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Article

Visualizing Sequences
in the Social Sciences:
Relative Frequency
Sequence Plots

Anette Eva Fasang1 and Tim Futing Liao2

Abstract

Visualization is a potentially powerful tool for exploration and complexity
reduction of categorical sequence data. This article discusses currently
available sequence visualization against established criteria for graphical
excellence in the visual display of quantitative information. Existing sequence
graphs fall into two groups: They either represent categorical sequences or
summarize them. The authors propose relative frequency sequence plots as an
informative way of graphing sequence data and as a bridge between data
representation graphs and data summarization graphs. The efficacy of the
proposed plot is assessed by the R2 and the F statistics. The applicability of
the proposed graphs is demonstrated using data from the German Life
History Study on women’s family formation.
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Introduction

This article addresses visualization of categorical sequences. Categorical

sequences in the social sciences consist of sequentially linked categorical states

that make up a social process. Examples include employment careers (Widmer

and Ritschard 2009), pathways to adulthood (Bras, Liefbroer, and Elzinga

2010), and family formation processes (Elzinga and Liefborer 2007). The pro-

cess of family formation, for instance, can be described with four categorical

states: single (S), cohabiting (C), married (M), and divorced (D). Two (of the

many) possible family formation sequences are (S, C, C, C, M) and (S, C, M,

M, D). Let each time point denote one year, then sequence (1) is a family forma-

tion process of being single for one year, then cohabiting for three years, fol-

lowed by being married for one year. Sequence (2) shows a process of being

single for one year, then cohabiting for one year, being married for two years,

followed by a divorce. Of course, two individuals who experience the same fam-

ily formation process in terms of the order of family formation states, for

instance (S, C, M), will often be characterized by different durations in these

states. Consequently, individual sequences can generally differ from one

another both in terms of the order of states and the duration spent in each state.

Methods for describing and analyzing categorical sequence data are

increasingly widespread in the social sciences, especially in life course and

career research (e.g., Aisenbrey and Fasang 2010; Gabadinho et al. 2011a;

Piccarreta and Lior 2010, see also Buchmann and Kriesi 2011). The recent

TraMineR package for analyzing and visualizing sequences in R, developed

by Alexis Gabadinho and coauthors (2009), set a milestone in facilitating the

practical implementation of sequence analysis and furthering technical

advancements (see Gabadinho et al. 2011a for a guide on analyzing sequences

with the TraMineR package).

Sequences of categorical states are far more complex than simple

numerical variables (see Gabadinho et al. 2011a). They cannot be easily

summarized or treated with techniques available for categorical variables

that only take on a small number of values. In the social sciences, research

questions are often directed at comparing sequences with one another and

thereby at a relational property of a set of sequences, that is, the degree to

which they are similar to one another. This relational information adds

another layer of complexity in dealing with categorical state sequences.

Visualization is a potentially powerful tool for exploring and reducing the

complexity of such data structures (Tukey 1977). The primary method of

visualization in sequence analysis has been the sequence index plot, intro-

duced by Stefanie Scherer (2001) to analyze early career patterns in
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Germany and Britain. Recent developments include sequence frequencies

plots (Müller et al. 2008), state distribution plots (Billari and Piccarreta

2005), representative sequence plots (Gabadinho et al. 2011b), multidimen-

sional scaling (MDS) sequence index plots (Piccarreta and Lior 2010), and

smoothed MDS sequence plots (Piccarreta 2012).

This article discusses currently available methods for visualization of

categorical sequences in the social sciences and proposes relative frequency

sequence plots as a useful additional means of sequence visualization. Sim-

ilar to Piccarreta’s (2012) smoothing techniques for removing individual

noise in sequence index plots, our approach aims to reduce the problem of

overplotting by using medoid sequences. However, the two approaches differ

in that the relative frequency plot emphasizes the graphic representation

through equal-sized frequency groups across the full range of a sample. In

contrast, Piccarreta’s (2012) nearest neighborhood approach lets individual

sequences form neighborhoods. The difference between the two will be dis-

cussed at length below. Our approach is more conducive to cross-nation or

cross-sample comparisons because it maintains a visual representation of the

relative frequency of certain types of sequences across the full range of a

sample. In addition, we visually assess heterogeneity within relative fre-

quency groups with dissimilarity-to-medoid box-and-whisker plots. Finally,

we propose an R2 statistic that allows us to perform an F test to guide the nec-

essary choices when constructing relative frequency sequence plots.

To illustrate the proposed plots, we use data from the German Life His-

tory Study (GLHS) (Mayer 2007) on family formation of 474 women born

in 1971 in East (N¼ 132) and West Germany (N¼ 342). We consider retro-

spective life histories collected between 1996 and 1999 and followed up

again in 2005. Only women for whom information from the 2005 follow-

up is available are included to follow their family formation from age 15

until age 33. The family formation sequences consist of seven states that

combine relationship status and parenthood: (S) single, (R) in a relationship,

(CNC) cohabiting with no child, (CC) cohabiting with a child, (MNC) married

with no child, (MC) married with a child, and (DW) divorced/widowed.1 To

illustrate how the relative frequency plots feature in group comparisons, we

compare the East and West German subsamples.

Sequence Analysis and Sequence Visualization
in the Social Sciences

Optimal matching (OM), originally developed in biology to analyze strings

of DNA, was the first type of sequence analysis that made inroads into the
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social sciences (Abbott and Tsay 2000; Abbott and Forrest 1986). OM deter-

mines sequence similarities by aligning sequences with three transformation

operations—substitution, insertion, and deletion—in a pairwise comparison

of all sequences with one another. The output of OM is a pairwise dissimi-

larity matrix for all possible pairs of sequences. Most of the early applica-

tions used this pairwise dissimilarity matrix in a cluster analysis to find

salient patterns of a social process by identifying groups of similar

sequences. For example, Brzinsky-Fay (2007) uses OM to identify the most

common patterns of labor market entry sequences in different countries. For

comprehensive introductions to OM, see MacIndoe and Abbott (2004) and

Billari and Piccarreta (2005). Other ways of determining sequence similarity

include Lesnard’s dynamic Hamming distance (DHD; Lesnard 2010) that

emphasizes the timing of states in a process and Elzinga’s (2003, 2010) sub-

sequence metrics that comprise a variety of different dissimilarity measures.

The pioneering applications heralded sequence analysis as the temporal

facet of a larger conceptual shift in the social sciences ‘‘turning from units

to contexts, from attributes to connections, from causes to events’’ (Abbott

1995:93). Initial critique was framed as a general opposition against

sequence analysis but essentially targeted issues resulting from a relatively

unpolished transfer of OM from biology to the social sciences (Levine

2000; Wu 2000). Critics argued that the OM algorithm for sequence compar-

ison fails to represent any sociologically meaningful notion of time, is highly

sensitive to arbitrary decisions made by the researcher, and generates dissim-

ilarity measures between sequences that lack any meaningful interpretation

(Aisenbrey and Fasang 2010; Elzinga 2003; Levine 2000; Wu 2000).

Since this initial criticism, the social sciences have turned into a vibrant

field of methodological development of sequence analysis (Aassve, Billari,

and Piccarreta 2007; Bison 2009; Blanchard, Bühlmann, and Gauthier

2012; Brzinsky-Fay and Kohler 2010; Dijkstra and Taris 1995; Elzinga

2003, 2008, 2010; Gabadinho et al. 2009, 2011a, 2011b; Gauthier et al.

2009, 2010; Halpin 2010; Hollister 2009; King 2011; Lesnard 2010; Martin,

Schoon, and Ross 2008; Piccarreta 2012; Piccarreta and Billari 2007; Piccar-

reta and Lior 2010; Pollock 2007; Robette and Bry 2012; Stovel and Bolan

2004; Studer et al. 2011; Wiggins et al. 2007). Along with this tailoring of

sequence tools to social science research questions, sequence analysis is

increasingly established as a method of choice in life course and career

research (e.g., Biemann and Wolf 2009; Fasang 2012; Stovel, Savage, and

Bearman 1996). Most of these methodological innovations optimize cost set-

tings in OM (Gauthier et al. 2009; Hollister 2009; Lesnard 2008, 2010) or

refine measures of sequence similarity to link them more closely to theory
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(Elzinga 2003; Gauthier et al. 2010). In the wake of these methodological

developments of sequence measures, visualization of categorical sequences

is drawing increasing attention (Aassve et al. 2007; Billari and Piccarreta

2005; Gabadinho et al. 2011a; Müller et al. 2008; Piccarreta 2012; Piccarreta

and Lior 2010).

Visualization of Sequences in the Social Sciences

In the social sciences, research questions about categorical sequences are

directed both at variation within individual sequences over time and at var-

iation between sequences in a given population. For example, how do family

formation processes unfold over time and how similar are they across a pop-

ulation? Variation within individual sequences over time can be measured

with different complexity measures (Elzinga 2010). Variation between

sequences is a relational property that refers to the similarity of sequences

to one another. It can be measured as the dissimilarity between pairs of

sequences.

In addition, social scientists are interested in qualitative sequence pat-

terns, that is, the question of ‘‘what’’ the sequence patterns mean substan-

tively, as well as quantitative summary measures that provide answers to

the question of ‘‘how much’’ of something is present in the sequences. Qua-

litative sequence patterns capture sequential processes in the spirit of narra-

tive positivism, which was originally suggested by Abbott (1992) as the

conceptual and theoretical foundation of sequential thinking in the social

sciences. Quantitative summary measures of sequence information have

become increasingly more sophisticated, as the technical development of

sequence analysis advanced (e.g., Elzinga 2003, 2010; Gabadinho et al.

2011b). They also more readily bridge across to mainstream regression-

based quantitative methodology (Biemann and Wolf 2009).

This interest in the variation within and between sequences as well as

in qualitative and quantitative sequence information is challenging for vis-

ualization. Graphical tools for complexity reduction used in quantitative

time-series analysis, such as line graphs or histograms, are useful to show

summary measures of quantitative sequence information, but they cannot

visualize qualitative information of sequence patterns (Müller et al. 2008).

Sequence states, such as being married or divorced, are categorical and

qualitative in nature. It is therefore not possible to calculate averages as

meaningful summary measures and plot them over time. One challenge for

the visual display of social science sequences is thus to effectively extract

the most salient qualitative sequence patterns, while at the same time
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maintaining quantitative information about the dispersion of sequences

around these patterns.

Given this complex and relational data structure, visualization is a poten-

tially powerful tool of exploration and complexity reduction of categorical

sequences. Visualization has a long-standing tradition in exploratory and

descriptive data analysis (Tukey 1977). As Tukey (1977: v) puts it, ‘‘A basic

problem about any body of data is to make it more easily and effectively

handleable by minds.’’ To this end, graphs are useful to the extent that they

make a simpler description possible and help us look below the described

surface and thus make the exploration more effective (Tukey 1977). More

recently, visualization has received much attention in social network analysis

(Freeman 2002) that examines similarly complex relational data. Network

graphs are at the same time a prime example of the pitfalls of visualization

(Han 2010). While a good graph will often be the most effective way to con-

vey complex information from data, graphs can also easily be deceptive of

actual patterns in the data or distract from main patterns with mere visual

‘‘bells and whistles’’ (Han 2010; Tufte 2001).

According to Tukey (1977: vi), ‘‘the greatest value of a picture is when it

forces us to notice what we never expected to see.’’ Tufte (2001) suggested

some standards for graphical displays of quantitative information, arguing

that the objective of graphs is to communicate complex ideas with clarity,

precision, and efficiency. Piccarreta and Lior (2010:166) invoke Tufte’s

(2001:51) guidelines when they note that ‘‘Graphical excellence is that which

gives to us the viewer the greatest number of ideas in the shortest time with

the least ink in the smallest space.’’ Graphical integrity is put forward as the

most important principle of graphical excellence. Put simply, graphical

integrity is achieved when a graph ‘‘tells the truth about the data’’ (Tufte

2001:105), that is, when visual representation is consistent with the numer-

ical representation in the data. Because visual perception is context depen-

dent, context is essential for graphical integrity. Context dependency is

particularly important for group comparisons that place information about

one group in the context of information about another group.

Review of Sequence Visualization

Sequence index plots have been the primary means of visualization in

sequence analysis (Brüderl and Scherer 2006; Scherer 2001). The sequence

index plot graphs horizontal stacked bars across the x-axis. The x-axis repre-

sents the order in sequences, usually time. Each stacked bar represents one

sequence. The y-axis shows N individual sequences. Different colors indicate
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different states along the sequence. Currently, sequence graphs broadly fall

into two groups: The data representation group includes the sequence index

plot and its extensions. The data summarization group comprises plots that

aggregate and summarize quantitative sequence information. The sequence

index plot and its extensions are primarily useful to convey information

about qualitative sequence patterns. They visualize variation within individ-

ual sequences over time, as well as variation between sequences, albeit with-

out quantifying this variation. Aggregate and summary plots illustrate

quantitative information about sequence characteristics. Since they aggre-

gate information across individual sequences, they lose sight of variation

within individual sequences and focus on quantifying variation between

sequences in a given population. ‘‘Summaries can be very useful, but they

are not the details. So long as the detail is not so great as to confuse us hope-

lessly, there will be no substitute for having the full detail where we can look

at it, set out in as clear a way as we can easily manage’’ (Tukey 1977:27,

boldface in original). The relative frequency plots we propose below help

us look at the detail of sequences in a more manageable way than what has

been previously available, with characteristics of both the data representation

and data summarization type of graphs.

Subsequently, we present the data representation and data summarization

graphs for sequence visualization and highlight their respective advantages

and limitations. We use a perceptually based HCL color space (hue ¼ differ-

ent types of colors, chroma ¼ differing colorfulness, luminance ¼ differing

intensity of gray) that maps onto these three dimensions of color perception

(see Zeileis, Hornik, and Murrel 2009). Generally, one has to choose between

a qualitative, sequential, or diverging color palette to represent the sequence

states. For most sequence analysis applications in the social sciences, a qua-

litative color palette will be suitable since there is usually no directionality in

the categorical alphabet of sequence states. If all or parts of the sequence

states are ordinal and directional, it is advisable to reflect this in the choice

of color by using a sequential or diverging color palette (Zeileis et al. 2009).

Family formation states are essentially qualitative, but there is some direc-

tionality in the combination of the relationship status ‘‘cohabiting’’ and

‘‘married’’ with and without having children. We therefore use a qualitative

color space but include a sequential element in representing the state ‘‘coha-

biting with no child’’ (CNC) as light green and ‘‘cohabiting with child’’ (CC)

as dark green, as well as the state ‘‘married, no child’’ (MNC) as light blue

and ‘‘married with child’’ (MC) as dark blue, respectively. For the other

states, we use hues outside the blue and green chosen for cohabiting and mar-

ried: a sand color for ‘‘single’’ (S), orange for ‘‘in a relationship’’ (R), and
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pink for ‘‘divorced/widowed’’ (DW). The colors were specified using R’s vcd

and colorspace packages (Zeileis et al. 2009). If possible, the sequence states

in the legend should be arranged according to some substantive criterion rather

than simply alphabetically or randomly (Wainer 1984). We thus ordered the

sequence states in the legend roughly following the normative unidirectional-

ity of family formation from (S) ‘‘single’’ to (MC) ‘‘married with child’’.

Data Representation Graphs: The Sequence Index Plot
and Extensions

Table 1 shows descriptive statistics for the example data on family forma-

tion, including the percentage of women who ever experienced each

focal event and the mean age at the first occurrence of each focal event. Fig-

ure 1 shows the sequence index plot and its extensions for the example data.

Sequence Index Plots. Figure 1(a) shows the original sequence index plot

(Scherer 2001). The sequences are sorted according to the age of first marriage.

The x-axis counts months from age 15 until age 33. Most women have several

time periods in noncohabiting relationships, which are represented by orange,

before they cohabit, marry, and have children. About 60 percent of the women

marry by the age of 33 and most of these women have children within a year

or two after marriage (Table 1). The top of Figure 1(a) shows women who

either remain in noncohabiting relationships or have children in cohabiting

Table 1. Descriptive Information About the Example Data on Family Formation of
Women Born 1971 in East and West Germany Between Age 15 and 33 (N ¼ 474).

Sequence State

Percentage
Women

Ever Experienced
the Event

Mean Age at
First

Occurrence
of the Event

Mean Duration
in Event
(Months)

Single (S) 97.68 62.06
In a relationship (R) 98.31 18.71 53.20
Cohabiting, no child

(CNC)
77.00 22.97 29.52

Cohabiting, child (CC) 18.35 25.90 8.69
Married, no child (MNC) 61.81 25.07 17.90
Married, child (MC) 58.86 26.48 43.89
Divorced/widowed (DW) 4.01 27.29 0.75

Source: German Life History Study (GLHS).
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relationships. Sequence index plots are most illuminating as an internal repre-

sentation of qualitative sequence patterns within relatively homogeneous sets

of sequences (Kohler and Brzinsky-Fay 2005; Piccarreta and Lior 2010). For

relatively small samples of sequences, they give an accurate representation of

the data and are informative about qualitative sequence patterns.

In sequence index plots, issues of graphical integrity arise from overplot-

ting and the order in which sequences are sorted in the plot. Assigning them

meaning is mainly a subjective task, as is frequently the case in the interpre-

tation of qualitative information. Sequence index plots increasingly fall short

to accurately show the data with increasing sample size and decreasing pat-

terning in the empirical distribution of the sequences. For more than a couple

Figure 1. Data representation graphs: the sequence index plot and extensions.
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of hundred sequences, sequence index plots are systematically deceptive due

to overplotting, a common problem for graphs that encode data with points or

lines. Overplotting means that multiple objects share the same space and are

plotted on top of each other. As a result, it is impossible to see the individual

values (Few 2009). There is a technical limit to how thin each stacked bar can

be plotted and, more generally, how thin a line remains visible to the human

eye. When overplotting occurs, the stacked bars are no longer discernible, thus

no longer represent individual sequences, and therefore misrepresent the data.

Sequence index plots can be particularly deceptive in the comparison of

sequence groups of unequal sizes, because the degree of overplotting increases

with group size and is therefore not constant across comparison groups.

In addition, the visual impression of sequence index plots depends on the

order in which sequences are plotted along the vertical axis. This is a specific

case of context dependency of visual perception: The order in which

sequences are plotted along the vertical axis places each sequence in an

immediate graphical context. In some applications, it makes sense to order

sequences according to the timing of a focal transition of substantive interest,

for example, the age of first marriage as in Figure 1(a). However, this anchors

the interpretation of the family formation sequences at the timing of this cen-

tral transition and loses sight of central tendencies in the timing of other tran-

sitions, such as fertility. Unlike the problem of overplotting, the sensitivity to

order does not mean an outright misrepresentation of the data. Nonetheless,

order is influential as a context in which each individual sequence is visually

perceived. Sequence index plots of the same data ordered differently high-

light different features of the sequences and will therefore communicate dif-

ferent information to the viewer. As sequence index plots were applied more

widely, the problems of overplotting and sensitivity to order of the sequences

in the plot became more apparent. This triggered the development of several

extensions of the sequence index plot.

MDS Sequence Index Plots. MDS sequence index plots proposed by Piccarreta

and Lior (2010) address the problem of sequence order by sorting sequences

according to their score on the first factor derived by applying MDS to a

given dissimilarity matrix. The MDS factors ‘‘explain’’ the observed dissim-

ilarities and are extracted in a decreasing order of importance. Hence, the

first factor can be considered as the most important in the explanation of the

observed dissimilarity matrix. Figure 1(b) shows the MDS sequence index

plot for family formation with our example data. The sequences are ordered

according to a score derived from MDS using a dissimilarity matrix derived

with OM with indel costs of 1 and constant substitution costs of 2. Figure 1(b)
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shows women who marry and have children early on one end of a continuum,

and women who remain unmarried and do not have children on the other end.

Women who have children in cohabiting relationships, represented in green,

are located in the middle. The first factor of MDS in this application can thus

be interpreted as a more-to-less scale of traditional family formation with

early marriage and motherhood representing the most traditional family for-

mation sequences. MDS sequence index plots therefore provide a substan-

tively meaningful way of sorting sequences in the plot that hinges on the

quality of the MDS given the sequence dissimilarity criteria chosen. Piccar-

reta and Lior (2010) emphasize the exploratory value of MDS sequence

plots, since the sorting criterion is derived from the data. In addition, MDS

sequence index plots can illuminate multiple dimensions of sequences, such

as occupational histories and family histories by sorting them on several fac-

tors derived with MDS successively. This is particularly advantageous, given

an increasing theoretical emphasis on the multidimensionality of sequences

in the social sciences (e.g., Gauthier et al. 2010; Han and Moen 1999; Pollock

2007; Stovel et al. 1996). Despite these advantages, like sequence index plots,

MDS sequence index plots are sensitive to overplotting for large samples.

Sequence frequency plots (Müller et al. 2008) can be useful for addressing

overplotting. They are sequence index plots of the most frequent sequences

in a set of sequences. The y-axis shows the percentage of the sample repre-

sented by the most frequent sequences. The bar widths are proportional to the

sequence frequencies. Figure 1(c) shows the sequence frequency plot for the

10 most frequent sequences in the example data on family formation. In the

example data, every sequence is unique. The frequency plot then boils down

to a random selection of 10 sequences that only represent 2.1 percent of the

example data. Because the example data were initially sorted according to

the beginning state of the sequences, in Figure 1(c), 10 sequences are

selected that start with being in a relationship, represented by orange. The

full sequence index plot in Figure 1(a) shows that this is a poor representation

of the sequence set, because most women’s family formation sequences in

fact start with being single at age 15. Sequence frequency plots are useful

when there are few distinct sequences that represent large parts of the sample.

They provide only a very partial view when there are many distinct

sequences (Gabadinho et al. 2011b). They can be particularly misleading

when the empirical distribution of sequences is such that there are many sim-

ilar but not quite identical sequences. In this case, plotting the most frequent

sequences suggests greater heterogeneity in the sequences than is actually

present. For instance, the sequence index plot (Figure 1(a)) and the MDS

sequence index plot (Figure 1(b)) clearly indicate some patterning in the
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example data with groups of women who have more or less similar family

formation experiences. This information is lost in the sequence frequency

plot in Figure 1(c).

Representative sequence plots (Gabadinho et al. 2011b) aim to extract

a subset of sequences to represent a whole set of sequences. Based on a

representativeness score, a list of sequences is selected as representative

sequences. Gabadinho et al. (2011b) suggest five measures of sequence

representativeness: sequence frequency, neighborhood density, mean state

frequency, centrality (medoid sequences, i.e., observed sequences that are

least dissimilar to all other sequences), and sequence likelihood (the pro-

duct of the probability with which each of its observed successive states is

supposed to occur at this position). The candidate list for representative

sequences always includes the same set of sequences: the list of unique

sequences appearing in the data. They are sorted in a different way, depend-

ing on the selected sorting criterion. In a second step, redundant sequences,

that is, sequences that are very similar to one another, are eliminated from

the list of candidates for representative sequences. Then the selected repre-

sentative sequences are plotted in a sequence index plot with the additional

information on which percentage of the entire sample they cover. Figure 1(d)

shows 15 representative sequences based on a distance matrix derived using

OM indel costs of 1 and constant substitution costs of 2. At a neighborhood

radius of 25 percent of the theoretical (maximum) distance, these repre-

sentative sequences cover 44.3 percent of the sample. The researcher can

calibrate the maximum distance to a representative sequence that is required

to consider a sequence as ‘‘covered’’ by this representative.

An obvious advantage of the representative sequence plot is that it comes

with quality measures of how well the selected sequences represent a set of

sequences. They are displayed above the sequence index plot of representa-

tives (Figure 1(d)) as symbols ranging on a scale from 0 to the maximum pos-

sible dissimilarity between sequences for the respective representativeness

scale. Each symbol is associated with one representative sequence. There are

two scales: criterion A and criterion B. Criterion A shows the mean dissim-

ilarity of all sequences to one another within a subset of sequences that is rep-

resented by one representative. Criterion B indicates the dissimilarity of the

representative sequence to the sequences it represents. On both scales, lower

dissimilarity indicates better representation. For the example data, 15 repre-

sentative sequences are selected to represent 63.3 percent of the sample when

we allow for a fairly large neighborhood radius of 25 percent of the theore-

tical maximum distance in order to consider a sequence as ‘‘covered’’ by this

representative.
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Representative sequence plots are more sophisticated than sequence fre-

quency plots on several accounts, including the added value of a quality cri-

terion. Their usefulness for representing a set of sequences in a substantively

meaningful way hinges on the empirical distribution in the data and the

representativeness criterion chosen. For instance, one can question whether

it makes sense to eliminate similar representatives as redundant or treat this

similarity in representatives as substantively interesting information about

the sample. Neither the sequence frequency plot in Figure 1(c) nor the rep-

resentative sequences plot in Figure 1(d) provides an intuitive visual impres-

sion of the holistic pattern visible in the sequence index plots in Figure 1(a)

and 1(b). One reason is that the example data contain many similar but not

identical sequences. Arguably, this is typical for sequences in life course and

career applications, since structural contexts, such as welfare states and labor

markets, shape individual lives to be strongly patterned but rarely identical.

Piccarreta (2012) proposes smoothing techniques in order to reduce over-

plotting in sequence index plots by removing individual noise. For each

sequence, this technique focuses on its neighborhood, which is given by a set

of sequences that are closest to the respective sequence. The original

sequences are then substituted by a smoothed sequence. In her application,

she proposes the medoid sequence that summarizes the sequences in the

neighborhood by having the minimum distance to all other sequences in the

neighborhood. The neighborhood can be defined either by a set of a given

number of sequences or by a radius approach. Combining the two allows for

neighborhoods of different sizes depending on sequence heterogeneity in

local neighborhoods. She also proposes an R2 and an S2 statistic to evaluate

the goodness of fit of the smoothing.

Data Summarization Graphs: Quantitative Sequence Information

Figure 2 shows summary graphs of quantitative sequence information,

such as the average time spent in each categorical state, or the aggregate

distribution of states at each time point. They fundamentally differ from

the sequence index plot and its extensions, because they do not display

individual sequences over time. It is impossible to extract information

on individual sequences from them. Instead, they depict summary informa-

tion for the entire sample of sequences. Essentially, all of these summary

plots represent different facets of the same information and can largely be

derived from each other. However, they highlight different information

about the sequences. A more extensive review of these graphs can be found

in Gabadinho et al. (2011a).
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State distribution plots (Billari and Piccarreta 2005) aggregate the fre-

quency of each state at each time point. Figure 2(a) shows the state distri-

bution plot for the example data. At the beginning of the sequences only

two states occur: being single and in a relationship. At the end of the

sequences, all seven states occur. Being in a noncohabiting relationship is the

most common state for women in their early 20s. Cohabiting, marriage, and

motherhood gain importance as women approach their 30s. State distribution

plots give a good overview of the time point–specific distribution of states.

However, similar state distribution plots can mask very different individual

sequences, because they contain no information about how individuals move

back and forth between these states over time.

Figure 2. Data summarization graphs: quantitative sequence information.
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Kaplan–Meier (KM) survival curves, a standard tool in epidemiology and

demography, are useful to visualize the timing of successive stage transitions

along a set of sequences. Figure 2(b) shows KM survival curves for transitions

into six focal events in the family formation process: (1) into a ‘‘relationship’’

(R), (2) into ‘‘cohabitation without a child’’ (CNC), (3) into ‘‘marriage without

a child’’ (MNC), (4) into ‘‘cohabitation with a child’’ (CC), (5) into ‘‘marriage

with a child’’ (MC), and (6) into ‘‘divorced/widowed’’ (DW). The KM survival

curves ŜðtÞ are calculated as (Kaplan and Meier 1958):

Ŝ tð Þ ¼
Y

ti<t

ni � di

ni

:

Where ni represents the number of survivors up to time i, that is, the number

of people who have not yet experienced the respective event, and di repre-

sents the number of people who have experienced the event at time i. KM

curves thereby represent the proportion of the sequences that have not expe-

rienced a transition yet at each time point. Note that, even though the KM

curve for one transition might be located after the KM curve for another,

some individuals may still experience the two transitions in reversed order.

Modal state plots (Gabadinho et al. 2011a) are bar graphs of the modal

state; that is, the most frequent state at each time point. The height of the bar

is proportional to the frequency of the respective state at this time point. Fig-

ure 2(c) shows the modal state plot for the example data. Until around age 20,

being single is the most frequent state, then being in a relationship, and from

age 30 onward being married with children is the most frequent state for

women in the example data.

Mean time plots (Gabadinho et al. 2011a) are histograms of the mean

time spent in each state across all time points. Similar to the state distribu-

tion plot and the modal state plot, the mean time plot in Figure 2(d) shows

that German women spent the most time being single and in a noncohabit-

ing relationship between the age of 15 and 34. The least time was spent

being divorced. The mean time plot is one of many possibilities to visualize

quantitative summary information about sequence structures with standard

plots such as bar or line graphs. Other possible summary measures are, for

instance, sequence turbulence or complexity measures (Elzinga 2010) as an

indicator for variability within individual sequences over time, or the trans-

versal entropy (Billari 2001; Fussel 2005) as an indicator for the variability

between sequences at each given time point. For instance, the transversal

entropy plot (Billari 2001; Fussel 2005) displays Shannon’s entropy index

as a line graph.
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In addition, Aassve et al. (2007:381) propose a tree-based sequence rep-

resentation to graphically represent clusters of sequences, obtained by refer-

ring to a given dissimilarity matrix. The central idea is to use medoid

sequences to represent clusters. This type of graph is neither an extension

of the sequence index plot nor a summary plot of aggregate sequence char-

acteristics. Each cluster is represented by one tree and the medoid sequences

in each cluster are the branches of the tree. The nodes in these branches rep-

resent the sequence states visited, for instance unemployment or marriage in

their application. The length of the arrows that connect two consecutive

states is proportional to the average duration of time in one state before

experiencing the next (Aassve et al. 2007:280). The tree-based graph capita-

lizes on graphical representation with single cases to illuminate findings, a

mode of representation that is usually reserved for qualitative data analysis.

Drawbacks of the tree-based sequence representation are that they are only

useful for relatively homogenous groups and that the dispersion of sequences

around the medoids is lost in the graphical representation.

Relative Frequency Sequence Plots

We propose relative frequency sequence plots as a bridge between the data

representation graphs and the data summarization graphs that were reviewed

above and as an effective method to address overplotting.2 The plot is a data

reduction technique that is particularly useful when there is strong but fuzzy

patterning in the data, that is, when there is patterning into similar sequences

but there are few identical sequences. This seems to be a fairly common pat-

tern especially in life course and career applications (e.g., Bras et al. 2010;

Brzinsky-Fay 2007; Elzinga and Liefbroer 2007; Fasang 2010, 2012). Rela-

tive frequency sequence plots proceed in the following steps:

1. Sort the sequences according to a substantively meaningful principle;

2. Divide the sorted sample into K similarly sized frequency groups, with

the aim of avoiding overplotting and maintaining data representation;

3. Choose the medoid sequence of each frequency group to represent

this group;

4. Plot the selected representative sequences as a sequence index plot;

5. Plot the dissimilarities to the medoid within each frequency group as

a box-and-whisker plot;

6. Calculate an R2 statistic and an F test to evaluate the goodness of fit of

the chosen relative frequency sequence representation.
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Unlike representative sequence plots (Gabadinho et al. 2011b) and the

smoothing technique proposed by Piccarreta (2012) that aim to find represen-

tatives for the whole set of sequences from neighborhoods that may have

varying sizes, relative frequency sequence plots first partition the sample into

relative frequency groups and then find representatives within these groups.

Each plotted sequence thereby represents an equal number of sequences. The

goal is to visually represent the relative frequencies of sequences in a given

sample. In contrast to the representative sequence plot and the smoothed

MDS plots, if the medoids of the two frequency groups are similar, this is

translated into quantitative information and not eliminated as redundant. In

contrast to the top-down approach of selecting a few most frequent or repre-

sentative sequences in sequence frequency plots (Müller et al. 2008) and in

representative sequence plots (Gabadinho et al. 2011b), the relative fre-

quency sequence plot follows a bottom-up approach that represents

sequences across the full range of the sample.

Compared to the smoothing technique proposed by Piccarreta (2012), espe-

cially when it comes to which sequence goes into which relative frequency

group or neighborhood, the relative frequency sequence plot can be considered

‘‘supervised’’ while her approach is ‘‘unsupervised,’’ analogous to supervised

and unsupervised classifications. This difference has some important ramifica-

tions. Consider as an extreme example 100 sequences, of which 95 are iden-

tical while the remaining 5 are different from the 95 but similar to one

another. The approach proposed by Piccarreta (2012) would produce two

medoid sequences, the first representing the identical 95 and the other repre-

senting the remaining 5. In our approach, if we choose 20 relative frequency

groups, the entire sample is faithfully represented in terms of the proportional

representation. Her approach, even though more efficiently summarizing the

data (i.e., using only two neighborhoods or medoids), does not visually express

the relative frequency of representative sequences and thus is less informative

in this respect. Another extreme would be given by a very heterogeneous sam-

ple. In this case, neither approach can summarize the data with a high degree of

goodness of fit. When this heterogeneity is unevenly distributed across the

sample, however, our approach would give a more representational view of the

data. In sum, while Piccarreta’s (2012) approach is statistically efficient (in

terms of summarizing data), it is visually less informative. The relative fre-

quency sequence plot may be statistically less efficient (by using more repre-

sentative groups) but is visually more informative.

There can be different methods for choosing the representative sequence

within each frequency group. We use the medoid as a natural choice, since

the medoid is a good local representative that is less influenced by data noise
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and outliers (than the mean or centroid) and can be obtained also when only

dissimilarities are available (Aassve et al. 2007; Piccarreta 2012). In princi-

ple, all of the representativeness criteria proposed by Gabadinho et al.

(2011b) can be used. To evaluate the quality of representation within the fre-

quency groups, we propose to complement relative frequency sequence plots

with dissimilarity-to-medoid plots. Dissimilarity-to-medoid plots visualize

the dispersion of dissimilarities of the medoid sequence to all other

sequences within each frequency group K as box-and-whisker plots. They

show both the mean distance within each frequency group K and the disper-

sion around the means. Subsequently, we walk through the six steps of gen-

erating relative frequency sequence plots using the example on women’s

family formation.

Step 1: Sort the Sequences According to a Substantively Meaningful Principle. Ini-

tial sorting determines which sequences are grouped together during the par-

titioning into frequency groups. In the social sciences, sensible sorting

principles are the timing of a focal transition of substantive interest, such

as the age of first marriage, their scores on an MDS factor, the dissimilarity

to the most frequent sequence, or the dissimilarity to a theoretically moti-

vated ideal typical sequence. Choosing the timing of a focal transition of sub-

stantive interest can be problematic if sizable proportions of the sample do

not experience this transition. For instance, only 60 percent of women were

ever married in the observation period covered in our example data. Thus,

sorting according to the age of first marriage leaves the sorting of the remain-

ing 40 percent uncontrolled. Choosing the MDS factor, or the dissimilarity to

some meaningful sequences as a sorting criterion, circumvents these prob-

lems, but warrants careful consideration of the dissimilarity measure chosen.

For instance, if one believes the timing of transitions to be particularly mean-

ingful for the substantive process of interest, one may chose Lesnard’s (2010)

DHD. If one considers the order in which states occur within the sequence

particularly important, one of Elzinga’s (2008) subsequence metrics, or

OM with low indel costs and high substitution costs might be a better choice.

Finally, the dissimilarity to the most frequent sequence as an additional sort-

ing option is only meaningful, if there is a most frequent sequence that rep-

resents a considerable part of the sample.

As a general rule, the sorting principle and dissimilarity measure should

be guided by the substantive interest in sequence variation and the empiri-

cal distribution of the sequences. The family formation sequences in the

example data do not contain a meaningful most frequent sequence because

each sequence is unique. Two sensible sorting criteria are the timing of first
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marriage as a transition of theoretical interest and a score on the first MDS

factor extracted from a dissimilarity matrix built using the DHD (Lesnard

2010). The DHD emphasizes the timing of transitions between family for-

mation states, which we consider theoretically important in the process of

family formation. The goodness of fit of relative frequency sequence plots

using different sorting criteria can be evaluated using the R2 and F test pro-

posed in step 6.

Step 2: Divide the Sorted Sample Into K Similarly Sized Frequency Groups. The

partitioning into K frequency groups should divide the sample into equal-

sized frequency groups. As a rule of thumb, it is advisable to specify around

100 frequency groups if this specification passes the F test proposed below

and increase K accordingly otherwise. Up to 100 representative sequences

can easily be plotted and interpreted as a conventional sequence index plot

without overplotting. Further reducing K is not necessary to avoid overplot-

ting. If the case numbers of the full sample are not evenly dividable by the

chosen K, for instance at an N¼ 474 and K¼ 100 in our example application,

one can easily allow the small difference of one sequence in frequency group

sizes to obtain the exact K without eliminating any of the original sequences.

In our example application, we can choose 74 frequency groups of five

sequences each and 26 frequency groups of four sequences each to cover

N ¼ 474 sequences at K ¼ 100.

Note that a medoid can only be chosen for frequency groups that have at

least three sequences. Also, the box-and-whisker plot of dissimilarities to the

medoid in each frequency group becomes more informative with an increas-

ing number of sequences per frequency group. At the very least each fre-

quency group should have two sequences. If some frequency groups

contain only one sequence, it is not clear which sequences to omit for the

plot, that is, where on the sorting criterion to place the frequency groups with

only one sequence and those with two sequences.

For relatively small samples of a several hundred or fewer sequences, in

principle, the sequence heterogeneity will grow with sample size, suggesting

a greater number of frequency groups or K with increasing sample size.

However, the size of a sample and sample heterogeneity are not necessarily

linearly associated, especially for larger samples. When using a good

representative national sample (usually of a size of a few thousand or larger),

the increase in the amount of heterogeneity with increasing sample sizes

should become negligible. Therefore, the strategy of using up to 100 fre-

quency groups with each group representing larger percentages of the

sample should still be a feasible solution to extract main sequence patterns
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effectively. Ultimately, the choice of K should be informed by visual effects

and by the R2 and F test statistics proposed below.

Step 3: Choose the Medoid Sequence of Each Frequency Group to Represent This
Group. In our example application, each frequency group has one unique

sequence with a minimum sum of dissimilarities to all other sequences in the

respective frequency group with several different distance measures. How-

ever, two or more sequences in a frequency group potentially share the same

minimum sum of dissimilarities to all other sequences. This is similar to the

problem of tied pairwise sequence dissimilarities in cluster analysis using a

sequence dissimilarity matrix, that is, when two pairs of sequences have the

same dissimilarity to one another (Martin et al. 2008). If such tied minimum

sums of dissimilarities occur, one can randomly select one of them, assuming

that they represent the frequency group equally well. The choice of the dis-

similarity measure should be guided by substantive and theoretical consid-

erations and the R2 and F test below.

Step 4: Plot the Selected Representative Sequences as a Sequence Index Plot. This

step is straightforward and simply requires plotting the selected medoid

sequences for the relative frequency groups as a sequence index plot sorted

according to the initial sorting criterion.

Step 5: Plot the Dissimilarity to the Medoid Within Each Frequency Group. The

bottom-up approach of sequence frequency plots that represents sequences

across the full range of the sample requires the division of the sample into

equal-sized frequency groups. Depending on the empirical distribution of the

sequences, some of these equal-sized frequency groups represent a very

homogenous group, while others represent a more heterogeneous group of

sequences. The quality of the representation then is not the same across the

whole sample. We therefore complement relative frequency sequence plots

with dissimilarity-to-medoid plots.

The dissimilarity-to-medoid plot provides information about the dissimi-

larity of the medoid sequences to the respective frequency group they repre-

sent in a box-and-whisker plot. For instance, if a frequency group contains

six sequences, of which one is the medoid, the average dissimilarity is simply

calculated as the average dissimilarity among the five remaining sequences

to the medoid. The box-and-whiskers present the deviation of the distances to

the medoid and give information on the distribution of the sequences in the

group. For frequency groups that contain only two sequences, the distance to

medoid plot is reduced to showing dots for the distances between the two
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sequences in each frequency group. Note that the dissimilarity-to-medoid is

analogous to criterion B of the representative sequence plot (Figure 1(d)) if

the medoid is chosen as the representativeness scale.

Rather than looking at the dissimilarity-to-medoid plot as an absolute

quality benchmark, one can think of it more broadly as providing additional

information about the data. Since the sequences are ordered according to a

meaningful principle in the first place, the dissimilarity-to-medoid plot is

informative about sequence dispersion at different locales on this continuum.

We will use the example data to demonstrate how this can be useful for the

substantive interpretation of sequence variation.

Step 6: Calculate the R2 Statistic and F Test to Evaluate the Goodness of Fit. Rela-

tive frequency sequence plots require three critical decisions: choice of a

sorting criterion, choice of a distance measure to identify the medoids in K

frequency groups, and the number of frequency groups K. To evaluate the

sensitivity of relative frequency sequence plots to these choices, we propose

an R2 statistic that can be assessed with an F test based on contrasting dis-

tances to the frequency group–specific medoids and the distances to the gen-

eral medoid. We extend Piccarreta’s (2012) proposition of an R2-type

statistic based on the general medoid—the medoid sequence for the entire

sample—and calculate an R2 that contrasts distances to frequency group

medoids to distances to the general medoid.

Let Si denote the fraction of each relative frequency group of the total

group-specific distance squared to the total general distance squared for the

same group:

Si ¼
Pni

j¼1 q2
ijPni

j¼1 Q2
ij

; ð1Þ

where qij is the distance between each sequence j in the ith relative frequency

group and the ith relative frequency group medoid and Qij is the distance

between the same sequence j and the general medoid. Note that the hetero-

geneity contained in Si is made relative to the distances to the general

medoid. Following from equation (1), a form of the typical R2 statistic can

be defined as:

R2 ¼ 1�
XK

i¼1
Si ¼ 1�

XK

i¼1

Pni

j¼1 q2
ijPni

j¼1 Q2
ij

; ð2Þ
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where K represents the total number of relative frequency groups. Note that

equation (2) extends the R2 statistic in Piccarreta (2012), which is not based

on squared distances, and thus equation (2) is on the same scale as the con-

ventional sum of square based R2. The squared distances in the R2 in equation

(2) allow us to construct an F test for assessing whether the chosen sorting

principle, distance measure, and K capture the heterogeneity in the overall

sample and successfully summarize the set of sequences visually. This is akin

to the F test for a one-way analysis of variance:

F ¼ ESD

USD
¼ R2=ðK � 1Þ
ð1� R2Þ=ðN � KÞ ; ð3Þ

where ESD denotes the explained sum of distance (averaged) and USD

denotes the unexplained sum distance (averaged). The F statistic in equation

(3) tests the null hypothesis that there is no association between the observed

sample of sequences and the set of K relative frequency sequence groups. It

has K � 1 and N � K degrees of freedom. If there is no association, then the

chosen specification of the relative frequency sequence plot does not succeed

in summarizing the set of original sequences visually. If there is a significant

association between the observed sample of sequences and the set of K rela-

tive frequency groups, they satisfactorily summarize the original set of

sequences.

Note that the F statistic in equation (3) assumes an F distribution, which is

based on the following assumption: The variable involved in equation (3) is

an independently distributed chi-square variable. Concerning the assump-

tion, chi-square distributions are sum of squared (deviation/normal) distribu-

tions. If the data are dependent, which would be the case for simple pairwise

sequence distances, they would not meet the criteria for a chi-square distri-

bution. However, Si, the basis for calculating the R2, is not based on a simple

sum of squared distances but instead on a sum of squared distance ratios, that

is, the ratio between the distance of a sequence to a local medoid to the dis-

tance of this sequence to the global medoid. In principle and on average, a

smaller or greater local distance is not related to a smaller or greater global

distance. Therefore, the ratio of two kinds of distances randomizes the sum of

squared distances. We consider the group-specific summed squared ratios as

‘‘cases.’’ They are a sum of independent squared ratios and thus meet the

assumption of the F distribution, that is, we can reasonably assume that they

are based on an independent chi-square distribution.

Table 2 shows the R2 and F test in equation (3) for different distance mea-

sures and sorting criteria for K ¼ 100. In terms of distance measures, we use
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the DHD, OM with constant substitution costs of 2 and indel costs of half the

max subcosts of 1 (see MacIndoe and Abbott 2004), as well as the Longest

Common Prefix (LCP) distance, one of Elzinga’s subsequence metrics

(Elzinga 2008). Two different sorting criteria are tested: the age of first mar-

riage and the score on the first factor derived by applying MDS with the

respective distance measure. Note that one could also use a different distance

measure in the MDS and to calculate Si, if one had a theoretical or substantive

justification for doing so.

The R2 and F test indicate that sorting on the score of the first MDS factor

always fares better than sorting on the age of first marriage (Table 2). Also,

the DHD yields the highest R2 when the sequences are sorted according to the

age of first marriage, whereas the R2 is highest using OM when the sequences

are sorted according to the score of the first MDS factor. Both the R2 values

obtained with the DHD and OM improve considerably compared to those

obtained with the LCP distance. Family formation is a fairly unidirectional

process in which timing is highly consequential. The DHD and OM both give

a more sophisticated account of timing than the LCP distance, which focuses

more on the order of states. It is also intuitive that the sorting on the factor

derived by applying MDS yields better results. It gives a sorting guideline

across the full range of the sample, whereas the age of first marriage only

provides a sorting guideline for the roughly 60 percent of women who are

ever married (see Table 1) in our example data, leaving the remaining sorting

uncontrolled.

Based on the R2 and F tests in Table 2, sorting according to the score of

the first factor derived with MDS and using OM is the best specification of

the relative frequency sequence plot. It clearly avoids overplotting with 100

Table 2. Overview of R2 and F Test for Different Combinations of Sorting Principle,
Distance Measure, and K¼ 100 Frequency Groups, For Example Data on Family For-
mation With N ¼ 474.

Sorting Principle Distance Measure R2 F a Probability

Age of first marriage DHD 0.423 2.767 <.001
Age of first marriage OM 0.340 1.949 <.001
Age of first marriage LCP 0.165 0.747 >.950
MDS score DHD 0.477 3.449 <.001
MDS score OM 0.552 4.647 <.001
MDS score LCP 0.369 2.209 <.001

Note: DHD ¼ dynamic Hamming distance, OM ¼ optimal matching with substitution costs ¼ 2
and indel costs ¼ 1, LCP ¼ longest common prefix distance; MDS ¼ multidimensional scaling.
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sequences at an R2 of .552 and passes the F test at a ¼ .001. This model has

enough ‘‘explanatory’’ power in visually summarizing the sequences in the

sample. In contrast, the worst specification is given when the sequences are

sorted by the age of first marriage with the LCP distance at an R2 of .165 that

does not pass the F test (Table 2).

Figure 3 illustrates these two best and worst specifications of the relative

frequency sequence plot (Table 2). Graphs 3(a) to (c) in the upper panel show

Figure 3. Sequence index plot, worst and best specification of relative frequency
(RF) sequence plot and dissimilarity-to-medoid plot of women’s family formation
based on R2 and F test in Table 2 with K ¼ 100.

666 Sociological Methods & Research 43(4)



the sequence index plot, relative frequency sequence plot, and dissimilarity-

to-medoid plot sorted by the score on the first factor derived by applying

MDS and using OM. The relative frequency sequence plot provides a con-

densed and crystallized visualization of the same substantive pattern visible

in the original sequence index plot. Thus, it performs well as a complexity

reduction to extract the main sequence patterns without notable information

loss when combined with the dissimilarity-to-medoid plot. Less ink is used

than in the full sequence index plot, thus providing a better data-ink ratio.

More importantly, overplotting is avoided.

The dissimilarity-to-medoid box-and-whisker plot in Figure 3(c) under-

lines a polarization between women who marry and have children early in

the lower part of Figure 3(b) and women who remain single and in noncoha-

biting relationships until the age of 33 at the top. Family formation sequences

are particularly similar to their frequency group medoids with a low mean

distance and lower dispersion around this mean at both ends of the continuum

from more-to-less traditional family formation. Sequence dispersion is larg-

est in the middle range of the scores on the MDS factor, where family forma-

tion sequences change states more frequently including several cohabiting

episodes. This supports the polarization hypothesis of women’s family for-

mation, particularly in West Germany, into two homogenous patterns: a tra-

ditional early marriage and motherhood pattern and a delayed family

formation pattern of women who forgo and delay family formation to estab-

lish employment careers (see Buchmann and Kriesi 2011). Together Figure

3(a) to (c) suggests that these patterns are internally relatively homogenous

opposites on a continuum derived with MDS.

Quite the contrary, the specification sorted by the age of first marriage and

using the LCP dissimilarity fails to convey this information on a polarization

of women into two homogeneous patterns located on a continuum from

more-to-less traditional family formation. The crucial point is that the visual

summary of the set of sequences is distorted. Notably, in the lower panel with

plots 3(d) to (f) the state ‘‘in a relationship’’ (R), represented by orange, is not

properly represented visually. The medoids mostly summarize and describe

the other relationship states.

We can conclude that when correctly specified as indicated by the R2 and

F test statistics and combined with the dissimilarity-to-medoid plot, the gra-

phical representation of relative frequency sequence plots is consistent with

the numerical representation in the data. The context dependency of visual

impression based on the order of sequences is made explicit in step 1 of gen-

erating relative frequency sequence plots, the choice of a sorting criterion. As

noted by Piccarreta (2012:368), there are theoretical justifications for each of
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the available distance measures. The choice of a distance measure is a sub-

stantive and theoretical concern that should be guided by the research

question/research questions at hand. It has to be chosen carefully and most

applications will benefit from comparing several. The R2 and the F test pro-

vide a statistical guideline for this comparison. In our example application,

substantive and statistical criteria closely correspond in unanimously sup-

porting a specification sorted by the score on the first factor derived by apply-

ing MDS and using OM both for the MDS and for the medoid extraction. For

this specification, 100 sequences prove sufficient to represent the heteroge-

neity of the sequences across the full range of the sample while at the same

time maintaining a visual sense of the relative frequency of specific types of

sequences from more-to-less traditional family formation. Further reducing

the number of relative frequency groups K is not necessary, since 100

sequences are not at risk of overplotting and give a good visual representa-

tion of the example data on women’s family formation.

Relative frequency sequence plots can also address the context dependency

of visual perception in the comparison of groups of unequal sizes by way of

relative frequencies. Figure 4 shows sequence index plots, relative frequency

sequence plots, and dissimilarity-to-medoid plots separately for East

(N ¼ 132) and West German (N ¼ 342) women. We specify 66 fre-

quency groups for both German subsocieties. For West Germany, this

amounts to five or six sequences per frequency group at R2 ¼ .543 and

F ¼ 5.039 that is significant at the 10 percent level (upper tail cutoff ¼
1.304) using OM and the MDS sorting criterion. The East German sam-

ple is divided into 66 frequency groups of two sequences each at R2 ¼
.582 and F ¼ 1.416 that is just significant at the 10 percent level (upper

tail cutoff ¼ 1.377) using the same specification. Correspondingly, the

dissimilarity plot in Figure 4(f) is reduced to a simple dot plot that shows

the distance between the two sequences in each frequency group. Allow-

ing more frequency groups for East Germany would entail at least some

frequency groups of only one sequence, which are problematic for rea-

sons outlined above. To avoid overplotting, it is not necessary to go

below 66 frequency groups. The relative frequency sequence plots with

K ¼ 66 pass the F test for both German subsocieties and present a good

visual comparison of the salient family formation patterns.

The comparison shows that among East German women motherhood in

cohabiting relationships is far more common and the sequence of relation-

ship states varies more in terms of timing and order. In West Germany,

women polarize into either a traditional or a delayed family formation group.

Also, there is much stronger sequencing into a traditional pattern of entering
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a relationship followed by cohabitation, then marriage, and then motherhood

in West Germany compared to East Germany.

In sum, the relative frequency sequence plot is a simple technique for

reducing overplotting that maintains the possibility to trace representative

individual sequences over time and visualizes qualitative sequence patterns.

Combined with the dissimilarity-to-medoid plot, they also provide an expli-

cit visualization of the quantitative information on sequence dispersion. The

Figure 4. Sequence index plot, relative frequency (RF) sequence plot and
dissimilarity-to-medoid plot of family formation in East and West Germany,
optimal matching, sorted by scores on a factor derived with multidimensional
scaling (MDS), K ¼ 66.
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R2 and F test statistics offer guidelines for the joint choice of the sorting cri-

teria, distance measure, and number of frequency groups K. These choices

however should also be backed up by theoretical and substantive considera-

tions. As our example above showed, these likely will lead to similar conclu-

sions in most cases. We argue that these plots are particularly useful for

analyzing categorical sequences in the study of life courses and careers,

because patterning in these types of sequences is often strong but fuzzy—

there is strong patterning either into distinct groups or along a continuum

as derived by applying MDS but there are few identical sequences.

Conclusion

As noted by Lewandowsky and Spence (1989), statistical graphs are used for

different purposes: to communicate information to an audience or to analyze

data. We believe that a statistical graph that is meant for communicating

information to an audience is at the same time always an analysis of the data.

The inseparability of communicating and analyzing data is reflected in

Tufte’s (2001:51, italics in original) standards for graphical excellence, when

he states that the well-designed presentation of interesting data is ‘‘a matter

of substance, of statistics, and of design.’’ As Tukey (1977) showed long ago,

a visual exploratory analysis is one approach to analyzing data with the

objective to formulate testable hypotheses.

In this article, we drew attention to visualization as a nascent but growing

field in sequence analysis in the social sciences. Given the complexity and

information density of categorical sequences in the social sciences, visuali-

zation is a particularly promising tool for communicating and analyzing

sequence data. This article reviewed currently available graphs for sequence

visualization and highlighted their advantages and disadvantages for addres-

sing different types of research questions and different empirical distribu-

tions in sequence data. We proposed relative frequency sequence plots

complemented by dissimilarity-to-medoid plots as useful additional graphs

for analyzing categorical sequences and as a graphical bridge between data

representation and data summarization. The efficacy of the proposed plot

was assessed by the R2 and the F statistics. We demonstrated the advantage

of relative frequency sequence plots and dissimilarity-to-medoid plots with

the example of women’s family formation. For future research, it would

be useful to test the proposed plots and statistics with large samples of a few

thousand sequences and further elaborate criteria for adjudicating between

different specifications, especially for arriving at an optimal number of K.
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Visualization using graphs has been an essential tool for the analysis of

statistical data for over 200 years (Lewandowsky and Spence 1989) and has

a long-standing tradition in exploratory data analysis (Tukey 1977).

Researchers use statistical graphs to assist their understanding and interpre-

tation of statistical properties in data. As Anscombe (1973:17) well summar-

ized, there are two basic purposes of graphs: ‘‘to help us perceive and

appreciate some broad features of the data’’ and ‘‘to let us look behind those

broad features and see what else is there.’’ Following up on these comments,

we regard the relative frequency sequence plot as primarily fulfilling the first

purpose of helping us perceive and appreciate some broad features of the data

by extracting qualitative sequence patterns.
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Notes

1. Divorced and widowed are combined into one state because widowhood occurs

very rarely (<1% of months). For the same reason, we do not include ‘‘single with

child’’ as a separate state (occurs for <1% of months). These women are consid-

ered single in the example application.

2. We drop the term index in the name ‘‘relative frequency sequence plot,’’ because

we summarize the data in a certain way that is not an index of sequences in the

sample any more.
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