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Abstract

We develop methods for robust Bayesian inference in structural vector autoregressions

(SVARs) where the impulse responses or forecast error variance decompositions of

interest are set-identified using external instruments (or ‘proxy SVARs’). Existing

Bayesian approaches to inference in proxy SVARs require researchers to specify a single

prior over the model’s parameters. When parameters are set-identified, a component

of the prior is never updated by the data. Giacomini and Kitagawa (2018) propose

a method for robust Bayesian inference in set-identifed models that delivers inference

about the identified set for the parameter of interest. We extend this approach to proxy

SVARs, which allows researchers to relax potentially controversial point-identifying

restrictions without having to specify an unrevisable prior. We also explore the effect

of instrument strength on posterior inference. We illustrate our approach by revisiting

Mertens and Ravn (2013) and relaxing the assumption that they impose to obtain

point identification.
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1 Introduction

Proxy structural vector autoregressions (SVARs) are an increasingly popular method for

estimating the dynamic causal effects of macroeconomic shocks.1 The key identifying as-

sumption in the proxy SVAR is that there exists one or more variables external to the SVAR

– ‘proxies’ or ‘external instruments’ – that are correlated with particular structural shocks

(i.e. ‘relevant’) and uncorrelated with all other structural shocks (i.e. ‘exogenous’). The

impulse responses to a single structural shock can be point-identified when a single proxy

is correlated with that structural shock and uncorrelated with all other structural shocks

(Stock 2008). Examples of papers that estimate impulse responses to a single shock using a

single proxy include Gertler and Karadi (2015) in the frequentist setting and Caldara and

Herbst (2019) in the Bayesian setting. Mertens and Ravn (2013) (henceforth MR13) develop

a proxy SVAR with two instruments for two structural shocks and show that point identifi-

cation of the impulse responses to these shocks requires a zero restriction on the structural

parameters in addition to the zero restrictions implied by exogeneity of the proxies (see

also Arias, Rubio-Ramı́rez and Waggoner (2019) for a discussion of this point). Examples of

other papers that use multiple proxies to identify multiple structural shocks include Lunsford

(2015) and Mertens and Montiel-Olea (2018). The additional restrictions required to achieve

point identification may not always have a theoretically sound motivation. Consequently,

there may be interest in assessing the robustness of the analysis to relaxing these additional

restrictions, which would result in set identification.

The majority of the literature that makes use of proxy SVARs does so in the frequentist

setting. Notable exceptions are Braun and Brüggemann (2017) and Arias, Rubio-Ramı́rez

and Waggoner (2019) (henceforth ARW19), who propose algorithms for Bayesian inference

that are applicable under set identification. Bayesian inference may be appealing because

it allows the researcher to use prior information about the model’s parameters and, under

set identification, it may be computationally more convenient than a frequentist approach.

This is perhaps why, since Uhlig (2005), the dominant inferential approach in set-identified

SVARs has been Bayesian.2 However, under set identification, posterior inference is sensitive

to the choice of prior over the set-identified parameters, even asympotically (Poirier 1998),

1See, for example, Stock and Watson (2012, 2016, 2018), Mertens and Ravn (2013, 2014, 2019), Gertler
and Karadi (2015), Lunsford (2015), Ramey (2016), Caldara and Kamps (2017), Mertens and Montiel-Olea
(2018), Montiel-Olea, Stock and Watson (2018), Arias, Rubio-Ramı́rez and Waggoner (2019), Caldara and
Herbst (2019) and Jentsch and Lunsford (2019).

2Gafarov, Meier and Montiel-Olea (2018) and Granziera, Moon and Schorfheide (2018) develop frequentist
inferential tools in set-identified SVARs. We are unaware of papers that conduct frequentist inference in
set-identified proxy SVARs.
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and Bayesian credible intervals do not asymptotically coincide with frequentist confidence

intervals (Moon and Schorfheide 2012). Moreover, in the context of SVARs, Baumeister and

Hamilton (2015) show that even priors that are ‘uniform’ over a set-identified parameter may

be informative about the objects of interest, such as impulse responses. To address these

issues, Giacomini and Kitagawa (2018) (GK18) propose an approach to Bayesian inference

in set-identifed models that is robust to the choice of prior over the set-identified parameters.

The approach considers the class of all priors over the model’s set-identified parameters that

are consistent with the identifying restrictions. This generates a class of posteriors, which

can be summarised by reporting the set of posterior means (an estimator of the identified

set) and the associated robust credible region. GK18 provide conditions under which these

quantities have valid frequentist interpretations and they apply their approach to SVARs in

which the impulse responses are set-identified by imposing sign and zero restrictions.

In this paper we extend the approach of GK18 to set-identified proxy SVARs. Following

MR13 and ARW19, we consider the case where there are k < n proxies that are correlated

with k structural shocks (a ‘relevance’ condition) and are uncorrelated with the remaining

n − k shocks (an ‘exogeneity’ condition), where n is the dimension of the SVAR. If n > 3

and 1 < k < n − 1, the impulse responses to all structural shocks are set-identified in

the absence of further identifying restrictions. For other values of n and k, it may be the

case that particular impulse responses are point-identified, while other impulse responses are

set-identified. We focus on cases where the impulse responses of interest are set-identified.

Additionally, we extend the algorithms developed in GK18 to conduct posterior inference

about the forecast error variance decomposition (FEVD), which is the relative contribution

of a particular structural shock to the unexpected variation in a particular variable over

some horizon.3 We also provide an algorithm for computing unit-effect impulse responses

(as opposed to unit-standard-deviation impulse responses), which are often considered in the

proxy SVAR literature.

As in Braun and Brüggemann (2017) and ARW19, our algorithms allow for zero and sign

restrictions on the covariances between the proxies and the structural shocks in addition to

the zero restrictions implied by the exogeneity assumption. These types of restrictions are

likely to be justifiable in applications, given that the proxies are typically constructed with

the purpose of measuring a particular structural shock. An example of a zero restriction

3Plagborg-Moller and Wolf (2019) develop frequentist inferential procedures for the FEVD in a general
semiparametric moving average model when there are valid external instruments available. The setting that
they consider allows for cases where the FEVD is set-identified.
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would be to assume that, among the k structural shocks that are assumed to be correlated

with the k proxies, a particular structural shock is uncorrelated with a particular proxy.

Examples of sign restrictions are when a particular proxy is positively correlated with a par-

ticular structural shock, or when the covariance between a particular proxy and a particular

structural shock is larger than the covariance between that proxy and another structural

shock.4 Additionally, our algorithms allow for sign restrictions and zero restrictions of the

kind considered in GK18, including ‘short-run’ zero restrictions (as in Sims (1980)), ‘long-run’

zero restrictions (as in Blanchard and Quah (1989)), sign restrictions on impulse responses

(as in Uhlig (2005)) and zero or sign restrictions on the matrix whose elements determine

the contemporaneous relationships among the endogenous variables (as in Arias, Caldara

and Rubio-Ramı́rez (2019)).

Some existing approaches to Bayesian inference in proxy SVARs place priors directly on

the model’s structural parameters. For example, ARW19 place a normal-generalised-normal

conjugate prior over the structural parameters and propose algorithms for drawing from the

resulting normal-generalised-normal posterior. More generally, Baumeister and Hamilton

(2015, 2018, 2019) advocate placing priors on the structural parameters of an SVAR, because

these parameters can have economic interpretations that facilitate prior elicitation. Their

approach also allows identifying restrictions to be imposed non-dogmatically. A problem

with this approach in set-identified models is that the prior implicitly incorporates a compo-

nent that is unrevisable by the data. Our approach overcomes this problem by decomposing

the prior over structural parameters into a revisable prior over reduced-form parameters and

an unrevisable prior over the ‘rotation matrix’ that maps VAR innovations into structural

shocks (see, for example, Uhlig (2005)). We then allow for multiple priors for the rotation

matrix, which delivers inference that is robust to the choice of unrevisable priors. We see our

approach as being complementary to existing Bayesian approaches. In particular, we suggest

reporting output based on the multiple-prior robust Bayesian approach together with output

from the single-prior Bayesian posterior to document the sensitivity of posterior inference to

the choice of unrevisable prior.5

4The first type of sign restriction is considered by Ludvigson, Ma and Ng (2018) and Piffer and Podstawski
(2018) in the frequentist setting and by Braun and Brüggemann (2017) and ARW19 in the Bayesian setting,
while the second type is considered by Braun and Brüggemann (2017), ARW19 and Piffer and Podstawski
(2018). Piffer and Podstawski (2018) allow for the possibility that the proxy is correlated with all structural
shocks (i.e. there are no exogeneity restrictions); it would be straightforward to implement this setup under
our approach.

5An alternative approach is to consider variation in the prior within some neighbourhood around a
benchmark prior, as in Giacomini, Kitagawa and Uhlig (2019).
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It is well-known that frequentist inference in the linear instrumental-variables (IV) model

is non-standard when the instruments are weakly correlated with the included endogenous

variables (e.g. Stock, Wright and Yogo 2002). Similar problems arise in the proxy SVAR

when the proxies are weakly correlated with the structural shocks. In the case where there

is one proxy for one structural shock, Lunsford (2015) shows that the estimator of the im-

pulse response is inconsistent when the proxy is weak, and he derives a test for the presence

of a weak proxy. Montiel-Olea, Stock and Watson (2018) show that standard asymptotic

(delta-method) inference about the objects of interest in the proxy SVAR is invalid when the

proxy is weak, and they derive a weak-instrument-robust confidence interval for the impulse

response when there is one proxy for one shock. As noted in Caldara and Herbst (2019),

from the standpoint of Bayesian inference, having a weak proxy does not invalidate pos-

terior inference in the sense that one still obtains (numerical approximations of) the exact

finite-sample posterior distributions of the objects of interest. However, practitioners may

be interested in the asymptotic frequentist properties of Bayesian inferential procedures,

particularly if they use these procedures purely for computational convenience. Accordingly,

we investigate the asymptotic properties of our robust Bayesian procedure in the presence

of weak instruments.6 We further provide some discussion about the implications of weak

proxies for the numerical implementation of our method.

We illustrate our procedure by considering the analysis in MR13, which is also discussed

in Mertens and Ravn (2019) and Jentsch and Lunsford (2019). MR13 use series of plausibly

exogenous, unanticipated changes in personal and corporate income tax rates in the United

States as proxies for structural shocks to these tax rates to identify the effects of fiscal shocks

on macroeconomic variables. Since there are two proxies for two structural shocks, the im-

pulse responses to these shocks are set-identified. MR13 impose a zero restriction in addition

to those implied by exogeneity of the proxies to achieve point identification, which is equiv-

alent to restricting the direct contemporaneous response of one tax rate to the other. This

assumption could be violated if, for instance, there are political economy constraints that

impinge on the ability of the government to change tax rates independently of one another.

MR13 assess the robustness of the results to imposing the additional restriction by consider-

ing two alternative causal orderings of the tax rates within the proxy SVAR. Our approach

can be seen as taking a step forward and formalizing the robustness analysis by providing an

estimator of the set of impulse responses compatible with relaxing the additional restriction.

We also compare the results under our multiple-prior Bayesian approach to those obtained

6We are not aware of previous work considering the problem of weak instruments in set-identified models,
including set-identified versions of the linear IV model such as that considered in Nevo and Rosen (2012).
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under a single prior to assess the role of prior choice in driving posterior inference.

The remainder of the paper is structured as follows. Section 2 describes our robust

Bayesian inferential framework for set-identified proxy SVARs and provides results on the

frequentist properties of this approach. Section 3 investigates how weak proxies affect poste-

rior inference. Section 4 details the numerical algorithms used to implement the approach.

Section 5 contains the empirical application described above and Section 6 concludes.

2 Framework

2.1 The SVAR

Let yt be an n× 1 vector of endogenous variables following the SVAR(p) process:

A0yt =

p∑
l=1

Alyt−l + εt, t = 1, ..., T, (1)

where A0 has positive diagonal elements (a sign normalization) and is invertible, and εt

are structural shocks with E(εtε
′
t) = In. The initial conditions (y1−p, ...,y0) are given. We

omit exogenous regressors (such as a constant) for simplicity of exposition, but these are

straightforward to include. Letting xt = (yt−1, . . . ,yt−p) and A+ = (A1, . . . ,Ap), we can

rewrite the SVAR(p) as

A0yt = A+xt + εt, t = 1, ..., T. (2)

(A0,A+) are the structural parameters. The reduced-form VAR(p) representation is

yt = Bxt + ut, t = 1, ..., T, (3)

where B = (B1, . . . ,Bp), Bl = A−10 Al for l = 1, . . . , p, and ut = A−10 εt with E(utu
′
t) = Σ =

A−10 (A−10 )′. (B,Σ) are the reduced-form parameters. We assume that B is such that the

VAR(p) can be inverted into an infinite-order vector moving average (VMA) model.

To facilitate computing the identified set of the impulse response, we reparameterise the

model into its ‘orthogonal reduced form’:

yt = Bxt + ΣtrQεt, t = 1, ..., T, (4)

where Σtr is the lower-triangular Cholesky factor of Σ (i.e. ΣtrΣ
′
tr = Σ) with diagonal
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elements normalized to be non-negative, Q ∈ O(n) is an n × n orthonormal (or ‘rota-

tion’) matrix and O(n) is the set of all such matrices. The parameterisations are related

through the mapping B = A−10 A+, Σ = A−10 (A−10 )′ and Q = Σ−1tr A−10 , or A0 = Q′Σ−1tr and

A+ = Q′Σ−1tr B. The sign normalization that the diagonal elements of A0 are nonnegative

therefore corresponds to the restriction that diag(Q′Σ−1tr ) ≥ 0n×1.

The VMA representation of the model is

yt =
∞∑
h=0

Chut−h =
∞∑
h=0

ChΣtrQεt, t = 1, ..., T, (5)

where Ch is the hth term in (In −
∑p

l=1 BlL
l)−1 and L is the lag operator. The (i, j)th

element of the matrix ChΣtrQ, which we denote by ηi,j,h, is the impulse response of the ith

variable to the jth structural shock at the hth horizon:

ηi,j,h = e′i,nChΣtrQej,n = c′i,hqj, (6)

where ei,n is the ith column of In, c′i,h the ith row of ChΣtr and qj the jth column of Q.

Another object that is often of interest is the relative contribution of a particular shock

to the unexpected variation in a particular variable over some horizon, or the FEVD. Under

quadratic loss, the optimal h-step-ahead forecast of yt given information available at time t is

E (yt+h|Ft) =
∑∞

k=0 Ch−kut−k. The h-step-ahead forecast error is then yt+h −E (yt+h|Ft) =∑h−1
k=0 Ckut+h−k =

∑h−1
k=0 CkΣtrQεt+h−k. It follows that the forecast error variance of yi,t+h

is var(yi,t+h|Ft) =
∑h−1

k=0 c′i,kci,k. The contribution of the jth structural shock to the forecast

error variance of the ith variable at the hth horizon is var(yi,t+h|Ft, ε−j,t+1, . . . , ε−j,t+h) =∑h−1
k=0 c′i,kqjq

′
jci,k, where ε−j,t = {εi,t : i 6= j ∧ i = 1, . . . , n}. The contribution of the jth

structural shock to the forecast error variance of the ith variable at the hth horizon as a

fraction of the total forecast error variance is then

FEVDi,j,h =

∑h−1
k=0 c′i,kqjq

′
jci,k∑h−1

k=0 c′i,kci,k
.

2.2 Identification Using Proxies

In the absence of identifying restrictions, the structural parameters – and any function of

these parameters, such as the impulse responses and FEVD – are set-identified. Since any

A0 = Q′Σ−1tr satisfies Σ = A−10 (A−10 )′, the identified set for A0 is
{
A0 = Q′Σ−1tr : Q ∈ O(n)

}
.
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Imposing identifying restrictions restricts Q to lie in a subspace Q of O(n), which shrinks

the identified set for the structural parameters and any associated objects of interest.

The key identifying assumption in the proxy SVAR is that there are variables external

to the SVAR that are correlated with particular structural shocks and uncorrelated with

all other structural shocks. Let ε(i:j),t = (εi,t, εi+1,t, ..., εj−1,t, εj,t) for i < j. Assume that

mt is a k × 1 vector of proxies that are correlated with the last k structural shocks, so

E(mtε
′
(n−k+1:n),t) = Ψ, where Ψ is a full-rank k × k matrix. Further, assume that mt

is uncorrelated with the first n − k structural shocks, so E(mtε
′
(1:n−k),t) = 0k,n−k. The

first condition is commonly referred to as the ‘relevance’ condition and the second as the

‘exogeneity’ condition. We assume that mt is generated by the process

Γ0mt = Λεt +

pm∑
l=1

Γlmt−l + νt, t = 1, ..., T, (7)

where: Γl, l = 0, ..., pm, is a k×k matrix with Γ0 invertible; Λ is a k×n matrix; and the ini-

tial conditions (m1−pm , . . . ,m0) are given. We assume that [ε′t,ν
′
t]
′|Ft−1 ∼ N(0(n+k)×1, In+k),

where Ft−1 is the information set at time t − 1, which includes the lags of yt and mt. The

assumption about the joint distribution of (εt,νt) implies that νt|Ft−1, εt ∼ N(0k×1, Ik).

This process is an SVAR(pm) in mt where the structural shocks εt are included as exoge-

nous variables. The process implies that the proxies contain (noisy) information about the

structural shocks after allowing for possible serial correlation in the proxies. The information

content of each proxy for each structural shock is jointly determined by the matrices Γ0 and

Λ. This setup allows for the number of lags of mt in the SVAR for mt to differ to the number

of lags of yt in the SVAR for yt.
7

Given the distributional assumption on εt and νt, and the exogeneity and relevance

assumptions, it follows from (7) that

E(mtε
′
t) = Γ−10 Λ = [0k,n−k,Ψ] . (8)

Left-multiplying (7) by Γ−10 and substituting out yt using (2) yields

mt = Γ−10 ΛA0yt − Γ−10 ΛA+xt +

pm∑
l=1

Γ−10 Γlmt−l + Γ−10 νt. (9)

7ARW19 specify a joint SVAR for (y′t,m
′
t)
′ where zero restrictions rule out contemporaneous feedback

from mt to yt. This process also implies that the proxies contain (noisy) information about the structural
shocks and yields the same set of identifying zero restrictions that we derive below.
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The reduced-form process for the proxies, which we refer to as the ‘first-stage regression’, is

therefore

mt = Dyt + Gxt +

pm∑
l=1

Hlmt−l + vt, (10)

where: D = Γ−10 ΛA0; G = −Γ−10 ΛA+; Hl = Γ−10 Γl for l = 1, ..., pm; and vt = Γ−10 νt with

E(vtv
′
t) = Υ = Γ−10 (Γ−10 )′. This is a VAR(pm) in mt with exogenous variables yt and xt.

The first-stage regression should also include any exogenous variables (e.g. a constant) that

are included in the SVAR for yt. Since Γ−10 Λ = DA−10 = DΣtrQ, we can write (8) as

E(mtε
′
t) = DΣtrQ = [0k,n−k,Ψ] . (11)

The (i, j)th element of this matrix is e′i,kDΣtrQej,n = d′iqj, where d′i is the ith row of

DΣtr. The exogeneity condition is therefore equivalent to linear restrictions on the first

n− k columns of Q given the reduced-form parameters D and Σtr. The relevance condition

rank(Ψ) = k holds if and only if rank(D) = k.

Let fi be the number of equality restrictions on the ith column of Q. Rubio-Ramı́rez,

Waggoner and Zha (2010) show that a necessary and sufficient condition for point identifi-

cation of the structural parameters in an SVAR is that fi = n− i for i = 1, ..., n. We focus

on cases where, for all i = 1, ..., n, fi ≤ n − i, with strict inequality for at least one i, and

where interest is in a particular set-identified impulse response or FEVD.

Assume for now that the only zero restrictions are those corresponding to the exogeneity

assumption and that n ≥ 3. Assume also that rank(D) = k, so the relevance condition holds.

If k = 1, then fi = 1 for i = 1, ..., n − 1 and fn = 0. In this case, the first n − 1 columns

of Q (and thus the impulse responses to the first n− 1 structural shocks) are set-identified,

but qn is point-identified.8 If k = n− 1, then f1 = n− 1 and fi = 0 for i = 2, ..., n. In this

case, q1 is point-identified, but qi, i = 2, ..., n, is set-identified.9For 1 < k < n − 1, in the

absence of additional zero restrictions, all columns of Q – and thus all impulse responses –

8To see why qn is point-identified, note that the exogeneity restrictions imply that d′1qi = 0 for i =
1, . . . , n − 1; that is, qi is orthogonal to d′1 for i = 1, . . . , n − 1. Since the columns of an orthonormal
matrix are orthogonal and have unit length, qn = ±d′1/‖d′1‖, where ‖.‖ is the Euclidean norm. The sign
normalization pins down the sign of q1, so it is point-identified.

9To see why q1 is point-identified, note that the exogeneity restrictions imply that DΣtrq1 = 0, where D
is a (n− 1)× n matrix. Assuming that the relevance condition rank(D) = k holds, the nullspace of DΣtr is
a linear subspace of Rn. Since the columns of an orthonormal matrix are orthogonal and have unit length,
q1 is a unit-length vector in the nullspace of DΣtr, which is point-identified given a sign normalization.
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are set-identified.10

As in Braun and Brüggemann (2017) and ARW19, we allow for additional equality and

sign restrictions involving covariances between the proxies and shocks. An example of an

equality restriction is that the first proxy variable (m1t) is not only uncorrelated with the

first n − k structural shocks, but also uncorrelated with one of the last k structural shocks

(e.g. E(m1tε(n−k+1),t) = 0). These types of restrictions are linear restrictions on the columns

of Q. An example of a sign restriction is that the covariance between the first proxy and one

of the last n− k structural shocks is nonnegative (e.g. E(m1tεnt) ≥ 0), which is a linear in-

equality restriction on a single column of Q. Another example is that the covariance between

a particular proxy and a particular structural shock is greater than or equal to the covariance

between that proxy and another structural shock, which is a linear inequality restriction on

two columns of Q; for example, E(m1tεnt) ≥ E(m1tεn−1,t) implies that d′1(qn − qn−1) ≥ 0.

Our approach also allows for other zero and sign restrictions commonly used in SVARs,

such as zero restrictions on A0 = Q′Σ−1tr , A−10 = QΣtr and on the long-run cumulative

impulse response CIR∞ = (In −
∑p

l=1 Bl)
−1ΣtrQ. Sign restrictions can be placed on the

impulse responses or on elements of A0.

2.3 Robust Bayesian Inference About the Impulse Responses

We assume for now that the object of interest is an impulse response, although the discussion

in this section also applies to the FEVD (or any other scalar object of interest that is a func-

tion of the structural parameters). Given the formulation of the exogeneity restrictions and

any additional zero or sign restrictions as restrictions on the columns of Q, robust Bayesian

inference about the identified set of the impulse responses proceeds similarly to GK18. We

summarise the salient features of this approach here.

Collect the coefficients on xt and mt in (10) as J = [G,H1, . . . ,Hpm ]. The proxy-SVAR

reduced-form parameters are

φ = (vec(B)′, vech(Σ)′, vec(D)′, vec(J)′, vech(Υ)′)′ ∈ Φ ⊂ Rnp+n(n+1)/2+(p+1)nk+pmk2+k(k+1)/2.

(12)

Since the zero restrictions are linear equality restrictions on single columns of Q and are

otherwise functions only of the reduced-form parameters, we can represent them in the

10The result for k = 1 corresponds to Corollary 2 in ARW19. The results for k = n− 1 and 1 < k < n− 1
follow from their Proposition 2.
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general form

F (φ,Q) =


F1(φ)q1

...

Fn(φ)qn

 = 0(
∑n

i=1 fi)×1, (13)

where Fi(φ) is an fi × n matrix that stacks the coefficient vectors of the zero restrictions

constraining qi. If the zero restrictions do not constrain qi, Fi(φ) does not exist and fi = 0.

When the only zero restrictions are those relating to exogeneity of the proxies, the relevance

condition implies that, for almost every φ ∈ Φ, rank(Fi(φ)) = fi for i = 1, . . . , n − k. We

represent the sign restrictions as S(φ,Q) ≥ 0s×1, where s is the number of sign restrictions

(excluding the sign normalization).

The identified set for the impulse response ηi,j,h given the zero and sign restrictions is

ISηi,j,h(φ|F, S) = {ηi,j,h(φ,Q) : Q ∈ Q(φ|F, S)}, (14)

where Q(φ|F, S) is the set of rotation matrices that satisfy the equality and sign restrictions

and the sign normalization:

Q(φ|F, S) = {Q ∈ O(n) : F (φ,Q) = 0(
∑n

i fi)×1, S(φ,Q) ≥ 0s×1, diag(Q′Σ−1tr ) ≥ 0n×1}.
(15)

Let πφ be a prior over the reduced-form parameter φ. A joint prior for θ = (φ′, vec(Q)′)′ ∈
Φ× vec(O(n)) can be written as πθ = πQ|φπφ, where πQ|φ is supported only on Q(φ|F, S).

Under point identification, the identifying restrictions pin down a unique value of Q given

φ. Consequently, specifying a prior for φ is sufficient to induce a single prior – and thus a

single posterior – for θ. In the set-identified case, the identifying restrictions do not uniquely

determine Q given φ, so specifying a prior for the reduced-form parameters does not induce

a single prior for θ and thus does not yield a single posterior. Following Uhlig (2005), the

vast majority of the empirical literature using Bayesian methods in set-identified SVARs

imposes a single prior for Q|φ, including Braun and Brüggemann (2017) and ARW19 in

their set-identified proxy SVARs. However, while the prior for φ is updated by the data, the

conditional prior for Q|φ is not updated, even asymptotically, because the likelihood does

not depend on Q (Poirier (1998); Moon and Schorfheide (2012)). This is problematic, be-

cause posterior inference may be driven by an arbitrary prior over the rotation matrix, which

has no direct economic interpretation, and even ‘uniform’ priors over O(n) may be informa-

tive about the objects of interest, such as impulse responses (Baumeister and Hamilton 2015).
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Rather than specifying a single prior, the robust Bayesian approach of GK18 considers

the class of all priors for Q|φ that are consistent with the identifying restrictions:

ΠQ|φ =
{
πQ|φ : πQ|φ(Q(φ|F, S)) = 1

}
. (16)

Combining the class of priors with the posterior for φ generates a class of posteriors for θ:

Πθ|Y,M =
{
πθ|Y,M = πQ|φπφ|Y,M : πQ|φ ∈ ΠQ|φ

}
, (17)

where Y = (y′1−p, . . . ,y
′
T )′ and M = (m′1−p, . . . ,m

′
T )′. In turn, the class of posteriors for θ

induces a class of posteriors for ηi,j,h. GK18 suggest summarising this class of posteriors by

reporting the ‘set of posterior means’:[∫
Φ

l(φ)dπφ|Y,M,

∫
Φ

u(φ)dπφ|Y,M

]
, (18)

where l(φ) = inf{ηi,j,h(φ,Q) : Q ∈ Q(φ|F, S)} and u(φ) = sup{ηi,j,h(φ,Q) : Q ∈
Q(φ|F, S)}. They also suggest reporting a robust credible region with credibility level α

(see Proposition 1 of GK18). This region is interpreted as the shortest interval estimate for

ηi,j,h such that the posterior probability put on the interval is greater than or equal to α

uniformly over the posteriors in the class. One can also report posterior probability bounds,

which are the lowest and highest posterior probabilities of an event over all priors in the class.

When there are zero restrictions only, the identified set is never empty and so the data

are not informative about the plausibility of the identifying restrictions. When there are

sign restrictions, the identified set may be empty at particular values of φ. The posterior

probability that the identified set is non-empty, πφ|Y,M({φ : ISηi,j,h(φ|F, S) 6= ∅}), can thus

be used to quantify the plausibility of the identifying restrictions.

In order to implement our robust Bayesian inferential approach, it is necessary to order

the variables in yt to satisfy Definition 1 (which mirrors Definition 3 in GK18).

Definition 1 (Ordering of Variables): Order the variables in yt so that fi satisfies

f1 ≥ f2 ≥ . . . ≥ fn ≥ 0. In case of ties, if the impulse response of interest is to the j∗th

structural shock, order the j∗th variable first. That is, set j∗ = 1 when no other column

vector has a larger number of restrictions than qj∗ . If j∗ ≥ 2, order the variables so that

fj∗−1 > fj∗ .11

11The ordering is not necessarily unique.

12



The following example illustrates how to order the variables to satisfy Definition 1.

Example 1: Consider a proxy SVAR for (ct, it, yt, πt), where ct is consumption growth,

it is investment growth, yt is output growth and πt is inflation. Assume that there exist two

proxy variables, mc,t and mi,t, which are correlated with the structural shocks εc,t and εi,t, and

are uncorrelated with εy,t and επ,t. In the absence of additional zero restrictions, all impulse

responses are set-identified. If the impulse response of interest is that to εi,t, an ordering of

the variables that satisfies Definition 1 is (yt, πt, it, ct), with (f1, f2, f3, f4) = (2, 2, 0, 0) and

j∗ = 3. If, instead, the impulse response of interest is that to επ,t, an ordering of the variables

that satisfies Definition 1 is (πt, yt, it, ct), with (f1, f2, f3, f4) = (2, 2, 0, 0) and j∗ = 1.

2.4 Frequentist Validity

In this section we use results from GK18 to ascertain conditions under which the robust

Bayesian inferential approach provides valid frequentist inference about impulse responses

in the proxy SVAR. This may be of interest to practitioners who use Bayesian approaches

to inference purely for computational convenience.

The set of posterior means can be interpreted as a consistent estimator of the true identi-

fied set if ISηi,j,h(φ|F, S) is a continuous and convex function of φ. If, in addition, [l(φ), u(φ)]

is differentiable in φ at the true value φ0, the robust credible region is an asymptotically valid

confidence set for the true identified set. Propositions 3 and 4 of GK18 provide conditions

under which the impulse-response identified set is guaranteed to be convex and continuous

in φ, respectively, while Proposition 5 provides conditions under which it is guaranteed to

be differentiable in φ. We can show that having the relevance condition satisfied at φ0 is

a necessary condition for continuity of the identified-set correspondence at φ0. Differentia-

bility of the bounds additionally requires that a unique set of sign restrictions are binding

at the bounds of the identified set in a neighborhood around φ0. In what follows, we focus

on verifying the conditions under which convexity holds. We discuss issues associated with

‘weak’ proxies – where the relevance condition is ‘close’ to being violated – in the next section.

Assume that there are k proxy variables correlated with k structural shocks and uncor-

related with the remaining n − k structural shocks, and that there are no additional zero

or sign restrictions. First, consider the case where n ≥ 3 and there is one proxy, so k = 1.

Then fi = 1 for i = 1, . . . , n − 1 and fn = 0. If interest is in the impulse responses to one

13



of the first n − 1 structural shocks (the impulse responses to the last structural shock are

point-identified), then j∗ = 1 by Definition 1 and f1 < n−1, which implies that the identified

set is convex for almost every φ ∈ Φ by Proposition 3(I)(i) of GK18. If there are proxies

for all-but-one structural shock, so k = n − 1, then f1 = n − 1 and fi = 0 for i = 2, . . . , n.

If interest is in the impulse responses to one of the last n− 1 structural shocks (the impulse

responses to the first structural shock are point-identified), then j∗ = 2 by Definition 1. As

long as rank(F1(φ)) = n − 1 for almost every φ ∈ Φ, then q1 is exactly identified and the

impulse-response identified set is convex for almost every φ ∈ Φ by Proposition 3(I)(iii).

In these two cases, assuming that the relevance condition holds, frequentist validity follows

under the regularity conditions in Propositions 4 and 5 of GK18.12

Now, consider the case where n ≥ 4 and 1 < k < n− 1, which implies that the impulse

responses to all structural shocks are set-identified. fi = k for i = 1, . . . , n − k and fi = 0

for i = n − k + 1, . . . , n. If interest is in the impulse responses to one of the first n − k

structural shocks, then j∗ = 1 by Definition 1. Since f1 = n− k < n− 1, the identified set is

convex for almost every φ ∈ Φ by Proposition 3(I)(i), and frequentist validity follows under

the regularity conditions in Propositions 4 and 5 of GK18. If, instead, interest is in the

impulse responses to one of the last k structural shocks, then j∗ = n− k+ 1 by Definition 1.

In this case, the conditions in Proposition 3(I)(ii) or (iii) are not satisfied, so we cannot

guarantee convexity of the identified set.13 Nevertheless, the set of posterior means and

robust credible region can be interpreted as providing valid posterior inference – and valid

asymptotic frequentist inference – about the convex hull of the identified set.14

3 Weak Proxies

In this section, we investigate how weak proxies affect robust Bayesian posterior inference

about set-identified impulse responses in the proxy SVAR. For simplicity of analysis and

12To illustrate how proxy relevance affects continuity, consider the first case. Continuity requires that there
exists an open neighbourhood G ⊂ Φ around the true value of the reduced-form parameter φ0 such that
rank(F1(φ)) = 1 for all φ ∈ G, and that there exists a unit-length vector satisfying the zero restriction and
sign normalization constraining q1 (see Proposition 4(i)). If the relevance condition were to fail, F1(φ0) =
01×n and rank(F1(φ0)) = 0.

13The conditions for Proposition 3(I)(ii) are not satisfied because fj∗−1 = k ≮ n− (j∗−1). The conditions
for Proposition 3(I)(iii) are not satisfied because there does not exist 1 ≤ i∗ ≤ j∗ − 1 such that fi < n − i
for all i = i∗ + 1, . . . , j∗ and [q1, . . . ,qi∗ ] is exactly identified. To see this, note that the necessary condition
for exact identification of [q1, . . . ,qi∗ ] is that fi = n − i for all i = 1, . . . , i∗. But f1 = k < n − 1, so this
condition fails.

14When there are also sign restrictions that constrain qj∗ only, convexity of the identified set can be
checked at each draw of φ using Proposition 3(II)(iv)–(v).
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exposition, we focus on the case where n = 3, k = 1 and the objects of interest are the

(set-identified) impulse responses to ε1t. We choose this case because it is straightforward

to analytically characterise the identified set and hence discuss the effects of weak proxies.

Since the objects of interest are the impulse responses to ε1t, we set j∗ = 1 and (f1, f2, f3) =

(1, 1, 0). At a given value of φ ∈ Φ (and ignoring the sign normalization), the upper bound

of the identified set for the impulse response of the ith variable to the first structural shock

at the h-th horizon is the value function associated with the following optimisation problem:

u(φ) = max
q∈Sn−1

c′i,h(φ)q subject to F1(φ)q = 0,

where Sn−1 is the unit sphere in Rn. Applying the change of variables x = Σtrq yields the

problem in Equation (2.5) of Gafarov et al.. Using their results, the value function satisfies

u(φ)2 = c′i,h(φ)
[
In − F1(φ)′ (F1(φ)F1(φ)′)

−1
F1(φ)

]
ci,h(φ)

= c′i,h(φ)
[
In − d1 (d′1d1)

−1
d′1

]
ci,h(φ) (19)

where the second line uses the fact that, in this case, F1(φ) = DΣtr ≡ d′1.
15 (11) implies

that d′1q3 = Ψ, where Ψ = E(mtε3t). The exogeneity restrictions require that d′1q1 = 0 and

d′1q2 = 0; that is, q1 and q2 are orthogonal to d1. Since the columns of an orthonormal ma-

trix are orthogonal and have unit length, it must therefore be the case that q3 = ±d1/‖d1‖,
where ||.|| is the Euclidean norm. This implies that d′1d1/‖d1‖ = ‖d1‖ = |Ψ|.

For ease of notation, in this section we henceforth refer to ci,h(φ) simply as c(φ). A

‘weak’ proxy correlates with one of the structural shocks only weakly, so |Ψ| is close to zero.

This is equivalent to ‖d1‖ being small. Note that u(φ) as the square-root of (19) is continu-

ous and smooth in c(φ), while it is discontinuous in d1 at d1 = 03×1. Hence, if the posterior

distribution of d1 concentrates near 03×1 due to the weak proxy, the posterior of u(φ) can

exhibit a nonstandard distribution due to the singularity of u(φ) at d1 = 03×1 even when the

posterior of (c′(φ),d′1)
′ is consistent and can be well approximated by a normal distribution

centered at their maximum likelihood estimates.

To investigate the posterior for u(φ) in the weak proxy case, we consider the local asymp-

totic approximation of the posterior for u(φ) with a drifting sequence of the true values of φ

15In the absence of sign normalization restrictions, the lower bound of the identified set l(φ) is given by
−u(φ). This section hence focuses only on the posterior for u(φ).
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converging to a point of singularity. We here present the heuristic exposition of the results

and defer the regularity conditions and formal proofs to the Appendix.

We consider a drifting sequence of data generating processes {φT : T = 1, 2, . . . } that

induces a drifting sequence of parameter values {(cT ,d1T ) : T = 1, 2 . . . , } converging to a

point of singularity. Following the weak instrument asymptotics of Staiger and Stock (1997),

we consider the drifting sequence of (c,d1) with T−1/2-convergence rate,

cT = c0 +
γ√
T
, d1T =

δ√
T
, (20)

where c0 6= 03×1, (γ, δ) ∈ R6 is the vector of localisation parameters, and the magnitude of

δ characterises the relevance of the proxy; that is, the smaller the ‖δ‖, the weaker the proxy.

Let (ĉT , d̂1T ) be the maximum likelihood estimator (MLE) for c(φ) and d1 (which are

constants once we have conditioned on the sample). We assume that the sampling distribu-

tion of the MLE is
√
T -asymptotically normal,(

ẐcT

ẐdT

)
≡
√
T

(
ĉT − cT

d̂1T − d1T

)
d→

(
Ẑc

Ẑd

)
∼ N

(
06×1,

(
Ωc Ωcd

Ω′cd Ωd

))
. (21)

We also assume that the posterior for (c′(φ),d′1)
′ converges to a normal distribution with

data-independent variance. That is, conditional on the sampling sequence,

√
T

(
c(φ)− ĉT

d1 − d̂1T

)
d→

(
Zc

Zd

)
∼ N

(
06×1,

(
Ωc Ωcd

Ω′cd Ωd

))
, (22)

as T → ∞ for almost every sampling sequence, and Ω ≡

(
Ωc Ωcd

Ω′cd Ωd

)
is the posterior

asymptotic variance, which does not depend on the sampling sequence. The asymptotic

equivalence of the probability laws in (21) and (22) implies that the reduced-form parame-

ters (c,d1) are regular in the sense that the well-known Bernstein-von Mises Theorem holds.

See, for instance, Schervish (1995) and DasGupta (2008) for a set of sufficient conditions for

posterior asymptotic normality with the Bernstein-von Mises property.

Under this setting, Proposition 7.1 in the Appendix derives the following asymptotic
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approximation of the posterior for u(φ): conditional on the sampling sequence,

u(φ)
d→

√√√√c′0

(
I3 −

(δ + Ẑd + Zd)(δ + Ẑd + Zd)′

‖δ + Ẑd + Zd‖2

)
c0, (23)

as T → ∞ for almost every sampling sequence, where Ẑd is a constant depending on the

sample, and Zd ∼ N (03×1,Ωd).

This representation of the asymptotic posterior provides the following insights about the

influence of the weak proxy on posterior inference. First, the posterior of u(φ) is not con-

sistent and remains a non-degenerate distribution in large samples. Second, the asymptotic

posterior for u(φ) depends not only on the localisation parameters δ, but also on the statistic

Ẑd realized in the data. Hence, unlike in the well-identified case, the influence of the data

on the shape of the posterior does not disappear in large samples. Also, the asymptotic

posterior mean almost always (in terms of the sampling probability) misses the upper bound

of the true identified set defined by the limit along the drifting data generating processes

{φT : T = 1, 2, . . . } yielding (20),

lim
T→∞

u(φT ) =

√
c′0

(
I3 −

δδ′

‖δ‖2

)
c0.

This implies that, under the current weak-proxy asymptotics, the set of posterior means for

the impulse response considered in GK18 is not a consistent estimator for the identified set.

Under the same drifting sequence inducing (20), the asymptotic sampling distribution of

the MLE for the upper bound of the identified set is (see Proposition 7.2 in Appendix):

u(φ̂)
d→

√√√√c′0

(
I3 −

(δ + Ẑd)(δ + Ẑd)′

‖δ + Ẑd‖2

)
c0, (24)

where Ẑd ∼ N (03×1,Ωd). Like the posterior for u(φ), the sampling distribution of u(φ̂) is

not consistent and remains non-degenerate. A comparison of (23) and (24) shows that the

posterior and the sampling distribution of the MLE for the bound of the identified set do not

asymptotically coincide for almost every sampling sequence, implying that the Bernstein-von

Mises property does not hold in the presence of the weak proxy. This violates one of the

sufficient conditions of Theorem 3 in GK18 for asymptotically valid frequentist coverage.
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In the strong proxy case where |Ψ| = ‖d1‖ is far from zero, the pointwise asymptotic

approximation of the posterior of u(φ) approximates well the finite-sample posterior. Not-

ing that u(φ) is smooth at d1 6= 03×1 and assuming that the posterior of (c,d1) centered

at the MLE is
√
T -asymptotically normal, the delta method implies that

√
T (u(φ)− u(φ̂))

is asymptotically normal with a data-independent variance. This asymptotic posterior co-

incides with the sampling distribution of the MLE, so in addition to posterior consistency,

the correct frequentist coverage of the robust credible region can be attained. This stark

contrast in the asymptotic behavior of the posteriors suggests that in the current simple

setting, whether the posterior of u(φ) is close to a normal distribution could be useful for

diagnosing whether the proxy is strong or weak. We leave a formal analysis of this for future

research.

4 Numerical Implementation

In this section, we provide numerical algorithms to conduct robust Bayesian inference about

set-identified impulse responses in proxy SVARs. The algorithms numerically approximate

the set of posterior means and associated robust credible interval. When there are sign

restrictions, the algorithms also give estimates of the plausibility of the identifying restric-

tions. Throughout, we assume that the order of the variables satisfies Definition 1. Since the

identifying restrictions are linear restrictions on columns of Q, the algorithms are similar to

the algorithms in GK18. We repeat them here for completeness and discuss details specific

to the proxy SVAR case below. Matlab code implementing the algorithms is available on

the authors’ personal websites or on request.

Algorithm 1. Let F(φ,Q) = 0(
∑n

i=1 fi)×1 and S(φ,Q) ≥ 0s×1 be the set of identifying

restrictions and let ηi,j,h = c′i,hqj be the impulse response of interest. The algorithm proceeds

as follows:

• Step 1: Specify a prior for the reduced-form parameters, πφ, and obtain the posterior

πφ|Y,M.16

• Step 2: Draw φ from πφ|Y,M. Check whether Q(φ|F, S) is empty using the subroutine

below.

16πφ does not have to be proper or to satisfy the condition πφ({φ : Q(φ|F, S) 6= ∅}) = 1; that is, the prior
may assign positive probability to regions of the reduced-form parameter space that yield an empty set of
rotation matrices satisfying the identifying restrictions.
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– Step 2.1: Draw z1 ∼ N(0n×1, In). Let q̃1 = M1z1 be the n × 1 residual vector

in the linear projection of z1 onto an n× f1 regressor matrix F1(φ)′, where M1 =

[In − F1(φ)′(F1(φ)F1(φ)′)−1F1(φ)]. For i = 2, . . . , n, run the following procedure

sequentially: draw zi ∼ N(0n×1, In) and compute q̃i = Mizi, where Mizi is the

residual vector in the linear projection of zi onto the n × (fi + i − 1) regressor

matrix [Fi(φ)′, q̃1, . . . , q̃i−1]. The vectors q̃i, i = 1, . . . , n, are orthogonal and

satisfy the zero restrictions represented in F (φ,Q).17

– Step 2.2: Given q̃i, i = 1, . . . , n, define

Q0 =

[
sign((Σ−1tr e1,n)′q̃1)

q̃1

‖q̃1‖
, . . . , sign((Σ−1tr en,n)′q̃n)

q̃n
‖q̃n‖

]
,

where ‖.‖ is the Euclidean norm in Rn. If (Σ−1tr ei,n)′q̃i = 0 for some i, set

sign((Σ−1tr e1,n)′q̃i) equal to 1 or −1 with equal probability. This step rescales

q̃i, i = 1, . . . , n, to have unit length and imposes the sign normalization that the

diagonal elements of A0 are nonnegative.

– Step 2.3: Check whether Q0 satisfies S(φ,Q0) ≥ 0s×1. If so, retain Q0 and

proceed to Step 3. Otherwise, repeat Steps 2.1 and 2.2 (up to a maximum of L

times) until Q0 is obtained satisfying S(φ,Q0) ≥ 0s×1. If no draws of Q0 satisfy

S(φ,Q0) ≥ 0s×1, approximate Q(φ|F, S) as being empty and return to Step 2.

• Step 3: Compute the lower bound of ISηi,j,h(φ|F, S) by solving the following con-

strained optimisation problem with initial value Q0:

l(φ) = min
Q

ci,h(φ)′qj

subject to

F (φ,Q) = 0(
∑n

i fi)×1

S(φ,Q) ≥ 0s×1

diag(Q′Σ−1tr ) ≥ 0n×1

Q′Q = In.

Similarly, obtain u(φ) = maxQ ci,h(φ)′qj under the same set of constraints.

17If the relevance condition fails, Fi(φ) is of reduced row rank for i = 1, . . . , n− k and the coefficients in
the linear projection of zi on Fi(φ)′ are not identified. This is a measure zero event so long as the prior for
φ does not place positive probability mass on the event rank(D) < k.
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• Step 4: Repeat Steps 2–3 M times to obtain [l(φm), u(φm)] for m = 1, ...,M . Ap-

proximate the set of posterior means by the sample averages of l(φm) and u(φm).

• Step 5: To obtain an approximation of the smallest robust credible region with credi-

bility α ∈ (0, 1), define d(η,φ) = max{|η−l(φ)|, |η−u(φ)|} and let ẑα(η) be the sample

α-th quantile of {d(η,φm),m = 1, ...,M}. An approximated smallest robust credible

interval for ηi,j,h is an interval centered at arg minη ẑα(η) with radius minη ẑα(η).

• Step 6: The proportion of draws of φ passing Step 2.3 is an approximation of the

posterior probability that the identified set is nonempty: π̃φ|Y,M({φ : Q(φ|F, S) 6= ∅}).

4.1 Remarks

4.1.1 Choice of priors

The method used to draw φ|Y,M depends on the posterior, and thus on the prior. In

the empirical application below we use independent (improper) Jeffreys’ priors over the

blocks of reduced-form parameters in the VAR for yt and the first-stage regression; that is,

πφ = πB,ΣπD,J,Υ, where πB,Σ ∝ |Σ|−
n+1
2 and πD,J,Υ ∝ |Υ|−

k+1
2 . This makes it easy to draw

from the posterior of φ|Y,M, since it is the product of independent normal-inverse-Wishart

posteriors.18 An advantage of using independent priors is that it allows the sample for mt to

be shorter than the sample for yt without discarding information that could otherwise be used

to estimate the VAR for yt, which can be the case in empirical applications (e.g. Gertler and

Karadi 2015). We emphasise that our algorithm does not rely on using independent priors

over the reduced-form parameters; all that matters is that one can sample from the posterior

of φ. In particular, if the prior is over the model’s structural – rather than reduced-form –

parameters, one could draw from the posterior of the structural parameters and transform

these draws into draws of the reduced-form parameters.

4.1.2 Convergence issues

As in GK18, the optimisation step (Step 3) involves minimising (or maximising) a linear func-

tion subject to linear and quadratic equality restrictions and linear inequality restrictions.

This is a quadratically constrained linear program and hence is nonconvex. Consequently,

the convergence of gradient-based optimisation methods in this problem is not guaranteed.

18This follows from the fact that the joint likelihood of (M,Y) is multiplicatively separable across the two
blocks of parameters. For an algorithm that draws from the normal-inverse-Wishart posterior distribution,
see Del Negro and Schorfheide (2011). Imposing independent normal-inverse-Wishart priors would also yield
a posterior that is the product of independent normal-inverse-Wishart posteriors.
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Accordingly, we suggest drawing multiple values of Q0 in Steps 2.2 and 2.3 to use as initial

values in the optimisation step, and computing optima over the set of solutions obtained

from the different initial values. GK18 also provide an algorithm that can be used to check

for convergence of, or as an alternative to, the numerical optimisation step.

Algorithm 2. In Algorithm 1, replace Step 3 with the following:

• Step 3’: Iterate Steps 2.1–2.3 K times and let {Ql, l = 1, ..., K̃} be the draws of Q that

satisfy the sign restrictions (either fix K and let K̃ vary or fix K̃ and let K vary). Let

qj,l be the jth column of Ql. Approximate [l(φ), u(φ)] by [minl c
′
i,hqj,l,maxl c

′
i,hqj,l].

Algorithm 2 yields an approximated identified set that is smaller than the true identified

set at every draw of φ. However, the approximated identified set will converge to the true

identified set as K̃ goes to infinity. In some cases, Algorithm 2 may be computationally less

demanding than Algorithm 1. For example, when the dimension of the VAR is large or if

interest is in the impulse responses of many variables at many horizons, the computational

cost of generating a sufficiently large number of draws of Q to accurately approximate the

bounds of the identified sets may be smaller than the cost of carrying out the numerical

optimisation step for each variable of interest at each horizon (particularly when using mul-

tiple initial values). Conversely, Algorithm 2 may be computationally more demanding when

there are sign restrictions that substantially truncate the support of Q, in which case it may

take many draws of Q given the equality restrictions to generate a number of draws satisfying

the sign restrictions that is sufficient to accurately approximate the bounds of the identified

set. In practice, Step 3 and Step 3’ are parallelisable, so large reductions in computating

time are possible in both algorithms by distributing computation across multiple processors.

4.1.3 Point identification

If fj∗ = j∗ − 1, the equality restrictions on qj∗ are sufficient to point identify the object

of interest. This means that the prior for φ induces a single posterior for ηi,j∗,h and/or

FEV Di,j∗,h. In this case, Steps 1 and 2.1–2.2 of Algorithm 2 can still be used to draw from

the posterior of the object of interest. Because qj∗ is exactly identified, any draw of Q

satisfying the zero restrictions will contain the same qj∗ and thus will yield the same ηi,j∗,h

or FEV Di,j∗,h. We make use of this in the empirical application below when estimating a

proxy SVAR under point-identifying restrictions.
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4.1.4 Other objects of interest

When interest is in the FEVD rather than the impulse response, Algorithms 1 and 2 can

be modified by replacing ci,h(φ)′qj with
∑h−1

k=0 ci,k(φ)′qjq
′
jci,k(φ)/

∑h−1
k=0 ci,k(φ)′ci,k(φ). In

practice, the optimisation step of Algorithm 1 is likely to be computationally demanding

when the objective is the FEVD, so we recommend using Algorithm 2 to numerically ap-

proximate the bounds of the identified set via simulation. If one is interested in both impulse

responses and the FEVD, Algorithm 2 may deliver large gains in computation time over Al-

gorithm 1, because the same draws of Q can be used to compute bounds for both the impulse

response and the FEVD rather than having to carry out numerical optimisation for each ob-

ject and for each variable and horizon. It would be straightforward to extend the algorithms

to other objects that are a function of the structural parameters, such as the contribution of

a particular shock to the observed unexpected change in a particular variable between two

dates (i.e. the historical decomposition). Note also that when interest is in the cumulative

impulse response, ci,h(φ)′qj is simply replaced with
(∑h

k=1 ci,k(φ)′
)

qj.

4.1.5 Impulse responses to a unit shock

The algorithms above impose the unit standard deviation normalization E(εtε
′
t) = In, which

is typical in set-identified SVARs (e.g. Uhlig 2005). This means that the impulse responses

are to a shock that is one standard deviation in magnitude (see, for example, Stock and

Watson (2016, 2018) for a discussion of this point). Algorithm 3 shows how to obtain the

set of posterior means and the robust credible interval for impulse responses to a unit shock.

Algorithm 3. In Algorithm 1, replace Step 3 with the following:

• Step 3”: Iterate Steps 2.1–2.3 K times and let {Ql, l = 1, ..., K̃} be the draws of

Q that satisfy the sign restrictions (either fix K and let K̃ vary or fix K̃ and let K

vary). Let A−10,l = ΣtrQl. Rescale the ith column of A−10,l such that the ith element is

equal to one; that is, set ai,l = (A−10,l ei,n)/(e′i,nA
−1
0,l ei,n). Approximate [l(φ), u(φ)] by

[minl e
′
i,nChai,maxl ei,nChai].

The algorithm generates impulse responses to a one standard deviation shock that are

consistent with the identifying restrictions, rescales the impulse responses so that they are

with respect to a unit shock, and computes the bounds of the identified set using the extreme

values of the rescaled impulse responses. We note that one potential issue arising under the

unit-effect normalization is that the posterior mean bounds and robust credible interval may

be unbounded when the relevant diagonal elements of A−10 = ΣtrQ are not bounded away
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from zero for all φ ∈ Φ and Q ∈ Q(φ|F, S).

4.1.6 Weak proxies

When the proxy is ‘weak’, in the sense that DΣtr is ‘almost’ rank deficient at some or

all draws of φ, our algorithms still deliver a numerical approximation of the exact finite-

sample posterior of the identified set. However, there may be problems with the quality of

the numerical approximation. First, the optimisation step in Algorithm 1 may be poorly

behaved when the matrix of linear equality restrictions is close to rank deficient. Second,

Algorithm 2 requires repeating Step 2.1 many times, which involves projecting a vector

onto a matrix representing the zero and orthogonality restrictions. If this matrix is close to

rank deficient, the matrix inversion step involved in the linear projection will be inaccurate.

This could then affect the accuracy of the bounds of the identified set. However, these issues

should be readily identifiable in practice. In the Matlab code implementing our approach, the

constrained nonlinear optimiser (‘fmincon’) prints a warning when the matrix of constraints

is close to rank deficient. Similarly, Matlab prints warnings when attempting to invert

an ill-conditioned matrix. In both cases, proximity to rank deficiency is assessed using

a condition number (e.g., the 2-norm condition number is the ratio of the maximum and

minimum singular values), with an infinitely large condition number representing singularity.

Practitioners could also compute the condition number of DΣtr at each draw of φ and plot

its posterior or compute the posterior probability that it is larger than some threshold.

5 Empirical Application: The Dynamic Effects of Per-

sonal and Corporate Income Tax Changes in the

United States

We illustrate our methodology using the proxy SVAR considered in MR13, who estimate the

macroeconomic effects of shocks to personal and corporate income tax rates in the United

States. The variables included in their benchmark specification are the average personal

income tax rate (APITR), the average corporate income tax rate (ACITR), the personal

income tax base, the corporate income tax base, government purchases of final goods, gross

domestic product and federal government debt. The last five variables are in real per capita

terms and are included in logs. MR13 decompose the sequence of plausibly exogenous

changes in tax liabilities constructed by Romer and Romer (2010) into those related to per-

sonal income taxes and those related to corporate income taxes, and they exclude changes
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in tax liabilities with a lag between announcement and implementation of more than one

quarter. These changes in tax liabilities are divided by the relevant tax base in the previous

quarter and the resulting variables are used as proxies for structural shocks to the APITR

and ACITR. The data are quarterly and run from 1950Q1 to 2006Q4. The VAR includes a

constant and four lags of the endogenous variables. See MR13 for further details about the

construction of the variables used in the VAR and the proxies.19

When the objects of interest are impulse responses to εAPITR,t, any ordering of the vari-

ables such that yt = [xt, APITRt, ACITRt], where xt contains all variables other than

APITRt and ACITRt, will satisfy Definition 1. When interest is in the impulse responses

to εACITR,t, any ordering such that [xt, ACITRt, APITRt] will satisfy Definition 1. In both

cases, fi = 2 for i = 1, . . . , 5, f6 = f7 = 0 and j∗ = 6. Let mt = (mAPITR,t,mACITR,t)
′,

where mAPITR,t and mACITR,t are the rescaled changes in personal and corporate income tax

liabilities, respectively. MR13 impose the identifying restrictions that E(mtε
′
(1:5),t) = 05×1

and E(mtε
′
6:7) = Ψ, where Ψ is an (unknown) full-rank 2 × 2 matrix. These identifying

restrictions are insufficient to point identify the impulse responses to any structural shock.

As discussed in MR13, if one were willing to assume that mAPITR,t is uncorrelated with the

structural shock to the ACITR, or vice versa for mACITR,t, the additional zero restriction

would be sufficient to point identify the impulse responses to both structural shocks of in-

terest.20 However, positive correlation between the proxies suggests that these assumptions

may be inappropriate.

To achieve point identification, MR13 impose different zero restrictions. When inter-

est is in the impulse responses to a structural shock to the APITR, they assume that the

ACITR does not respond directly to a structural shock in the APITR on impact, and vice

versa when interest is in the impulse responses to a structural shock to the ACITR. Note,

however, that these restrictions do not necessarily mean that the tax rates do not respond

at all to the shock in the other tax rate, since the tax rates can still respond to the other

variables, which themselves are able to respond directly to the shock. It can be shown that

these additional zero restrictions are equivalent to zero restrictions on A0.
21 These zero

19We thank Morten Ravn and Karel Mertens for making their data available. We obtained the data from
Karel Mertens’ website: https://karelmertens.com/research/.

20Assuming that E(mAPITR,tεACITR,t) = 0 and E(mAPITR,tεACITR,t) = 0 would yield one overidentifying
restriction. Our algorithms rule out this possibility.

21ARW19 show that the additional identifying restrictions used in the proxy SVARs of MR13 and Mertens
and Montiel-Olea (2018) are equivalent to restrictions on A0. Mertens and Montiel-Olea (2018) estimate
the effect of shocks to different personal income tax rates, but their identifying assumptions are analogous
to those in MR13. In our setting, the additional zero restriction is e′7,7A0e6,7 = (Σ−1tr e7,7)′q6 = 0.
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restrictions could be violated if, for instance, there are political economy constraints that

impinge on the ability of the government to change personal and corporate income tax rates

independently of one another. Consequently, we investigate the sensitivity of the results to

replacing the additional point-identifying zero restriction with set-identifying sign restric-

tions. In particular, we assume that each proxy is positively correlated with its associated

structural shock (i.e. E(mAPITR,tεAPITR,t) ≥ 0 and E(mACITR,tεACITR,t) ≥ 0) and that each

proxy is more highly correlated with its associated structural shock than with the structural

shock to the other average tax rate (i.e. E(mAPITR,tεAPITR,t) ≥ E(mAPITR,tεACITR,t) and

E(mACITR,tεACITR,t) ≥ E(mACITR,tεAPITR,t)). One advantage of this approach is that the

identifying restrictions are the same regardless of which shock is of interest, whereas MR13

impose a different point-identifying restriction on A0 depending on whether the shock of

interest is the APITR shock or the ACITR shock. Importantly, our approach allows us to

relax the additional point-identifying zero restriction while avoiding the need to impose a

single, unrevisable prior over the model’s set-identified parameters.

First, we compare impulse responses obtained under the point-identifying restrictions

used in MR13 against those obtained under the set-identifying restrictions and using a single

prior for Q|φ. The purpose of this exercise is to explore the effect of the additional zero

restriction on posterior inference. We then compare the impulse responses under the set-

identifying restrictions and the single prior against those obtained using our robust Bayesian

approach. This isolates the effect of the single prior on posterior inference. To quantify the

sensitivity of posterior inference in this model to the choice of prior over the rotation matrix,

we report the ‘prior informativeness’ statistic proposed in GK18, which measures the extent

to which the Bayesian credible region is tightened by choosing a particular prior:

Prior informativeness =

1− Width of Bayesian credible region for ηi,j,h with credibility α

Width of robust Bayesian credible region for ηi,j,h with credibility α
. (25)

As discussed in Section 4, we assume independent Jeffreys’ priors over the reduced-form

parameters, πφ = πB,ΣπD,G,Υ, where πB,Σ ∝ |Σ|−
n+1
2 and πD,G,Υ ∝ |Υ|−

k+1
2 . The posterior

is thus the product of independent normal-inverse-Wishart distributions, from which it is

straightforward to obtain independent draws. In practice, we obtain 1,000 draws from the

posterior of φ (with non-empty identified set) by estimating separate Bayesian reduced-form

VARs for yt and mt (with (yt, . . . ,yt−p) included as exogenous variables in the latter). In

the first-stage regression, we include a constant and exclude lags of the proxies. When the

impulse response of interest is point-identified, we obtain the impulse responses at each draw
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of φ by drawing a single value of Q using Steps 2.1–2.2 of Algorithm 1. When the impulse

responses are set-identified, the single prior for Q|φ is that implied by Steps 2.1–2.3 of Algo-

rithm 1. We present impulse responses to one-standard-deviation increases in the structural

shocks of interest. In this application, the optimisation step of Algorithm 1 is slow due to

the large dimension of the VAR. Consequently, we use Algorithm 2 with K̃ = 10, 000 to

approximate the bounds of the identified set at each draw of φ via simulation. If we cannot

obtain a draw of Q satisfying the identifying restrictions after 10,000 draws of Q, we ap-

proximate the identified set as being empty at that draw of φ.

Figure 1 plots impulse responses to a positive one standard deviation shock in the APITR

under the point-identifying restrictions used in MR13 and under our set-identifying restric-

tions but with a single prior for Q|φ.22 The two sets of restrictions yield very similar posterior

distributions for the response of the APITR to its own shock. In contrast, the posterior dis-

tribution of the responses of the other variables differs somewhat across the two sets of

identifying restrictions. For example, the posterior probability that the response of output

is negative after one year is 80 per cent under the point-identifying restrictions, whereas this

probability is only 68 per cent under the set-identifying restrictions. A notable difference

between the two sets of results is the response of the ACITR. Under the point-identifying

restrictions, the 90 per cent highest posterior density (HPD) intervals for the response of the

ACITR include zero at all horizons and the posterior mean response is about 0.2 percentage

points on average in the first year. Under the set-identifying restrictions, the HPD intervals

exclude zero at some horizons within the first year after the shock and the posterior mean

response is about 0.5 percentage points on average in the first year.

Figure 2 plots the impulse responses to an APITR shock under the set-identifying re-

strictions and using our robust Bayesian approach. The impulse responses under the single

prior are also reported for ease of comparison. The set of posterior means (the estimator of

the identified set) for the impulse response of output to the APITR shock includes zero at

all horizons and at the one-year horizon spans from −0.40 to 0.16. The posterior probability

that the response of output is negative after one year is between 0.27 and 0.94 across the

priors consistent with the identifying restrictions. The prior informativeness statistic indi-

cates that the choice of the single prior shrinks the width of the 90 credible interval for the

output response by about 40 per cent on average over the horizons considered. These results

indicate that posterior inferences about the effect of output depend heavily on the choice

of single prior for Q|φ. Notably, the 90 per cent robust credible intervals for the impulse

22The impulse responses of government debt are omitted for brevity.
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response of the ACITR include zero at all horizons, whereas the HPD intervals do not. In

other words, using the single prior suggests that the ACITR falls following an APITR shock

with nontrivial posterior probability, but this result is not robust to the choice of prior for

Q|φ.

Figures 3 and 4 repeat Figures 1 and 2, but for a shock to the ACITR. The response of

the ACITR is qualitatively similar under the two sets of identifying restrictions when a single

prior is used. Under the point-identifying restrictions, the 90 per cent HPD intervals for the

output response include zero at all horizons, which suggests that shocks to the AICTR have

no effect on output. In contrast, under the set-identifying restrictions, the HPD intervals

exclude zero at short horizons. However, inferences about the response of output are sen-

sitive to the choice of single prior; the 90 per cent robust credible intervals for the output

response include zero at all horizons and the prior informativeness statistic is about 30 per

cent on average over the horizons considered.

Figures 5 and 6 plot the FEVDs of output with respect to the two income tax shocks

under the different sets of identifying assumptions and the two approaches to posterior

inference. Focusing on the posterior mean of the FEVD, the APITR shock accounts for

about 20 per cent of the forecast error variance in output at the one-year horizon under

the point-identifying restrictions. This figure falls to 10 per cent under the set-identifying

restrictions and the single prior, but the result is sensitive to the choice of prior over the

rotation matrix: the set of posterior means ranges from about 5 per cent to about 25 per

cent. Under the point-identifying restrictions, the ACITR shock accounts for close to 25 per

cent of the forecast error variance of output at the one-year horizon, which is similar to the

contribution of the APITR under the same identifying restrictions. This contribution rises

to 30 per cent under the set-identifying restrictions and the single prior. The set of posterior

means ranges from 15 to 40 per cent, which suggests that ACITR shocks explain a nontrivial

share of the unexpected variation in output at short horizons regardless of the choice of prior.

Since our set-identifying restrictions include both zero and sign restrictions, the identified

set may be empty at particular draws of φ. The posterior probability that the identified set

is non-empty, πφ|Y,M({φ : ISηi,j,h(φ|F, S) 6= ∅}), is about 96 per cent, which suggests that

the identifying restrictions are consistent with the data.
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6 Conclusion

This paper develops algorithms for robust Bayesian inference in proxy SVARs where the

impulse responses or FEVDs of interest are set-identified. This approach allows researchers

to relax potentially controversial point-identifying restrictions without having to specify a

single, unrevisable prior over the model’s set-identified parameters. This is likely to be of

particular value in proxy SVARs where more than one proxy is used to identify more than

one structural shock.
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7 Appendix

This appendix sets up the framework for the weak-proxy approximations for the posterior

distribution and the sampling distribution (of the MLE) for the upper bound of the identified

set, and derives formally the claims (23) and (24) in the main text.

As in the main text, we consider the simple setting of n = 3 and k = 1, where the

upper bound of the identified set u(φ) is given by (19). Since u(φ) depends on the reduced-

form parameters only through (c,d1), we express u(c,d1) ≡ u(φ). The singularity points

of u(c,d1) that we focus on are c 6= 03×1 and d1 = 03×1, where the weak proxy scenario

corresponds to the value of d1 close to 03×1. We hence consider a sequence of reduced-form

parameters {φT : T = 1, 2, . . . } along which the implied parameters (cT ,d1T ), T = 1, 2, . . . ,

converge to (c0,03×1), c0 6= 03×1, as T → ∞. As in the main text, we specify a drifting

sequence of {φT} that leads to (
cT

d1T

)
=

(
c0 + γ/

√
T

δ/
√
T

)
, (26)

where (γ, δ) ∈ R3 × R3 are the localisation parameters.

Let ŜT ∈ Rs, s < ∞, T = 1, 2, . . . , be a finite dimensional vector of sufficient statistics

for φ that converges in distribution to a random vector S ∈ Rs as T →∞. Since we consider

a Gaussian proxy SVAR, these sufficient statistics are the first and second sample moments

of the observables. By the Skhorohod representation theorem, we can embed this sequence

of sufficient statistics {ŜT} and the limiting random variables Ŝ into a common probability

space on which

ŜT → Ŝ as T →∞, almost surely, (27)

holds.

Let (ĉT , d̂1T ) be the MLE for c and d1. Since the MLE depends only on the sufficient

statistics ŜT , we can embed the MLE into the probability space on which {ŜT} and Ŝ are

commonly defined. Hence, conditioning on the sequence of sufficient statistics {ŜT : T =

1, 2, . . . , } pins down the constant sequence of MLEs. We assume that the (unconditional)

sampling distribution of the MLEs centered at the drifting true values is asymptotically
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normal: (
ẐcT

ẐdT

)
≡
√
T

(
ĉT − cT

d̂1T − d1T

)
d→

(
Ẑc

Ẑd

)
∼ N

(
06×1,

(
Ωc Ωcd

Ω′cd Ωd

))
. (28)

Following the Skhorohod representation for the sufficient statistics (27), we have the almost

sure convergence of the MLE to the limiting Gaussian random variables(
ẐcT

ẐdT

)
→

(
Ẑc

Ẑd

)
as T →∞, almost surely, (29)

on the common probability space. We also impose a high-level assumption of the strong

consistency of the MLE for c in the sense of

ĉT → c0 as T →∞, almost surely, (30)

on the same probability space.

Since the posterior distribution depends on the data only through the sufficient statistics,

it suffices to consider the convergence of the posterior distribution for u(c,d1) conditional on

the sequence of sufficient statistics {ŜT}. We assume that the posterior for (c,d1) centered

at their MLEs is asymptotically normal in the following sense. Let(
ZcT

ZdT

)
≡
√
T

(
c− ĉT

d1 − d̂1T

)
, (31)

and we assume (
ZcT

ZdT

)
d→

(
Zc

Zd

)
∼ N

(
06×1,

(
Ωc Ωcd

Ω′cd Ωd

))
, (32)

for almost every conditioning sequence of {ST}. We assume that the asymptotic posterior

variance given in (32) is independent of the conditioning variable {ŜT : T = 1, 2, . . . } and

coincides with the asymptotic variance of the MLE given in (28).

The asymptotic normality of the posterior (centered at the MLE with data-independent

variance) holds for a wide class of regular parametric models, and its almost-sure coincidence

with the asymptotic (sampling) distribution of the MLE leads to the Bernstein-von Mises

Theorem. See, for instance, Schervish (1995) and DasGupta (2008) for a set of sufficient

conditions for posterior asymptotic normality.
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Under these assumptions, we obtain the following weak-proxy asymptotic approximation

of the posterior for u(φ).

Proposition 7.1. Consider a drifting sequence of reduced-form parameters that satisfy (26)

with c0 6= 03×1, along which we assume that the MLE for (c,d1) and its posterior satisfies

(28), (29), (30) and (32). Then, for almost every conditioning sequence of the sufficient

statistics {ŜT}, the asymptotic posterior of u(c,d1) is

u(c,d1)
d→ u(c0, δ + Ẑd + Zd) =

√√√√c′0

(
I3 −

(δ + Ẑd + Zd)(δ + Ẑd + Zd)′

‖δ + Ẑd + Zd‖2

)
c0,

where Ẑd is a constant given the sampling sequence, and Zd ∼ N (03×1,Ωd).

Proof. Since u(c,d1) is homogeneous of degree zero with respect to d1, we have

u(c,d1) = u(c, T 1/2d1) = u(ĉT + T−1/2ZcT , T
1/2d̂1T + ZdT )

= u(ĉT + T−1/2ZcT , δ + ẐdT + ZdT ),

where the second equality uses (28), and the third equality uses (31). Conditional on the

sampling sequence of the sufficient statistics {ŜT}, the assumptions of almost-sure conver-

gence (29) and (30) and the posterior distributional convergence (32) imply(
ĉT + T−1/2ZcT

δ + ẐdT + ZdT

)
d→

(
c0

δ + Ẑd + Zd

)
, (33)

as T →∞, where (c0, δ, Ẑd) are constants and Zd is a random vector following N (03×1,Ωd).

Since u(c,d1) is discontinuous at d1 = 03×1, and {δ + Ẑd + Zd = 03×1} is the null event in

terms of the probability law of the limiting random variables, an application of the continuous

mapping theorem (see, e.g., Theorem 10.8 of Kosorok (2008)) yields the conclusion.

The next proposition gives the asymptotic sampling distribution of u(ĉT , d̂1T ).

Proposition 7.2. Consider a drifting sequence of reduced-form parameters that satisfy (26)

with c0 6= 03×1, along which we assume that the MLE of (c,d1) satisfies (28). Then, the

asymptotic distribution of u(ĉT , d̂1T ) is

u(ĉT , d̂1T )
d→ u(c0, δ + Ẑd) =

√√√√c′0

(
I3 −

(δ + Ẑd)(δ + Ẑd)′

‖δ + Ẑd‖2

)
c0,

34



where Ẑd ∼ N (03×1,Ωd).

Proof. Since u(c,d1) is homogeneous of degree zero with respect to d1, it holds that u(ĉT , d̂1T ) =

u(ĉT , T
1/2d̂1T ). Under the drifting sequence (26) and

√
T -asymptotic normality of the MLE

(28), (
ĉT

T 1/2d̂1T

)
d→

(
c0

δ + Ẑd.

)
.

Noting that {δ + Ẑd = 03×1} is a null event in terms of the limiting probability law, an

application of the continuous mapping theorem leads to the conclusion.
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Figure 1: Impulse Responses to εAPITR,t Under Different Identifying
Restrictions (Single Prior)
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Notes: Lighter lines represent the posterior mean and 90 per cent highest posterior density
intervals under the point-identifying assumptions in MR13; darker lines represent
the posterior mean and 90 per cent highest posterior density intervals under our
set-identifying restrictions and given the single prior for Q|φ; impulse responses are
to a one standard deviation shock.
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Figure 2: Impulse Responses to εAPITR,t Under Set-Identifying Restrictions
(Single and Multiple Priors)
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Notes: Circles and dashed lines are, respectively, posterior means and 90 per cent highest
posterior density intervals under the single prior for Q|φ; vertical bars are posterior
mean bounds and solid lines are 90 per cent robust credible regions obtained using
Algorithm 2 with K̃ = 10, 000 and 1,000 draws from the posterior of φ with non-
empty identified set; impulse responses are to a one standard deviation shock.
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Figure 3: Impulse Responses to εACITR,t Under Different Identifying
Restrictions (Single Prior)
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Notes: See notes to Figure 1.
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Figure 4: Impulse Responses to εACITR,t Under Set-Identifying Restrictions
(Single and Multiple Priors)
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Notes: See notes to Figure 2.
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Figure 5: Contribution of εAPITR,t to Forecast Error Variance of Real GDP
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Notes: Circles and darker dashed lines are, respectively, posterior means and 90 per cent

highest posterior density intervals under the set-identifying restrictions and the
single prior for Q|φ; triangles and lighter dashed lines are, respectively, posterior
means and 90 per cent highest posterior density intervals under the point-identifying
restrictions; vertical bars are posterior mean bounds and solid lines are 90 per cent
robust credible regions obtained using Algorithm 2.

Figure 6: Contribution of εACITR,t to Forecast Error Variance of Real GDP
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Notes: See notes to Figure 5.

40


	CEMMAP COVER
	GiacominiKitagawaRead_cemmapwp
	Introduction
	Framework
	The SVAR
	Identification Using Proxies
	Robust Bayesian Inference About the Impulse Responses
	Frequentist Validity

	Weak Proxies
	Numerical Implementation
	Remarks

	Empirical Application: The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States
	Conclusion
	Appendix




