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Abstract

This paper presents a new hierarchical methodology for estimating multi factor dynamic

asset pricing models. The approach is loosely based on the sequential approach of Fama

and MacBeth (1973). However, the hierarchical method uses very flexible bandwidth selec-

tion methods in kernel weighted regressions which can emphasize local, or recent data and

information to derive the most appropriate estimates of risk premia and factor loadings at

each point of time. The choice of bandwidths and weighting schemes, are achieved by cross

validation. This leads to consistent estimators of the risk premia and factor loadings. Also,

out of sample forecasting for stocks and two large portfolios indicates that the hierarchical

method leads to statistically significant improvement in forecast RMSE.
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1 Introduction

The concept of a time varying risk premium is a standard idea in financial economics and there

are many articles approaching the subject in different ways; e.g. Campbell and Shiller (1988),

Ferson and Harvey (1991) and Lewellen and Nagel (2006). There is also the cornerstone of asset

pricing as exemplified by Fama and MacBeth (1973), who estimate equity risk premium by a

now standard two stage, cross sectional regression method. The method assumes a linear multi

factor setting where the pricing of different types of risk are constant.

The Fama and MacBeth (1973) approach has great intuitive appeal as well as being based

on natural financial concepts. Hence this paper builds on their approach in the sense that a se-

quential hierarchical structure is developed which has several components. Our method main-

tains the Fama MacBeth (1973) stages of estimating risk factors, (or betas) from a time series

regression and then the importance of factor loadings (or gammas) from cross sectional regres-

sions. However, we also include intermediate multiple hierarchical stages of selecting optimal

bandwidths by cross validation.in the estimation of the betas and also separately for the factor

loadings and gammas. Hence a main contributions of this paper is to allow for very general

time variation in the risk premium terms, or betas, and corresponding variation in time varying

factor loadings coefficients, within an affine pricing kernel specification. The method that we

use to calculate the time varying betas and factor loadings depends on a kernel weighted regres-

sion, which is an extension of the least squares rolling window regression approach, which has

frequently been used in empirical finance; e.g. Jagannathan and Wang (1996), Ghysels (1998)

and Lewellen and Nagel (2006), etc.

One great advance of our methodology is to employ a flexible method for the bandwidth

selection, which essentially determines the lag of recent updates of the betas (risk factors) and

also of the factor loadings. This avoids imposing any priori structure and allows a natural data

orientated way for incorporating economic and financial news that is relevant for the pricing

of assets under investigation. Our empirical results overwhelmingly indicate the importance of

removing the restriction of constant betas and the full superiority of our methodology becomes

apparent in terms of prediction of out of sample returns for a wide range of assets. Hence our

results show that time variation of risk associated with stocks and portfolios must be captured

with an estimation procedure that on one hand avoids imposing excessive a priori structure
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and on the other hand takes into account the specific features of each assets. The results also

indicate the economic importance of the factor loadings, and how they relate to the risk pre-

mium. One highlight of our approach is that it leads to between 4% to 7% reduction in one step

ahead forecasting performance of excess returns in comparison with a plethora of alternative

methods and independently of the data employed.

The remainder of this paper is organized as follows: section 2 provides a brief review of previ-

ous literature, while section 3 discussion of the contribution of this paper relative to the existing

literature. In section 4, we present the empirical evidence of our results and some robustness

checks.

2 Background Literature

The Capital Asset Pricing Model, or (CAPM ) of Sharpe (1964), Lintner (1965) and Markowitz

(196?) is a benchmark of asset pricing models. The model implies that the expected excess re-

turn on any asset is influenced by its sensitivity to the market, which is measured by the beta

coefficient, times the market risk premium. Traditionally this is considered invariant over time

and ”beta” represents the covariance between the return of the asset and the return on the mar-

ket portfolio. The basic model has been criticised by Black, Jensen and Scholes (1972), Fama

and French (1992), Fama and MacBeth (1973) among others on the grounds that only one fac-

tor, the market beta, is inadequate to describe the systemic risk. Hence researchers many have

attempted to improve the basicCAPM by the introduction of other factors. Most notably there

is the three factor model of Fama and French (1993) which introduced the size, or SMB where

positive returns are related to small size, and the high minus low, or HML,factors, high book-

to-market ratios are associated with higher returns. While Carhart (1997) introduced a fourth

momentum factor, MOM , which describes the tendency of a stock price to continue recent

trends.

Other developments with extending the basic CAPM have centred on implementing more

flexible estimation strategies where the the beta coefficient(s) are not necessarily assumed to be

constant across time or space. For example, see Harvey (1989), Ferson and Harvey (1991, 1993),

Bollerslev, Engle and Wooldridge (1988), Fama and French (1997, 2006), etc.

Adrian and Franzoni (2005) have argued that models without time evolving betas fail to cap-

3



ture investor characteristics and may lead to inaccurate estimates of the true underlying risk.

There are numerous factors that contribute to the variation in beta including regulation, eco-

nomic and monetary policy, and exchange rates. Many researchers, such as Zolotoy (2011),

show that variation in betas are more evident around important news announcements.

Jagannathan and Wang (1996), Lettau and Ludvigson (2001), and Beach (2011) show that

the conditionalCAPM with time varying beta generally outperforms an unconditionalCAPM

with a constant beta. One technique that is often used, which is the embryonic version of the

method used in this paper, is to take into account changes in the systematic risk of an asset

through a rolling window OLS regression; e.g. Fama and MacBeth (1973) and Lewellen and

Nagel (2006). This will be discussed more in section 4 of this paper.

Other research has directly exploited the covariation between the market and other assets;

see Engle (2002) and Bali and Engle (2010) who estimate time varying betas using multivariate

dynamic conditional correlation methods to exploit correlations between cross sectional aver-

age returns of various factor portfolios. Another approach by Anderson, Bollerslev, Diebold and

Wu (2006) estimates dynamic betas through using the realized beta from high frequency intra

day returns. However, the main framework in our analysis is that of Fama and MacBeth (1973),

which is outlined below. It should also be noted that early work on the idea of estimating equity

risk premia in a linear multi factor setting were also in Black, Jensen, and Scholes (1972)1.

2.1 Fama and MacBeth formulation

The seminal paper of Fama and MacBeth (1973) advocates a two step procedure to estimate risk

premia in the multi factor CAPM setting and also provides a test the explanatory power of the

various chosen factors. The usual model assumes the coefficients are constant and estimates

them by OLS. The first step regresses the excess risk free return of each asset, or portfolio, on

various factors over time to determine the exposure of each factor and hence estimate the beta

parameters. The second step consists of a cross section regression of the excess return of the

assets against the factor exposures, or betas, at each point in time, in order to obtain a time

series of risk premia coefficients, or gammas, for each factor. The great insight of Fama and

MacBeth (1973) is to average these coefficients to obtain expected for a unit exposure to each

1There is also a literature on the statistical theory of properties for estimated linear factor models with constant
coefficients see e.g. Shanken (1985, 1992), Jagannathan and Wang (1998), Shanken and Zhou (2007), Kan, Robotti,
and Shanken (2013).
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risk factor over time and to test if these are adequately priced by the market.

To be specific, we considerN assets andm factors; and in the first step the factor exposures,

or betas are computed from the regression considered for all the N assets:

Ri,t −Rf,t = αi + β1,iF1,t + β2,iF2,t + ...+ βm,iFm,t + ui,t

with i ∈ [1 : N ] and t ∈ [1 : T ] and where Ri,t is defined as the nominal return on the i’th asset

between period t and t − 1, and Rf,t denotes the risk free rate. Then Fj,t, with j ∈ [1 : m], is

a factor while βj,i represents the factor loading, that describes the degree of exposure of each

asset to the factor, and ui,t is assumed to be iid(0, σ2u)

The second step of the Fama and MacBeth (1973) method is to compute T cross section

regressions of the excess return of the assets on the m estimated betas, β̂, computed in the

previous step. All these regressions use the same β̂ since the objective of the Fama and MacBeth

(1973) approach is to estimate the exposure of the N returns to the m factor loadings over time.

Hence,

(Ri,t −Rf,t) = γ0,t + γ1,tβ̂1,i + γ2,tβ̂2,i + ...+ γm,tβ̂m,i + εi,t

where the γjs measure the risk premia associated with each Fj . Hence the method determines

m + 1 series of the γs, which are also generally considered to be constant. If the model is

well specified and all the factors considered are significant, then the risk loadings explain cross

sectional differences, ˆ̄γ0,. = 0 and ˆ̄γj,. represent the average risk premium associated with each

risk factor.

3 Hierarchical Methodology

The key point in our contribution of a hierarchical methodology is to develop a flexible method-

ology to easily allow time variation in both the betas and gammas of the baseline Fama and

MacBeth (1973) approach. The main tool for achieving this is to have a flexible bandwidth pa-

rameter which essentially controls the weight given to local information for updating the beta

and gamma coefficients. The really important innovation is to optimize the bandwidth selec-

tion based on out of sample cross validation methods. Before outlining our method in detail

we briefly mention some of the previous literature which has attempted to model more flexible
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coefficients in the Fama MacBeth CAPM .

As outlined below, there has already been considerable awareness of the importance of in-

corporating time variation in the estimation of the CAPM. In particular, rolling window esti-

mates of betas have been considered by Chen, Roll, and Ross (1986), Ferson and Harvey (1991)

and Petkova and Zhang (2005) among others.

Related to our approach, Adrian, Crump and Moench (2015) used the weighted kernel es-

timator proposed by Ang and Kristensen (2012) for the purpose of being robust to misspecifi-

cation. However, one major innovation approach is the use of optimal bandwidth selection for

kernel estimation for deriving improved local estimates of the betas and this improves on out of

sample prediction of returns. The first part of our Hierarchical approach is to calculate the Time

Varying Parameters (TV P ) associated with the coefficients of the factors (βs). The method we

use is based on a kernel weighted regression, hence

(Ri,t −Rf,t)h = β1,t,i,hFMRKT,t + β2,i,t,hFSMB,t + β3,i,t,hFHML,t + ui,t,h (1)

with i ∈ [1 : N ] number of assets, t ∈ [1 : T ] period of time and k ∈ [1 : K] number factors

and h is the bandwidth to be discussed later. The new hierarchical approach is subsequently

tested against different combination of factors that are consistent with previous research in this

area. It is generally assumed throughout that un,t+1 is i.i.d.(0, σ2); although as discussed in the

appendix, corrections for autocorrelation or heteroskedasticity are available if required. But

in general there appeared from diagnostic tests for there to be no reason to implement them.

The β parameters are estimated by an extension of the methodology of Giraitis, Kapetanios and

Yates (2014) and is summarized in the appendix of this paper. Hence the beta for the k′th factor

is estimated by

β̂k,t,i,h =

∑T
t=1K( t−jT ) (Ri,t −Rf,t)Fk,t∑T

t=1K( t−jH )F 2
k,t

(2)

where K( t−jH ) is assumed to be a Gaussian kernel function. Intuitively, the kernel function

places more weight on local observations and the rate of decay is governed by the bandwidth, h.

Giraitis, Kapetanios and Yates (2014, 2018) show that under very mild conditions, kernel based

estimates of random coefficient processes have very desirable properties such as consistency

and asymptotic normality and in addition provide valid standard errors. They address also the
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delicate issue of the choice of bandwidth and the resulting bias and variance of the estimator2.

The use of a cross validation approach implies that the choice of bandwidth parameter, h, is

selected from an out of sample, one-step ahead forecasting comparison over a grid search of h

which incorporates 18 different values of h, for the grid of h ∈ [0.05; 0.9] with an interval of 0.05

for each grid.

The end of the first stage of the Hierarchical process generates for each asset, i, a time series

of beta estimates for different values of the bandwidth parameter h. These estimated betas

allow the identification of the price of risk factor loadings for different values of h,γh; using the

following equation:

(Ri,t −Rf,t)h = γ0,h + β̂′1,t,i,hγ1,t,h + β̂′2,t,i,hγ2,t,h + β̂′3,t,i,hγ3,t,h + εn,t,h (3)

where εn,t,h is assumed to be i.i.d.(0, σ2ε). This process generates k + 1 series of γs (including

the constant) for every factor and for every h. The cross validation procedure then compares

the forecasting performance of the competing models, via the computation of the forecast er-

rors ei,t+1,h and is implemented over the initial T0 observations in a training period, which also

allows for out of sample forecast analysis to be based on the remaining (T − T0) periods. The

training period is fixed at 60 observations, or 5 years of data and we also performed robustness

tests with different values of T0 of 120 and 180. The one step ahead forecast for each asset is then

obtained from the following regression

̂(Ri,t+1 −Rf,t+1)h = γ̂0,h + β̂′1,t,i,hγ̂1,t,h + β̂′2,t,i,hγ̂2,t,h + β̂′3,t,i,hγ̂3,t,h (4)

The forecast errors, ei,t+1,h are computed for each period and for each of the eighteen different

values of h, which leads to a forecast error matrix of dimension 18× (T − T0) for each asset.

Essentially five alternative tests for robustness were calculated; namely (i) to try different

training periods of 60, 120 and 180 observations; (ii) to optimize the choice of the bandwidth on

both the first step with the estimation of the betas and also with the second step estimations of

the gamma; (iii) to try eighteen different values for h the bandwidth; (iv) to examine both peri-

ods of before and after the Great Financial Crisis and (v) to use a time varying lasso method with

2Ang and Kristensen (2012) have investigated the asymptotic distributions for conditional and long run estimates
of the alpha and betas; and suggest the use of different bandwidth mainly for the purpose of reducing finite-sample
biases and variances.
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variation in the penalty function for the identification of the best model at each time period.

The time varyingRMSE is calculated at each point in time and for each asset; and the value

of h selected is chosen to minimize the RMSE loss function. Several different criteria and ap-

proaches were investigated; including rolling regressions, and non parametric kernel smoothed

regressions. The former method refers to the classical rolling window approach with different

window, or horizons, w such that w ∈ [12; 24]. Hence the unadjusted rolling RMSE is given by

RMSErollt =

√√√√ 1

w

w∑
j=1

e2i,t+j,h, (5)

while the kernel weighted RMSE is computed instead:

RMSEkernt =

√√√√ T∑
j=1

W

(
t− j
H(i)

)
e2i,t+j,h (6)

with H(i) = T h
′

and h′ ∈ [0.05; 0.9]. Clearly when W (H) = 1 the formula reduces to the

regular RMSEt formula in equation (4). Both approaches generate a matrix of 18 columns

and (T − T0 − w) or (T − T0) rows according to the method used, for each asset. This matrix

of RMSEt are used to determine the optimal values of h for each asset,hopti,t .

Once the multi step hierarchical procedure has found the ”optimum” beta coefficient esti-

mates, then the Hierarchical method performs cross section regressions to identify the price of

risk actor loadings for different values of h and γh; using the following equation:

(Ri,t −Rf,t)h = γ0,h + β̂1,t,i,hγ1,t,h + β̂2,t,i,hγ2,t,h + β̂3,t,i,hγ3,t,h + εn,t,h (7)

where εn,t,h is assumed to be i.i.d.(0, σ2ε). .

3.1 Estimation of factor risk loadings - βt

The cross validation procedure is used turns out to be very important in searching for the most

appropriate value of the bandwidth parameter, h, in the kernel function that sets the degree

of smoothness of the estimates. This parameter is critical in providing the appropriate degree

of persistence in determining the ”memory” of the window used in the TV P estimation of the

different stages of the Hierarchical modelling procedure. classical three FF model: market
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factor, MRKT , size factor, SML, and book-to-market factor, HML. The following list other

possible ways for determining the factor risk loadings βt, using the optimal parameter hopti,t ; they

are:

(i) A kernel weighted approach with h = 0.5. As showed by Giraitis et al. (2014), this band-

width allows to get smooth estimates with desirable properties such as consistency and asymp-

totic normality and in addition provides asymptotically valid standard errors. This model is

then used as a benchmark.

(ii) Alternative kernel approach, where h is fixed for each assets and time and is determined

from a pooled average of the optimal bandwidth parameters, hopti,t , as follow:

h̄Pooled = (NT )−1
T∑
t=1

N∑
i=1

ht,i (8)

(iii) A further kernel regression approach, with h computed by averaging the optimal band-

width parameters across assets. While the parameter varies over time, it is not asset specific:

h̄Averaget = (N)−1
N∑
i=1

ht,i (9)

(iv) The optimal h, which is specific for each asset to give hopti,t .

All these 5 approaches are implemented in the three factor Fama and French (1993) model:

Ri,t −Rf,t = β1,t,i,mFMRKT,t + β2,i,t,mFSMB,t + β3,i,t,mFHML,t + ui,t,m (10)

where m ∈ [1 : 5] represents the different approach used for the computation of the factor

loadings, βs.

3.1.1 Hierarchical estimation of Risk Premium

The TV P estimates of beta, β̂, are then used in the third of our procedure, which facilitates

computation of risk premia associated with the factors under investigations,γs. Hence this

stage of our procedure follows has some similarities with Fama and MacBeth (1973) article,

except that at each point in time, we consider multiple TV P estimates of beta instead of them

fixed as a constant. Our hierarchical methodology then replaces the assets’ excess returns by
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their corresponding time varying kernel weighted average, (Rn,t −Rf,t), which are computed

using the bandwidth, h that had been selected in the previous step for the computation of the

βs. The kernel weighted averages for the excess returns are then

̂(Ri, −Rf,t+1) =
T∑
k=1

K

(
t− k
H

)
(Ri,k −Rf,k) (11)

whereK( t−kH ) is the same continuously bounded kernel function andH∗ = T hm withm ∈ [2 : 5].

The cross section of these smoothed excess returns are then used for the OLS regressions, to

identify the risk premia,

̂(Ri,t −Rf,t) = γ0,m + β̂1,t,i,mγ1,t,m + β̂2,t,i,mγ2,t,m + β̂3,t,i,mγ3,t,m + εi,t,m (12)

This results inm+1 series of γ̂ (including the constant), for each of the five different approaches

previously considered for the estimation of the βs; each one of which is of length T−T0. The last

stage of the hierarchical approach is to select the best bandwidth in terms ofRMSE minimiza-

tion in out of sample forecasting. One method is to forecast the average excess return across all

assets using the average of the estimated betas, which realizes the time series of forecasts of the

average,

Rt+1 −Rf,t+1 = γ̂0,m + γ̂1,t,m
ˆ̄β1,t,m + γ̂2,t,m

ˆ̄β2,t,m + γ̂3,t,m
ˆ̄β3,t,m (13)

where

Rt+1 −Rf,t+1 =
1

N

N∑
i=1

(Rt+1 −Rf,t+1) (14)

and

β̄j,t,m =
1

N

N∑
i=1

βj,t,i,m

TheRMSE are then computed for each method and compared across estimation strategies us-

ing different bandwidths. Another method is to use the excess return for each asset using its

betas but assuming that the gammas are identical across the portfolios. This allows investiga-

tion of how the different models perform for each asset and appreciate better the contribution

of the different approaches for the estimation of the betas. The forecasts are computed as fol-

low:

Ri,t+1 −Rf,t+1 = γ̂0,m + γ̂1,t,mβ̂1,t,i,m + γ̂2,t,mβ̂2,t,i,m + γ̂3,t,mβ̂3,t,i,m (15)
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ThenRMSE for each of these quantities are calculated their significance analysed by using the

Diebold and Mariano (1995) test.

3.2 Data

The new hierarchical methodology is now applied to three different financial returns data sets.

The first is an N = 25 sized portfolio which is sorted by size and book-to-market; while the

second is an N = 30 sized portfolios sorted by industry. We further use 200 individual stock

prices from the Center for Research in Securities Prices (CRSP), so that N = 200. We consider

excess return over the 30-day Treasury bill yield, with the total series covering the period from

August 1973 through April 2016, for a total of T = 514 observations. All of these portfolios are

constructed from Kenneth French’s on-line web site.

We use the following set of factors in our subsequent Hierarchical Analysis; namely the ex-

cess return on the market, MRKT , value-weight return of all CRSP firms incorporated in the

US and listed on either theNY SE,AMEX, or theNASDAQ. The small minus big (SMB) fac-

tor and the high minus low (HML) factors are derived in the same was as in Fama and French

(1993). We further considered the momentum factor, MOM , of Carhart (1997), which is com-

puted as the average return on the two high prior return portfolios minus the average return on

the two low prior return portfolios. Again, all of them are available from Ken French’s on-line

data library. Full details of the results including the momentum factor are available on line;

as are analysis of thee five factor model from Fama and French (2015). These additional fac-

tors represent the ”robust minus weak”, RMW and the ”conservative minus aggressive”, CMA

factors. The RMW factor is the average return on the two robust operating profitability port-

folios minus the average return on the two weak operating profitability portfolio, while CMA

represents the average return on the two conservative investment portfolios minus the average

return on the two aggressive investment portfolios. Full details of the analysis form the five fac-

tor model is again available on-line, but is suppressed in this version of the paper in the interests

of conserving space.

3.3 Empirical Results of the Hierarchical Analysis

Following the details of the above methodological framework, Table 1 presents the descriptive

statistics for the three different portfolios. The results are categorized in terms of the bandwidth
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being used. The optimal bandwidth parameters is denoted by hopt, while the other values of h

are for two conventional rolling windows and then for the Gaussian kernel that is one of the

features of the Hierarchical method. The results in Table 1 are presented in the form of the hopt

filtering, or kernel windows, across all the different assets in each portfolio.

Interestingly, it can be seen that the value of h selected by the cross validation procedure for

the two portfolios of 25 and 55 assets are quite close to 0.50 across the assets and the standard

deviation of these estimates is relatively small. Regular t tests were unable to reject the hypoth-

esis that h = 0.50 for any of the portfolio classifications. This finding is particularly interesting

since h = 0.50 is the theoretical value identified by Giraitis, Kapetanios and Yates (2014) as being

the optimal value for h in terms of achieving an appropriate rate of convergence to an asymp-

totic distribution of the TV P .

However, the average for hopt for the individual stocks data, are higher than for the two port-

folios and are in the 0.65 range. This may indicate the need for more weight on observations

at higher lags since possibly the degree of smoothness is reduced due to a higher degree of het-

erogeneity of the data.

Further, the analysis of across the different method for computing the RMSEt shows that

the non parametric approach, Kernel, provides the highest values for the standard deviations

for each portfolio.

[TABLE 1 ABOUT HERE]

Figure 1 plots the selected hoptt at each point of time for the three different methods de-

scribed in Table 1 and also for the different factors. Hence panel 1 of figure 1 plots the MKT

beta for the three different portfolios; while panels 2 and 3 show the hoptt for the SMB andHML

factors respectively. While the hoptt trend to be centred around 0.50, they also indicate some er-

ratic, yet mean reverting paths. In general, the non parametric approach appears to be the most

volatile; and is the only one that increases in the Global Financial Crisis, GFC.

[FIGURE 1 ABOUT HERE]

Table 2 provides details of the estimated beta coefficients for all three competing filtering or

kernel approaches and for all three portfolios. Hence estimates are derived of βMRKT,t, βSMB,t

and βHML,t for each portfolio and for all three methods of filtering, or kernel weighting the
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data. It should be noted that the βMRKT,t for the stock portfolio is approximately 0.7, which

is in accord with previous literature. The estimated market beta, β̂MRKT , is close to the unity

for all the portfolio combinations. The standard errors provided by the Specific approach are

the smallest compared with the other methods and are very important for subsequent efficient

estimation of risk premia.

[TABLE 2 HERE]

Figure 2 presents the factor risk loadings estimates,for the three factors along the columns

and the three portfolios down the rows. Each one of the nine separate panels shows five TV P

estimates of the respective beta derived from different methods. In particular, the rolling win-

dow is a green line, the kernel smoothed with constant bandwidth parameter of h = 0.5 is the

black line, the constant bandwidth parameter from pooling average, Pooled, is the purple line;

the time varying h set equal for all the asset,Average, is the blue line; and finally the time varying

h optimised for each asset, Specific, is the red line. The last three methods all use the Gaussian

kernel.

We note the TV P betas from the Gaussian kernel are similar to the five years rolling window

estimates.

There is little difference in the beta estimates for the kernel approaches that uses optimal

bandwidth parameter optimised on 25 or 55 portfolios.

In accord with Adrian, Crump and Moench (2015) there is greater time variation in the es-

timates produced with the five year rolling approach than those with constant h. Furthermore,

the former estimates show higher variation also than the Pooled and Average approaches.

The time varying bandwidth parameter optimised for each asset, Specific, is the one with

the highest time variation. All these methods produce estimates of the betas which are charac-

terised by numerous sudden changes.

As expected, the beta estimates for portfolio case exhibit a lower degree of variation with re-

spect to those that employ stock indexes, which is presumably due to noise using stock data and

the loss of information induced by grouping stocks to build a portfolio. In general, the betas on

the MKT and HML factors are the one that most often switch sign, while the SMB appear to

be the most stable factor.
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[FIGURE 2 ABOUT HERE]

Table 3 provides estimates of the market price of risk parameters γi with i ∈ [1,K + 1] where

K is the number of factors (including also the constant term) provided by the different beta

estimates. The average price of risk for each factor is in the second column, and its standard

error in the penultimate column. The Newey West standard errors are also displayed in the last

column.

Table 3 presents results for hopt and the computed using RMSEt with kernel averaging ap-

proach.

The average prices of risk appear to be very similar across the different methods and within

each dataset. The Specificmethod is the only one that produces small difference both in terms

of signs and magnitude; and has the smallest standard errors.

The sample size appears to matter and affects the significance of the price of all the factors.

In particular, SMB is priced only considering individual stocks. This result is consistent with

other studies showing that SMB is not priced in the cross section of portfolios sorted by size

and book to market; see Adrian, Crump and Moench (2015) and Lettau and Livingston (2001).

Despite the fact most of the factors are not statistically different from zero on average, hence

not priced, they exhibit statistically significant time variation and fluctuate a lot between posi-

tive and negative values. Such time variation of the price of risk is well documented by the set

of figures 3 to 6. Figure 3 plots by columns the γs for the three different samples; with the top

panel relating to 25 portfolios, the central panel to the 55 portfolios and bottom panel individual

stocks.

As before, the value of h = 0.50 and the Pooledmethods describe a form of background path

for the evolution of the price of risk while Specific approach exhibits the highest volatility. From

the analysis of these figures is clear how much of the information about the price of risk is lost

using approaches such h = 0.50, where we do not consider the specificity of each asset.

In particular only the Specific approach seems able to capture the GFC, where the drop in

the estimates of the price of the factors is clearly evident. In Figures 4 to 6 instead, we produce

an analysis of the significance for the different estimates across time: Figure 4 contains the

results for 25 portfolios, Figure 5 for 55 portfolios while Figure 6 the ones for individual stocks.

All the figures are structured as follow: in column are reported the different γs while in each row

there is a different method for the computation of the beta as in Section 2. For what concern
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the market risk premia, it show a significant positive sign at the beginning of the sample until

early 2000, when it becomes significantly negative. Such change it has been captured by all the

methods, despite it is more clear for the stock asset context.

An important aspect of the Hierarchical method is whether it is successful in terms of out of

sample forecasting ability. Table 4 reports theRMSE of one step ahead out of sample forecasts

for the five Hierarchical methods and shows that the Specific method out performs the four

other methods and for all three portfolios. The relative gains in forecast efficiency are greatest

for the portfolios of size 25 and 55. The Specific approach produces an improvements in the

forecasting performance of around 6% with respect to the basic Fama and MacBeth (1973) two

pass estimator based on a five year rolling window; and it improves forecast by 4.5% with re-

spect to the Gaussian kernel approach with optimal bandwidth parameter set to 0.5. Since the

optimal Hierarchical approach outperforms the other two TV P methods based on the optimal

h, Pooled and Average, it is clear that the crucial advance of our method is allowing the time

variation in the bandwidth parameter h, and also to optimize it for each asset.

Also, the five year window regressions perform substantially less well than all the Gaussian

kernel approaches for all the samples and for all the techniques for the choice of the bandwidth

parameter; which confirms the findings of Adrian, Crump and Moench (2015).

[TABLE 4 HERE]

Table 5 presents pairwise analysis using the Diebold and Mariano (1995) test, henceforth

DM . The p-values of the DM test are calculated under the null hypothesis that two competing

models have the same predictive accuracy; and the analysis is conducted for all the sample and

methods. The results are very striking and indicate that theDM test for the Specific method are

statistically significant at the 0.01 level. Indeed, the specific method appears to dominate all

other methods.

[TABLE 5 HERE]

The key role of the time variation in the bandwidth parameter is also emphasized by the

results of the method labeled Average with respect to the h = 0.5 and Pooled approaches. In

these cases the null hypothesis of no difference in terms of performance cannot be rejected. The

Fama and MacBeth (1973) five year rolling window approach is never preferred to the Gaussian
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kernel regression method with h = 0.5.

[TABLE 6 HERE]

Some further results on model comparisons are in Table 6 and concern the correlations be-

tween the beta estimates generated by each different asset. It is clear that the Specific approach

is the method that is least correlated with the other estimates of each beta. This is an important

finding and shows that the Specific method is providing and using information not in the other

methods.

The Specific approach provides the smallest standard errors, allow such approach to get

better estimates of risk premia and overcome the competing approaches in the forecasting ex-

ercise.

These findings extend the results of Adrian et al. (2015) and are consistent with those of

Ferson and Harvey (1991) highlighting the importance of using not only a dynamic framework

but also dynamic estimation approach with minimal theoretical restriction.

3.3.1 Robustness checks

A sustantial number of robustness checks were performed to check the previously reported em-

pirical findings. Some of these results for the 55 sized stock portfolio are reported in Appendix.

All the tables report the loss function of RMSE in terms of deviation from the benchmark ap-

proach of FFMcB. Full details are available from our website. First, we investigate the sensitiv-

ity of the results to the choice of bandwidth, and we analyze the three alternatives of [0.35; 0.9],

[0.05; 0.6] and [0.25; 0.75]. The results are reported in Table 7, and indicate the Specific approach

leads to a reduction ofRMSE ranging between 2.2% and 8% for the 55 sized stock Portfolio. One

exception is for the h = 0.5 and the Specific: h ∈ [0.35; 0.9] cases.

The specification of the TV P method was also investigated through using a LASSO penal-

ization in the cross sectional procedure for each value of h.

Finally, table 9 shows how changes in the size of sample size affects the results and we com-

pare results from analyzing ten years of T = 120 obervations and fifteen years of T = 180 ob-

servations. Table 9 confirms that the Specific outperforms the benchmark model and is the one

with the highest reduction of theRMSE. The use of a momentum factor was also reported but

was not found to be a statistically significant factor.
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3.3.2 Conclusion

This paper has developed a new framework for the estimation of beta for a generic dynamic as-

set pricing model that imposes little a priori structure and generalizes the classic two step Fama

and MacBeth (1973) procedure. Time variation in the beta estimates are found from a kernel

weighted regression that significantly improves on conventional results in a RMSE sense. We

use a cross validation procedure which allows us to identify the optimal time bandwidth for

each asset for each point in time. This very flexible approach without imposing an extensive

a priori structure improves on the Fama and MacBeth (1973) approach. Further, it allows one

to remain agnostic on the choice of data between portfolio and individual stock and to achieve

significant improvements in the estimation of the risk premia proved by the reduction in the

loss function.

Table 1: Descriptive Statistics for the optimal bandwidth parameter

Obs. Mean St. Dev. Min Max Skew Kurt

25 Portfolio
Roll w=12 443 0.51975 0.04937 0.37800 0.64600 -0.03670 -0.04397
Roll w=24 431 0.55826 0.04407 0.42600 0.68800 -0.01419 -0.32630
Kernel 454 0.52804 0.07684 0.33400 0.69600 0.11501 -0.55003

55 Portfolio
Roll w=12 443 0.55331 0.04655 0.37273 0.68455 0.05771 0.02067
Roll w=24 431 0.58815 0.04586 0.47636 0.72727 -0.05941 -0.35675
Kernel 454 0.55532 0.06884 0.37182 0.71909 0.23544 -0.48401

200 Stocks
Roll w=12 443 0.65671 0.06742 0.40100 0.76000 -1.22993 1.83550
Roll w=24 431 0.70924 0.05967 0.44625 0.81100 -1.31970 1.52070
Kernel 454 0.65222 0.07571 0.50425 0.81475 0.14502 -0.16497

Note: Descriptive statistics are given for the optimal bandwidth parameters of the three differ-
ent portfolios. The RMSEt is calculated by a simple rolling window approach and also by kernel
weighted averages.
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Figure 1: Time Varying optimal bandwidth parameter
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Note: The Figure reports the plots of the optimal bandwidth parameters considering different datasets
and obtained using different methods for computing the RMSEt: parametric and non parametric. The
former method refers to the classical rolling window approach with different w such that w ∈ [12; 24] as
in equation 15, while the latter involves a kernel average method, as in equation 16. The portfolios are
provided by the K.R. French’s website while the individual stocks from the Center for Research in Secu-
rity Prices (CRSP ). The sample spans from August 1973 to April 216, for a total of 514 observation.
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Table 2: Factor risk loading estimates

Constant βs Rolling H = 0.5 H pooling Average H H specific

βMRKT βSMB βHML βMRKT βSMB βHML βMRKT βSMB βHML βMRKT βSMB βHML βMRKT βSMB βHML βMRKT βSMB βHML

25 Portfolios
ME3.BM3

Roll w=12 0.9943 0.4265 0.4017 1.0034 0.5275 0.3101 1.0142 0.5363 0.3035 1.0132 0.5322 0.3072 1.0114 0.5281 0.3085 1.0123 0.4670 0.3830
(0.0175) (0.0259) (0.0262) (0.0413) (0.0619) (0.0651) (0.0119) (0.0282) (0.0303) (0.0104) (0.0249) (0.0265) (0.0109) (0.0267) (0.0289) (0.0048) (0.0103) (0.0158)

Roll w=24 0.9935 0.4211 0.4059 1.0022 0.5230 0.3165 1.0138 0.5342 0.2962 1.0099 0.5204 0.3101 1.0080 0.5200 0.3101 1.0041 0.4684 0.3792
(0.0175) (0.0259) (0.0262) (0.0384) (0.0571) (0.0596) (0.0122) (0.0291) (0.0311) (0.0083) (0.0203) (0.0208) (0.0086) (0.0217) (0.0221) (0.0053) (0.0080) (0.0167)

Kernel 0.9969 0.4282 0.4029 1.0052 0.5296 0.3036 1.0135 0.5304 0.3024 1.0116 0.5241 0.3074 1.0089 0.5199 0.3067 1.0126 0.4461 0.4163
(0.0175) (0.0259) (0.0262) (0.0453) (0.0681) (0.0721) (0.0120) (0.0279) (0.0303) (0.0099) (0.0233) (0.0250) (0.0115) (0.0268) (0.0304) (0.0067) (0.0165) (0.0176)

55 Portfolios
ME3.BM3

Roll w=12 0.9943 0.4265 0.4017 1.0034 0.5275 0.3101 1.0142 0.5363 0.3035 1.0105 0.5234 0.3145 1.0093 0.5192 0.3221 1.0078 0.4694 0.3856
(0.0175) (0.0259) (0.0262) (0.0413) (0.0619) (0.0651) (0.0119) (0.0282) (0.0303) (0.0084) (0.0203) (0.0212) (0.0088) (0.0214) (0.0231) (0.0078) (0.0132) (0.0204)

Roll w=24 0.9935 0.4211 0.4059 1.0022 0.5230 0.3165 1.0138 0.5342 0.2962 1.0068 0.5104 0.3203 1.0051 0.5069 0.3277 1.0071 0.4741 0.3925
(0.0175) (0.0259) (0.0262) (0.0384) (0.0571) (0.0596) (0.0122) (0.0291) (0.0311) (0.0069) (0.0169) (0.0171) (0.0072) (0.0179) (0.0190) (0.0071) (0.0125) (0.0219)

Kernel 0.9969 0.4282 0.4029 1.0052 0.5296 0.3036 1.0135 0.5304 0.3024 1.0091 0.5164 0.3133 1.0071 0.5105 0.3203 1.0058 0.4703 0.3864
(0.0175) (0.0259) (0.0262) (0.0453) (0.0681) (0.0721) (0.0120) (0.0279) (0.0303) (0.0083) (0.0197) (0.0209) (0.0095) (0.0217) (0.0242) (0.0107) (0.0200) (0.0237)

200 Stocks
FORD

Roll w=12 0.7331 0.6690 0.8870 0.6008 0.7378 0.5933 0.6404 0.7413 0.1441 0.7267 0.7116 0.7683 0.7375 0.7060 0.7757 0.6333 0.7759 0.8200
(0.1164) (0.1728) (0.1744) (0.2993) (0.4719) (0.4822) (0.1148) (0.2719) (0.2926) (0.0438) (0.1041) (0.1067) (0.0466) (0.1217) (0.1176) (0.0482) (0.0896) (0.0916)

Roll w=24 0.7379 0.6988 0.8895 0.6249 0.7443 0.6284 0.6435 0.7615 0.1341 0.7410 0.7150 0.7986 0.7804 0.6880 0.8053 0.6197 0.7704 0.8294
(0.1164) (0.1728) (0.1744) (0.2778) (0.4361) (0.4428) (0.1199) (0.2864) (0.3057) (0.0343) (0.0742) (0.0782) (0.0376) (0.0964) (0.0921) (0.0401) (0.0679) (0.0828)

Kernel 0.7449 0.6571 0.8763 0.5719 0.7405 0.5524 0.6460 0.7135 0.6401 0.7214 0.6726 0.7392 0.7105 0.6767 0.7621 0.6441 0.6066 0.7476
(0.1164) (0.1728) (0.1744) (0.3260) (0.5146) (0.5292) (0.1129) (0.2622) (0.2848) (0.0438) (0.1020) (0.1067) (0.0471) (0.1163) (0.1212) (0.0721) (0.1281) (0.1505)

Average estimates of factor risk loadings for the portfolio ME3.BM3 in the first 2 Panels while those for Ford stock in the bottom one, as described in text.
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Figure 2: A dynamic comparison of the factor loading estimates
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Note: Estimates of factor risk loadings computed as described in text.
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Table 3: Descriptive Statistics of risk premia estimates for different methods
Obs. Mean St. Dev. Min Max Skew Kurt SE NW SE

25 Portfolio

Rolling
γ̂0 454 0.0086 0.0083 −0.0123 0.0371 0.4184 0.5990 0.0060 0.0054
γ̂βMRKT

454 −0.0022 0.0088 −0.0226 0.0233 0.0766 −0.5119 0.0057 0.0050
γ̂βSMB

454 0.0021 0.0054 −0.0085 0.0145 0.4392 −0.7676 0.0010 0.0011
γ̂βHML

454 0.0032 0.0042 −0.0058 0.0168 0.2544 −0.2611 0.0011 0.0010
h=0.5
γ̂0 454 0.0092 0.0082 −0.0067 0.0344 0.9116 1.3169 0.0059 0.0048
γ̂βMRKT

454 −0.0024 0.0086 −0.0216 0.0129 −0.2629 −0.8884 0.0057 0.0046
γ̂βSMB

454 0.0010 0.0042 −0.0045 0.0099 0.5480 −0.7747 0.0010 0.0009
γ̂βHML

454 0.0028 0.0036 −0.0027 0.0099 0.2900 −1.0656 0.0011 0.0008
Pooling
γ̂0 454 0.0096 0.0074 −0.0044 0.0316 0.9550 1.0650 0.0059 0.0047
γ̂βMRKT

454 −0.0028 0.0079 −0.0202 0.0103 −0.3081 −0.9680 0.0056 0.0045
γ̂βSMB

454 0.0010 0.0037 −0.0043 0.0087 0.5381 −0.8492 0.0010 0.0009
γ̂βHML

454 0.0028 0.0032 −0.0021 0.0086 0.1337 −1.1173 0.0011 0.0008
Average
γ̂0 454 0.0098 0.0069 −0.0048 0.0350 0.8941 1.6039 0.0058 0.0046
γ̂βMRKT

454 −0.0025 0.0073 −0.0216 0.0150 −0.1567 −0.6690 0.0056 0.0044
γ̂βSMB

454 0.0007 0.0037 −0.0113 0.0118 0.4682 0.2256 0.0009 0.0008
γ̂βHML

454 0.0031 0.0032 −0.0069 0.0132 0.1595 −0.2499 0.0010 0.0008
Specific
γ̂0 454 0.0064 0.0281 −0.1892 0.1286 −0.2239 5.9720 0.0161 0.0151
γ̂βMRKT

454 0.0005 0.0275 −0.1089 0.1753 0.1478 4.6923 0.0155 0.0147
γ̂βSMB

454 0.0010 0.0061 −0.0158 0.0267 0.4351 1.6323 0.0036 0.0029
γ̂βHML

454 0.0030 0.0086 −0.0284 0.0407 0.0598 2.1849 0.0039 0.0036

55 Portfolio

Rolling
γ̂0 454 0.0029 0.0060 −0.0083 0.0206 0.8131 0.4169 0.0032 0.0034
γ̂βMRKT

454 0.0037 0.0074 −0.0137 0.0214 0.2648 −0.6650 0.0031 0.0034
γ̂βSMB

454 0.0019 0.0058 −0.0102 0.0146 0.3154 −0.8416 0.0011 0.0011
γ̂βHML

454 0.0012 0.0052 −0.0127 0.0163 0.0905 0.1267 0.0012 0.0014
h=0.5
γ̂0 454 0.0031 0.0060 −0.0080 0.0185 0.5166 −0.1746 0.0032 0.0031
γ̂βMRKT

454 0.0039 0.0068 −0.0088 0.0177 0.3021 −0.7173 0.0031 0.0031
γ̂βSMB

454 0.0007 0.0047 −0.0055 0.0106 0.4547 −0.8907 0.0011 0.0011
γ̂βHML

454 0.0004 0.0052 −0.0097 0.0091 0.0824 −0.8843 0.0012 0.0015
Pooling
γ̂0 454 0.0038 0.0052 −0.0049 0.0156 0.4892 −0.5169 0.0031 0.0029
γ̂βMRKT

454 0.0032 0.0057 −0.0075 0.0142 0.2503 −0.8742 0.0030 0.0030
γ̂βSMB

454 0.0006 0.0038 −0.0049 0.0083 0.4662 −0.9538 0.0011 0.0011
γ̂βHML

454 0.0007 0.0043 −0.0090 0.0076 −0.2592 −0.3218 0.0012 0.0014
Average
γ̂0 454 0.0043 0.0051 −0.0074 0.0179 0.2525 −0.4356 0.0030 0.0030
γ̂βMRKT

454 0.0030 0.0057 −0.0107 0.0171 0.3331 −0.4746 0.0029 0.0030
γ̂βSMB

454 0.0004 0.0039 −0.0076 0.0097 0.2985 −0.7415 0.0010 0.0010
γ̂βHML

454 0.0010 0.0044 −0.0098 0.0106 −0.2347 −0.2759 0.0012 0.0013
Specific
γ̂0 454 0.0053 0.0109 −0.0385 0.0406 −0.0563 1.4520 0.0062 0.0063
γ̂βMRKT

454 0.0020 0.0125 −0.0380 0.0517 −0.0727 1.9992 0.0061 0.0065
γ̂βSMB

454 0.0002 0.0066 −0.0220 0.0306 0.6872 1.7246 0.0026 0.0028
γ̂βHML

454 0.0007 0.0076 −0.0228 0.0252 −0.0234 −0.0214 0.0028 0.0032

200 Stocks

Rolling
γ̂0 454 0.0013 0.0049 −0.0121 0.0110 −0.8412 0.5448 0.0011 0.0013
γ̂βMRKT

454 0.0069 0.0095 −0.0198 0.0260 −0.6055 −0.3970 0.0024 0.0032
γ̂βSMB

454 0.0018 0.0062 −0.0125 0.0223 0.9650 0.6839 0.0013 0.0016
γ̂βHML

454 −0.0003 0.0062 −0.0164 0.0181 0.2282 −0.3997 0.0015 0.0017
h=0.5
γ̂0 454 0.0023 0.0049 −0.0097 0.0114 −0.6056 0.5540 0.0011 0.0011
γ̂βMRKT

454 0.0071 0.0101 −0.0117 0.0226 −0.4628 −1.2147 0.0024 0.0031
γ̂βSMB

454 0.0011 0.0045 −0.0056 0.0125 0.7757 0.0968 0.0013 0.0014
γ̂βHML

454 −0.0018 0.0062 −0.0140 0.0106 0.2524 −0.8254 0.0015 0.0017
Pooling
γ̂0 454 0.0026 0.0034 −0.0049 0.0085 −0.4529 −0.4068 0.0008 0.0008
γ̂βMRKT

454 0.0068 0.0100 −0.0091 0.0179 −0.2393 −1.6461 0.0022 0.0025
γ̂βSMB

454 0.0024 0.0021 −0.0013 0.0083 0.4873 −0.0664 0.0011 0.0011
γ̂βHML

454 −0.0030 0.0023 −0.0062 0.0007 0.2737 −1.3960 0.0013 0.0015
Average
γ̂0 454 0.0027 0.0034 −0.0070 0.0114 −0.2455 0.1043 0.0008 0.0008
γ̂βMRKT

454 0.0065 0.0098 −0.0111 0.0182 −0.2348 −1.5546 0.0022 0.0025
γ̂βSMB

454 0.0023 0.0023 −0.0042 0.0107 0.3858 1.0965 0.0011 0.0011
γ̂βHML

454 −0.0028 0.0028 −0.0086 0.0082 1.0775 1.4751 0.0013 0.0015
Specific
γ̂0 454. 0.0021 0.0049 −0.0145 0.0187 0.2124 0.1013 0.0001 0.0015
γ̂βMRKT

454 0.0066 0.0157 −0.0493 0.0464 −0.5967 1.1184 0.0003 0.0042
γ̂βSMB

454 0.0009 0.0080 −0.0240 0.0234 −0.2290 −0.0516 0.0001 0.0022
γ̂βHML

454 −0.0004 0.0093 −0.0319 0.0304 −0.0736 0.2182 0.0002 0.0025

Note: Descriptive statistics of the estimated risk premia, computed for classical FMcB approach and 4 different
bandwidth as described in text.
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Figure 3: Dynamic comparison of risk premia estimates for different approaches
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Note: The figure provides the estimates of risk premia estimates computed using factor risk loadings
calculated with Rolling window, with 60 estimation period (FFMcB approach, green line) and kernel
weighted regressions using 4 different optimal bandwidth; h=0.5 (black line); Pooled a single value of h
coming from the pooling average the cross asset and time (the values used correspond to the first column
of Table 1; purple line); Average, a unique time varying bandwidth coming from the average of h across
asset (blue line); Specific, multiple time varying bandwidths, one for each asset and time, hopt (red line).
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Figure 4: Comparison of gammas significance of different approaches - 25 Portfolios
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Note: The figure provides significance analysis of the estimates of risk premia estimates computed us-
ing factor risk loadings calculated with different approaches: Rolling window (FFMcB approach), h=0.5;
Pooled, Average and Specific.
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Figure 5: Comparison of gammas significance of different approaches - 55 Portfolios
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Note: The figure provides significance analysis of the estimates of risk premia estimates computed us-
ing factor risk loadings calculated with different approaches: Rolling window (FFMcB approach), h=0.5;
Pooled, Average and Specific.
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Figure 6: Comparison of gammas significance of different approaches - Individual stocks

Rolling
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Note: The figure provides significance analysis of the estimates of risk premia estimates computed us-
ing factor risk loadings calculated with different approaches: Rolling window (FFMcB approach), h=0.5;
Pooled, Average and Specific.
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Table 4: RMSE for different model and data

Bandwidth choice: RMSE

Roll w=12 Roll w=24 Kernel

25 Portfolio
h =0.5 -0.522 -0.483 -2.302
Pooled -0.396 -0.168 -2.140
Average -0.424 -0.444 -2.048
Specific -5.800 -5.383 -6.738

55 Portfolio
h =0.5 -0.528 -0.529 -2.235
Pooled -0.219 -0.196 -1.943
Average -0.147 0.019 -1.871
Specific -5.349 -4.444 -6.339

200 Stocks
h =0.5 -0.535 -0.664 -1.902
Pooled 0.033 -0.014 -1.382
Average 0.102 -0.107 -1.413
Specific -2.393 -2.119 -3.310

Note: The table provides the RMSE for the out of sample one step
ahead forecasting exercise as a percentage deviation from the benchmark
model of Fama and MacBeth Rolling.
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Table 5: Diebold and Mariano

25 Portfolio 55 Portfolio 200 Stocks

Rolling h= 0.5 H Pooled Average Rolling h= 0.5 H Pooled Average Rolling h= 0.5 H Pooled Average

Roll w=12

h = 0.5 0.0179 0.0144 0.0193
Pooled 0.2688 0.0407 0.4797 0.0426 0.9222 0.1062
Average 0.2401 0.4732 0.8207 0.6468 0.0767 0.4621 0.7755 0.0235 0.8493
Specific 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0018 0.0061 0.0043 0.0005

Roll w=24

h = 0.5 0.0202 0.0134 0.0113
Pooled 0.5511 0.0569 0.3998 0.0542 0.9527 0.1051
Average 0.1953 0.7605 0.0466 0.9368 0.0392 0.1147 0.7303 0.0183 0.7439
Specific 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 0.0044 0.0025 0.0007

Kernel

h = 0.5 0.0000 0.0001 0.0007
Pooled 0.0001 0.0521 0.0001 0.0542 0.0088 0.1181
Average 0.0001 0.2588 0.5973 0.0004 0.1260 0.5895 0.0098 0.1721 0.5460
Specific 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: The table provides the p values of the DM test applied on the results of the Table 4. The null hypothesis is that the two competing forecasting mod-
els have the same predictive accuracy, while the alternative is that the two method have significant different level of accuracy for the out of sample one step
ahead forecasting exercise.
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Table 6: Correlation matrix among betas

25 Portfolio 55 Portfolio 200 Stocks

Roll w=12 Roll w=24 Kernel Roll w=12 Roll w=24 Kernel Roll w=12 Roll w=24 Kernel

βMRKT

Rolling 0.2969 0.3216 0.2747 0.3118 0.3359 0.2888 0.3074 0.3183 0.2936
h=0.5 0.3159 0.3185 0.3141 0.3334 0.3381 0.3317 0.3293 0.3335 0.3301
Pooling 0.3284 0.3608 0.3303 0.3785 0.4235 0.3782 0.5030 0.5966 0.4945
Average 0.3106 0.3389 0.2894 0.3663 0.4114 0.3491 0.4525 0.5235 0.4451
Specific 0.0887 0.0937 0.0892 0.0985 0.1108 0.0967 0.1026 0.1220 0.0755

βSMB

Rolling 0.3155 0.3379 0.2995 0.2984 0.3204 0.2797 0.4223 0.4314 0.4187
h=0.5 0.3335 0.3356 0.3267 0.3266 0.3257 0.3293 0.5252 0.5368 0.4829
Pooling 0.3491 0.3864 0.3471 0.3721 0.4076 0.3740 0.6785 0.7183 0.6254
Average 0.3406 0.3774 0.3165 0.3549 0.3838 0.3403 0.6179 0.6618 0.5942
Specific 0.0940 0.0930 0.0884 0.0967 0.0978 0.0900 0.1546 0.1895 0.1151

βHML

Rolling 0.4920 0.5310 0.4525 0.4417 0.4831 0.4007 0.3418 0.3729 0.3160
h=0.5 0.5263 0.5310 0.5214 0.4689 0.4744 0.4643 0.3625 0.3624 0.3575
Pooling 0.5467 0.5808 0.5488 0.5219 0.5650 0.4744 0.5373 0.6080 0.5309
Average 0.5082 0.5576 0.4826 0.4917 0.5335 0.4702 0.4952 0.5339 0.4774
Specific 0.1150 0.1135 0.1065 0.1094 0.1167 0.0998 0.1024 0.1271 0.0838

Note: The table provides the average correlation among the 3 factor loadings for all the approaches under analysis:
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Appendix A: Kernel weighted regression

In order to give the aboveRV models the maximum opportunity to represent the realized volatil-

ity process we implement a non parametric approach for computing the time variation in the

regression coefficients that requires minimal theoretical restriction on the functional form. We

extend the work of Giraitis, Kapetanios and Yates (2014) work on autoregressive processes to

that of a kernel smoothing regression. Giraitis, Kapetanios and Yates (2014) consider the AR(1)

process

yt = φt−1yt−1 + ut (16)

where ut is iid (0, σ2u) and there is some initialization of the process y0 and φt−1 is a random

coefficient and ut|Ωt−1 = 0 and φt|Ωt−1 = φ. The stability of the model depends on the TV P

nature of the AR parameters satisfying various smoothness classes. Giraitis, Kapetanios and

Yates (2014) model the TV P parameter, denoted by φt, for anAR(1) as a rescaled random walk,

where {at} is a non stationary process which defines the random drift, and −1 < φ < 1. In this

context φt is a standardized version of at so that

φt = φ
at

max0≤k≤t |ak|
....t > 0 (17)

where the stochastic process at is assumed to be a drift-less random walk, so that at = at−1 +wt

and where wt is a stationary process with zero mean. Also, φ ∈ (0, 1) and φt−1 is then bounded

away from the boundary points of−1 and 1. The above framework can be extended to the time

varying AR(p) model

yt =

p∑
i=1

φt−1,iyt−i + ut

and can be used with the boundary conditions

φt,i = φ
at,i

max0≤k≤t |ak,i|
....t > 1 (18)
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where 0 < φ < 1 and each at,i are independent versions of the at process defined above. Under

these assumptions the maximum absolute eigenvalues of the matrix

At =



φt,1 φt,2 . . . . . . . . . φt,p

1 0 . . . . . . . . . 0

0 1 0 . . . . . . 0

. . . 0 1 0 . . . 0

. . . . . . . . . . . . . . . 0

0 . . . . . . 0 1 0


are bounded above by unity for all t. Giraitis, Kapetanios and Yates (2014) show that the coeffi-

cient process {φt; t = 1, ..., T} converges in distribution as T increases to the limit

{φt; 0 ≤ τ ≤ 1} →D {φW̃τ ; 0 ≤ τ ≤ 1}.

The approach for estimating the time varying parameter, φt is to use the moving window esti-

mator for the AR(1)RC model

φ̂t =

∑H
t=1K

(
t−k
H

)
ytyt−1∑H

t=1K
(
t−k
H

)
y2t−1

(19)

whereK
(
t−k
H

)
is a kernel and continuously bounded function, such as the Epanechnikov kernel

with finite support, or the familiar Gaussian kernel with infinite support. On generalizing a

generic regression which can be expressed as

yt = x′tβt + ut (20)

with βt = (β1,t, β2,t, .....βk,t) and it is assumed that each βj,t follows a bounded random walk. x′t

is the matrix (m × T ) containing the time series of the factors. In general the kernel weighted

regression estimator for βj,t is

β̂j,t =

∑
j=1

wjtxjx
′
j

−1∑
j=1

wjtxjyj

 . (21)
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where wjt = K
(
t−k
H

)
. From Giraitis, Kapetanios and Yates (2014) it follows that

H1/2(1− β̂2j,t)−1/2(β̂j,t − βj,t) ∼ N(0, 1) (22)

The authors prove that if the bandwidth is op
(
T h
)

with h = 1/2, and given homoskedasticity of

the error process, then

V ar
(
β̂t

)
= σ̂2u

∑
j=1

wjtxjx
′
j

−1∑
j=1

w2
jtxjx

′
j

∑
j=1

wjtxjx
′
j

−1 (23)

where σ̂2u = 1
T

∑T
i=1 (yt − x′tβt)

2. While if ut is heteroskedastic then the covariance matrix of the

TV P parameter estimates is given by

V ar
(
β̂j,t

)
=

∑
j=1

wjtxjx
′
j

−1∑
j=1

w2
jtxjx

′
j û

2
t

∑
j=1

wjtxjx
′
j

−1 (24)

which can be used for inference. One appealing characteristic of this approach is that they nest

rolling window estimates of the regression betas and are equivalent to kernel smoothing esti-

mators using a uniform one-sided kernel instead of a Gaussian two-sided kernel. A key role is

played by the decision about the bandwidth and for a given kernel function,K
(
t−k
H

)
, the band-

width, H , represents the degree of smoothness of the estimates. Giraitis, Kapetanios and Yates

(2014) proved that a bandwidth of H = T h, with h = 0.5, provides an estimator with desirable

properties such as consistency and asymptotic normality and in addition provide valid stan-

dard error.

Another appealing characteristics of such approach is that they nest, as a special case, rolling

window estimates of betas (for example, Chen, Roll, and Ross, 1986; Ferson and Harvey, 1991;

Petkova and Zhang, 2005; among many others). Rolling beta estimates are equivalent to kernel

smoothing estimators using a uniform one-sided kernel instead of a Gaussian two-sided kernel,

and it has been proved that the order of the smoothing bias of the estimator for the betas and

the price of risk parameters is larger for one-sided kernels.

In the kernel approach a key role is played by the decision about the bandwidth. For a given ker-

nel function, K
(
t−k
H

)
, the bandwidth, H , represents and controls the degree of smoothness of

the estimates. In other terms, if the bandwidth is small, the estimates will be under smoothed,
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with high variability, otherwise if the value of H is big, the resulting estimators will be over

smooth and farther from the real function. Different approaches have been proposed to handle

the choice of the bandwidth. Ang and Kristensen (2012) suggest to optimise the choice of the

bandwidth for conditional and long estimates in order to reduce any finite-sample biases and

variances. Giraitis et al. (2014), instead, proved that if the bandwidth is H = T h, with h = 0.5,

the estimator shows obtain desirable properties such as consistency and asymptotic normality

and in addition provide valid standard errors.

Appendix B: Robustness checks

Table 7: RMSEs for different bandwidth parameters intervals as deviation from FMcB

25 Port Roll w=12 Roll w=24 Kernel 55 Port Roll w=12 Roll w=24 Kernel

h ∈ [0.05; 0.9]

h=0.5 -0.005 -0.005 -0.023 h=0.5 -0.005 -0.005 -0.022
Pooling -0.004 -0.002 -0.021 Pooling -0.002 -0.002 -0.019
Average -0.004 -0.004 -0.020 Average -0.001 0.000 -0.019
Specific -0.058 -0.054 -0.067 Specific -0.053 -0.044 -0.063

h ∈ [0.05; 0.6]

h=0.5 -0.005 -0.005 -0.023 h=0.5 -0.005 -0.005 -0.022
Pooling -0.021 -0.016 -0.038 Pooling -0.019 -0.010 -0.036
Average -0.020 -0.019 -0.036 Average -0.024 -0.018 -0.034
Specific -0.070 -0.066 -0.083 Specific -0.074 -0.065 -0.083

h ∈ [0.35; 0.9]

h=0.5 -0.005 -0.005 -0.023 h=0.5 -0.005 -0.005 -0.022
Pooling 0.000 0.001 -0.018 Pooling 0.000 0.000 -0.017
Average 0.000 0.001 -0.018 Average 0.001 0.001 -0.017
Specific -0.009 -0.008 -0.023 Specific -0.007 -0.005 -0.022

h ∈ [0.25; 0.75]

h=0.5 -0.005 -0.005 -0.011 h=0.5 -0.005 -0.005 -0.022
Pooling -0.004 -0.002 -0.008 Pooling -0.003 -0.002 -0.007
Average -0.003 -0.003 -0.007 Average -0.002 -0.001 -0.007
Specific -0.020 -0.019 -0.020 Specific -0.019 -0.015 -0.018

Note: The table provides theRMSE for the out of sample one step ahead forecasting exercise comparing
4 different intervals for the identification of the optimal bandwidth parameter. The results are expressed
as a deviation from the RMSE produced by the benchmark model, FMcB.
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Table 8: RMSEs for different penalization parameters as deviation fromFMcB in LASSO context

25 Port Roll w=12 Roll w=24 Kernel 55 Port Roll w=12 Roll w=24 Kernel

NO LASSO
h=0.5 -0.005 -0.005 -0.023 h=0.5 -0.005 -0.005 -0.022
Pooling -0.004 -0.002 -0.021 Pooling -0.002 -0.002 -0.019
Average -0.004 -0.004 -0.020 Average -0.001 0.000 -0.019
Specific -0.058 -0.054 -0.067 Specific -0.053 -0.044 -0.063

LASSO 0.0001
h=0.5 -0.005 -0.005 -0.023 h=0.5 -0.005 -0.005 -0.022
Pooling -0.006 -0.004 -0.025 Pooling -0.003 -0.001 -0.020
Average -0.013 -0.014 -0.050 Average -0.002 0.000 -0.018
Specific -0.068 -0.063 -0.102 Specific -0.052 -0.046 -0.061

LASSO 0.00005
h=0.5 -0.005 -0.005 -0.023 h=0.5 -0.005 -0.005 -0.022
Pooling -0.005 -0.002 -0.022 Pooling -0.003 -0.001 -0.020
Average -0.005 -0.004 -0.022 Average -0.001 0.000 -0.018
Specific -0.064 -0.057 -0.067 Specific -0.052 -0.046 -0.060

Note: The table provides the RMSE for the out of sample one step ahead forecasting exercise when we con-
sider the LASSO procedure inside our mechanism for the identification of the optimal bandwidth. Here, we
report the results for 2 values of the penalty function, λ: 0.0001 and 0.00005. The results are expressed as a de-
viation from the RMSE produced by the benchmark model, FMcB.

Table 9: RMSEs for different sample size of the trading period

25 Port Roll w=12 Roll w=24 Kernel 55 Port Roll w=12 Roll w=24 Kernel

T = 60
h=0.5 -0.005 -0.005 -0.023 h=0.5 -0.005 -0.005 -0.022
Pooling -0.004 -0.002 -0.021 Pooling -0.002 -0.002 -0.019
Average -0.004 -0.004 -0.020 Average -0.001 0.000 -0.019
Specific -0.058 -0.054 -0.067 Specific -0.053 -0.044 -0.063

T = 120
h=0.5 0.005 0.012 -0.017 h=0.5 -0.015 -0.010 -0.036
Pooling 0.006 0.015 -0.015 Pooling -0.011 -0.004 -0.033
Average 0.008 0.015 -0.015 Average -0.010 -0.002 -0.031
Specific -0.043 -0.030 -0.063 Specific -0.052 -0.038 -0.075

T = 180
h=0.5 0.016 0.030 -0.005 h=0.5 0.026 0.043 0.004
Pooling 0.017 0.035 -0.004 Pooling 0.031 0.051 0.008
Average 0.020 0.036 -0.002 Average 0.036 0.055 0.014
Specific -0.035 -0.013 -0.058 Specific -0.010 0.018 -0.038

Note: The table provides the RMSE for the out of sample one step ahead forecasting exercise com-
paring 3 different trading period, T , for the identification of the optimal bandwidth parameter. The
results are expressed as a deviation from the RMSE produced by the benchmark model, FMcB.
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