1
0 0 0 1

α α
α α

α α

+ −⎡ ⎤
⎢ ⎥+ −⎢ ⎥
⎢ ⎥+ −
⎢ ⎥
⎣ ⎦

. 

 

 

Here the eigenvalues of are obviously the diagonal elements. From the general expression we then 

see  

 

α* = B(1)α = 

11

22

33

(1 ) 1 0 0
0 (1 ) 1 0
0 0 (1 ) 1
0 0 0

k

k

k

α
α

α

⎛ ⎞+ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

  

Again the plots of log(1 + α*ii) against k with fitted straight lines are shown in Appendix B, Figures 

B.22 and B.24. From these lines the values of the parameters αii are found and the expression using 

these values are drawn on the plots of the estimated α*ii. The fit is seen to be acceptable. 

 

6 Conclusions 
In the paper cointegrating properties  in VAR(1) models are studied for various levels of 
aggregations. A simple formula for the speed of adjustment matrix is presented as a function of the 
level of aggregation. The speed of adjustment of course increases for level of aggregation. By 
applying the formula the researcher could compare the actual estimation and test results for the data 
series with the theoretical features for aggregation of the cointegrated  VAR(1) model. This gives an 
idea of the fit of the model and could give the result that the model structure is in fact consistent 
with the actual level of aggregation. 
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The two empirical examples of price series demonstrate that the theory works in practice. As they 
are of a fairly general nature this is hopefully confirmed by many other examples in the future.  
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Appendix A. The data. 
 
Figure A1: Daily data. 

 
 
 
 
Figure A2: Monthly data. 
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Figure A3: Daily data. 

Figure A4: Monthly data. 
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Appendix B: Graphs of estimated α’s from the 4-dimensional example. 
 
Figure B1: No restrictions on α. 

  
Figure B2: No restrictions on α. 

 
Figure B3: No restrictions on α. 
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Figure B4: No restrictions on α. 

 
Figure B5: No restrictions on α. 

 
Figure B6: No restrictions on α. 
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Figure B7: No restrictions on α. 

 
Figure B8: No restrictions on α. 

 
Figure B9: No restrictions on α. 
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Figure B10: No restrictions on α. 

  
Figure B11: No restrictions on α. 

 
Figure B12: No restrictions on α. 
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Figure B13: Log transform of diagonal α’s of the model with 6 zero restrictions. 

 
Figure B14: Log transform of diagonal α’s of the model with 6 zero restrictions. 

 
Figure B15: Log transform of diagonal α’s of the model with 6 zero restrictions. 
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Figure B16: α’s of the model with 6 zero restrictions. 

 
Figure B17: α’s of the model with 6 zero restrictions. 

 
Figure B18: α’s of the model with 6 zero restrictions. 
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Figure B19: α’s of the model with 6 zero restrictions. 

 
Figure B20: α’s of the model with 6 zero restrictions. 

 
Figure B21: α’s of the model with 6 zero restrictions. 
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Figure B22: Log transform of α’s of the model with 9 zero restrictions. 

 
Figure B23: Log transform of α’s of the model with 9 zero restrictions. 

 
Figure B24: Log transform of α’s of the model with 9 zero restrictions. 
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Figure B25: α’s of the model with 9 zero restrictions. 

 
Figure B26: α’s of the model with 9 zero restrictions. 

 
Figure B27: α’s of the model with 9 zero restrictions. 

 
 


