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Breaking Through the Bottlenecks Using 
Artificial Intelligence 

Julia Feldt1,2, Henning Kontny2 and Axel Wagenitz2,3 

1 – University of the West of Scotland, Paisley                   

2 – HAW Hamburg                      

3 – Fraunhofer IML Dortmund 

Purpose: Performance of Supply Chain is highly dependent on weak spots, so-called 
bottlenecks. This research paper presents the findings from the analysis of operation 
processes of a mid-sized producing company and the digital solution for opening up 
the bottlenecks in order to achieve effectiveness by cutting down the order lead 
time. 
 
Methodology: The study is employing several rounds of simulation based on pro-
cesses and data from a manufacturing company. 
 
Findings: Simulation results demonstrate that by allowing a system to take autono-
mous decisions for production planning based on current changes in environment 
such as new customer order or available capacity, the order lead time can be short-
ened significantly, while granting additional flexibility and robustness to the whole 
supply chain. 
 
Originality: The findings of this research reveal new insights on potentials of artifi-
cial intelligence in solving of existing issues within supply chain IT systems. 
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 Introduction 

Recent developments such as Internet of Things (IoT), Industry 4.0, Artificial 

Intelligence (AI) and other digital technologies are transforming Supply 

Chains, allowing them to operate based on autonomous decisions analyz-

ing collected data in real-time modus. Thus, granting access to previously 

inaccessible software solutions and new levels of automation (Calatayud, 

Mangan and Christopher, 2019; Shmeleva et al., 2018). Consequently, infor-

mation that was formerly collected by humans will gradually be machine-

generated, allowing more precise decisions as well as faster reactions to 

any disruptions, changing supply chain into a robust interconnected sys-

tem (Buxmann and Schmidt, 2019; Monostori et al., 2010). Future supply 

chains will be able to steer themselves continuously,  monitoring the envi-

ronment and react to changes, autonomously learning from previous situ-

ations and simulating possible scenarios, developing advanced dimensions 

of flexibility and agility (Fisel et al., 2019; Tjahjono et al., 2017; Wagner and 

Kontny, 2017). 

Despite all the promising gains, there is still no confidence in what artificial 

intelligence stands for. In popular cultures, such as Chanel 4’s series “Hu-

mans”, the focus lies on mimicking humans, which may be the long-term 

goal of research on machine intelligence. Still, current research should be 

focused on the more practical use of artificial intelligence, such as support 

of humans in decision-making processes in everyday operations in the form 

of self-learning software instead of focusing on a recreation of a workers 

body (Tredinnick, 2017). According to the Accenture Study (Plastino and 

Purdy, 2018), manufacturing is one of the three most meaningful sectors, 

which would benefit from AI technologies in the next years, since AI could 
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provide tremendous support in dealing with an increasing number of prod-

uct types, customization and other growing customer expectations (Lv and 

Lin, 2017). Given the circumstances that supply chains are confronted with 

disruptions daily, companies should aim to increase their flexibility by de-

velopment and implementation of AI solutions customized to the com-

pany-specific operations (Scholten, Sharkey Scott and Fynes, 2019). 

This paper aims to present the AI-based assembly-to-order supply chain so-

lution for a mid-sized manufacturing company and thus, to make a contri-

bution to the research with practical focus as well as provide support for 

companies, searching for the ways to improve their operations. 

 Theoretical Background 

2.1 Definitions and History of Artificial Intelligence 

There are many different definitions of Artificial Intelligence, referring to it 

as: 

“a cluster of technologies and approaches to computing focused on the 

ability of computers to make flexible rational decisions in response to often 

unpredictable environmental conditions” (Tredinnick, 2017),  

“a subject that studies theories, methods, and applications with respect to 

simulation, extension, and expansion of human intelligence for problem-

solving. AI aims to understand the essence of intelligence and design intel-

ligent machines that can act as human behavior” (Niu et al., 2016),  

“AI concerned with creation of computational system that imitates the in-

telligent behavior of expertise” (Leo Kumar, 2017). 
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Other Authors emphasize that AI systems “can learn by experiencing, uni-

versalize where direct experience is absent, and map from the inputs to the 

outputs” (Mohammadi and Minaei, 2019; Chaturvedi, 2008). At the same 

time, the authors agree that machine learning should not provide the same 

level of complexity as human learning (Niu et al., 2016; Mohammadi and 

Minaei, 2019). 

In order to develop a better understanding of the definitions of artificial in-

telligence, a summary of essential step stones in its history is provided be-

low. Already in the 1940s at the start of computing, the idea of “machine 

intelligence” was discussed. In 1950s, Turing described the famous “Turing 

Test” for the test of machine intelligence, claiming that “by the end of the 

century it will be possible to programme a machine to answer questions in 

such a way that it will be extremely difficult to guess whether the answers 

are being given by a man or machine” (Tredinnick, 2017). Some years later, 

in 1956, John McCarthy introduced the term Artificial Intelligence, arguing 

that a machine could solve problems and improve itself on the same level 

as a human being (Leo Kumar, 2017). Some researchers (Tredinnick, 2017) 

suggest, that the first big step towards AI was Eliza, the chatbot from Jo-

seph Weizenbaum, demonstrated in 1966 for psychotherapeutic conversa-

tions with people. Despite the success, it took researchers another 30 years 

till in 1997 the IBM’s Deep Blue famously won a chess game with world 

champion Garry Kasparov. Later, in 2011, the quiz show Jeopardy was 

played by IBM’s Watson, marking with its win the intelligence to analyze un-

structured data to find answers to questions, asked in “natural” language. 

Three years later, 2014, chatbot named Eugene Gootsman could persuade 

1/3 of the jurors that it is human (Tredinnick, 2017).  
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Presently, AI solutions have been successfully tested in areas such as au-

tonomous unmanned vehicles, medical diagnosis, speech recognition, 

video games and others (Mohammadi and Minaei, 2019). Although the fo-

cus turned away from a very general simulation of the human brain toward 

problem-solving in a real work environment, i.e.: 

 Speech recognition, 

 Semantic reasoning, 

 Machine learning (“the ability to improve at performing tasks on the 

basis of iteration”), 

 Intelligent data processing (Tredinnick, 2017). 

In order to support assembly processes, this article focuses on the last two 

application since they are most interesting for autonomous decision-mak-

ing. 

2.2 Related Work 

Although the researchers do not provide a clear statement on how the Arti-

ficial Intelligence (AI) in manufacturing is defined in comparison to Machine 

Learning (ML), they agree that both concepts are valuable for the Industry 

4.0 and especially for the operations, regarding to it as a Smart Factory 

which uses “new innovative developments in digital technology including 

advanced robotics and artificial intelligence” (Tjahjono et al., 2017).  

Daehn and Taub (2018) introduce the concept of “Robotic Blacksmith” in 

order to investigate the ways of using an autonomous system based on 

closed-loop Machine Learning for metal forming within metamorphic man-
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ufacturing, which includes all metal forming operations. The authors pro-

vide a general framework and two case studies with a 3D simulation of a 

corresponding practice. One of the main benefits outlined in the study is 

the ability of measurement of the environment with sensors, precise con-

trol of actions and thus the reproducible results, which are especially es-

sential in industries working with safety-critical products, such as aero-

space and nuclear. Another benefit is lower energy consumption of the ma-

chine-based solution in comparison to “classic” manufacturing or additive 

manufacturing. 

Mourtzis and Doukas (2015) provide two case studies from automotive in-

dustry with highly customized products using the concept of Artificial Intel-

ligence, arguing that in a very complex global supply chains some decisions 

are nearly impossible to calculate, since the number of possible solutions 

even for a simple case is calculated at 12,266,496 and in more complicated 

situation at 48x1017. Such high complexity in decision-making processes, 

as well as the need for real-time information, makes the Machine Learning 

or Artificial Intelligence technologies indispensable for (self)-adaptive 

Smart Supply Chains. 

Monostori (2018) indicates increased transparency as well as higher robust-

ness of supply chains through faster identification of the probable disrup-

tions by use of cyber-physical solutions. Verdouw (2016) illustrates such an 

increase of transparency on the example of food supply chains in general 

and fish distribution in particular. Furthermore, supply chains can achieve 

robustness and competitiveness by the implementation of adaptive and 

IoT-based solutions where decisions made by machine-intelligence will be 
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aligned with high-level decisions taken by humans as explained in the 

mathematical programming model from Rezaei et al. (2017). 

Other authors (Wu et al., 2016) state that the use of the above technologies 

transforms supply chains into Smart Supply Chains (SSC) with six unique 

characteristics: 

 Instrumented; information is mostly obtained by machines using  

sensors, RFIDs etc. 

 Interconnected; the entire operations and assets are connected. 

 Intelligent; SSC optimizes their performance by taking decisions. 

 Automated; most of the processes are automated in order to re-

place less efficient resources. 

 Integrated; information is shared across all SC departments; 

 Innovative; new solutions will be developed to solve any occurring 

issues. 

Despite the acknowledgement of all the positive characteristics of the in-

telligent solutions, Jede and Teuteberg (2016) warn about the challenges 

of their implementation across the supply chain. They argue that research-

ers should pay more attention to the security aspects, explore the technical 

details such as interface configuration among different SC partners and 

definitions of connections between sub-processes in order to provide valu-

able support for practitioners. Others, (Merlino and Sproģe, 2017) predict 

that in near future smart factories supported by artificial intelligence and 

IoT “will make running a supply chain as easy as pushing buttons”. 
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 AI-Based Assembly-to-Order Supply Chain 

3.1 Project Phases 

In order to make the project manageable and trace the progress of signifi-

cant mile-stones, it was divided into three phases (as shown in Fig.1): 

 Concept Development 

 Modelling of working Real-Time Assembly Twin 

 Use of Machine Learning based Reporting.  

The overall process is iterative, which means that despite the clearly de-

fined process order, some steps were performed more than once. For ex-

ample, after simulation testing in phase II, the solutions proposal under-

gone various changes. Each phase is described in a corresponding chapter 

below. 

Figure 1: Project Phases 
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3.2 Planning Processes as Main Source of Bottlenecks 
within the Supply Chain 

The first step of concept development was to provide an analysis and de-

scription of all the Supply Chain processes of a company, which is a leading 

company in filter fans production. Although the company has other prod-

ucts such as alarm lights and electronic devices, the focus has lied on filter 

fans. High-level Supply Chain of the company is quite similar to many man-

ufacturing companies; it consists of different independent departments: 

 Purchasing (Raw Materials, Spare Parts and Packaging) 

 Production of Components (Molding of Plastic Components as Mass 

Production) 

 Assembly (in Assembly Cells using workforce) 

 Warehouse (Stock Management, Transportation, In- and Outbound 

Logistics).  

After a deep-dive into processes, the following conclusions were made: 

 Customer orders contained no seasonality, and demand is quite 

stable from month-to-month (max. deviation 18%, mostly based on 

delivery of big orders in containers in overseas). 

 Order-Lead-Time in most of the cases was around three weeks. 

 Minimal production time per batch (several hundred pieces) is one 

hour (plus 1-2 hours to change molding components). 

 Average assembly time 6 minutes per product. 

 Stock levels for finished goods are unnecessary high (approx. 5 

weeks) 
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All planning processes (Production Planning, Assembly Planning, Human 

Resource Planning) are performed in different departments in different Ex-

cel sheets (Wagner and Kontny, 2017). The High-level intercompany supply 

chain is shown in Fig.2, where the order-lead-time (here as the time from 

customer order in ERP system to the point, when finished goods are 

shipped) was used to define main Bottlenecks. The left side (As Is Supply 

Chain) shows the order lead time for the planning processes with the sup-

port of Excel sheets. Once per week assembly planners (each is responsible 

for different products) decide on volumes for the assembly planning for the 

next four weeks. Mainly basis for the decisions is information on available 

stocks (should products be delivered from available stocks or manufac-

tured) as well as available workforce. Then, two days later, similar process 

takes place within a production department, which produce the spare parts 

for the assembly. At the end, purchasing planners will decide if they need 

to order raw materials for production or spare parts for the assembly. De-

spite the fact that the logic of such a decision is always the same (with given 

priorities), there was no automated solution implemented, which lead to 

unnecessarily extended order-lead-time of approx. three weeks. IT-based 

solution with the capacity to take decisions in (near) real-time modus 

would allow synchronizing of all planning processes along the supply chain 

at the same time significantly shortening the order-lead-time by at least 

half. 

 

 

 

 



          Breaking Through the Bottlenecks Using Artificial Intelligence  39 

 

Figure 2: Bottlenecks based on Order-Lead-Time 

Since the production as a process step is more time-consuming and less 

flexible than assembly due to time- consuming retooling of machines as 

well as a high volume of production batches, the assembly process was 

chosen as a central process, which provides others (purchasing, ware-

house, production) with information relevant for their process steering. 

Such an approach is not new and is widely known as Assembly-to-Order 

(Mourtzis and Doukas, 2015) or Build-to-Order Supply Chain (Gunasekaran 

and Ngai, 2005). The main difference between the "classical approach" and 
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the presented solution is the focus on automated information flow and 

shortening of order-lead-time instead of material movements and stocks. 

The last bottleneck, which is based on a delay of goods availability accord-

ing to the ERP system and goods produced, can be quickly resolved by 

scanning of the goods directly at assembly cell and creating additional vir-

tual warehouse in ERP. Thus, the goods can be shown as available, before 

they will be shipped to the central warehouse, which will spare at least two 

additional days. 

3.3 Solutions Proposal 

Based on the fact, that assembly processes could have the most flexibility 

in capacity if needed (increasing from usual 100% to 400%) being at the 

same time the slowest process (planning processes take in average over 

one week), it was decided to improve the assembly planning.   

Another critical argument for the automation of assembly planning is pro-

vided by Knoll, Prueglmeier and Reinhart (2016), who states that a planner 

uses only 20% of his time to perform planning, whereas 50% are used for 

data gathering and preparation. They provide three reasons for such an un-

fortunate time split: 

 Lack of software support 

 Inconsistent information 

 Unavailable historical data. 

In the presented case, the lack of software support leads to extensive use 

of Excel-Sheets by planners in each department, with data matching at 
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jour-fixe once per week. Since the data in operations changing continu-

ously, such work methods are very inefficient and inevitably lead to high 

stock level and or to the high level of delayed deliveries. Thereby the lack 

of software support drive towards different information status in each de-

partment and thus to inconsistent information, i.e. stock level in Excel-

sheet do not display real stock level in the warehouse, open orders only 

consider customer orders from previous day. Moreover, ERP only shows the 

actual status of data and do not provide tools for the analysis of historical 

data. Such analysis was done only from time to time in Excel, and results 

were not always shared between departments, leading to a different level 

of professional competence in different departments by different employ-

ees. 
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Figure 3: AI-Based Solution for the Bottlenecks 
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In order to enable planning processes in real-time (or near-real-time) mo-

dus with same information status at all process levels as well as the same 

quality of information, two solutions were created (as shown in Fig.3). Lack 

of software support, as well as inconsistent information, can be solved by 

the Real-Time Assembly Twin (Project Phase II), whereas unavailable his-

torical data require advanced reporting module (Project Phase III). 

The main distinction between Real-Time Assembly Twin and Machine 

Learning Reporting Module is time horizon. First concentrates on a contin-

uous simulation of discrete events without data gathering directly in the 

tool (although some data is forwarded towards ERP). Second, on the con-

trary, should gather historical data and even overwrite the initial logic/rules 

for the Assembly Twin shaping it into self-learning and thus AI-based sys-

tem. 

3.4 Real-Time Assembly Twin 

3.4.1 Functionality 

Real-Time Assembly Twin was created and tested in order to support plan-

ners and workers in the assembly area. Additionally, it provides information 

on the current status of orders to other departments, such as warehousing 

and in-house transportation. 

The system consists of 7 modules, one for each available assembly cell and 

one with controlling function (Assembly Controller, as shown in Fig.3). As-

sembly Controller takes the data on open orders from ERP and "translate" 

them via Scheduling Mechanism into Assembly Orders for each Assembly 

Cell. All data, needed for the scheduling, such as which cell should assem-

bly which products, production capacity and other relevant data are stored 



44  Juila Feldt et al.  

 

up in the Data Bank of Assembly Controller. Each Cell shows the worker in 

the assembly cell the orders at the monitor, allowing the worker to update 

the status of each order, by pushing the button "finished" on the screen or 

by logging out (thus saying, there is no available worker in the cell). Since 

in each cell can work up to two employees in two shifts and each worker is 

able to assemble any product, which means he can freely move from one 

cell to another, the flexibility of the process is incredibly high. Unfortu-

nately, by planning all the assembly orders weeks upfront, as it was done 

previous, this flexibility was seldom used. However, with the planning sys-

tem in (near) real-time modus, it is possible to calculate available resources 

against open orders, creating a robust and flexible process. 

At the end of the period (day or shift), the Assembly Controller gather the 

data from each cell and communicate it to the ERP, saving open orders for 

the next day. 

3.4.2 Data Gathering 

According to Uhlemann (2017), data gathering represents one of the most 

critical stages for modelling of a Digital Twin. Non-volatile data such as 

warehouse layouts, process descriptions, historical data and assembly 

specifications were collected during face-to-face interviews and work-

shops, with confirmations on the correctness of the results over the phone 

or via email. Volatile data, i.e. data on material movements, order volume, 

available stocks, were collected directly from the ERP system. Real-time 

modus of the digital twin of the assembly could be achieved only by using 

the data directly from ERP; otherwise, the general data from reporting sys-
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tem is already too old, since it shows the data from the day before. In sum-

mary, it can be said that data gathering is a very time-consuming process 

which is essential for the proper functioning of a new system. 

3.4.3 Simulation Modelling 

As described in Chapter 3.3, the Real-Time Assembly Twin is basically a sim-

ulation which is used to replace the non-existing operational system and 

for which the existing research method of simulation modelling was chosen 

as most appropriate. 

According to Wojtusjak (2012), simulation techniques can be applied for 

modelling of complex systems since they can recreate the true-life system’s 

performance. The discrete event simulation (DES) offers an opportunity to 

trace the alterations of a model with logical multiplex configurations by 

data-gathering after a defined “event” took. It contains three modifica-

tions:  activity-oriented, process-oriented and event-oriented simulation. 

DES can be applied for systems which represent a “set of interrelated enti-

ties which only change their state at discrete points of time as a result of 

their behavior or the behavior of other entities” (Ullrich and Lückerath, 

2017). This simulation method is broadly used for the simulation of produc-

tion processes (Gong et al., 2017), which makes it suitable for our case with 

assembly-planning. 

In the presented simulation of the assembly, the “trigger” events are either 

start/end of the day/shift or new customer order or change/deviation to the 

planned capacity in each assembly cell. At the start of the day X the tool 

translates open orders from the ERP system into assembly orders, creating 
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a list of assembly orders different for each assembly cell. New customer or-

der(s) lead to amendments in open assembly order(s), depending on the 

bill of materials from ERP and master data of an assembly cell. Previously 

unexpected changes in available capacity, i.e. if a worker did not show up 

in the morning due to illness or if a person new to a job works below the 

usual productivity level, the Real-Time Assembly Twin will consider it in a 

calculation and make a request to other assembly cells for the additional 

workforce. On the other hand, during the assembly process each assembly 

order will be reported to the ERP system as finished, after the worker 

pushed the finished button on his screen, allowing the system to update 

the data in near real-time modus and if needed to forward the information 

to other SC processes, i.e. for the warehouse or goods departure area. 

In order to duplicate the sequence of all steps within assembly planning as 

well as analyze the data from ERP and other systems, the existing OTD-NET 

simulation software was significantly changed. OTD-NET is the award-win-

ning software, which was built at the Fraunhofer Institute of Material Flow 

and Logistics for the simulation of production network of big automotive 

companies such as Daimler AG and Volkswagen (Motta et al., n.d.; Li and 

Fang, 2012; Liebler et al., 2013). The original software was customized to 

the logic and supply chain of the manufacturing company. 
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3.4.4 Verification and Validation 

 

Figure 4: Assembly Interface and Simulation "Triggers 

Verification can be defined as “ensuring that the computer program of the 

computerized model and its implementation are correct”, whereas valida-

tion referred to as “substantiation that a computerized model within its do-

main of applicability possesses a satisfactory range of accuracy consistent 

with the intended application of the model” (Sargent, 2005). In other words, 

validity is measured concerning the purpose of the created model; if its ac-

curacy lies within an acceptable range, the model can be concerned as 

valid. 
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In order to create new functioning systems, three steps were performed: 

 Conceptual model validation 

 Computerized model verification 

 Operational validation 

Conceptual model validation was carried out by respective assembly plan-

ning personnel, confirming that the described processes and assumptions 

are correct and can be executed as planned. Computerized model verifica-

tion was performed on both sides: by the IT department of the company as 

well as the research team. It was divided into two steps; first, the “static 

testing” verified the correct structure of built Digital Twin, and then, by run-

ning simulations on company’s historical data the “dynamic testing” veri-

fied its functionality. Operational validation was performed on a data from 

ERP in order to measure the time, needed for re-planning of assembly or-

ders (which lied under 1 Minute), to confirm that the “translation” is correct, 

and no data was lost in the process and to prove the functionality of user 

interface (for an assembly worker). 

3.5 Machine Learning-Based Reporting 

Machine Learning (ML) can provide a basis for the assembly planning since 

there is high volume on “high repetition of recurring planning tasks for each 

material number caused by frequently changing information” (Knoll, Prügl-

meier and Reinhart, 2016). This way, ML provides the best use of historical 

data with minimal effort. 

As shown in Figure 2, the planned ML-based Reporting Module should work 

inde-pendently from the Real-Time Assembly. The reason for such separa-

tion is that in order to function correctly, the ML Reporting Module should 
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first create a proper Database with statistic data. On the one hand, it will 

take at least a year, in order to have enough data, for reasonable planning. 

On the other hand, it will allow to create alerts for unusual situations (which 

are covered today by so-called security stock of goods) as well as rewrite 

current Master Data and Rules in Assembly Controller. For example, gather-

ing information on current assembly time for product Y and comparing it 

with historical data on assembly time, the assembly time in the individual 

cell could be overwritten, providing more precise information on available 

capacity in this cell. Since assembly time can differentiate even by the same 

person from one day to another, such adaption would allow very precise 

planning. Additionally, the Reporting Module will allow to analyze the work 

of Real-Time Assembly and measure which impact it provides for the As-

sembly Planning as well as for the stock levels and another necessary lo-

gistic KPIs. 

 Discussion of Results 

4.1 Implications for AI and SCM Theory 

Previous research implied that there is a direct correlation between the rise 

of complexity and decline of the possible level of agility of the supply chain 

(Giannakis and Louis, 2016; Monostori, 2018). Application of an AI solution 

within the supply chain can be very efficient under such circumstances, al-

lowing companies to react very fast to unexpected events and restart a 

planning process as often as needed. This way, even big companies with 

complex operations can stay agile and competitive without the unneces-

sary explosion of bureaucracy.AI and IoT technologies most frequently re-

ferred to when discussing the development of autonomous supply chain 
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systems. Capability to analyze high volumes of data and solve complex 

problems make AI indispensable for future Supply Chains and thus for the 

research in this area (Calatayud, Mangan and Christopher, 2019). 

The presented paper describes a process of finding the appropriate appli-

cation area for an AI solution as opposed to the approach of the application 

of standardized IT tools which seldom reflect the specific requirements of 

an individual customer. Furthermore, we propose to split the AI solution 

into two parts, one responsible for the quick decisions and the other for his-

torical data as well as steering rules. Although the simulation results could 

not be presented to broader public since they are based on the company 

data which are prohibited from publishing, the provided framework can be 

used by other researchers in the area. 

4.2 Practical Implications 

Presented solution for the assembly planning has implications on the 

whole supply chain: 

 Order-lead-time shortens from three to one week. 

 Stock levels go down automatically since the tool decides if the 

goods should be assembled or delivered from warehouse and due 

to shorter order-lead-time the finished goods, as well as spare parts 

will not be stored in-between, waiting for the next process step. 

 Customer order can be translated into an assembly order within 

seconds/ minutes instead of once per week. 

 Workers in the assembly have a clear overview of their orders and 

can report comple-tion of an order directly to the system (instead 

of previous paperwork). 
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Other processes such as logistics, purchasing and production can be pro-

vided with information on current status of assembly /stock level instead of 

outdated plans.Despite the high-level of presented information, it can be 

used by practitioners as a blueprint for the first steps in similar projects. 

 Summary 

Although the terms of Artificial Intelligence and Machine Learning are dis-

cussed for almost eighty years, the development of real-life applications is 

still very young. Only after changing the perspective from a more human-

like robot towards an attempt to duplicate merely brain part and learning 

capability, the researcher could present robust solutions. Presented re-

search has no attempt to replace the workers on a shop-floor; on the con-

trary, a solution for the support of them in daily operations is presented. Of 

course, the planning process should be transformed from highly repetitive 

routine calculations in Excel-sheets towards autonomous Real-Time Digital 

Twin of Assembly, which inevitably leads to a restructuring of the planning 

department. Still, gained value over the whole Supply Chain leave no doubt 

in the meaningfulness of such change.  

In summary, this research provides insights on how the AI-based digital so-

lutions within the supply chain can allow it to become more adaptive and 

thus, robust to the changes, which can be used by both researchers and 

company executives. 
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