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Abstract

Social interactions determine many economic behaviors, but information on social ties

does not exist in most publicly available and widely used datasets. We present results on the

identi…cation of social networks from observational panel data that contains no information on

social ties between agents. In the context of a canonical social interactions model, we provide

su¢cient conditions under which the social interactions matrix, endogenous and exogenous

social e¤ect parameters are all globally identi…ed. While this result is relevant across di¤erent

estimation strategies, we then describe how high-dimensional estimation techniques can be

used to estimate the interactions model based on the Adaptive Elastic Net GMM method. We

employ the method to study tax competition across US states. We …nd the identi…ed social

interactions matrix implies tax competition di¤ers markedly from the common assumption

of competition between geographically neighboring states, providing further insights for the

long-standing debate on the relative roles of factor mobility and yardstick competition in

driving tax setting behavior across states. Most broadly, our identi…cation and application

show the analysis of social interactions can be extended to economic realms where no network

data exists. JEL Codes: C31, D85, H71.
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1 Introduction

In many economic environments, behavior is shaped by social interactions between agents. In in-

dividual decision problems, social interactions have been key to understanding outcomes as diverse

as educational test scores, the demand for …nancial assets, and technology adoption (Sacerdote,

2001; Bursztyn et al., 2014; Conley and Udry, 2010). In macroeconomics, the structure of …rm’s

production and credit networks propagate shocks, or help …rms to learn (Acemoglu et al., 2012;

Chaney, 2014). In political economy, ties between jurisdictions are key to understanding tax setting

behavior (Tiebout, 1956; Shleifer, 1985; Besley and Case, 1994).

Underpinning all these bodies of research is some measurement of the underlying social ties

between agents. However, information on social ties does not exist in most publicly available and

widely used datasets. To overcome this limitation, studies of social interaction either postulate ties

based on common observables or homophily, or elicit data on networks. However, it is increasingly

recognized that postulated and elicited networks remain imperfect solutions to the fundamental

problem of missing data on social ties, because of econometric concerns that arise with either

method, or simply because of the cost of collecting network data.1

Two consequences are that: (i) classes of problems in which social interactions occur are un-

derstudied, because social networks data is missing or too costly to collect; (ii) there is no way

to validate social interactions analysis in contexts where ties are postulated. In this paper we

tackle this challenge by deriving su¢cient conditions under which global identi…cation of the en-

tire structure of social networks is obtained, using only observational panel data that itself contains

no information on network ties. Our identi…cation results allow the study of social interactions

without data on social networks, and the validation of structures of social interaction where social

ties have hitherto been postulated.

A researcher is assumed to have panel data on individuals  = 1   for instances  = 1   .

An instance refers to a speci…c observation for  and need not correspond to a time period (for

example if  refers to a …rm,  could refer to market ). The outcome of interest for individual  in

instance  is  and is generated according to a canonical structural model of social interactions:2

 = 0

X

=1

0 + 0 + 0

X

=1

0 +  +  +  (1)

1As detailed in de Paula (2017), elicited networks are often self-reported, and can introduce error for the outcome
of interest. Network data can be censored if only a limited number of links can feasibly be reported. Incomplete
survey coverage of nodes in a network may lead to biased aggregate network statistics. Chandrasekhar and Lewis
(2016) show that even when nodes are randomly sampled from a network, partial sampling leads to non-classical
measurement error, and biased estimation. Collecting social network data is also a time and resource intensive
process. In response to these concerns, a nascent strand of literature explores cost-e¤ective alternatives to full
elicitation to recover aggregate network statistics (Breza et al., 2017).

2Blume et al. (2015) present micro-foundations based on non-cooperative games of incomplete information for
individual choice problems, that result in this estimating equation for a class of social interaction models.
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Outcome  depends on the outcome of other individuals to whom  is socially tied, , and

 includes characteristics of those individuals (or lagged values of ). 0 measures how the

outcome and characteristics of  causally impact the outcome for . As outcomes for all individuals

obey equations analogous to (1), the system of equations can be written in matrix notation where

the structure of interactions is captured by the adjacency matrix, denoted 0. Our approach

allows for unobserved heterogeneity across individuals  and common shocks to all individuals

. This framework encompasses the classic linear-in-means speci…cation of Manski (1993). In

his terminology, 0 and 0 capture endogenous and exogenous social e¤ects, and  captures

correlated e¤ects. The distinction between endogenous and exogenous peer e¤ects is critical, as

only the former generates social multiplier e¤ects.

Manski’s seminal contribution set out the re‡ection problem of separately identifying endogen-

ous, exogenous and correlated e¤ects in linear models. However, it has been somewhat overlooked

that he also set out another challenge on the identi…cation of the social network in the …rst place.3

This is the problem we tackle and so expand the scope of identi…cation beyond 0, 0 and 0. Our

point of departure from much of the literature is to therefore presume 0 is entirely unknown to the

researcher. We derive su¢cient conditions under which all the entries in 0, and the endogenous

and exogenous social e¤ect parameters, 0 and 0 are globally identi…ed. By identifying the social

interactions matrix 0, our results allow the recovery of aggregate network characteristics such

as the degree distribution and patterns of homophily, as well as node-level statistics such as the

strength of social interactions between nodes, and the centrality of nodes. This is useful because

such aggregate and node-level statistics often map back to underlying models of social interaction

(Ballester et al., 2006; Jackson et al., 2017; de Paula, 2017).

The mathematical strategy for our identi…cation result is new and fundamentally di¤erent from

those employed elsewhere in this nascent literature (and does not rely on requirements on network

sparsity). However it delivers su¢cient conditions that are mild, and relate to existing results on

the identi…cation of social e¤ects parameters when 0 is known (Bramoullé et al., 2009; De Giorgi

et al., 2010; Blume et al., 2015). Our identi…cation result is also useful in other estimation contexts,

such as when a researcher has partial knowledge of 0, or in navigating between priors on reduced-

form (later denoted ¦) and structural (later denoted ) parameters in a Bayesian framework, thus

avoiding issues raised in Kline and Tamer (2016).

Global identi…cation is a necessary requirement for consistency of extremum estimators such as

those based on GMM (Hansen 1982; Newey and McFadden 1994). Our identi…cation analysis thus

3Manski (1993) highlights di¢culties (and potential restrictions) for identifying 0 0 and 0 when all individuals
interact with each other, and when this is observed by the researcher. In (1), this corresponds to 0 = ¡1, for
  = 1      . At the same time, he states (p. 536), “I have presumed that researchers know how individuals form
reference groups and that individuals correctly perceive the mean outcomes experienced by their supposed reference
groups. There is substantial reason to question these assumptions (...) If researchers do not know how individuals
form reference groups and perceive reference-group outcomes, then it is reasonable to ask whether observed behavior
can be used to infer these unknowns (...) The conclusion to be drawn is that informed speci…cation of reference
groups is a necessary prelude to analysis of social e¤ects.”
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provides primitives for this important condition. To estimate the model, we employ the Adaptive

Elastic Net GMM method (Caner and Zhang, 2014) because this allows us to deal with a potentially

high-dimensional parameter vector (in comparison to the time dimension in the data) including

all the entries of the social interactions matrix 0, though other estimation protocols may also be

entertained (e.g., using Bayesian methods or a priori information as previously alluded).4

We showcase the method using Monte Carlo simulations based on stylized random network

structures as well as real world networks. In each case, we take a …xed network structure 0,

and simulate panel data as if the data generating process were given by (1). We then apply the

method on the simulated panel data to recover estimates of all elements in 0, as well as the

endogenous and exogenous social e¤ect parameters (0, 0). The networks considered vary in

size, complexity, and their aggregate and node-level features. Despite this heterogeneity, we …nd

the method to perform well in all simulations. In a reasonable dimension of panel data  and

with varying node numbers across simulations (), we …nd the true network structure 0 is well

recovered. For each simulated network, the majority of true links are correctly identi…ed even for

 = 5, and the proportion of true non-links (zeroes in 0) captured correctly as zeros is over 85%

even when  = 5. Both proportions rapidly increase with  . A fortiori, we estimate aggregate

and node-level statistics of each network, demonstrating the accurate recovery of key players in

networks for example. Furthermore, biases in the estimation of endogenous and exogenous e¤ects

parameters (̂ ̂) fall quickly with  and are close to zero for large sample sizes.

In the …nal part of our analysis, we apply the method to shed new light on a classic real

world social interactions problem: tax competition between US states. The literatures in political

economy and public economics have long recognized the behavior of state governors might be

in‡uenced by decisions made in ‘neighboring’ states. The typical empirical approach has been to

postulate the relevant neighbors as being geographically contiguous states. Our approach allows

us to infer the set of economic neighbors determining social interactions in tax setting behavior

from panel data on outcomes and covariates alone. In this application, the panel data dimensions

cover mainland US states,  = 48, for years 1962-2015,  = 53.

We …nd the identi…ed network structure of tax competition to di¤er markedly from the common

assumption of competition between geographic neighbors. The identi…ed network has fewer edges

than the geography-based network, that gets re‡ected in the far lower clustering coe¢cient in the

identi…ed network than in the geographic network (026 versus 194). With the recovered social

4The elastic net was introduced by Zou and Hastie, 2005 in part to circumvent di¢culties faced by alternative
estimation protocols (e.g., LASSO) when the number of parameters, , exceeds the number of observations, 
(where  and  follow the notation in that paper). Whereas the theoretical results on the large sample properties of
elastic net estimators usually have not exploited sparsity, several articles have demonstrated its performance in data
scenarios where this occurs. For example, Zou and Hastie, 2005 consider an application to leukemia classi…cation
where  = 7 129 and  = 72 (see their Section 6) and Zou and Zhang, 2009 explore a scenario where  = 1 000
and  = 200. The favourable performance of the elastic net in these cases also relates to the literature on the
‘e¤ective number of parameters’ (or ‘e¤ective degrees of freedom’) in the estimation of sparse models (Tibshirani
and Taylor, 2012). In Section 3 we provide an informal calculation for the minimum number of time periods such
that penalized estimation is feasible in our context.
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interactions matrix we establish, beyond geography, what covariates correlate to the existence of

ties between states and the strength of those ties. We identify non-adjacent states that in‡uence

tax setting and, more broadly, we establish that social interactions are highly asymmetric: some

states – such as Delaware, a well known low-tax state – are especially focal in driving tax setting

in other jurisdictions. We use all these results to shed new light on the main hypotheses for social

interactions in tax setting: factor mobility and yardstick competition (Tiebout, 1956; Shleifer,

1985; Besley and Case, 1994).

Our paper contributes to the literature on the identi…cation of social interactions models.

The …rst generation of papers studied the case where 0 is known, so only the endogenous and

exogenous social e¤ects parameters need to be identi…ed. It is now established that if the known

0 di¤ers from the linear-in-means example, 0 and 0 can be identi…ed (Bramoullé et al., 2009;

De Giorgi et al., 2010). Intuitively, identi…cation in those cases can use peers-of-peers, that are

not necessarily connected to individual  and can be used to leverage variation from exclusion

restrictions in (1), or can use groups of di¤erent sizes within which all individuals interact among

each other (Lee, 2007). Bramoullé et al. (2009) show these conditions are met if 0 and  2
0 are

linearly independent, which is shown to hold generically by Blume et al. (2015). However, as made

precise in Section 2, the linear algebraic arguments employed in Bramoullé et al. (2009) or Blume

et al. (2015) do not apply when 0 is unobserved and other arguments have to be used instead.5

Our paper builds on these papers by studying the problem where 0 is entirely unknown

to the researcher. In so doing, we open up the study of social interactions to the many realms

where complete social network data does not actually exist. Closely related to our work, Blume

et al. (2015) investigate the case when 0 is partially observed. Speci…cally, Blume et al. (2015,

Theorem 6) show that if two individuals are known to not be directly connected, the parameters

of interest in a model related to (1) can be identi…ed. An alternative approach is taken in Blume

et al. (2011, Theorem 7): they suggest a parameterization of 0 according to a pre-speci…ed

distance between nodes. We do not impose such restrictions, but note that partial observability

of 0 (as in Blume et al., 2015) or placing additional structure on 0 (as in Blume et al., 2011)

is complementary to our approach as it reduces the number of parameters in 0 to be retrieved.

Bonaldi et al. (2015) and Manresa (2016) estimate models like (1) when 0 is not observed,

but where 0 is restricted to be zero so there are no endogenous social e¤ects. They use sparsity-

inducing methods from the statistics literature, but the presence of 0 in our case complicates

identi…cation non-trivially because it introduces issues of simultaneity that we address.

Rose (2015) also presents related identi…cation results for linear models like (1). Assuming

sparsity of the neighborhood structure, Rose (2015) o¤ers identi…cation conditions under rank re-

strictions on sub-matrices of the reduced form coe¢cient matrix from a regression of outcomes ()

5Alternative identi…cation approaches when 0 is known focus on higher moments (variances and covariances
across individuals) of outcomes (de Paula, 2017), and rely on additional restrictions on the higher moments of .
We also note that (1) is a spatial autoregressive model. There, 0 is also typically assumed known. Anselin (2010)
reviews this literature.
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on covariates (). Intuitively, given two observationally equivalent systems, sparsity guarantees

the existence of pairs that are not connected in either. Since observationally equivalent systems are

linked via the reduced-form coe¢cient matrix, this pair allows one to identify certain parameters in

the model. Having identi…ed those parameters, Rose (2015) shows that one can proceed to identify

other aspects of the structure (see also Gautier and Rose, 2016). This is related to the ideas in

Blume et al. (2015, Theorem 6), who show identi…cation results can be leveraged if individuals are

known not to be connected. Our main identi…cation results presented in the next section do not

rely on properties of sparse networks, and make use of plausible and intuitive conditions, whereas

the auxiliary rank conditions necessary in Rose (2015) may be computationally complex to verify.

More recently, Lewbel et al. (2019) propose an estimation strategy for the parameters 0, 0 and

0 of model (1) in the absence of network links if many di¤erent groups are able to be observed.

Finally, in the statistics literature, Lam and Souza (2019) study the penalized estimation of

model (1) when 0 is not observed, assuming the model and social interactions are identi…ed.

The statistical literature on graphical models has investigated the estimation of neighborhoods

de…ned by the covariance structure of the random variables at hand (Meinshausen and Buhlmann,

2006). This corresponds to a model where  = ( ¡ 00)
¡1 is jointly normal (abstracting

from covariates). On a graph with  nodes corresponding to the variables in the model, an

edge between two nodes (variables)  and  is absent when these two variables are conditionally

independent given the other nodes. In this Gaussian model, this corresponds to a zero  entry in

the inverse covariance matrix for  (see, e.g., Yuan and Lin, 2007, p. 19). In the model above,

the inverse covariance matrix is ( ¡ 00)
>§¡1 ( ¡ 00), where § is the variance covariance

structure for . The discovery of zero entries in this matrix is not equivalent to the identi…cation

of 0 as we study, and involves § (as do identi…cation strategies using higher moments when 0

is known).6 Related studies in the statistics literature also focus on higher moments and de…ne

neighborhoods di¤erently (Diebold and Yilmaz, 2015; Rothenhäusler et al., 2015).

Our conclusions discuss how our approach can be modi…ed, and assumptions weakened, to

integrate in partial knowledge of 0. We also discuss the next steps required to simultaneously

identify models of network formation and the structure of social interactions.

The paper is organized as follows. Section 2 presents our core result: the su¢cient conditions

under which the social interactions matrix, endogenous and exogenous social e¤ects are globally

identi…ed. Section 3 describes the high-dimensional estimation techniques used, based on the

Adaptive Elastic Net GMM method and presents simulation results from stylized and real-world

networks. Section 4 applies our methods to study tax competition between US states. Section 5

concludes. The Appendix provides proofs and further details on estimation and simulations.

6In fact, Meinshausen and Buhlmann (2006)’s neighborhood estimates (as also Lam and Souza (2019)’s) rely on
(penalized) regressions of  on 1     ¡1 +1     , which do not address the econometric endogeneity
in estimating 0.
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2 Identi…cation

2.1 Setup

Consider a researcher with panel data covering  = 1      individuals repeatedly observed over

 = 1      instances. We consider that the number of individuals  in the network is …xed, but

potentially large. The aim is to use this data to identify a social interactions model, with no data on

actual social ties being available. For expositional ease, we …rst consider identi…cation in a simpler

version of the canonical model in (1), where we drop individual-speci…c () and time-constant

…xed e¤ects (), and assume  is a one-dimensional regressor for individual  and instance . Of

course, we later extend the analysis to include individual-speci…c and time-constant …xed e¤ects,

and also allow for multidimensional covariates ,  = 1     . We adopt the subscript “0” to

denote parameters generating the data, and non-subscripted parameters are generic values in the

parameter space:

 = 0

X

=1

0 + 0 + 0

X

=1

0 +  (2)

As outcomes for all individuals  = 1      obey equations analogous to (2), the system of

equations can be more compactly written in matrix notation as:

 = 00 + 0 + 00 +  (3)

The vector of outcomes  = (1     )
0 assembles the individual outcomes in instance ; the

vector  does the same with individual characteristics. ,  and  have dimension  £ 1, the

social interactions matrix 0 is  £  , and 0, 0, and 0 are scalar parameters. We do not

make any distributional assumptions on  beyond E(j) = 0 (or E(j) = 0 for an appropriate

instrumental variable  if  is also endogenous). We assume the network structure is predeter-

mined and constant, and that the number of individuals  is …xed. The network structure 0 is

a parameter to be identi…ed and estimated.7

A regression of outcomes on covariates corresponds, then, to the reduced form for (3),

 = ¦0 +  (4)

with ¦0 = ( ¡ 00)
¡1(0 + 00) and  ´ ( ¡ 00)

¡1. If 0 is observed, Bramoullé

et al. (2009) note that a structure (  ) that is observationally equivalent to (0 0 0) is such

that ( ¡ 00)
¡1(0 + 00) = ( ¡ 0)

¡1( + 0). This equation can be written as a

7A related set of papers instead focuses on the distribution of networks generating the pattern in data and aims
to estimate aggregate network e¤ects. Souza (2014) o¤ers several identi…cation and estimation results in this spirit.
In particular, he infers the network distribution within a certain class of statistical network formation models from
outcome data from many groups, such as classrooms, in few time periods. We instead concentrate on estimating
the set of links for one group of size  followed over  = 1      instances.

7



linear equation in 0 and  2
0 and identi…cation is established if those matrices are linearly

independent. If 0 is not observed, the putative unobserved structure now comprises  and

an observationally equivalent parameter vector will instead satisfy ( ¡ 00)
¡1(0 + 00) =

(¡ )¡1(+ ). Following the strategy in Bramoullé et al. (2009) would lead to an equation

in 0 and 0, and the insights obtained in that paper then do not carry over for the case

we study when 0 is unknown.

We establish identi…cation of the structural parameters of the model, including the social

interactions matrix 0, from the coe¢cients matrix ¦0. Without data on the network 0, we treat

it as an additional parameter in an otherwise standard model relating outcomes and covariates.

Our identi…cation strategy relies on how changes in covariates  reverberate through the system

and impact , as well as outcomes for other individuals. These are summarized by the entries

of the coe¢cient matrix ¦0, which, in turn, encode information about 0 and (0 0 0). A

non-zero partial e¤ect  of  indicates the existence of direct or indirect links between  and

. When 0 = 0 (and ¦0 = 0 + 00), only direct links would produce such a correlation.

When  6= 0, both direct and indirect connections may generate a non-zero response but distant

connections will lead to a lower response. Our results formally determine su¢cient conditions to

precisely disentangle these forces.

We …rst set out …ve assumptions underpinning our main identi…cation results. Three of these

are entirely standard in the social interactions. A fourth is a normalization required to separately

identify (0, 0) from 0, and the …fth is closely related to known results on the identi…cation

of (0, 0) when 0 is known (Bramoullé et al., 2009). These Assumptions (A1-A5) deliver an

identi…ed set of up to two points.

Our …rst assumption explicitly states that no individual a¤ects himself and is a standard

condition in social interaction models:

(A1) (0) = 0,  = 1     .

With Assumption (A1), we can omit elements on the diagonal of 0 from the parameter space.

We thus can denote a generic parameter vector as  = (12    ¡1   )
0 2 R, where

 =  ( ¡ 1) + 3, and  is the ( )-th element of  . Reduced-form parameters can be tied

back to the structural model (3) by letting ¦ : R ! R2
de…ne the relation between structural

and reduced-form parameters:

¦() = ( ¡  )¡1 ( +  ) 

where  2 R, and ¦0 ´ ¦(0).

As  (and, consequently, ) is mean-independent from , E[j] = 0, the matrix ¦0 can

be identi…ed as the linear projection of  on . We do not impose additional distributional

assumptions on the disturbance term, except for conditions that allow us to identify the reduced-
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form parameters in (4). If  is endogenous, i.e. E[j] 6= 0, a vector of instrumental variables

 may still be used to identify ¦0. In either case, identi…cation of ¦0 requires variation of the

regressor across individuals  and through instances . In other words, either E[
0
] (if exogeneity

holds) or E[
0
] (otherwise) are full-rank.

Our next assumption controls the propagation of shocks and guarantees they die as they rever-

berate through the network. This provides adequate stability in the system, and is closely related

to the concept of stationarity in network models. It implies the maximum eigenvalue norm of 00

is less than one. It also ensures (¡00) is a non-singular matrix, and so the variance of  exists,

the transformation¦(0) is well-de…ned, and the Neumann expansion (¡00)
¡1 =

P1
=0(00)



is appropriate.

(A2)
P

=1 j0(0)j  1 for every  = 1     , k0k   for some positive  2 R and j0j  1.

We next assume that network e¤ects do not cancel out, another standard assumption.

(A3) 00 + 0 6= 0.

The need for this assumption can be shown by expanding the expression for ¦(0), which is possible

by (A2):

¦(0) = 0 + (00 + 0)
1X

=1

¡10  
0  (5)

If Assumption (A3) were violated, 00 + 0 = 0 and ¦0 = 0 so the endogenous and exogenous

e¤ects balance each other out, and network e¤ects are altogether eliminated in the reduced form.8

Identi…cation of the social e¤ects parameters (0 0) requires that at least one row of 0 adds

to a …xed and known number. Otherwise, 0 and 0 cannot be separately identi…ed from 0.

Clearly, no such condition would be required if 0 was observed.

(A4) There is an  such that
P

=1 (0) = 1.

Letting  ´ 00 and  ´ 00 denote the matrices that summarize the in‡uence of peers’

outcomes (the endogenous social e¤ects) and characteristics on one’s outcome (the exogenous social

e¤ects), respectively, the assumption above can be seen as a normalization. In this case, 0 and 0
represent the row-sum for individual  in  and , respectively.9 In line with the literature, we

8One important case is when networks do not determine outcomes, which we interpret as 0 = 0 = 0 or with 0

representing the empty network. From equation (5), it is clear that if ¦(0) is not diagonal with constant entries,
then it must be that (00 + 0) 6= 0, which implies that 0 6= 0 or 0 6= 0, and also that 0 is non-empty. Taken
together, this suggests that the observation that ¦(0) is not diagonal is su¢cient to ensure that network e¤ects
are present and Assumption (A3) is not violated.

9An alternative to Assumption (A4) is to impose the normalization on the parameters. For example, one could
normalize ¤ = 1 and allow the network to be rescaled accordingly. In this case,  ¤ = 00 would be identi…ed
instead. Also  = 0

0
 ¤ so 0 would be identi…ed relative to 0.  and  are unchanged.
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maintain that the same 0 governs the structure of both endogenous () and exogenous ()

e¤ects. We later discuss relaxing this assumption when more than one regressor is used.

Our …nal assumption provides for a speci…c kind of network asymmetry. We require the diagonal

of  2
0 not to be constant as one of our su¢cient conditions for identi…cation.

(A5) There exists   such that ( 2
0 ) 6= ( 2

0 ), i.e. the diagonal of  2
0 is not proportional to

, where  is the  £ 1 vector of ones.

In unweighted networks, the diagonal of the square of the social interactions matrix captures

the number of reciprocated links for each individual or, in the case of undirected networks, the

popularity of those individuals. Assumption (A5) hence intuitively suggests di¤erential popularity

across individuals in the social network.

This assumption is related to the network asymmetry condition proposed elsewhere, such as in

Bramoullé et al. (2009). They show that when 0 is known, the structural model (2) is identi…ed

if , 0, and  2
0 are linearly independent. Given the remaining assumptions, this condition is

satis…ed if (A5) is satis…ed, but the converse is not true: one can construct examples in which ,

0, and  2
0 are linearly independent when  2

0 has a constant diagonal, so that ¦0 does not pin

down 0. The strengthening of this hypothesis is the formal price to pay for the social interactions

matrix 0 being unknown to the researcher.10

Before proceeding to our formal results, we provide a very simple illustration to shed light

on how the assumptions above come together to provide identi…cation. Suppose the observed

reduced-form matrix is,

¦0 =
1

455

2

6
4

275 310 0

310 275 0

0 0 182

3

7
5 

and that, following (A4), the …rst row is normalized to one. From the third row and column of ¦0,

we see there is no path of any length connecting the individual in row 3 to or from those in rows 1

10To see the strength of the assumption of Bramoullé et al. (2009) when 0 is known choose constants 1, 2,
and 3 such that 1+20+3

2
0 = 0 Focusing on diagonal elements of this condition, we see that if the diagonal

of  2
0 is not proportional to the diagonal of , then 1 = 3 = 0 because diag(0) = 0. It follows that 2 = 0 if at

least one (o¤-diagonal) element of 0 is non-zero. However, the converse is not true, so that if Assumptions A1-A5
do not hold, one can construct examples where ¦0 does not pin down 0. Take, for instance,  = 5 with 0 and 
where  = 0 = 1,  = 15, 0 = 05,  = ¡25, 0 = 05,

0 =

2

6
6
6
6
4

0 05 0 0 05
05 0 05 0 0
0 05 0 05 0
0 0 05 0 05

05 0 0 05 0

3

7
7
7
7
5

and  =

2

6
6
6
6
4

0 0 05 05 0
0 0 0 05 05

05 0 0 0 05
05 05 0 0 0
0 05 05 0 0

3

7
7
7
7
5


Both  and 0 violate (A5) (( 2) = ( 2
0 ) = 05 for any ), and  violates (A2). Nonetheless, 0

and  2
0 are linearly independent and, likewise, so are  , and  2. In this case, both parameter sets produce

¦ = ( ¡ 00)
¡1(0 + 00) = ( ¡  )¡1( +  ). This arises even as  and 0 represent very di¤erent

network structures: any pair connected under  is not connected under 0 and vice-versa.

10



or 2 since her outcome is not a¤ected by their covariates and their outcomes are not a¤ected by her

covariates. In other words, individual 3 is isolated and (0)13 = (0)23 = (0)31 = (0)32 = 0.

On the other hand, individuals 1 and 2 cannot be isolated as their covariates are correlated with

the other individual’s outcome, re‡ecting (A5).11 Due to the row-sum normalization of the …rst

row, (0)12 = 1. Using (A3), it can be seen that 0 is symmetric if ¦0 is symmetric. We thus

…nd that (0)21 = 1. This and (A1) map all elements of 0, and thus,

0 =

2

6
4

0 1 0

1 0 0

0 0 0

3

7
5 

As the third individual is isolated, she will be only be a¤ected by her exogenous  and not by

endogenous or exogenous peer e¤ects. Hence the (3 3) element of ¦0 is equal to 0 =
182
455

= 4.

To …nd 0, note that ( ¡ 00)¦0 = 0 + 00. Hence focussing on the (1,1) elements of the

matrices above, we …nd that 275
455

¡ 0
310
455
= 4, implying 0 = 3 (complying with (A2)). Finally, 0

is identi…ed from entry (1 2), giving 0 =
310
455

¡ 3275
455
= 5.

2.2 Main Identi…cation Results

Under the relatively mild assumptions above, we can begin to identify parameters related to the

network. These results are then useful for our main identi…cation theorems. Let 0 denote an

eigenvalue of 0 with corresponding eigenvector 0 for  = 1     . Assumptions (A2) and (A3)

allow us to identify the eigenvectors of 0 directly from the reduced form. As j0j  1:

¦00 = 00 + (00 + 0)
1X

=1

¡10  
0 0

=

"

0 + (00 + 0)
1X

=1

¡10 0

#

0

=
0 + 00
1¡ 00

0 (6)

The in…nite sum converges as j00j  1 by (A2). The equation above implies that 0 is also

an eigenvector of ¦0 with associated eigenvalue ¦ =
0+00
1¡00

. The fact that eigenvectors of

¦0 are also eigenvectors of 0 has a useful implication: eigencentralities may be identi…ed from

the reduced form, even when 0 is not identi…ed. As detailed in de Paula (2017) and Jackson

et al. (2017), such eigencentralities often play an important role in empirical work as they allow a

11If on the other hand, (0) = 05  6=  in violation of (A5) and all agents were connected, the model would
not be identi…ed.

11



mapping back to underlying models of social interaction.12

Now let £ ´ f 2 R : Assumptions (A1)-(A5) are satis…edg be the structural parameter

space of interest. Our …rst theorem establishes local identi…cation of the mapping. A parameter

point 0 is locally identi…able if there exists a neighborhood of 0 containing no other  which

is observationally equivalent. Using classical results in Rothenberg (1971), we show that our

assumptions are su¢cient to ensure that the Jacobian of ¦ relative to  is non-singular, which, in

turn, su¢ces to establish local identi…cation.

Theorem 1. Assume (A1)-(A5). 0 2 £ is locally identi…able.

An immediate consequence of local identi…cation is that the set f 2 £ : ¦() = ¦(0)g is

discrete (i.e. its elements are isolated points). The following corollary establishes that ¦ is a proper

function, i.e. the inverse image ¦¡1() of any compact set  ½ R2
is also compact (Krantz and

Parks, 2013, p. 124). Since it is discrete, the identi…ed set must be …nite.

Corollary 1. Assume (A1)-(A5). Then ¦(¢) is a proper mapping. Moreover, the set f : ¦() =

¦(0)g is …nite.

Under additional assumptions, the identi…ed set is at most a singleton in each of the partitioning

sets £¡ ´ £ \ f +   0g and £+ ´ £ \ f +   0g.13 Since £ = £¡ [ £+, if the sign

of 00 + 0 is unknown, the identi…ed set contains, at most, two elements. In the theorem that

follows, we show global identi…cation only for  2 £+, since arguments are mirrored for  2 £¡.

Theorem 2. Assume (A1)-(A5), then for every  2 £+ we have ¦() = ¦(0) )  = 0. That

is, 0 is globally identi…ed with respect to the set £+.

Similar arguments apply if Theorem 2 instead were to be restricted to  2 £¡. The proof of the

corollary below is immediate and therefore omitted.

Corollary 2. Assume (A1)-(A5). If 00 + 0  0, then the identi…ed set contains at most one

element, and similarly if 00 + 0  0. Hence, if the sign of 00 + 0 is unknown, the identi…ed

set contains, at most, two elements.14

12To identify the eigencentralities, we identify the eigenvector that corresponds to the dominant eigenvalue. If 0

is non-negative and irreducible, this is the (unique) eigenvector with strictly positive entries, by the Perron-Frobenius
Theorem for non-negative matrices (see Horn and Johnson, 2013, p.534).

13The global inversion results we use are related to, but di¤erent from, those used by Komunjer (2012), Lee
and Lewbel (2013) and Chiappori et al. (2015). Those authors use variations on a classical inversion result of
Hadamard. In contrast, we employ results on the cardinality of the pre-image of a function, relying on less stringent
assumptions. Speci…cally, while the classical Hadamard result requires that the image of the function be simply-
connected (Theorem 6.2.8 of Krantz and Parks, 2013), the results we rely on do not.

14Under some special conditions, the mirror image of 0 can be characterized from equation (5). If ¡0 sat-
is…es Assumption (A4), we may set ¤ = ¡0, ¤ = 0, ¤ = ¡0 and  ¤ = ¡0. Then 00 + 0 =
¡(¤¤ + ¤). Also note that

P1
=1 

¡1
0  

0 = ¡
P1

=1(
¤)¡1( ¤), and so (00 + 0)

P1
=1 

¡1
0  

0 =
(¤¤ + ¤)

P1
=1(

¤)¡1( ¤). It follows that ¦(0) = ¦(¤), where ¤ = (¤ ¤ ¤ ¤).
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We now turn our attention to the problem of identifying the sign of 00 + 0 from the obser-

vation of ¦0. This would then allow us to establish global identi…cation using Theorem 2. It is

apparent from (5) that if 0  0 and (0) ¸ 0, for all   = f1     g the o¤-diagonal elements

of ¦0 identify the sign of 00 + 0.

Corollary 3. Assume (A1)-(A5). If 0  0 and (0) ¸ 0, the model is globally identi…ed.

Real world applications often suggest endogenous social interactions are positive (0  0), in

which case global identi…cation is fully established by Corollary 3. On the other hand, if 0  0

(which is so if outcomes are strategic substitutes, for example), 0 in (5) alternates signs with ,

and the o¤-diagonal elements no longer carry the sign of 00 + 0. Nonetheless, if 0 is non-

negative and irreducible (i.e., not permutable into a block-triangular matrix or, equivalently, a

strongly connected social network), the model is also identi…able without further restrictions on

0:

Corollary 4. Assume (A1)-(A5), (0) ¸ 0 and 0 is irreducible. If 0 has at least two real

eigenvalues or j0j 
p
22, then the model is globally identi…ed.

Corollary 4 holds if there are at least two real eigenvalues, or if 0 is appropriately bounded.

Since 0 is non-negative, it has at least one real eigenvalue, by the Perron-Frobenius Theorem. If

0 is symmetric, for example, its eigenvalues are all real, and Corollary 4 holds. It also holds if

(0) · 0, as we can re-write the model as 0 = ¡j0j where j0j, is the matrix whose entries

are the absolute values of the entries in 0. In any case, the bound on j0j is su¢cient and holds

in most (if not all) empirical estimates we are aware of obtained from either elicited or postulated

networks, and in our application on tax competition.

2.3 Extensions

2.3.1 Individual Fixed E¤ects

We observe outcomes for  = 1      individuals repeatedly through  = 1      instances.

If  corresponds to time, it is natural to think of there being unobserved heterogeneity across

individuals, , to be accounted for when estimating ¦0. The structural model (2) is then,

 = 0

X

=1

0 + 0 + 0

X

=1

0 +  + 

which can be written in matrix form as,

 = 00 + 0 +00 + ¤ + 
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where ¤ is the vector of …xed e¤ects. Individual-speci…c and time-constant …xed e¤ects can be

eliminated using the standard subtraction of individual time averages. De…ning ¹ = ¡1
P

=1 ,

¹ = ¡1
P

=1  and ¹ = ¡1
P

=1 ,

 ¡ ¹ = 00 ( ¡ ¹) + ( ¡ ¹)0 +0 ( ¡ ¹) 0 +  ¡ ¹

if 0 is does not change with time. Identi…cation from the reduced form follows from previous

theorems, since ¦0 is unchanged when regressing  ¡ ¹ on  ¡ ¹.
15

2.3.2 Common Shocks

We next allow for unobserved common shocks to all individuals in the network in the same instance

. Such correlated e¤ects  can confound the identi…cation of social interactions. As we have not

placed any distributional assumption on the covariance matrix of the disturbance term, our analysis

readily incorporates correlated e¤ects that are orthogonal to . When this is not the case, one

possibility is to model the corrected e¤ects  explicitly. The model then is,

 = 00 + 0 + 00 + + 

where  is a scalar capturing shocks in the network common to all individuals. Let ¦01 =

( ¡ 00)
¡1 and ¦02 = (0 + 00) such that ¦0 = ¦01¦02. The reduced-form model is,

 = ¦0 + ¦01+ 

We propose a transformation to eliminate the correlated e¤ects: exclude the individual-invariant

, subtracting the mean of the variables at a given period (global di¤erencing). For this purpose,

de…ne  = 1

0. We note that in empirical and theoretical work it is customary to strengthen

Assumption (A4) and require that all rows of 0 sum to one if no individual is isolated (see for

example Blume et al., 2015). This strengthened assumption is usually referred to as row-sum

normalization, and is stated below:

(A4’) For all  = 1  we have that
P

=1(0) = 1.

This can be written compactly as 0 = . In this case, 0 can be interpreted as the normalized

adjacency matrix. Under row-sum normalization we have that,

( ¡)  = ( ¡) ( ¡ 00)
¡1 (0 + 00) + ( ¡) ( ¡ 00)

¡1 

= ( ¡)¦0 + ( ¡ ) 

15As is the case in panel data, this would require strict exogenity (E[j] = 0 for any  and ) or predetermined
errors (E[j] = 0 for  ¸ ) so that the matrix ¦0 can be consistently estimated.
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because ( ¡) ( ¡ 00)
¡1  = 0 if Assumption (A4’) holds. It then follows that ~¦0 =

( ¡)¦0 is identi…ed. The next proposition shows that, under row-sum normalization of 0, ¦0

is identi…ed from ~¦0 (and, as a consequence, the previous results immediately apply).

Proposition 1. If 0 is diagonalizable and row-sum normalized, ¦0 is identi…ed from ~¦0.

Under row-sum normalization of 0, a common group-level shock a¤ects individuals homo-

geneously since ( ¡ 00)
¡1 = ( + 00 + 20

2
0 + ¢ ¢ ¢ ) = 

1¡0
, which is a vector with

no variation across entries. Consequently, global di¤erencing eliminates correlated e¤ects and

( ¡ ) ( ¡ 00)
¡1  = ( ¡ 00)

¡1  ( ¡)  = 0. In the absence of row-sum normaliza-

tion, global di¤erencing does not ensure that correlated e¤ects are eliminated. To see this, note

that ( ¡ 00)
¡1 is no longer row-sum normalized and, crucially, ( ¡ 00)

¡1 is not a vector

with constant entries.

The next proposition makes this point formally, that the stronger Assumption (A4’) is necessary

to eliminate group-level shocks, by showing it is not possible to construct a data transformation

that eliminates group e¤ects in the absence of row-sum normalization.

Proposition 2. De…ne 0 = ( ¡ 00)
¡1. If in space £ = f 2 R : Assumptions (A1)-(A5)

are satis…edg there are  matrices 
(1)
0     

()
0 such that [


(1)
0

¢ ¢ ¢ 


()
0
] has rank  , then

the only transformation such that ( ¡ ~)( ¡ 00)
¡1 = 0 is ~ = .

It is useful to be able to test for row-sum normalization (A4’) as it enables common shocks to

be accounted for in the social interactions model. This is possible as,

¦0 = 0+ (00 + 0)
1X

=1

¡10  
0 

=

"

0 + (00 + 0)
1X

=1

¡10

#



=
0 + 0
1¡ 0

 (7)

The last equality follows from the observation that, under row-normalization of 0, 

0  = 0 =

,   0. This implies ¦0 has constant row-sums, which suggests row-sum normalization is testable.

In the Appendix we derive a Wald test statistic to do so.16

16For ease of explanation, in the Appendix we derive the test under the asymptotic distribution of the OLS
estimator. The test generally holds with minor adjustments for estimators with known asymptotic distributions.
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2.3.3 Multivariate Covariates

Next allowing for multivariate  of dimension  £ , the reduced-form model (4) is,

 =
X

=1

¦0 + 

where ¦0 = ( ¡ 00)
¡1 ¡

0 + 00

¢
,  refers to the -th column of , and 0 and

0 select the -th element of -dimensional 0 and 0, respectively. The previous identi…cation

results then apply sequentially to each ¦0,  = 1     . In fact, we only then need to maintain

 = 00 for one covariate. It is therefore possible to allow the structure of endogenous and

exogenous social e¤ects to di¤er for  ¡ 1 of the covariates. With  covariates, equation (3) is,

 = 00 +
X

=1

0 +
X

=1

00 + 

Let 0 = 0 be the case for  = 1. Then, having identi…ed 0 and 0 from ¦10,

( ¡ 00)¦0 = 0 + 00

for  = 2     . The parameter 0 then corresponds to the diagonal elements of ( ¡ 00)¦0

and the o¤-diagonal entries correspond to the o¤-diagonal elements of 00. If Assumption

(A4) holds for every  = 1     , we can identify 0 and thus 0 for every  = 1    .17

3 Implementation

We now transition from our core identi…cation results to their practical implementation. As this is

a high-dimensional estimation problem, our preferred approach makes use of the Adaptive Elastic

Net GMM (Caner and Zhang, 2014), that is based on the penalized GMM objective function. Given

the identi…cation results presented in Section 2, the populational version of the GMM objective

function will be uniquely minimized at the true parameter vector.

After setting out the estimation procedure, we showcase the method using Monte Carlo simu-

lations based both on stylized random network structures as well as real world networks. In each

case, we take a …xed network structure 0, and simulate panel data as if the data generating

process were given by (1). We apply the method on the simulated panel data to recover estimates

of all elements in 0, as well as the endogenous and exogenous social e¤ect parameters.

17Blume et al. (2015) also study the case in which the social structure mediating endogenous and exogenous social
e¤ects might di¤er. When  is known and there is partial knowledge of the endogenous social interaction matrix
0, they show that the parameters of the model can be identi…ed (their Theorem 6). Analogously, when there are
enough unconnected nodes in each of the social interaction matrices represented by  and 0, and the identity
of those nodes is known, identi…cation is also (generically) possible (their Theorem 7).

16



3.1 Estimation

The parameter vector to be estimated is high-dimensional:  = (12    ¡1   )
0 2 R,

where  =  ( ¡ 1) + 3 and  is the ( )-th element of the  £ social interactions matrix

0. To be clear, in a network with  individuals, there are ( ¡ 1) potential interactions

because individuals could interact with everyone else but herself (which would violate Assumption

A1). As a consequence, even with a modest  , there are many more parameters to estimate and

 is large. For example, a network with  = 50 implies more than two thousand parameters

to estimate. While we consider  (and thus ) is …xed, we still refer to  as high-dimensional.

OLS estimation requires  ¿  ()  ¿  ), so many more time periods than individuals: a

requirement often met in …nance data sets (van Vliet, 2018) or in other …elds (see, e.g., Section 4.2

in Rothenhäusler et al., 2015). Instead, to estimate a large number of parameters with limited data

we utilize high-dimensional estimation methods, that are the focus of a rapidly growing literature.

However, the identi…cation results presented in Section 2 apply more broadly and irrespective of

the estimation procedure.

Sparsity is a key assumption underlying all high-dimensional estimation techniques. In the

context of social interactions, we say that 0 is sparse if ~, the number of non-zero elements of

0, is such that ~ ¿  . The notion of sparsity thus depends on the number of of time periods:

although  and  are …xed, ~ itself can grow with  . Sparsity corresponds to assuming that

individuals in‡uence or are in‡uenced by a small number of others, relative to the overall size of

the potential network and the time horizon in the data. As such, sparsity is typically not a binding

constraint in social networks analysis.18

In the estimation of sparse models, the “e¤ective number of parameters” (or “e¤ective degrees

of freedom”) relates to the number of variables with non-zero estimated coe¢cients (Tibshirani and

Taylor, 2012). In the context of the current social network model (and the Elastic Net estimator

on which the estimation strategy below builds on), this is approximately equivalent to the density

of the network times the number of parameters . We then require this number to be smaller

than  . Implicitly, this calculation provides a rough assessment on the minimum required  . For

example, with  = 30 and a network with 2% of potential links in place, this implies  should be

larger than 18.

Finally, to reiterate, our identi…cation results themselves do not depend on the sparsity of

networks. In particular, Assumptions A1 to A5 do not impose restrictions on the number of links

18For example, common stylized networks are sparse, such as: (i) star: all individuals receive spillovers from the
same individual; (ii) lattice: each individual is a source of spillover only to one other individual; (iii) interactions in
pairs or triads or small groups, such as those described by De Giorgi et al. (2010); and (iv) small world networks
(Watts, 1999). Prominent real world economic networks are also sparse. For example, in individual-level elicited
data from AddHealth on teenage friendships (de…ned as reciprocated nominations), the density of links is around
2% of all feasible links. In …rm-level data, the density of production networks in the US is less than 1% of all feasible
links (Atalay et al., 2011).
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in 0, or ~.19

Our preferred approach estimates the interaction matrix in the reduced form while penalizing

and imposing sparsity on the structural object 0. We impose sparsity and penalization in the

structural-form matrix 0 because this is a weaker requirement than imposing sparsity and penal-

ization in the reduced-form matrix ¦0.
20 To accomplish this, we make use of the Adaptive Elastic

Net GMM (Caner and Zhang, 2014), that is based on the penalized GMM objective function,

 ( ) ´  ()
0 () + 1

X

=1
6=

jj+ 2

X

=1
6=

jj
2 (8)

where  = (12    ¡1   )
0 with dimension  = ( ¡ 1) + 3, and 1 and 2 are the

penalization terms. The term  ()
0 () is the unpenalized GMM objective function with

moment conditions based on the orthogonality between the structural disturbance term and the

covariates:  () =
P

=1 [1()
0 ¢ ¢ ¢ ()

0]0, () =  ¡ ( ¡  )¡1 ( +  ) . There

are  ´ 2 moment conditions since  is orthogonal to , for each   = 1      . Hence the

GMM weight matrix  is of dimension 2£2, symmetric, and positive de…nite. For simplicity,

we use  = 2£2. Note that if  is econometrically endogenous, one can also exploit moment

conditions with respect to available instrumental variables.21

Given the identi…cation results presented in Section 2, if  6= 0 and does not belong to the

identi…ed set, then ¦() 6= ¦(0). Consequently, the populational version of the GMM objective

function is uniquely minimized at the true parameter vector 0.

The penalization terms in (8) is what makes this di¤erent from a standard GMM problem.

The …rst term, 1
P

=16= jj, penalizes the sum of the absolute values of , i.e. the sum

of the strength of links, for all node-pairs. The second term, 2
P

=16= jj
2, penalizes the

sum of the square of the parameters. This term has been shown to provide better model-selection

properties, especially when explanatory variables are correlated (Zou and Zhang, 2009). The …rst

stage estimate is,
~() = (1 + 2 ) ¢ argmin

2R
 ( ) (9)

where (1 + 2 ) is a bias-correction term also used by Caner and Zhang (2014).

19If  ! 1, Assumption A2 would imply vanishing (0) entries. As highlighted previously, we consider  to
be …xed, in line with many practical applications. Furthermore, Assumption A2 is used to represent inverse matrices
as Neumann series in our identi…cation results. What is necessary for this to hold is that a sub-multiplicative norm
on  be less than one. Here we use a speci…c norm (i.e., the maximum row sum norm), but other (induced) norms
are also possible (i.e., the 2-norm or the 1-norm) (see Horn and Johnson, 2013, Chapter 5.6).

20Note that even if  is sparse, ¦ may not be sparse. In Appendix B.1, we show that [¦0] = 0 if, and only if,
there are no paths between  and  in 0, and so the pair is not connected. So sparsity in ¦0 is understood as 0

being ‘sparsely connected’, which is a stronger assumption than sparsity in 0.
21For expositional ease, we describe estimation in the context of the reduced form model (4), thereby abstaining

from individual …xed or correlated e¤ects. As the GMM estimator uses moments between the structural disturbance
terms and covariates, this endogeneity is built into the estimation procedure.
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Depending on the choice of 1, some ’s will be estimated as exact zeros. A larger share

of parameters will be estimated as zeros if 1 increases. The penalization also shrinks non-zero

estimates towards zero. A second (adaptive) step provides improvements by re-weighting the

penalization by the inverse of the …rst-step estimates (Zou, 2006):

̂() = (1 + 2 ) ¢ argmin
2R

8
>>>>><

>>>>>:

 ()
0 () + ¤1

X

f: ~ 6=0
=1

6=g

jj

j ~j
+ 2

X

f: ~ 6=0
=1

6=g

jj
2

9
>>>>>=

>>>>>;



(10)

where ~ is the ( )-th element of the …rst-step estimate of  , and we follow Caner and Zhang

(2014) to set  = 25. Elements ~ estimated as zeros in the …rst stage are kept as zero in the

second stage, because ~ = 0 implies the e¤ective penalization is in…nite. We write  = (1 
¤
1 2)

as the …nal set of penalization parameters. Conditional on , the estimate of the Adaptive Elastic

Net GMM procedure is ̂(). Finally, we update the estimates of 0, 0 and 0 on a regression

using peers-of-peers as instruments, similar to Bramoullé et al. (2009), but using the network as

estimated in (10). This …nal step is not necessary but performs better in small samples. As in

Caner and Zhang (2014, p. 35), the penalization parameters  are chosen by the BIC criterion.

This balances model …t with the number of parameters included in the model.22

In Appendix B.2 we provide further implementation details, including the choice of initial

conditions. Of course, other estimation methods are available and our identi…cation results do not

hinge on any particular estimator. Our aim is to demonstrate the practical feasibility of using

the Adaptive Elastic Net estimator, rather than claim it is the optimal estimator.23 Indeed, in

Appendix B.3 we show how OLS can also be used to estimate  if  is su¢ciently large. This

makes precise the bene…ts of penalized estimation for any given  and highlights that sparsity is

not required for our identi…cation results.

3.2 Simulations

We showcase the method using Monte Carlo simulations based both on stylized random network

structures as well as real world networks. We describe the simulation procedures, results and

22Following Caner and Zhang, 2014, the choice of , which we denote as ̂, is the one that minimizes
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´
counts the number of non-zero coe¢cients among f12    ¡1g. (See also Zou et al., 2007.)

23For example, Manresa (2016) also relies on a Lasso-related methodology but restricts 0 to be zero and so
ignores endogenous social e¤ects. If instrumental variables are available, Lam and Souza (2016) propose estimating
(1) directly using the Adaptive Lasso and exploiting sparsity of the estimated 0. Gautier and Rose (2016) extend
the (identi…cation-robust) Self-Tuning Instrumental Variable estimator in Gautier and Tsybakov (2014).
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robustness checks in more detail in the Appendix. Here we just provide a brief overview to

highlight how well the method works to recover social networks even in relatively short panels.

For each simulated network, we take a …xed network structure 0, and simulate panel data

as if the data generating process were given by (1). We then apply the method on the simulated

panel data to recover estimates of all elements in 0, as well as the endogenous and exogenous

social e¤ect parameters (0, 0). Our result identi…es entries in 0 and so naturally recovers links

of varying strength. It is long recognized that link strength might play an important role in social

interactions (Granovetter, 1973). Data limitations often force researchers to postulate some ties to

be weaker than others (say, based on interaction frequency). In contrast, our approach identi…es

the continuous strength of ties, 0, where 0  0 implies node  in‡uences node .

The stylized networks we consider are a random network, and a political party network in which

two groups of nodes each cluster around a central node. The real world networks we consider are

the high-school friendship network in Coleman (1964) from a small high school in Illinois, and

one of the village networks elicited in Banerjee et al. (2013) from rural Karnataka, India. These

networks vary in size, complexity, and their aggregate and node-level features. All four networks

are also sparse. For the stylized networks, we …rst assess the performance of the estimator for a

…xed network size,  = 30. We simulate the real-world networks using non-isolated nodes in each

(so  = 70 and 65 respectively).24

Despite the heterogeneity across network scenarios, the method performs well in all simulations.

Figure A1 shows the simulation results. Each Panel presents a di¤erent metric as we vary  for

each simulated network. Panel A shows that for each network, the proportion of zero entries in

0 correctly estimated as zeros is above 90% even when exploiting a small number of time periods

( = 5). The proportion approaches 100% as  grows. Conversely, Panel B shows the proportion

of non-zeros entries estimated as non-zeros is also high for small  . It is above 70% from  = 5

for the Erdos-Renyi network, being at least 85% across networks for  = 25, and increasing as 

grows. As discussed above, the Adaptive Elastic Net estimator is better in recovering true zero

entries because it is a well-known feature that shrinkage estimators tend to shrink small parameters

to zero.

Panels C and D show that for each simulated network, the mean absolute deviation between

estimated and true networks for ̂ and ¦̂ falls quickly with  and is close zero for large sample

sizes. Finally, Panels E and F show that biases in the endogenous and exogenous social e¤ects

parameters, ̂ and ̂, also fall quickly in  . The fact that biases are not zero is as expected for

small  , being analogous to well-known results for autoregressive time series models.25

In the Appendix we show the robustness of the simulation results to: (i) varying network sizes

and node de…nitions in the real work network of Banerjee et al. (2013); (ii) alternative parameter

24As in Bramoullé et al., 2009, we exclude isolated nodes because they do not conform with row-sum normalization.
25The bias in spatial auto-regressive models with small number of observations even when the network is observed

is similarly documented by Mizruchi and Neuman (2008), Farber et al. (2009), Smith (2009), Neuman and Mizruchi
(2010), and Wang et al. (2014).
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choices and richening up the structure of shocks across nodes. We also demonstrate the gains from

using the Adaptive Elastic Net GMM estimator over alternative estimators, such as the Adaptive

Lasso estimator and OLS.

4 Application: Tax Competition Between US States

Our identi…cation result can be used to shed new light on a classic social interactions problem:

tax competition between US states (Wilson, 1999). Since the seminal empirical studies in tax

competition between jurisdictions (Case et al., 1989; Case et al., 1993), it has been well-recognized

that de…ning competing ‘neighbors’ is the central empirical challenge, and theory cannot resolve the

issue. Two mechanisms have been argued to drive the structure of interactions across jurisdictions:

factor mobility and yardstick competition.

On factor mobility, Tiebout (1956) …rst argued that labor and capital can move in response to

di¤erential tax rates across jurisdictions. Factor mobility leads naturally to the postulated social

interactions matrix being: (i) geographic neighbors given labor mobility; and (ii) jurisdictions with

similar economic or demographic characteristics, given capital mobility (Case et al., 1989).26

A second mechanism occurs through political economy channels (Shleifer, 1985). In particular,

yardstick competition between jurisdictions is driven by voters making comparisons between states

to learn about their own politician’s quality. Besley and Case (1995) formalize the idea in a

model where voters use taxes set by governors in neighboring states to infer their own governor’s

quality. This generates informational externalities across jurisdictions, forcing incumbents into

yardstick competition, where their tax setting behavior is determined by what other incumbents

do. Yardstick competition leads naturally to the postulated interactions matrix corresponding to

a matrix of ‘political neighbors’: other states that voters make comparisons to.

This application shows the practical use of our approach to recover social interactions in a

setting in which the number of nodes and time periods is relatively low: the data covers mainland

US states,  = 48, for years 1962-2015,  = 53. Our approach identi…es the structure of social

interactions among ‘economic neighbors’, that we denote . We contrast this against a null

hypothesis that states are only in‡uenced by their geographic neighbors, , as postulated by

Besley and Case, 1995 and shown in Figure 1A. With  recovered, we can establish, beyond

geography, what predicts the existence and strength of ties between states. Finally, relative to

, we conduct simulations using  to assess the equilibrium propagation of tax setting

shocks across mainland US states. Taken together, this body of evidence allows us to provide

novel insights related to the role of factor mobility and yardstick competition in driving tax setting

behavior across US states.

26A body of evidence …nds that tax bases are mobile in response to tax di¤erentials (Hines, 1996; Devereux and
Gri¢th, 1998; Kleven et al., 2013, 2014)
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4.1 Data and Empirical Speci…cation

We denote state tax liabilities for state  in year  as  , covering state taxes collected from real per

capita income, sales and corporate taxes. We measure this using a series constructed from data

published annually in the Statistical Abstract of the United States. Our series covers mainland

states ( = 48) for years 1962-2015, ( = 53), therefore extending the sample used by Besley and

Case (1995), that runs from 1962-1988 ( = 26).27 The outcome considered, ¢ , is the change

in tax liabilities between years  and (¡ 2) because it might take a governor more than a year to

implement a tax program. Their model implies a standard social interactions speci…cation for the

tax setting behavior of state governors:

¢  = 
X

=1

0¢  + 
X

=1

0 +  +  +  +  (11)

Tax setting behavior is thus determined by (i) endogenous social e¤ects arising through neighbors’

tax changes (
P

=10¢ ); (ii) exogenous social e¤ects arising through the economic/demographic

characteristics of neighbors (
P

=10); (iii) state ’s characteristics (), that include income

per capita, the unemployment rate, and the proportion of young and elderly. All speci…cations

include state and time e¤ects ( ), so allowing for time-invariant unobserved heterogeneity

across states, and for common (macroeconomic) shocks. Due to the inclusion of the time e¤ects

, we normalize the rows of  to one. Table A7 presents descriptive statistics for the Besley

and Case (1995) sample and our extended sample.

Much of the earlier literature focuses on endogenous social e¤ects and ignores exogenous social

e¤ects by setting  = 0. Our identi…cation result allows us to relax this constraint and thus

estimate the full typology of social e¤ects described by Manski (1993). This is important because

only endogenous social e¤ects lead to social multipliers, and are crucial to identify as they can

lead to a race-to-the-bottom or sub-optimal public goods provision (Brennan and Buchanan, 1980;

Wilson, 1986; Oates and Schwab, 1988).

After estimating the neighborhood matrix, we follow Besley and Case (1995) and estimate the

model instrumenting for ¢  using neighbors’ lagged change in income per capita, and neighbors’

lagged change in unemployment rate. These instruments are in the spirit of using exogenous social

e¤ects to instrument for neighbor’s tax changes. However, given our approach allows us to estimate

exogenous social e¤ects ( 6= 0), these instruments will generally be weaker when estimating the

full speci…cation in (11). We thus follow Bramoullé et al. (2009) and De Giorgi et al. (2010), and

also instrument neighbors’ tax changes with neighbor-of-neighbor characteristics.

27Besley and Case (1995) test their political agency model using a two equation set-up: (i) on gubernatorial
re-election probabilities; and (ii) on tax setting. Our application focuses on the latter because this represents a
social interaction problem. They use two tax series: (i) TAXSIM data (from the NBER) which runs from 1977-88;
and (ii) state tax liabilities series constructed from data published annually in the Statistical Abstract of the US
that runs from 1962-1988. All their results are robust to either series. We extend the second series.
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4.2 Preliminary Findings

Table 1 presents our preliminary …ndings and comparison to Besley and Case (1995). Column 1

shows OLS estimates of (11) where the postulated social interactions matrix is based on geographic

neighbors, exogenous social e¤ects are ignored so  = 0 and the panel includes all 48 mainland

states but runs only from 1962-1988 as in Besley and Case (1995). Social interactions in‡uence

gubernatorial tax setting behavior: b = 375. Column 2 shows this to be robust to instrument-

ing neighbors’ tax changes using the instrument set proposed by Besley and Case (1995). b2 is

more than double the magnitude of b suggesting tax setting behaviors across jurisdictions are

strategic complements, and OLS estimates are heavily downward-biased.

Columns 3 and 4 replicate both speci…cations over the longer sample period we construct. The

evidence con…rms Besley and Case’s (1995) …nding on social interactions to be robust in a longer

sample period. We again note that b2 is more than double the magnitude of b. The result

in Column 4 implies that for every dollar increase in the average tax rates among geographic

neighbors, a state increases its own taxes by 61 cents. This is similar to the headline estimate of

Besley and Case (1995).28

4.3 Endogenous and Exogenous Social Interactions ( and )

We now move beyond much of the earlier political economy and public economics literature to …rst

establish whether there are endogenous and exogenous social interactions in tax setting behavior.

We …rst focus on the endogenous and exogenous social interaction parameters, and in the next

subsection we detail the identi…ed social interactions matrix, ̂. Column 1 of Table 2 shows

the initial estimates obtained from the Adaptive Elastic Net procedure where  = 0. Columns

2 and 3 show the resulting OLS and 2SLS estimates for : b2 = 641  b = 378  0.29

Columns 4 to 6 estimate the full model in (11). Columns 5 and 6 show the OLS and 2SLS estimates

of  are smaller, and less precisely estimated when exogenous social e¤ects are allowed. This is

not surprising given that the instrument set is based on neighbors’ characteristics, many of which

are directly controlled for in (11), thus reducing the e¤ective variation induced by the instrument.

Hence, in Column 7, we report 2SLS estimates based on instruments using neighbor-of-neighbor

characteristics. This represents our preferred speci…cation: b2 = 608 (with a standard error of

220). This value also meets the requirements on  in Corollaries 3 and 4 for global identi…cation.

In short, there is robust evidence of endogenous social interactions in tax setting behavior of

governors across states.30

28Nor is the magnitude very di¤erent from earlier work examining …scal expenditure spillovers. For example,
Case et al. (1989) …nd that US state government levels of per-capita expenditures are signi…cantly impacted by
the expenditures of their neighbors, with the size of the impact being that a one dollar increase in neighbors’
expenditures leads to an increase in own-state expenditures by seventy cents.

29We report robust standard errors and so do not adjust them for the fact that ̂ is estimated.
30Table A8 shows the full set of exogenous social e¤ects (so Columns 1 to 4 refer to the same speci…cations as
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4.4 Identi…ed Social Interactions Matrix (̂)

Figure 1B shows how the structure of economic (̂) and geographic networks () di¤er,

where connected edges imply that two states are linked in at least one direction (either state 

causally impacts state taxes in , and/or vice versa). This comparison makes it clear whether

all states geographically adjacent to  matter for its tax setting behavior and whether there are

non-adjacent states that in‡uence its tax rate.

The left-hand panel of Figure 1B shows the network of geographic neighbors (whose edges

are colored blue), onto which we have superimposed the edges that are not identi…ed as links in

; these dropped edges are indicated in red. This …rst implies that not all geographically

adjacent states are relevant for tax setting behavior. The right-hand panel of Figure 1B adds new

edges identi…ed in ̂ that are not part of . These represent non-adjacent states through

which social interactions occur. This implies the existence of spatially dispersed social interactions

between states. The implication is that for tax-setting behavior, economic distance is imperfectly

measured if we simply assume that interactions depend only on geographical distance. As detailed

below, this has many implications for the economics of tax competition.

As Table 3 summarizes,  has 214 edges, while ̂ has only 144 edges. States are less

connected than implied by postulating geographic networks. ̂ and  have 79 edges in

common. However,  has 135 edges that are absent in ̂. Hence, while geography remains

a key determinant of tax competition, the majority of geographical neighbors (135214 = 63%)

are not relevant for tax setting. There are 65 edges that exist only in , so although there are

fewer edges in ̂, the identi…ed social interactions are more spatially dispersed than under the

assumption of geographic networks. This is re‡ected in the far lower clustering coe¢cient in ̂

than in  (026 versus 194).31

4.5 Strength of Ties and Reciprocity

Our estimation strategy identi…es the continuous strength of ties, 0, where 0  0 is inter-

preted as state  in‡uencing outcomes in state . This is useful because recent developments in

tax competition theory, using insights from the social networks literature, suggest links need not

be reciprocal or of symmetric strength (Janeba and Osterleh, 2013).

Figure 2A shows the distribution of 0’s across edges in ̂ (conditional on 0  0).

The strength of ties between pairs of states varies greatly. The mean strength of ties is 19, that

is higher than the median strength, 085, suggesting many weak ties. At the other end of the

Columns 4 to 7 in Table 2). Exogenous social e¤ects operate through economic neighbors’ income per capita and
unemployment rate. Demographic characteristics of economic neighbors to state  do not impact its tax rate.

31The clustering coe¢cient is the frequency of the number of fully connected triplets over the total number of
triplets. Other metrics can also be used to provide a scalar comparison of  and ̂. One way to do so is
to reshape both matrices as vectors of length (48 £ 47) and to compute their correlation. Doing so, we obtain a
correlation coe¢cient of 322.
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distribution, the strongest 10% of ties have weight above 6.

On the reciprocity of ties, Table 3 reveals that only 292% of edges in ̂ are reciprocal (all

edges in  are reciprocal by construction). Hence, tax competition is both spatially disperse

and highly asymmetric. In most cases where tax setting in state  is in‡uenced by taxes in state

, the opposite is not true.

Panels B and C in Figure 2 illustrate this for California, indicating the strength of each tie

(̂). Figure 2B shows the in-network for California: those states causally impacting tax-

setting in California. Some geographic neighbors to California in‡uence its tax setting behavior

(Nevada and Oregon), although these ties are weak. On the other hand, non-adjacent states

in‡uence California (Colorado, Maine), and these in-network ties are stronger than geographically

adjacent in-network ties. Figure 2C shows the out-network for California, again indicating each tie

strength (̂): those states whose taxes are in‡uenced by taxes in California. We see that

none of the geographic neighbors to California are in‡uenced by its tax setting behavior, whereas

a number of non-adjacent states are in‡uenced (including East Coast states such as Virginia, and

Southern states, such as Louisiana). When states are in‡uenced by taxes in California, these ties

tend to be relatively strong: ̂ > 19 for all …ve in-network ties.

Given common time shocks  in (11), row-sum normalization is required and ensures
P

 0 =

1. Hence, for every state  there will be at least one economic neighbor state ¤ impacts it, so that

0¤  0. This just reiterates that social interactions matter. On the other hand, our procedure

imposes no restriction on the derived columns of ̂. It could be that a state does not a¤ect any

other state. Examining this possibility directly in ̂, we see this occurs for Minnesota, New

Jersey, New Mexico, Vermont, and Wisconsin. These states have an out-degree of zero. Their tax

rates impact no other states.

Table 3 reports the degree distribution across all nodes (states), splitting for in-networks and

out-networks. In , the in-degree is by construction equal to the out-degree, as all ties are

reciprocal. The greater sparsity of the network of economic neighbors is again re‡ected in the

degree distribution being lower for ̂ than for . In ̂ the dispersion of in- and out-

degree networks is very di¤erent (as measured by the standard deviation), being near double for

the in-degree. This asymmetry in ̂ further suggests that some highly focal or in‡uential states

drive tax setting behavior in other states.

Figures 3A and 3B show complete histograms for the in- and out-degree across states. The

histogram on the left is for in-degree, and shows that states under ̂ generally have lower

in-degree than under . The states that are in‡uenced by the highest number of other states

are Utah, Pennsylvania and Ohio. The histogram on the right for out-degree, shows the …ve states

described above that do not impact other states (Wisconsin, Vermont, New Mexico, New Jersey

and Minnesota). Delaware is an outlier in‡uential state in its out-degree in determining tax setting

in other states: as discussed below, Delaware is a well-known potential tax haven.32

32Dyreng et al. (2013) …nd that taxes play an important role in determining whether …rms locate subsidiaries in
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4.6 Factor Mobility or Yardstick Competition?

We conclude by presenting two strategies to shed light on whether factor mobility and yardstick

competition drive these social interactions: (i) exploiting information in the identi…ed social inter-

actions matrix ̂; (ii) following Besley and Case (1995), using gubernatorial re-election as an

indirect test of the relevance of yardstick competition.

In our …rst strategy we estimate the factors correlated with the existence/strength of links

between states  and  in ̂ using the following dyadic regression:

̂ = 0 + 1 + 2 + 3 + 

We discretize link strength so ̂ 2 f0 1g and predict the existence of a link using a linear

probability model. We then estimate the correlates of link strength ̂ 2 [0 1] using a Tobit

model. The elements    and  correspond to characteristics of the pair of states ( ), of

state , and state , respectively. Covariates are time-averaged over the sample period, and robust

standard errors are reported. The sample thus corresponds to  £ ( ¡ 1) = 48 £ 47 = 2256

potential  links that could have formed.

Table 4 presents the results. Column 1 controls only for whether states  and  are geographic

neighbors. This is highly predictive of a link between them. Columns 2 and 3 show that distance

between states also negatively correlates with them being linked, but that when both geographic

adjacency and distances are included, the former is more predictive. Hence, we control only for

whether  and  are geographic neighbors in the remaining Columns.

The next set of speci…cations use the insight that economic neighbors are likely to be based

on a mixture of similarity in geography, income per capita, and demography (Case et al., 1989).

Column 4 thus adds two  covariates to capture the economic and demographic homophily

between states  and . GDP homophily is the absolute di¤erence in the states GDP per capita.

Demographic homophily is the absolute di¤erence of the share of young people (aged 5-17) plus

the absolute di¤erence of the share of elderly people (aged 65+) across the states. GDP homophily

predicts ties, whereas demographic homophily does not.

Columns 5 to 7 then sequentially add in several sets of controls. For labor mobility, we use

net state-to-state migration data to control for the net migration ‡ow of individuals from state 

to state  (de…ned as the ‡ow from  to  minus the ‡ow from  to ).33 We then add a political

Delaware: a Delaware-based state tax avoidance strategy lowers state e¤ective tax rates by around 1 percentage
point. They also report that in June 2010, Delaware landed at the top of National Geographic magazine’s published
list of the most secretive tax havens in the world (ahead of foreign tax havens such as Luxembourg, Switzerland,
and the Cayman Islands).

33We also experimented with alternative measures of labor migration, and results were qualitatively the same.
State-to-state migration data are based on year-to-year address changes reported on individual income tax re-
turns …led with the IRS. The data cover …ling years 1991 through 2015, and include the number of returns …led,
which approximates the number of households that migrated, the number of personal exemptions claimed, which
approximates the number of individuals who migrated. The data are available at https://www.irs.gov/statistics/soi-
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homophily variable between states. For any given year, this is set to one if a pair of states have

governors of the same political party. As this is time averaged over our sample, this element

captures the share of the sample period in which the states have governors of the same party.

Lastly, we include whether state  is considered a tax haven (and so might have disproportionate

in‡uence on other states). Based on Findley et al. (2012), the following states are coded as tax

havens: Nevada, Delaware, Montana, South Dakota, Wyoming and New York. This corroborates

earlier evidence in Figure 3B, where Delaware, Wyoming and Nevada were among the states with

the highest out-degree.

The speci…cation in Column 7 shows that with this full set of controls, geographic adjacency

remains a robust predictor of the existence of links between states. However, the identi…ed economic

network highlights additional signi…cant predictors of tax competition between states: political

homophily reduces the likelihood of a link, suggesting any yardstick competition driving social

interactions occurs when voters compare their governor to those of the opposing party in other

states. The tax haven states appear to be especially in‡uential in the tax setting behaviors of other

states. The strong in‡uence of tax haven states might lead to a race-to-the-bottom. Relative to

these factors, the economic and demographic similarity between states play an insigni…cant role in

determining interactions between states.

The …nal column considers the continuous link strength as an outcome and reports Tobit partial

average e¤ect estimates. This reinforces that geography, political homophily, and tax haven status

all robustly correlate to the strength of in‡uence states tax setting has on others. Labor mobility

between states does not robustly predict either the existence or strength of ties.

Our second strategy to investigate factor mobility and yardstick competition follows the in-

tuition of Besley and Case (1995). They suggest an indirect test of the relevance of yardstick

competition is that this mechanism only applies to governors not facing term limits. Therefore we

compare our main e¤ects across two subsamples: state-years in which the governor can and cannot

run for reelection. The results are reported in Table 5. The 2SLS results suggest that in both

samples, endogenous social interaction e¤ects exist, although they are more precisely estimated

when governors can run for re-election.

Taken together, our evidence suggests that both factor mobility (of both labor and capital,

as measured through the in‡uence of tax havens), and yardstick competition (occurring through

comparisons to governors of the other party), are important mechanisms driving the existence and

strength of interactions in tax-setting behavior across US states.

Finally, in the Appendix, we contrast how shocks to tax setting in a given state propagate

under the identi…ed interactions matrix ̂, relative to what would have been predicted under a

postulated network structure based on . As ̂ is spatially more dispersed than , the

general equilibrium e¤ects might be very di¤erent under the two network structures. We therefore

discuss the implications for tax inequality under ̂ and the  counterfactual.

tax-stats-migration-data (accessed September 2017).
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5 Discussion

In a canonical social interactions model, we provide su¢cient conditions under which the social

interactions matrix, and endogenous and exogenous social e¤ects are all globally identi…ed, even

absent information on social links. Our identi…cation strategy is novel, and may bear fruit in

other areas. We describe how high-dimensional estimation techniques can be used to estimate

the model based on the Adaptive Elastic Net GMM method. We showcase our method in Monte

Carlo simulations using two stylized and two real world networks: these highlight that even in

panels as short as  = 5, the majority of social ties can be correctly identi…ed. Finally, we

employ this estimation strategy to provide novel insights in a classic social interactions problem:

tax competition across US states.

Our method is immediately applicable to other classic social interactions problems. For ex-

ample, in …nance a long-standing question has been whether CEOs are subject to relative perform-

ance evaluation, and if so, what is the comparison set of …rms/CEOs used (Edmans and Gabaix,

2016).34 Other …elds such as macroeconomics, political economy and trade are all obvious areas

where social interactions across jurisdictions/countries etc. could drive key outcomes, panel data

exist, and the number of nodes is relatively …xed. Our approach can also be applied to new con-

texts where social interactions determine economic behavior but data on social links is absent.

Advances in the availability of administrative data, data from social media or mobile technologies,

and high frequency data in …nance and from online economic transactions, all o¤er new possib-

ilities to identify social interactions. For example, van Vliet, 2018 studies the interconnectedness

between the largest …nancial institutions in during the 2008 …nancial crisis using readlily available

market data, in which  = 13 and  = 500.

Three further directions for future research are of note. First, under partial observability of

0 (as in Blume et al., 2015), the number of parameters in 0 to be retrieved falls quickly. Our

approach can then still be applied to complete knowledge of 0, and this could be achieved with

potentially weaker assumptions for identi…cation, and in even shorter panels. To illustrate possib-

ilities, Figure 4 shows results from a …nal simulation exercise in which we assume the researcher

starts with partial knowledge of 0. We do so for the Banerjee et al. (2013) village family network,

showing simulation results for scenarios in which the researcher knows the social ties of the three

(…ve, ten) households with the highest out-degree. For comparison we also show the earlier sim-

ulation results when 0 is entirely unknown. This clearly illustrates that with partial knowledge

34Edmans and Gabaix (2016) overview the theory and empirics of executive compensation. Applying the inform-
ativeness principle in contract theory to CEO pay suggests peer performance is informative about the degree to
which …rm value is due to high CEO e¤ort or luck. In a …rst generation of studies, Aggarwal and Samwick (1999)
and Murphy (1999) showed that CEO pay is determined by absolute, rather than relative performance. However,
this conclusion has been challenged by others such as Gong et al. (2011) who argue these conclusions arise from
identifying relative performance evaluation (RPE) based on an implicit approach, assuming a peer group (e.g. based
on industry and/or size). Indeed, when Gong et al. (2011) study the explicit use of RPE, based on the disclosure
of peer …rms and performance measures mandated by the SEC in 2006, they actually …nd that 25% of S&P 1500
…rms explicitly using RPE. We are currently working on using our method to provide novel evidence on the matter.
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of the social network, performance on all metrics improves rapidly for any given  .

Second, we have developed our approach in the context of the canonical linear social interactions

model (1). This builds on Manski (1993) when 0 is known to the researcher, and the re‡ection

problem is the main challenge in identifying endogenous and exogenous social e¤ects. However, as

established in Blume et al. (2011) and Blume et al. (2015), the re‡ection problem is functional-form

dependent and may not apply to many non-linear models. An important topic for future research

is thus to extend the insights gathered here to non-linear social interaction settings.

Finally, our approach has taken the network structure as predetermined and …xed. Clearly, an

important part of the social networks literature examines endogenous network formation (Jackson

et al., 2017; de Paula, 2017). Our analysis allows us to begin probing the issue in two ways. First,

the kind of dyadic regression analysis in Section 4 on the correlates of entries in 0 suggests

factors driving link formation and dissolution. Second, it is possible to examine whether the iden-

ti…ed social interactions matrix is stable over time. To illustrate the possibility in a real world

setting, we extend our application on tax competition to investigate the stability of ̂ by run-

ning the procedure in two subsamples, each with  = 26 periods: 1962-88 and 1989-2015. Panels A

and B in Figure 5 shows the resulting estimated economic networks in each subsample, and Panel

C provides network statistics for each subsample panel (as well as for the earlier estimated eco-

nomic network and the network based on geographic neighbors). This highlights that the network

structure of tax competition has changed over time, with the later sample network from 1989-2015

having fewer edges, fewer reciprocated edges, lower clustering and lower degree distribution.

This analysis leads naturally to a broad agenda going forward, to address the challenge of

simultaneously identifying and estimating time varying models of network formation and social

interaction, all in cases where data on social networks is not required.
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A Proofs

Theorem 1

Proof. The local identi…cation result follows Rothenberg (1971). Under the assumptions in our

model, the parameter space £ ½ R is an open set (recall that  = ( ¡ 1) + 3.) This

corresponds to Assumption I in Rothenberg (1971).

We have that,

¦


=  ( ¡  )¡1¢ ( ¡  )¡1 ( +  ) + ( ¡  )¡1 ¢

¦


= ( ¡  )¡1 ( ¡  )¡1 ( +  )

¦


= ( ¡  )¡1

¦


= ( ¡  )¡1 

where ¢ is the  £  matrix with 1 in the ( )-th position and zero elsewhere. Write the

2 £  derivative matrix r¦ ´ vec(¦)
0

. By assumption, row  in matrix  sums up to one,

incorporated through the restriction that  ´
P

=1 6= ¡ 1 = 0, for the unit-normalised row

. The derivative of the restriction  is the -dimensional vector r0
 ´ 

0
=

£
0  0¡1 01£3

¤

(where  is an  -dimensional vector with 1 in the th component and zero, otherwise). Following

Theorem 6 of Rothenberg (1971), the structural parameters  2 £ are locally identi…ed if, and

only if, the matrix r ´ [r0
¦ r0

 ]
0
has rank .35

If r is does not have rank , there is a nonzero vector c ´
¡
12      ¡1

   
¢0

such

that r ¢ c = 0. This implies that

12

¦

12

+ ¢ ¢ ¢+ ¡1

¦

¡1

+ 
¦


+ 

¦


+ 

¦


= 0 (12)

and, for the unit-normalized row  (see A4),

X

 6==1

 = 0 (13)

35For a parameter vector to be locally identi…ed, Rothenberg (1971) requires that the derivative matrix r have
rank  at that point and that this vector be (rank-)regular. A (rank-)regular point of the parameter space is one
for which there is a neighborhood where the rank of r is constant (see De…nition 4 in Rothenberg, 1971). Because
we show that the derivative matrix has rank  at every point in the parameter space, this also guarantees that
every point in the parameter space is (rank-)regular.
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Premultiplying equation (12) by ( ¡  ) and substituting the derivatives,

X

=16=



£
¢ ( ¡  )¡1 ( +  ) + ¢

¤
+

+ ( ¡  )¡1 ( +  ) +  +  = 0

De…ne  ´
P

=16= ¢. Since the spectral radius of  is strictly less than one by A2, one

can show (by representing ( ¡  )¡1 as a Neumann series, for instance) that ( +  ) and

( ¡  )¡1 commute. Then, the expression above is equivalent to

 ( +  ) ( ¡  )¡1 +  +  ( +  ) ( ¡  )¡1 +  +  = 0

Post-multiplying by ( ¡  ), we obtain

 ( +  ) +  ( ¡  ) +  ( +  ) +  ( ¡  ) +  ( ¡  ) = 0

which, upon rearrangement, yields

( + ) +  + ( ¡ + ) + ( ¡ )
2 = 0 (14)

Because  = 0 and  = 0 (by A1), we have that +( ¡ ) (
2) = 0 for all  = 1      .

Since by assumption A5 there isn’t a constant  such that diag ( 2
0 ) = , then  = ¡ = 0.

Plugging back in (14), we obtain

( + ) + ( + ) = 0

which implies that  = ¡+
+

 since  +  6= 0 by assumption A3. Taking the sum of the

elements in row , we get

( + )
X

 6==1

 + ( + ) = 0

Note that, by equation (13),
P

 6==1  = 0. So  +  = 0 and  = ¡+
+

 = 0. This

implies that  = 0 for any  and . Combining +  = 0 with  ¡  = 0 obtained above,

we get that  ( + ) = 0. Since  +  6= 0, then  = 0. Given that  +  = 0, it follows

that  = 0. This shows that  2 £ is locally identi…ed.

Corollary 1

Proof. The parameter 0 being locally identi…ed (see Theorem 1) implies that the set f : ¦() =

¦(0)g is discrete. If it is also compact, then the set is …nite. To establish that we now show that
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¦ is a proper function: the inverse image ¦¡1() of any compact set  ½ R is also compact

(see Krantz and Parks, 2013, p.124).

Let A be a compact set in the space of  £  real matrices. Since it is a compact set in

a …nite dimensional space, it is closed and bounded. Since ¦ is a continuous function of , the

pre-image of a compact set, which is closed, is also closed. Because W is bounded and  2 (¡1 1),

their corresponding coordinates in  2 ¦¡1(A) are bounded. Suppose the coordinates for  or  in

 2 ¦¡1(A) are not bounded. So one can …nd a sequence ()
1
=1 such that jj ! 1 or jj ! 1.

Denote the Frobenius norm of the matrix  as kk. By the submultiplicative property kk ·

kk ¢ kk,

k + k ·
°
°( +  ) ( ¡  )¡1

°
° ¢ k ¡ k 

Note that ( ¡  )¡1 and ( +  ) commute, and so

°
°( +  ) ( ¡  )¡1

°
° =

°
°( ¡  )¡1 ( +  )

°
° = k¦k 

It follows that

k + k

k ¡ k
· k¦k 

Given  has zero main diagonal,

k + k2 = 2 kk2 + 2 kk2 = 2 + 2 kk2 

Also, k ¡ k2 =  + 2 kk2 ·  + 2, for some constant  2 R, since W is bounded by

assumption A2. We then have that

q
2 + 2 kk2

p
 + 2

· k¦k 

Since jj  1 by Assumption (A2) the denominator above is bounded. Hence jj ! 1 )

k¦()k ! 1. We now use the fact that
P

  = 1 to show that there is a lower bound on

kk2, and so jj ! 1 ) k¦()k ! 1. To see this, note that

min
s.t.


 =1

kk2 ¸ min
s.t.


 =1

X

=1

 2
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The Lagrangean for the right-hand side minimization problem is:

L (1    ¡1+1     ;) =
X

=1

 2
 ¡ 

Ã
X



 ¡ 1

!



where  is the Lagrangean multiplier for the normalisation constraint. The …rst-order conditions

for this convex minimization problem are:

L



= 2 ¡  = 0 for any  6= 

L


=

X

=1

 ¡ 1 = 0

The …rst equation implies that  =

2

for  = 1      ¡ 1  + 1      . Using the fact that

 = 0, the second equation implies that  = 2( ¡ 1). We have then that  =
1

¡1
  6= 

and, consequently, kk2 ¸ ( ¡ 1) 1
(¡1)2

= 1
¡1

. Hence, if jj ! 1, the numerator in the lower

bound for k¦k above also goes to in…nity. Consequently, A would not be compact.

Therefore, if A is compact the coordinates in  2 ¦¡1(A) corresponding to  and  are also

bounded. Hence, ¦¡1(A) is bounded (and closed). Consequently it is compact.

For a given reduced form parameter matrix ¦, the set f : ¦() = ¦(0)g is then compact.

Since it is also discrete, it is …nite.

The following lemmas are used in proving Theorem 2.

Lemma 1. Assume (A1)-(A5). If 0 = 0, 0 is such that (0)12 = (0)21 = 1 and (0) = 0

otherwise, with 0 6= 0 and 0 6= 0, then 0 2 £ is identi…ed.

Proof. Take  = (12    ¡1   ) 2 £ possibily di¤erent from 0 such that the models

are observationally equivalent, so ¦0 = ¦. Then

( ¡ 00)
¡1(0 + 00) = ( ¡  )¡1( +  )

Since 0 = 0 and ( ¡  )¡1 and ( +  ) commute (see the proof for Theorem 1), it follows

that

¦0 = ¦ , 0( ¡ 00)
¡1 = ( +  )( ¡  )¡1

or, equivalently,

0( ¡  ) = ( ¡ 00)( +  )
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This last equation implies that

(0 ¡ ) ¡ ( + 0) + 00 + 00 = 0 (15)

We …rst note that (0 ) = 0 since (0) = 0 for any 1 ·  ·  and, by Assumption (A1),

( ) = (0) = 0. So 0 = . Taking elements ( ) such that  ¸ 3 and  6=  in equation

(15), and using the fact that 0 = , we …nd that ¡( + 0)( ) = ¡( + )( ) = 0 for any

( ) such that  ¸ 3 and  6= . By Assumption (A3),  +  6= 0 and it follows that ( ) = 0

for any ( ) such that  ¸ 3 and  6= . In fact, since ( ) = 0 by Assumption (A1), we get that

( ) = 0 for any ( ) such that  ¸ 3.

Using Assumption (A1) and since 0 = , elements (1 1) and (2 2) in equation (15) imply

that 0( )21 = 0( )12 = 0. Given that 0 6= 0, we get that ( )21 = ( )12 = 0.

From element (1 2) in equation (15) we …nd that ¡( + 0)( )12 + 0 = 0 or, equivalently,

(0¡( )12)0¡( )12 = 0. Given that ( )12 = 0 and 0 6= 0, it must be that 0¡( )12 =

0. Making the analogous argument for element (2 1), we would also obtain that 0 ¡ ( )21 = 0.

If both ( )12 and ( )21 are equal to zero, using the fact that  = 0 for any ( ) such that

 ¸ 3, we would then obtain that  2 is equal to

2

6
6
6
6
6
6
6
4

0 0 ( )13 ¢ ¢ ¢ ( )1

0 0 ( )23 ¢ ¢ ¢ ( )2

0 0 0 ¢ ¢ ¢ 0
...

...
...

. . .
...

0 0 0 ¢ ¢ ¢ 0

3

7
7
7
7
7
7
7
5

2

=

2

6
6
6
6
6
6
6
4

0 0 0 ¢ ¢ ¢ 0

0 0 0 ¢ ¢ ¢ 0

0 0 0 ¢ ¢ ¢ 0
...

...
...

. . .
...

0 0 0 ¢ ¢ ¢ 0

3

7
7
7
7
7
7
7
5



which contradicts Assumption (A5). Hence ( )12 6= 0 or ( )21 6= 0. If ( )12 6= 0, using the

fact that ( )12 = 0, we get that  = 0. Equivalently, if ( )21 6= 0, and using the fact that

( )21 = 0, we again get that  = 0. So, in either case,  = 0 = 0.

Taking element (1 ) in equation (15), with  ¸ 3, we get that ¡( + 0)1 + 0( )2 =

¡01 = 0. Similarly, element (2 ), with  ¸ 3 implies that ¡( + 0)2 + 0( )1 =

¡02 = 0. Then, from ¡0( )1 = ¡0( )2 = 0 for  ¸ 3, it follows that ¡( )1 =

¡( )2 = 0 since 0 6= 0.

From 0 ¡ ( )12 = 0, if ( )12 6= 0, we get that  = 0( )12 6= 0. Equivalently, if

( )21 6= 0, we get that  = 0( )21 6= 0. Since ( )12 6= 0 or ( )21 6= 0, we obtain that  6= 0.

Then, because ¡( )1 = ( )2 = 0 for  ¸ 3, we have that ( )1 = ( )2 = 0 for  ¸ 3.

Given that 0¡( )12 = 0, 0¡( )21 = 0 and  6= 0, we obtain that ( )12 = ( )21 =
0

.

Since ( )1 = 0 for  6= 2, ( )2 = 0 for  6= 1 and ( ) = 0 for  ¸ 3, by Assumption

(A5) we get that ( )12 = ( )21 = 1 and  = 0. Hence, (( )12     ( )¡1   ) =

((0)12     (0)¡1 0 0 0).
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Lemma 2. Assume (A1)-(A2) and (A4)-(A5). The image of ¦(¢), for  2 £+, is path-connected

and, therefore, connected.

Proof. Take  and ¤ 2 £+. Consider …rst the subvectors corresponding to the adjacency matrices

 and  ¤. Without loss of generality, let 1     be ordered such that ( 2)11  (
2)22. Con-

sider the adjacency matrix ¤ corresponding to the network of directed connections f(1 2) (2 1)g

and f(3 4) (4 5)     ( ¡ 1 ) ( 3)g:

¤ =

2

6
6
6
6
6
6
6
4

0 1 0 0 ¢ ¢ ¢ 0

1 0 0 0 ¢ ¢ ¢ 0

0 0 0 1 ¢ ¢ ¢ 0
...

...
...

. . . . . .
...

0 0 1 0 ¢ ¢ ¢ 0

3

7
7
7
7
7
7
7
5



Note that diag( 2
¤ ) = (1 1 0     0) and this is an admissible adjacency matrix under assumptions

(A1)-(A2) and (A4)-(A5). We …rst show that  is path-connected to ¤.

Consider the path given by

 () = ¤ + (1¡ )

which implies that

( ()2)11 = (1¡ )2( 2)11 + 2 + (1¡ )(12 +21)

( ()2)22 = (1¡ )2( 2)22 + 2 + (1¡ )(12 +21)

Since ( ()2)11 ¡ ( ()2)22 = (1 ¡ )2[( 2)11 ¡ ( 2)22]  0 for  2 [0 1) and  (1) = ¤,

(A5) is satis…ed for any matrix  () such that  2 [0 1]. Since all rows in ¤ sum to one and

(¤) = 0 for any , it is straightforward to see that  () also satis…es (A1) and (A4). Finally,
P

=1 j()j · 
P

=1 j(¤)j+ (1¡ )
P

=1 jj · 1 for every  = 1      and  () satis…es

Assumption (A2).

If  ¤ is such that ( ¤2)11 6= ( ¤2)22, the convex combination of  ¤ and ¤ is also seen to

satisfy (A1)-(A2) and (A4)-(A5) and a path between  and  ¤ can be constructed via ¤. If,

on the other hand ( ¤2)11 = (
¤2)22, suppose without loss of generality that ( ¤2)11 6= ( ¤2)33.

In this case, one can construct a path between  ¤ and ¤¤ where ¤¤ represents the network of
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directed connections f(1 3) (3 1)g and f(2 4) (4 5)     ( ¡ 1 ) ( 2)g:

¤¤ =

2

6
6
6
6
6
6
6
4

0 0 1 0 ¢ ¢ ¢ 0

0 0 0 1 ¢ ¢ ¢ 0

1 0 0 0 ¢ ¢ ¢ 0
...

...
...

. . . . . .
...

0 1 0 0 ¢ ¢ ¢ 0

3

7
7
7
7
7
7
7
5



Like  () above, this path can be seen to satisfy assumptions (A1)-(A2) and (A4)-(A5). Now

note that a path can also be constructed between ¤ and ¤¤ as their convex combination also

satis…es (A1)-(A2) and (A4)-(A5). For example, note that ̂ () = ¤ + (1¡ )¤¤ is such that

(̂ ()2)11 = 2 + (1 ¡ )2 and (̂ ()2) = 0 so (̂ ()2)11 ¡ (̂ ()2)  0 for any  2 (0 1)

and both ̂ (0) and ̂ (1) satisfy (A5). Hence, we can construct a path  () between  and  ¤

through ¤ and ¤¤.

Furthermore, () = ¤+(1¡), () = (¤¤+(1¡))(¤+(1¡)), () = ¤+(1¡)

are such that

() ´ ()() + () = (¤¤ + ¤) + (1¡ )( + )  0

since ¤ and  2 £+. (Note also that j()j  1 so Assumption (A2) is satis…ed.) These facts taken

together imply that

() ´ ( ()12     ()¡1 () () ()) 2 £+

That is, £+ is path-connected and therefore connected. Since ¦(¢) is continuous on £+, ¦(£+) is

connected.

Theorem 2

Proof. The proof uses Corollary 1.4 in Ambrosetti and Prodi (1995, p. 46),36 which we reproduce

here with our notation for convenience: Suppose the function ¦(¢) is continuous, proper and locally

invertible with a connected image. Then the cardinality of ¦¡1(¦) is constant for any ¦ in the

image of ¦(¢).

The mapping ¦() is continuous and proper (by Corollary 1), with connected image (Lemma

2), and non-singular Jacobian at any point (as per the proof for Theorem 1) which guarantees local

invertibility. Following Corollary 1.4 in Ambrosetti and Prodi (1995, p.46) reproduced above, we

obtain that the cardinality of the pre-image of ¦() is …nite and constant. Take  2 £+ such that

36Related results can be found in Ambrosetti and Prodi (1972) and de Marco et al. (2014)
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 = 0, ( )12 = ( )21 = 1 and ( ) = 0 otherwise, with  6= 0 and  6= 0. By Lemma 1, that

cardinality is one.

Corollary 3

Proof. Since  2 (0 1) and  ¸ 0,
P1

=1 
¡1  is a non-negative matrix. By (5), the o¤-

diagonal elements of ¦() are equal to the o¤-diagonal elements of ( + )
P1

=1 
¡1 , the

sign of those elements identi…es the sign of  + . By Theorem 2, the model is identi…ed.

Corollary 4

Proof. Since 0 is non-negative and irreducible, there is a real eigenvalue equal to the spectral

radius of 0 corresponding to the unique eigenvector whose entries can be chosen to be strictly

positive (i.e., all the entries share the same sign). A generic eigenvalue of 0, 0, corresponds to

an eigenvalue of ¦0 according to:

¦0 = 0 + (00 + 0)
0

1¡ 00

If 0 = 0 + 0 where 0 0 2 R and  =
p

¡1, then

¦0 = 0 + (00 + 0)
0(1¡ 00)¡ 0

2
0

(1¡ 00)
2 + 20

2
0

+ (00 + 0)
0

(1¡ 00)
2 + 20

2
0



If the eigenvalue 0 is real, 0 = 0 and the corresponding ¦0 eigenvalue is also real. Di¤erentiating

(¦0), the real part of ¦0 , with respect to (0) = 0, we get:

(¦0)

0
=

(1¡ 00)
2 ¡ 20

2
0

[(1¡ 00)
2 + 20

2
0]
2

£ (00 + 0) (16)

If the eigenvalue 0 is real, the expression (16) becomes:

(¦0)

0
=

¦0
0

=
1

(1¡ 00)
2

£ (00 + 0)

The fraction multiplying 00 + 0 is positive. If 00 + 0  0, the real eigenvalues of ¦0 are

decreasing on the real eigenvalues of 0. Consequently, the eigenvector corresponding to the

largest (real) eigenvalue of 0 will be associated with smallest real eigenvalue of ¦0. If, on the

other hand, 00 + 0  0 the eigenvector corresponding to the largest real eigenvalue of 0 will

correspond to the largest real eigenvalue of ¦0. Since that eigenvector is the unique eigenvector

that can be chosen to have strictly positive entries, the sign of 00 + 0 is identi…ed by the

¦0 eigenvalue it is associated with and whether it is the largest or smallest real eigenvalue. By

Theorem 2, the model is identi…ed.
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If there is only one real eigenvalue, note that the denominator in the fraction in (16) is positive.

The minimum value of the numerator subject to j0j
2 = 20 + 20 · 1 is given by

min
00

(1¡ 00)
2 ¡ 220 s.t. 20 + 20 · 1

The Lagrangean for this minimization problem is given by:

L (0 0;) = (1¡ 00)
2 ¡ 220 + (20 + 20 ¡ 1)

where  is the Lagrange multiplier associated with the constraint 20 + 20 · 1. The Kuhn-Tucker

necessary conditions for the solution (¤0 
¤
0 

¤) of this problem are given by:

(0 :) 0(1¡ 0
¤
0)¡ ¤¤0 = 0

(0 :) (20 ¡ ¤)¤0 = 0

¤(¤20 + ¤20 ¡ 1) = 0

¤20 + ¤20 · 1 and ¤ ¸ 0

Let 0 6= 0. (Otherwise, the objective function above is equal to one irrespective of 0 or 0 and the

partial derivative is 00 + 0.) If ¤ = 0, 0 implies that ¤0 = 0. Then 0 would have ¤0 = ¡10
which violates ¤20 + ¤20 · 1.

Hence, a solution should have ¤  0. In this case, there are two possibilities: ¤0 = 0 or

¤0 6= 0. If ¤0 6= 0, condition 0 implies that ¤ = 20 and 0 then gives ¤0 = (20)
¡1. Because the

constraint is binding, ¤20 = 1¡ (420)
¡1. In this case, ¤20 · 1 and ¤20 ¸ 0 requires that j0j ¸ 12.

The value of the minimised objective function in this case 12¡20. This is positive if j0j 
p
22.

The other possibility is to have 0 = 0. Because the constraint is binding, 0 = 1 and the

objective function takes the value (1¡ 0)
2  0. Since (1¡ 0)

2 ¡ 12+ 20 = 2
2
0 ¡ 20+ 12 ¸ 0,

this solution is dominated by the previous one when j0j ¸ 12.

Consequently, the fraction multiplying 00+0 is non-negative and it can be ascertained that

sgn

·
(¦0)

0

¸

= sgn[00 + 0]

as long as j0j 
p
22.

If 00 + 0  0, the real part of the eigenvalues of ¦0 is decreasing on the real part of the

eigenvalues of 0. Consequently, the eigenvector corresponding to the eigenvalue of 0 with the

largest real part will correspond to the eigenvalue of ¦0 with the smallest real part. If, on the

other hand, 00 + 0  0 the eigenvector corresponding to the eigenvalue of 0 with the largest

real part will correspond to the eigenvalue of ¦0 with the largest real part. Since that eigenvector

is the unique eigenvector that can be chosen to have strictly positive entries, the sign of 00+ 0
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is identi…ed by the ¦0 eigenvalue it is associated with.

By Theorem 2, the model is identi…ed.

Proposition 1

Proof. From equation (6) we observed that ¦0 = ¦0, where  is an eigenvector of both 0

and ¦0 with corresponding eigenvalue ¦0 =
0+00
1¡00

. De…ning  as the row-sum of ¦0, we also

have that

~¦0( ¡) = ( ¡ )¦0( ¡) = ( ¡ )¦0 ¡ ( ¡ )¦0

= ¦0( ¡) ¡ ( ¡ ) = ¦0( ¡) ¡ ( ¡2)

= ¦0( ¡) ¡ ( ¡) = ¦0( ¡) 

where the third equality obtains from¦0 =  and the …fth equality holds since  is idempotent.

So ~¦0 and ¦0 have common eigenvalues, with corresponding eigenvector ~ = ¡¹ for ~¦0, where

¹ =
1

0,  = 1      . Since ¦0 and ~ are observed from ~¦0, identi…cation of ¦0 is equivalent

to identi…cation of ¹ (given diagonilizability).

To establish identi…cation of ¹, note that 0(~+¹) = 0(~+¹) since  is an eigenvector

of 0. Consider an alternative constant ¹¤ 6= ¹ that satis…es the previous equation. Then

0(¹ ¡ ¹¤ ) = 0(¹ ¡ ¹¤ )

Since 0 = ,  must satisfy (1¡ 0)(¹ ¡ ¹¤ ) = 0. For  = 2      , j0j  1. So ¹ = ¹
¤
 and

therefore identi…ed. For  = 1, it is known that 1 = 1 with eigenvector 1 = .

Proposition 2

Proof. Under row-sum normalization and j0j  1, ( ¡ 00)
¡1 =  + 00 + 20

2
0  + ¢ ¢ ¢ =

+0+20+ ¢ ¢ ¢ =  1
1¡0

, so ¦01 ´ ( ¡0 )
¡1 has constant row-sums. If row-sum normalization

fails, ¦01 may not have constant row-sums. De…ne  as the ()-th element of ~. The …rst row

of the system ( ¡ ~)( ¡ 0 )
¡1 = ( ¡ ~)0 = 0 is ¤1101 ¡ 1202 ¡ ¢ ¢ ¢ ¡ 10 = 0

where ¤11 = 1¡11 and 0 is the -th element of 0 . If there are  possible 0, 
(1)
0     

()
0 ,

such that [


(1)
0

¢ ¢ ¢ 


()
0
] has rank  , then ¤11 = 12 = ¢ ¢ ¢ = 1 = 0. Since the same reasoning

applies to all rows, ~ is the trivial transformation ~ = .
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B Estimation

B.1 Sparsity of 0 and ¦0

De…ne ~ as the number of non-zero elements of ¦0. We say that ¦0 is sparse if ~ ¿  . Denote

the number of connected pairs in 0 via paths of any length as ~. We equivalently say that 0

is "sparse connected" if ~ ¿  . We show that sparsity of ¦0 is related to sparse connectedness

of 0.

Proposition 3. ¦0 is sparse if, and only if, the number of unconnected pairs 0 is large.

Proof. For j0j  1, we have that

¦0 = 0 + (00 + 0)
1X

=1

¡10  
0 

Given that 00 + 0 6= 0, it follows directly that [¦0] = 0 if, and only if, there are no paths

between  and  in0. Therefore, sparsity of ¦0 translates into a large number of ( ) unconnected

pairs in 0.

On the one hand, sparsity does not imply sparse connectedness. A circular graph is clearly

sparse, but all nodes connect with all other nodes through a path of length at most 
2
. On the

other hand, the sparse connectedness implies sparsity and therefore is a stronger requirement.

To see this, take any arbitrary network  with ~ () non-zero elements and ~ () connected

pairs. Now consider the operation of “completing” : for every connected ( ) pair, add a direct

link between ( ) if non-existent in  and denote the resulting matrix as C (). It is clear that

~ () · ~ (C ()). Yet, ~ (C ()) = ~ ().

B.2 Adaptive Elastic Net

B.2.1 Implementation and Initial Conditions

To make our procedure robust to the choice of initial condition, we use the particle swarm al-

gorithm. This is an optimization algorithm tailored to more aptly …nd global optima, which does

not depend on choice of initial conditions. It works as follows. The procedure starts from a large

number of initial conditions covering the parameter space, known as “particles” (Kennedy and

Eberhart, 1995). Each particle is iterated independently until convergence. The algorithm returns
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the optimum calculated across particles.37 38

To ensure compliance with row-sum normalization for each row  of  , one non-zero parameter

¤ is set to 1 ¡
P

=1 6=¤ . This avoids making use of constrained optimization routines.39

We also impose the restriction that  ¸ 0 and  ¸ 0 by minimizing the objective function with

respect to ~ with  = ~2 and ~ with  = ~ 2
.

Optimization of (8) starts from the initial condition selected by the particle swarm algorithm

and is minimized with respect to the parameters that were neither set to zero nor were chosen to

ensure row-sum normalization. Estimates from the …rst stage are subsequently used to adjust the

penalization, as in the Adaptive Elastic Net GMM objective function (10).40 The steps above are

repeated for di¤erent combinations of  = (1 
¤
1 2), selected on a grid. The …nal estimate is the

one that minimizes the BIC criterion.

B.3 OLS

For the purpose of estimation, it is convenient to write the model in the stacked form. Let

 = [1      ]
0 be the  £  matrix of explanatory variables,  = [1      ]

0 be the  £ 1

vector of response variables for individual  and 0 = [
0
1     

0
 ]

0
where 0 is a short notation

for the ( )-th element of ¦0. The concise model is then,

 = 0 +  (17)

for each  = 1      , where also  = [1      ]
0. Model (17) can then be estimated equation-

by-equation. Denote 0 = [01
0
     0

0
]0. Stacking the full set of  equations,

 = 0 +  (18)

37We set Caner and Zhang’s (2014) suggestion for the initial condition as one of those particles, with minor
modi…cations. The authors suggest calculating the absolute value of the derivative of the unpenalized GMM
objective function evaluated at zero, r , and the set parameters smaller than 1 at zero. The rationale is that
if the GMM objective function is invariant with respect to certain parameters, the Elastic Net problem achieves a
corner solution (where parameters are set to zero). In our case, allowing only for positive interactions, we set to zero
the elements such that ¡r · 1. All other elements of  gain equal weights such that row-sum normalization is
respected. The derivative r is mechanically zero if  =  = 0. So we set  = 5, given that the parameter space
is bounded and  2 [0 1). The other parameters that enter the derivative are ̂ estimated from a regression of  on
, with the full set of …xed e¤ects, and  = 0.

38We also implemented an additional …ve particles. Particle 2: like Particle 1 but with size proportional to the
magnitude of the derivatives conditional on ¡r being greater than 1; Particle 3: sets to non-zero all positive
elements of ¡r with equal weights; Particle 4: selects 5% highest values of ¡r , sets all others to zero, and non-
zero gain equal weights; Particle 5:  obtained from the Lasso regression of  on the  of others with penalization
1; Particle 6:  obtained from the Lasso regression of  on the  of others with penalization 1. In all cases,
weights are rescaled by row-speci…c constants such that row-sum normalization is complied with. The remaining
94 particles are uniformly randomly selected by the built-in MATLAB particle swarm algorithm.

39At each row, we pick the ¤ closest to the main diagonal of  .
40Note that the Elastic Net penalty 1

P
j j is invariant with respect to choices of  if row-sum normalization

is imposed. Yet, the penalty a¤ects the initial selection of arguments in which  is restricted to zero if the
derivative of the objective function is smaller than 1 in absolute value.
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where  = [1      ],  =  , 0 = vec (¦00), and  = [1      ]. If the number of individu-

als in the network  is …xed and much smaller than data points available, 2 ¿  , equation

(18) can be estimated via ordinary least squares (OLS). Under suitable regularity conditions, the

OLS estimator ̂ = ( 0)¡1 0 is asymptotically distributed,

p
 (̂ ¡ 0)


¡! N

¡
0 ¡1§¡1

¢

where  ´ 1


 0,  ´  lim!1 , § ´ 1


 00 and § ´  lim!1§ . The proof is

standard and omitted here. As noted above, in typical applications it is customary to row-sum

normalize matrix  . If no individual is isolated, one obtains that, by equation (5),

¦0 = 0+ (00 + 0)
1X

=1

¡10  
0 

=
0 + 0
1¡ 0

 (19)

where  is the  -length vector of ones. The last equality follows from the observation that, under

row-normalization of 0, 
 =  = ,   0. Equation (19) implies that ¦0 has constant

row-sums, which implies that row-sum normalization is, in principle, testable. This suggests a

simple Wald statistic applied to the estimates of 0. Under the null hypothesis,

p
̂


¡! N

¡
0 ¡1§¡10

¢

where  = [¡1  0 ;¡¡1  0 ]. The Wald statistic is  =  (̂)0 (¡1§¡1)
¡1
(̂) »

2¡1 which is a convenient expression for testing row-sum normalization of 0. We also note that

the asymptotic distribution of ̂ can be immediately obtained by the Delta Method,

p
 (̂ ¡ 0)


¡! N

¡
0r0¡1

 ¡1§¡1r

¢

where r is the gradient of ̂ with respect to ̂. We note that the derivation of the Wald statistic

for testing the row-sum normalization and the asymptotic distribution of ̂ does not depend on

the OLS implementation, and can be easily adjusted for any estimator for which the asymptotic

distribution is known.

C Simulations

C.1 Set-Up

The simulations are based on two stylized random network structures, and two real world networks.

These networks vary in their size, complexity, and aggregate and node-level features. All four
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networks are also sparse. The two stylized networks considered are:

(i) Erdos-Renyi network: we randomly pick exactly one element in each row of 0 and set that

element to 1. This is a random graph with in-degree equal to 1 for every individual (Erdos

and Renyi, 1960). Such a network could be observed in practice if connections are formed

independently of one another. With  = 30, the resulting density of links is 345%.

(ii) Political party network: there are two parties, each with a party leader. The leader directly

a¤ects the behavior of half the party members. We assume that one party has twice the

number of members as the other. More speci…cally, we assume individuals  = 1     
3

are

a¢liated to Party A and are led by individual 1; individuals  = 
3
+ 1      are a¢liated

to Party B and are led by individual 
3
+1. This di¤erence in party size allows us to evaluate

our ability to recover and identify central leaders, even in the smaller party. To test the

procedure further, we add one random link per row to represent ties that are not determined

by links to the Party leader. We simulate this network for various choices of  . If  is not

a multiple of three, we round 
3

to the nearest integer. With  = 30, this network has a

density of 517%.

(iii) Coleman’s (1964) high school friendship network survey: in 19578, students in a small high

school in Illinois were asked to name, “fellows that they go around with most often.” A link

was considered if the student nominated a peer in either survey wave. The full network has

 = 73 nodes, of which 70 are non-isolated and so have at least one link to another student.

On average, students named just over …ve friendship peers. This network has density 758%.

Furthermore, the in-degree distribution shows that most individuals received a small number

of links, while a small number received many peer nominations.

(iv) Banerjee et al.’s (2013) village network survey: these authors conducted a census of house-

holds in 75 villages in rural Karnataka, India, and survey questions include several about

relationships with other households in the village. To begin with, we use social ties based

on family relations (later examining insurance networks). We focus on village 10 that is

comprised of  = 77 households, and so similar in size to network (iii). In this village there

are 65 non-isolated households, with at least one family link to another household. This

network has density 507%.

For the stylized networks (i) and (ii), we …rst assess the performance of the estimator for a

…xed network size,  = 30. We later show how performance varies with alternative network sizes.

We simulate the real-world networks (iii) and (iv) using non-isolated nodes in each (so  = 70

and 65 respectively). As in Bramoullé et al., 2009, we exclude isolated nodes because they do not

conform with row-sum normalization.
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Our result identi…es entries in 0 and so naturally recovers links of varying strength. Data

limitations often force researchers to postulate some ties to be weaker than others (say, based on

interaction frequency). This is in sharp contrast to our approach, that identi…es the continuous

strength of ties, 0, where 0  0 implies node  in‡uences node .

To establish the performance of the estimator in capturing variation in link strength, we proceed

as follows for each network. First, for each node we randomly assign one of their links to have

value 0 = 7. As the underlying data generating process is assumed to allow for common time

e¤ects (), we then set the weight on all other links from the node to be equal and such that

row-sum normalization (A4’) is complied with.41 As we consider larger networks, we typically

expect them to have more non-zero entries in each row of 0, but row-sum normalization means

that each weaker link will be of lower value. This works against the detection of weaker links

using estimation methods involving penalization, because they impose small parameter estimates

shrink to zero.42 Finally, to aid exposition, we set a threshold value for link strength to distinguish

‘strong’ and ‘weak’ links. A strong (weak) link is de…ned as one for which 0  (·) 3.

Summary statistics for each network are presented in Panel A of Table A1. Following Jackson

et al. (2017), we consider the following network-wide statistics: number of edges, number of strong

and weak edges, number of reciprocated edges, clustering coe¢cient, number of components, and

the size of the maximal component. In addition, we report the standard deviation calculated

across elements of the diagonal of  2
0 . If this is zero, then the diagonal of  2

0 is either zero or

proportional to the vector of ones, and Assumption A5 would not be satis…ed. We can see that

for each case this statistic is well above zero.

Following Jackson et al. (2017), we consider the following node-level statistics: in- and out-

degree distribution (mean and standard deviation), and the three most central individuals. The

four networks di¤er in their size, complexity, and the relative importance of strong and weak ties.

For example, the Erdos-Renyi network only has strong ties, the political party network has twice

as many strong as weak ties. For the real world networks, the mean out-degree distributions are

higher so the majority of ties are weak, with the high school network having around 80% of its

edges being weak ties.

Panel data for each of the four simulations is generated as,

 = ( ¡ 00)
¡1( +0 + + ¤ + )

41For example, if in a given row of 0 there are two links, one will be randomly selected to be set to 7, and the
other set to 3. If there are three links one is set to 7 and the other two set to each have weight 15 to maintain
row-sum normalization, and so on. For the Erdos-Renyi network, there are thus only strong ties as each node has
only one link to another node.

42Caner and Zhang (2014) state that “local to zero coe¢cients should be larger than ¡1
2 to be di¤erentiated

from zero.”
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where  is a (scalar) time e¤ect and ¤ is a  £ 1 vector of …xed e¤ects, drawn respectively from

(1 1) and ( £) distributions. We consider  = f5 10 15 25 50 75 100 125 150g. The

true parameters are set to 0 = 3, 0 = 4 and 0 = 5 (thus satisfying Assumption A3). The

exogenous variable () and error term () are simulated as standard Gaussian, both generated

from (0  £) distributions. This is similar to variance terms set in other papers, e.g., Lee

(2004). We later conduct a series of robustness checks to evaluate the sensitivity of the simulations

to alternative parameters choices, and the presence of common- and individual-level shocks.

For each combination of parameters, we conduct 1 000 simulation runs. On the initial 50

runs, we choose penalization parameters  that minimize the BIC criteria on a grid. This is

computationally intensive because it requires running the optimization procedure described in

Section 3.1 as many times as the number of points in the grid for .43 To reduce the computational

burden, we do so only in the initial 50 runs and consider these simulation runs as a calibration

of . For the remaining 950 iterations, the penalization parameter  is set …xed at the median 

computed over the calibration runs. This only worsens the performance of the estimator, since a

sub-optimal  is chosen for the majority of the iterations.

C.2 Results

We evaluate the procedure over varying panel lengths (starting from short panels with  = 5),

using the following metrics. Given our core contribution is to identify the social interactions matrix,

we …rst examine the proportion of true zero entries in 0 estimated as zeros, and the proportion

of true non-zero entries estimated as non-zeros. A global perspective of the proximity between

the true and estimated network can be inferred from their average absolute distance between

elements. This is the mean absolute deviation of ̂ and ¦̂ relative to their true values, de…ned

as (̂ ) = 1
(¡1)

P
6= ĵ ¡ 0j and (¦̂) = 1

(¡1)

P
6= j¦̂ ¡ ¦0j. The

closer these metrics are to zero, more of the elements in the true matrix are correctly estimated.

Finally, we evaluate the performance of the procedure using averaged estimates of the endogenous

and exogenous social e¤ect parameters, ̂ and ̂. In keeping with the estimation strategy in our

empirical application, we report ‘post-Elastic Net’ estimates obtained after having estimated the

social interactions matrix by the Elastic Net GMM procedure. We use peers-of-peers’ covariates

from the estimated matrix as instrumental variables.

Each Panel in Figure A1 shows a di¤erent metric as we vary  for each simulated network.

Panel A shows that for each network, the proportion of zero entries in 0 correctly estimated as

zeros is above 90% even when exploiting a small number of time periods ( = 5). The proportion

approaches 100% as  grows. Panel B shows the proportion of non-zeros entries estimated as

non-zeros is also high for small  . It is above 70% from  = 5 for the Erdos-Renyi network, being

43In our simulations, we set the penalization grid to 1 = [0 025 05 10], ¤
1 = [0 025 05 10] and 2 =

[0 025 05 10], resulting in 43 = 64 points per run.
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at least 85% across networks for  = 25, and increasing as  grows.

Panels C and D show that for each simulated network, the mean absolute deviation between

estimated and true networks for ̂ and ¦̂ falls quickly with  and is close zero for large sample

sizes. Finally, Panels E and F show that biases in the endogenous and exogenous social e¤ects

parameters, ̂ and ̂, also fall quickly in  (we do not report the bias in ̂ since it is close to

zero for all  ). The fact that biases are not zero is as expected for small  , being analogous to

well-known results for autoregressive time series models.

Figure A2 provides a visual representation of the simulated and actual networks under  = 100

time periods. The network size is set to  = 30 in the two stylized networks,  = 70 for the high

school network, and  = 65 for the village household network. In comparing the simulated and

true network, Figure A2 distinguishes between three types of edges: kept edges, added edges and

removed edges. Kept edges are depicted in blue: these links are estimated as non-zero in at least

5% of the iterations and are also non-zero in the true network. Added edges are depicted in green:

these links are estimated as non-zero in at least 5% of the iterations but the edge is zero in the

true network. Removed edges are depicted in red: these links are estimated as zero in at least 5%

of the iterations but are non-zero in the true network. Figure A2 further distinguishes between

strong and weak links: strong links are shown in solid edges (0  3), and weak links are shown

as dashed edges.

Consider …rst Panel A of Figure A2, comparing the simulated and true Erdos-Renyi network.

All zero and all non-zero links are correctly estimated. All links are thus recovered and no edges are

added to the true network (all edges are in blue). For the political party network, Panel B shows

that all strong edges are correctly estimated (it also highlights the party leader nodes). However,

around half the weak edges are recovered (blue dashed edges) with the others being missed (red

dashed edges). As discussed above, this is not surprising given that shrinkage estimators force

small non-zero parameters to zero. Hence, larger  is needed to achieve similar performance as

in the other simulated networks in terms of detecting weak links. Again, we never estimate any

added edges (no edges are green).

For the more complex and larger real-world networks, Panel C shows that in the high school

network, strong edges are all recovered. However, around half the weak edges are missing (red

dashed edges) and there are a relatively small number of added edges (green edges): these amount

to 87 edges, or approximately 19% of the 4 534 zero entries in the true high-school network. A

similar pattern of results is seen in the village network in Panel D: strong edges are all recovered,

and here the majority of weak edges are also recovered. A relatively small share of overall edges

are added or missed.

Panel B of Table A1 compares the network- and node-level statistics calculated from the re-

covered social interactions matrix ̂ to those in Panel A from the true interactions matrix 0.

As Figure A2 showed, the random Erdos-Renyi network is perfectly recovered. For the political

party network, the number of recovered edges is slightly lower than the true network (38 vs. 45).
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This is driven by weak edges: while all the strong edges are recovered (30 out of 30), not all the

weak ones are (8 vs. 15). On node-level statistics, the mean of the in- and out-degree distributions

are slightly lower in the recovered network, the clustering coe¢cient is exactly recovered, and all

three nodes with the highest out-degree are correctly captured (nodes 1, 11 and 28), that includes

both party leaders (individuals 1 and 11).

Performance in the two real world networks is also encouraging. In the high school network,

all strong edges are correctly recovered, as are the majority of weak edges. However, as already

noted in Figure A2, because weak edges are not well estimated in the high school network, the

average in- and out- degrees are smaller in the recovered network relative to the true network. We

recover two out of the three individuals with the highest out-degree (nodes 21 and 69). Finally,

in the village network, all strong edges are recovered, the majority of weak edges are recovered,

the clustering coe¢cients are similar across recovered and true networks (134 vs. 141) and we

recover two out of the three households with the highest out-degree (nodes 16, 35, and 57).

C.3 Robustness

Table A2 presents results for the recovered stylized networks under varying network sizes,  =

f15 30 50g. Di¤erences between the true and estimated networks are fairly constant as  in-

creases: even for small  = 15 a large proportion of zeros and non-zeros are correctly estimated.

In all cases, biases in ̂ and ̂ decrease with larger  . We also conduct a counterpart robustness

check for one of the real work networks. More precisely, we use the savings and insurance networks

between households in villages identi…ed in Banerjee et al. (2013), that are generally larger than

family networks focused on so far. Table A3 shows descriptive statistics on this true village net-

work (Panel A) and the recovered network (Panel B). Relative to the family network, the savings

and insurance network has many more edges, a greater proportion of weak edges, is less clustered,

with nodes having a higher degree distribution. Despite these di¤erences, the recovered network

retains good accuracy on many dimensions: 78% of all edges are recovered, the recovered clustering

coe¢cient is 058 (relative to an actual coe¢cient of 073) and the three nodes with the highest

out-degree are all still identi…ed.

Table A4 conducts robustness checks on the sensitivity of the estimates to parameters choices.

We consider true parameters 0 = f1 3 7 9g, 0 = f3 7g, 0 = f0 8g. We also introduce a

common shock in the disturbance variance-covariance matrix by varying  in,
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where we consider  = f3 5 8 1g. We …nd the procedure to be robust to the true values of
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0, 0, 0, and . For 0 = 0, performance is slightly worse. This is expected as the exogenous

variation from  no longer a¤ects  directly.

We next probe the procedure by richening up the structure of shocks across nodes. First, we

introduce a common shock correlated with covariates . To do so, we take  from a Gaussian

distribution with mean 05 and, as before, variance 1. Second, we implement a version where

the shock is constant over time but varies at the individual level. In this case, the mean of  is

given by 05¤. Third, we implement a version mixing the two types of shocks, with the mean of

 given by 05¤+05. In each case, we simulate based on the Erdos-Renyi network as the true

0. The results are shown in Figure A3: this shows that for each of the six performance metrics

considered, the procedure is highly robust to these richer structures of shocks across individuals

and time periods.

The …nal robustness check demonstrates the gains from using the Adaptive Elastic Net GMM

estimator over alternative estimators. Table A5 shows simulation results using Adaptive Lasso

estimates of the interaction matrix ¦0, so estimating and penalizing the reduced-form. The Ad-

aptive Lasso estimator performs relatively worse: the mean absolute deviation between ̂ and 0

is often two to three times larger than the corresponding Adaptive Elastic Net estimates. Appendix

Table A6 then shows the performance of the procedure based on OLS estimates of ¦0. Given OLS

requires  ¿  , we use a time dimension ten times larger,  = f500 1000 1500g, and still …nd

a deterioration in performance compared to the Adaptive Elastic Net GMM estimator.

Taken together, these robustness checks suggest the Adaptive Elastic Net GMM estimator is

preferred over Adaptive Lasso and OLS estimators. This procedure does well in recovering true

network structures, and a fortiori, network- and node-level statistics. It does so in networks that

vary in size and complexity, and as the underlying social interactions model varies in the strength

of endogenous and exogenous social e¤ects, and the structure of shocks.

D Application: Counterfactuals

We consider a scenario in which California exogenously increases the change in its taxes per capita,

so ¢  corresponds to an increase of 10%. We measure the di¤erential change in equilibrium state

taxes in state  under the two network structures using the following statistic:

¨ = log(¢ ĵ)¡ log(¢ j) (20)

so that positive (negative) values imply taxes being higher (or lower) under ̂ than .
44

Figure A4 graphs ¨ for each mainland US state (including for California itself, the origin of

the shock). A wide discrepancy between the equilibrium state tax rates predicted under ̂

44We calculate the counterfactual at ̂2 = 608, the endogenous e¤ect parameter estimated in our preferred
speci…cation, Column 7 of Table 2.
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relative to : across states ¨ varies from ¡303 to 961. Only in one state is ¨ close to

zero. Table A9 summarizes the general equilibrium e¤ects under both structures. We see that

average tax rate increases are 74% higher under ̂. The dispersion of tax rates across states

also increases dramatically under ̂. Finally, assuming interactions across states are based

solely on geographic neighbors, we miss the fact that many states will have relatively small tax

increases.
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Table 1: Geographic Neighbors

Dependent variable: Change in per capita income and corporate taxes

Coefficient estimates, standard errors in parentheses

(1) OLS (2) 2SLS (3) OLS (4) 2SLS

Geographic Neighbors' Tax Change (t - [t-2]) .375*** .868*** .271*** .642***

(.120) (.273) (.075) (.152)

Period 1962-1988 1962-1988 1962-2015 1962-2015

First Stage (F-stat) 6.267 27.320

Controls Yes Yes Yes Yes

State and Year Fixed Effects Yes Yes Yes Yes

Observations 1,296 1,248 2,592 2,544

Extended SampleBesley and Case (1995) Sample

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. In all specifications, a pair of states are considered neighbors if they share a geographic border. The

sample covers 48 mainland US states. In Columns 1 and 2 the sample runs from 1962 to 1988 (as in Besley and Case (1995)). In Columns 3 and 4 the sample is
extended to run from 1962 to 2015. The dependent variable is the change in state i's total taxes per capita in year t. OLS regressions estimates are shown in Columns 1
and 3. Columns 2 and 4 show 2SLS regressions where each geographic neighbors' tax change is instrumented by lagged neighbor's state income per capita and
unemployment rate. At the foot of Columns 2 and 4 we report the p-value on the F-statistic from the first stage of the null hypothesis that instruments are jointly equal to
zero. All regressions control for state i’s income per capita in 1982 US dollars, state i’s unemployment rate, the proportion of young (aged 5-17) and elderly (aged 65+) in
state i’s population, and the state governor's age. All specifications include state and time fixed effects. With the exception of governor's age, all variables are differenced
between period t and period t-2. Robust standard errors are reported in parentheses.



Table 2: Economic Neighbors

Dependent variable: Change in per capita income and corporate taxes

Coefficient estimates, standard errors in parentheses

(1) Initial (2) OLS

(3) 2SLS: IVs are

Characteristics of

Neighbors

(4) Initial (5) OLS

(6) 2SLS: IVs are

Characteristics of

Neighbors

(7) 2SLS: IVs are

Characteristics of

Neighbors-of

Neighbors

Economic Neighbors' Tax Change (t - [t-2]) .886 .378*** .641*** .645 .145** .332* .608***

(.061) (.060) (.072) (.199) (.220)

Period

First Stage (F-stat) 19.353 9.571 10.480

Controls Yes Yes Yes Yes Yes Yes Yes

State and Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes

Observations 2,952 2,952 2,544 2,952 2,952 2,544 2,592

Exogenous Social Effects

1962-20151962-2015

No Exogenous Social Effects

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The sample covers 48 mainland US states running from 1962 to 2015. The dependent variable is the change in state i's total

taxes per capita in year t. We allow for exogenous social effects in Columns 4 to 7. In subsequent OLS and IV regressions, the economic neighbors' effect is calculated as the weighted
average of economic neighbors' variables. OLS regressions estimates are shown in Column 2, 3 and 5. Column 3 and 6 show the 2SLS regression where each geographic neighbors' tax

change is instrumented by lagged neighbor's state income per capita and unemployment rate. Column 7 shows a 2SLS regression where each geographic neighbors' tax change is

instrumented by lagged neighbor-of-neighbor's state income per capita and unemployment rate. At the foot of Columns 3, 6 and 7 we report the p-value on the F-statistic from the first
stage of the null hypothesis that instruments are jointly equal to zero. All regressions control for state i’s income per capita in 1982 US dollars, state i’s unemployment rate, the proportion of
young (aged 5-17) and elderly (aged 65+) in state i’s population, and the state governor's age. All specifications include state and time fixed effects. With the exception of governor's age,

all variables are differenced between period t and period t-2. Robust standard errors are reported in parentheses.



Table 3: Geographic Versus Economic Neighbor Networks

Geographic Neighbor
Network

Economic Neighbor
Network

Number of Edges 214 144

Edges in Both Networks 79 79

Edges in W-geo only 135

Edges in W-econ only 65

Clustering .1936 .0259

Reciprocated Edges 100% 29.17%

out-degree 3.000 (1.185)

in-degree 3.000 (2.073)
4.458 (1.597)

Degree Distribution Across Nodes (states)

Notes: This compares statistics derived from the geographic network of US states to those from the estimated economic

network among US states. The number of edges, edges in both networks, edges in W-geo only, edges in W-econ only
counts the number of edges in those categories. Reciprocated edges is the frequency of in-edges that are reciprocated by
out-edges (by construction, this is 100% for geographic networks). The clustering coefficient is the frequency of the
number of fully connected triplets over the total number of triplets. The degree distribution across nodes counts the
average number of connections (standard deviation in parentheses): we show this separately for in-degree and out-degree
(by construction, these are identical for geographic networks).



Table 4: Predicting Links to Economic Neighbors

Columns 1-7: Linear Probability Model; Column 8: Tobit

Dependent variable (Cols 1-7): =1 if Economic Link Between States Identified

Dependent variable (Col 8): =Weighted Link Between States

Coefficient estimates, standard errors in parentheses

Economic and

Demographic

Homophyly

Labor

Mobility

Political

Homophyly

Tax

Havens

Tobit, Partial

Avg Effects

(1) (2) (3) (4) (5) (6) (7) (8)

Geographic Neighbor .699*** .701*** .701*** .698*** .698*** .697*** .068***

(.030) (.032) (.030) (.031) (.031) (.031) (.006)

Distance -.453*** -.008

(.033) (.024)

Distance sq. .0949*** .003

(.007) (.006)

GDP Homophyly 2.409** 2.369* 2.296* 1.046 .322

(1.183) (1.186) (1.193) (1.150) (.302)

Demographic Homophyly .222 .235 .241 .256 .077

(.226) (.226) (.228) (.225) (.067)

Net Migration .044* .044* -0.032 0.001

(.025) (.025) (.025) (.002)

Political Homophyly -.057 -.083** -.025*

(.042) (.042) (.014)

Tax Haven Sender .107*** .021***

(.024) (.005)

Adjusted R-squared 0.427 0.152 0.427 0.428 0.429 0.429 0.440 -

Observations 2,256 2,256 2,256 2,256 2,256 2,256 2,256 2,256

Geography

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The specifications in Columns 1-7 are cross-sectional linear probabilities models

where the dependent variable is equal to 1 if two states are linked, and zero otherwise. In Column 8 the dependent variable is the weighted link
between states. Column 8 reports the partial average effects from a Tobit model. A pair of states is considered a first-degree geographic neighbor if
they share a border. Distance and distance squared are calculated from the centroids of states' capital cities. GDP homophyly is the absolute
difference of states' GDP per capita. Demographic homophyly is the absolute difference of share of young (aged 5-17) plus the absolute difference
of the share of elderly in states' population (aged 65+). Net migration based on individuals tax returns (Source: Internal Revenue Service,
https://www.irs.gov/statistics/soi-tax-stats-migration-data). Political homophyly is equal to one if a pair of states have governors of same party at
given year. Nevada, Delaware, Montana, South Dakota, Wyoming and New York are considered tax haven states. Time averages are taken for all
explanatory variables. Robust standard errors in parentheses.



Table 5: Gubernatorial Term Limits

Dependent variable: Change in per capital income and corporate taxes

Coefficient estimates, standard errors in parentheses

IVs: Characteristics of Neighbors-of-Neighbors

(1) OLS (2) 2SLS (3) OLS (4) 2SLS (5) OLS (6) 2SLS

Economic Neighbors' tax change (t - [t-2]) .145** .608*** .016 .937* .182** .543**

(.072) (.220) (.105) (.534) (.084) (.237)

Period

First Stage (F-stat) 10.480 2.835 10.120

Controls Yes Yes Yes Yes Yes Yes

State and Year Fixed Effects Yes Yes Yes Yes Yes Yes

Observations 2,592 2,592 640 640 1,917 1,917

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The sample in Columns 1 and 2 covers 48 mainland US states running from 1962 to 2015. In Columns 3 and 4 we use

the subsample of state-years in which the governor that faced term limits in the subsequent gubernatorial election. In Columns 5 and 6 we use the subsample of state-years in which

the governor did not face term limits in the subsequent gubernatorial election, and so could run for reelection. The dependent variable is the change in state i's total taxes per capita

in year t. We first estimate our procedure which outputs parameters and the network of economic neighbors. We penalize geographic neighbors throughout and also allow for

exogenous social effects. OLS regressions estimates are shown in Columns 1, 3 and 5. Columns 2, 4 and 6 show a 2SLS regression where each geographic neighbors' tax change

is instrumented by lagged neighbor-of-neighbor's state income per capita and unemployment rate. At the foot of Columns 2, 4 and 6 we report the p-value on the F-statistic from the

first stage of the null hypothesis that instruments are jointly equal to zero. All regressions control for state i’s income per capita in 1982 US dollars, state i’s unemployment rate, the

proportion of young (aged 5-17) and elderly (aged 65+) in state i’s population, and the state governor's age. All specifications include state and time fixed effects. With the exception

of governor's age, all variables are differenced between period t and period t-2. Robust standard errors are reported in parentheses.

1962-2015 1962-2015 1962-2015

All Governors
Governor Cannot Run for Re-

election

Governor Can Run for Re-

election



Geographic network edges

Removed (geographic) edges in economic network

New edges added in economic networks

Figure 1B: Network Graph of US States, Identified Economic Neighbors

Notes: Figure 3B represents the continental United States (N=48). The economic network is derived from our preferred specification, where we penalize geographic neighbors to states, and

allow for exogenous social effects. A blue edge is drawn between a pair of states if they are geographic neighbors and were estimated as connected. A red edge is drawn between a pair of states

if they are geographic neighbors but were not estimated as connected. A green edge is drawn between a pair of states if they are not geographic neighbors and were estimated connected. The

left hand side graph just shows read and blue edges. The right hand side shows all three types of edges. State abbreviations are as used by US Post Office (http://about.usps.com/who-we-

are/postal-history/state-abbreviations.pdf).

Notes: Figure 3A represents the continental US states (N=48). An edge is drawn between a pair of states if they share a geographic border. State abbreviations are as used by US Post Office

(http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf).

Figure 1A: Network Graph of US States, Geographic Neighbors



Geographic network edges
Removed (geographic) edges in economic network
New edges added in economic networks

Panel B: In-network for California

Figure 2: Strength of Ties and Reciprocity

Panel C: Out-network for California

Panel A: Histogram of Strength of Ties, Conditional on W0,ij>0

Notes: Panel A is the histogram of ties in the economic network, conditional on non-zero ties. Panels B and C show the in-network and out-network of California as derived

from our preferred specification, where we penalize geographic neighbors to states, and allow for exogenous social effects. The in-network are the states that determine tax

setting in California. The out-network is the states in which taxes are set in direct response to those in California. A blue edge is drawn between a pair of states if they are

geographic neighbors and were estimated as connected. A red edge is drawn between a pair of states if they are geographic neighbors but were not estimated as connected.

A green edge is drawn between a pair of states if they are not geographic neighbors and were estimated connected. State abbreviations are as used by US Post Office

(http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf).



Figure 3: In- and Out-degree Distribution

Panel A: In-degree distribution Panel B: Out-degree distribution

Notes: In-degree distribution (Panel A) and out-degree distribution (Panel B). Distribution calculated from geographic neighbors' network (W-geo) in blue. Distribution calculated from economic neighbor's

network in (W-econ) in red. State abbreviations are as used by US Post Office (http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf).



A. % of zeros B. % of non-zeros

C. Mean Absolute Deviation of D. Mean Absolute Deviation of

E. Endogenous Social Effect, F. Exogenous Social Effect

Notes: These simulation results are based on the Banerjee et al. (2013) village network, using the Adaptive Elastic Net GMM

algorithm, with penalization parameters chosen by BIC, under various assumptions about knowledge of the true network and

time periods T=25, 50, 100, 125 and 150. The “Village" case refers to the simulation implemented without knowledge about the

true network. "Village (top 3)" refers to the case where all connections of the three households with highest out-degrees are

assumed to be known. "Village (top 5)" and "Village (top 103)" are analogously defined. In all cases, 1000 Monte Carlo

iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. In Panel A, the % of zeroes refers to

the proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. In Panel B, the % of

non-zeros refers to the proportion of true elements greater than .3 in the social interaction matrix that are estimated as non-

zeros. In Panels C and D, the Mean Absolute Deviations are the mean absolute error of the estimated network compared to the

true network for the social interaction matrix W and the reduced form matrix respectively. In Panels E and F, the true parameter

values are marked in the horizontal red lines. The recovered parameter are the estimated parameters averaged across

iterations. All specifications include time and node fixed effects.

Figure 4: Simulation Results, Adaptive Elastic Net GMM
Partial Knowledge of W0
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Panel B: Econ Network, 1989-2015 subsample

Panel C: Geographic Versus Economic Neighbor Networks
Geographic

Neighbor

Network

Economic Neighbor

Network (Full Sample)

Economic Neighbor

Network (1962-1988)

Economic Neighbor

Network (1989-2015)

Number of Edges 214 144 197 185

Edges in both W-geo and W-econ 79 108 86

Edges in W-econ only 65 89 99

Edges in W-geo only 135 106 128

Clustering .1936 .0259 .0389 .0394

Reciprocated Edges 100% 29.17% 35.53% 23.78%

out-degree 3.000 (1.185) 4.104 (1.704) 3.854 (1.473)

in-degree 3.000 (2.073) 4.104 (2.707) 3.854 (2.518)

Notes: This compares statistics derived from the geographic network of US states to those from the estimated economic network among US states, for the three samples ("Full Sample", 1962-

2015; 1962-1988; 1989-2015). The number of edges, edges in both networks, edges in W-geo only, edges in W-econ only counts the number of edges in those categories. Numbers are relative

to the W-geo network in the first column. Reciprocated edges is the frequency of in-edges that are reciprocated by out-edges (by construction, this is 100% for geographic networks). The

clustering coefficient is the frequency of the number of fully connected triplets over the total number of triplets. The degree distribution across nodes counts the average number of connections

(standard deviation in parentheses): we show this separately for in-degree and out-degree (by construction, these are identical for geographic networks).

Panel A: Econ Network, 1962-1988 subsample

Figure 5: Network Graph of US States, Identified Economic Neighbors by Subsamples

Notes: Panels A and B represents the continental United States (N=48). Panel A is estimated withe 1962-1988 subsample. Panel B is estimated with the 1989-2015 subsample. The economic

network is derived from our preferred specification, where we penalize geographic neighbors to states, and allow for exogenous social effects. A blue edge is drawn between a pair of states if they

are geographic neighbors and were estimated as connected. A red edge is drawn between a pair of states if they are geographic neighbors but were not estimated as connected. A green edge is

drawn between a pair of states if they are not geographic neighbors and were estimated connected. The left hand side graph just shows read and blue edges. The right hand side shows all three

types of edges. State abbreviations are as used by US Post Office (http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf).

Degree Distribution Across Nodes (states)

4.458 (1.597)



Erdos-Renyi Political Party High school Village
Coleman (1964) Banerjee et al. (2013)

Number of nodes 30 30 70 65

(a) Network-wide statistics

Number of edges 30 45 366 240

Number of strong edges 30 30 70 65

Number of weak edges 0 15 296 175

Number of reciprocated edges 2 2 184 240

Clustering coefficient - .000 .120 .141

Number of components 12 11 3 3

Size of maximal component 10 16 68 51

Standard deviation of the

diagonal of squared W

(b) Node-level statistics

In-degree distribution 1.00 (0.00) 1.50 (.509) 5.23 (2.04) 3.69 (2.35)

Out-degree distribution 1.00 (1.05) 1.50 (2.49) 5.23 (3.64) 3.69 (2.35)

Nodes with highest out-degree { 7, 11, 26 } { 1, 11 , 28 } { 21, 22, 69 } { 16, 35, 57 }

(a) Network-wide statistics

Number of edges 30 38 210 194

Number of strong edges 30 30 70 68

Number of weak edges 0 8 140 126

Number of reciprocated edges 2 2 184 170

Clustering coefficient - .000 .162 .134

Number of components 12 11 1 4

Size of maximal component 10 14 70 48

(b) Node-level statistics

In-degree distribution 1.00 (0.00) 1.27 (.450) 3.00 (1.18) 2.99 (1.29)

Out-degree distribution 1.00 (1.05) 1.27 (1.76) 3.00 (1.02) 2.99 (1.15)

Nodes with highest out-degree { 7, 11, 26 } { 1, 11, 28 } { 21, 48, 69 } { 16, 35, 57 }

A. True Networks

Table A1: True and Recovered Networks

Notes: Panel A refers to the true networks. Panel B refers to the recovered networks. In each Panel, the summary statistics are divided into

network-wide and node-level statistics. Strong edges are defined as those with strength greater than or equal to .3. For the in-degree and out-

degree distribution, the mean is shown and the standard deviation is in parentheses. The nodes with the highest out-degree are those with the

greatest influence on others, and are calculated as the column-sum of the social interaction matrix. The recovered networks statistic are calculated

over the average network across simulations with T=100.

.254 .254 .167 .239

B. Recovered Networks



Table A2: Simulation Results, Adaptive Elastic Net GMM, Alternative Network Sizes

T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150

% True Zeroes .954 .976 .973 .957 .992 .997 .947 .965 .979 .950 .977 .979 .943 .978 .989 .943 .961 .976

(.033) (.031) (.031) (.009) (.004) (.002) (.007) (.006) (.005) (.031) (.025) (.024) (.009) (.006) (.005) (.007) (.006) (.006)

% True Non-Zeroes .899 .919 .924 .958 .960 .962 .977 .978 .977 .914 .925 .932 .930 .954 .960 .970 .977 .977

(.051) (.032) (.026) (.017) (.016) (.011) (.007) (.007) (.008) (.038) (.022) (.009) (.037) (.023) (.016) (.015) (.009) (.007)

.021 .007 .004 .017 .003 .001 .020 .011 .006 .032 .019 .017 .028 .014 .010 .023 .014 .009

(.014) (.011) (.008) (.004) (.001) (.001) (.002) (.001) (.001) (.011) (.007) (.004) (.004) (.002) (.002) (.002) (.001) (.001)

.025 .012 .009 .020 .004 .003 .054 .016 .007 .034 .021 .019 .028 .014 .012 .065 .019 .009

(.012) (.008) (.006) (.004) (.002) (.001) (.018) (.004) (.002) (.009) (.006) (.003) (.004) (.002) (.001) (.028) (.004) (.001)

.262 .270 .276 .286 .286 .283 .667 .398 .270 .235 .245 .241 .209 .228 .223 .700 .383 .242

(.069) (.044) (.038) (.079) (.026) (.022) (.079) (.050) (.050) (.078) (.049) (.038) (.084) (.035) (.029) (.100) (.069) (.051)

.403 .399 .400 .405 .400 .400 .380 .399 .401 .405 .400 .397 .404 .399 .398 .380 .400 .401

(.039) (.028) (.022) (.028) (.018) (.015) (.025) (.015) (.012) (.040) (.028) (.022) (.029) (.019) (.015) (.024) (.015) (.012)

.577 .521 .507 .670 .516 .498 .748 .686 .595 .550 .481 .459 .669 .501 .463 .686 .666 .566

(.094) (.059) (.046) (.054) (.022) (.018) (.118) (.056) (.028) (.093) (.060) (.050) (.060) (.027) (.021) (.128) (.063) (.032)

Notes: These simulation results are based on the Adaptive Elastic Net GMM algorithm, with penalization parameters chosen by BIC, under various true networks, network sizes and

time periods T=50, 100 and 150. In all cases, 1000 Monte Carlo iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. The % of true zeroes refers

to the proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of true elements greater

than .3 in the social interaction matrix that are estimated as non-zeros. The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true

network for the social interaction matrix W and the reduced form matrix respectively. The recovered parameter are the estimated parameters averaged across iterations. All

specifications include time and node fixed effects. Standard errors across iterations are in parentheses.
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Table A3: True and Recovered Village Networks

Village Village
Family Savings and Insurance

Banerjee et al. (2013) Banerjee et al. (2013)

Number of nodes 65 65

(a) Network-wide statistics

Number of edges 240 343

Number of strong edges 65 47

Number of weak edges 175 296

Number of reciprocated edges 240 340

Clustering coefficient .141 .073

Number of components 3 6

Size of maximal component 51 62

Standard deviation of the

diagonal of squared W

(b) Node-level statistics

In-degree distribution 3.69 (2.35) 4.90 (3.42)

Out-degree distribution 3.69 (2.35) 4.90 (3.43)

Nodes with highest out-degree { 16, 35, 57 } { 16, 35, 55 }

(a) Network-wide statistics

Number of edges 194 269

Number of strong edges 68 65

Number of weak edges 126 204

Number of reciprocated edges 170 250

Clustering coefficient .134 .058

Number of components 4 4

Size of maximal component 48 62

(b) Node-level statistics

In-degree distribution 2.99 (1.29) 3.84 (1.90)

Out-degree distribution 2.99 (1.15) 3.84 (1.98)

Nodes with highest out-degree { 16, 35, 57 } { 16, 35, 55 }

.159

Notes: Panel A refers to the true networks. Panel B refers to the recovered networks. In each Panel, the
summary statistics are divided into network-wide and node-level statistics. Strong edges are defined as those
with strength greater than or equal to .3. For the in-degree and out-degree distribution, the mean is shown and
the standard deviation is in parentheses. The nodes with the highest out-degree are those with the greatest
influence on others, and are calculated as the column-sum of the social interaction matrix. The recovered
networks statistic are calculated over the average network across simulations with T=100.

.239

A. True Networks

B. Recovered Networks



Table A4: Simulation Results, Adaptive Elastic Net GMM, Alternative Parameters

.1 .5 .7 .9 .0 .8 .3 .7 .3 .5 .8 1.0 .1 .5 .7 .9 .0 .8 .3 .7 .3 .5 .8 1.0

% True Zeroes .986 .994 .991 .979 .986 .987 .974 .997 .996 .997 .997 .997 .971 .983 .982 .966 .978 .977 .959 .986 .985 .992 .996 .997

(.005) (.004) (.004) (.005) (.005) (.007) (.006) (.002) (.002) (.003) (.002) (.002) (.008) (.005) (.006) (.007) (.008) (.007) (.007) (.005) (.004) (.004) (.004) (.003)

% True Non-Zeroes .951 .963 .963 .956 .806 .967 .961 .961 .963 .962 .961 .959 .772 .813 .836 .864 .469 .856 .741 .834 .803 .808 .816 .832

(.028) (.011) (.011) (.017) (.096) .000 (.015) (.016) (.012) (.013) (.013) (.018) (.045) (.036) (.034) (.031) (.147) (.035) (.044) (.036) (.037) (.035) (.034) (.027)

.005 .002 .003 .007 .014 .004 .011 .001 .001 .001 .000 .000 .017 .012 .012 .018 .029 .012 .023 .010 .011 .009 .008 .007

(.002) (.001) (.001) (.002) (.005) (.002) (.003) (.001) (.001) (.001) (.001) (.001) (.003) (.002) (.002) (.003) (.007) (.002) (.003) (.002) (.002) (.001) (.001) (.001)

.005 .006 .013 .077 .013 .007 .009 .004 .003 .003 .002 .002 .011 .021 .043 .208 .021 .017 .016 .016 .013 .011 .010 .009

(.002) (.002) (.005) (.051) (.004) (.003) (.002) (.002) (.001) (.001) (.001) (.001) (.002) (.002) (.004) (.026) (.004) (.003) (.002) (.002) (.002) (.001) (.001) (.001)

.081 .487 .709 .917 .318 .244 .287 .286 .285 .285 .288 .292 .046 .403 .598 .847 .298 .171 .221 .225 .224 .222 .218 .218

(.034) (.027) (.025) (.012) (.047) (.076) (.036) (.023) (.023) (.020) (.017) (.009) (.038) (.031) (.040) (.040) (.071) (.067) (.048) (.030) (.030) (.028) (.025) (.018)

.401 .399 .397 .364 (.008) .801 .402 .399 .401 .400 .400 .400 .400 .399 .398 .380 -.015 .801 .402 .400 .399 .398 .398 .398

(.018) (.019) (.019) (.023) (.025) (.018) (.019) (.019) (.016) (.012) (.009) (.001) (.019) (.020) (.020) (.026) (.029) (.020) (.020) (.019) (.016) (.014) (.009) (.003)

.532 .512 .517 .509 .432 .552 .376 .698 .503 .495 .493 .492 .519 .489 .488 .469 .305 .548 .391 .638 .474 .454 .440 .431

(.023) (.022) (.024) (.028) (.070) (.033) (.027) (.021) (.018) (.015) (.012) (.007) (.030) (.027) (.031) (.050) (.117) (.038) (.036) (.025) (.023) (.019) (.015) (.010)

B. Political party

Notes: These simulation results are based on the Adaptive Elastic Net GMM algorithm, with penalization parameters chosen by BIC, under various true networks, network sizes, time periods T=100 and parameter values. In all cases,

1000 Monte Carlo iterations were performed. The % of true zeroes refers to the proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of

true elements greater than .3 in the social interaction matrix that are estimated as non-zeros. The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true network for the social interaction

matrix W and the reduced form matrix respectively. The recovered parameter are the estimated parameters averaged across iterations. All specifications include time and node fixed effects. Standard errors across iterations are in

parentheses.
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T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150

% True Zeroes .728 .798 .842 .737 .848 .878 .845 .846 .913 .730 .799 .840 .737 .849 .880 .846 .846 .921

(.023) (.024) (.022) (.012) (.008) (.008) (.005) (.006) (.027) (.024) (.025) (.023) (.013) (.009) (.009) (.006) (.006) (.008)

% True Non-Zeroes .996 1.000 1.000 .497 1.000 1.000 .494 .496 .930 .992 1.000 1.000 .507 1.000 1.000 .498 .501 .996

(.039) (.000) (.000) (.096) (.001) (.000) (.071) (.074) (.177) (.023) (.002) (.000) (.105) (.004) (.001) (.074) (.076) (.042)

.071 .050 .039 .064 .039 .033 .039 .039 .027 .070 .050 .039 .063 .038 .032 .039 .038 .025

(.005) (.005) (.004) (.002) (.002) (.002) (.000) (.002) (.005) (.005) (.004) (.004) (.002) (.002) (.002) (.000) (.002) (.001)

.092 .056 .042 .084 .049 .036 .071 .045 .032 .093 .057 .044 .084 .050 .036 .071 .045 .033

(.008) (.005) (.004) (.005) (.003) (.002) (.004) (.003) (.002) (.008) (.005) (.003) (.005) (.003) (.002) (.004) (.002) (.002)

.962 .815 .535 .998 .988 .965 1.000 .993 .995 .970 .783 .512 .998 .993 .979 1.000 .994 .995

(.112) (.186) (.231) (.040) (.066) (.095) (.000) (.075) (.054) (.106) (.199) (.236) (.041) (.050) (.077) (.000) (.069) (.054)

.131 .285 .330 .000 .158 .254 .000 .000 .121 .144 .292 .336 .000 .177 .259 .000 .000 .167

(.079) (.049) (.038) (.000) (.053) (.030) (.000) (.000) (.066) (.081) (.049) (.039) (.000) (.047) (.030) (.000) (.000) (.044)

.996 .998 .968 .000 1.000 .999 .000 .000 .863 1.000 .995 .942 .000 1.000 .999 .000 .000 .992

(.063) (.015) (.051) (.000) (.000) (.007) (.000) (.000) (.344) (.000) (.023) (.066) (.000) (.000) (.014) (.000) (.000) (.089)

Notes: These simulation results are based on the Adaptive Lasso algorithm, with penalization parameters chosen by BIC, under various true networks, network sizes and time periods

T=50, 100 and 150. In all cases, 1000 Monte Carlo iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. The % of true zeroes refers to the

proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of true elements greater than

.3 in the social interaction matrix that are estimated as non-zeros. The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true network

for the social interaction matrix W and the reduced form matrix respectively. The recovered parameter are the estimated parameters averaged across iterations. All specifications

include time and node fixed effects. Standard errors across iterations are in parentheses.

Table A5: Simulation Results, Adaptive Lasso
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T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500

% True Zeroes .825 .878 .911 .884 .928 .958 .936 .966 .979 .824 .882 .916 .886 .932 .959 .940 .967 .979

(.018) (.020) (.021) (.007) (.007) (.006) (.019) (.003) (.002) (.020) (.021) (.020) (.007) (.007) (.005) (.003) (.003) (.002)

% True Non-Zeroes 1.000 1.000 1.000 1.000 1.000 1.000 .977 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(.000) (.000) (.000) (.000) (.000) (.000) (.107) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)

.039 .032 .028 .031 .025 .022 .025 .021 .019 .037 .030 .025 .030 .024 .021 .024 .020 .018

(.003) (.004) (.004) (.001) (.001) (.001) (.000) (.000) (.000) (.003) (.003) (.003) (.001) (.001) (.001) (.000) (.000) (.000)

.038 .027 .022 .039 .027 .022 .040 .027 .022 .038 .027 .022 .038 .027 .022 .039 .027 .022

(.002) (.001) (.001) (.001) (.001) (.001) (.001) (.000) (.000) (.002) (.001) (.001) (.001) (.001) (.001) (.001) (.000) (.000)

.488 .381 .362 1.000 .981 .617 1.000 1.000 1.000 .465 .396 .382 1.000 .953 .590 1.000 1.000 1.000

(.114) (.117) (.108) (.000) (.051) (.064) (.000) (.000) (.000) (.108) (.104) (.074) (.000) (.075) (.062) (.000) (.000) (.000)

.394 .398 .399 .343 .372 .400 .256 .350 .353 .397 .401 .399 .346 .382 .400 .280 .350 .350

(.017) (.009) (.006) (.017) (.025) (.003) (.064) (.002) (.013) (.022) (.014) (.005) (.013) (.024) (.000) (.029) (.002) (.000)

.964 .871 .809 1.000 1.000 .998 .956 1.000 1.000 .955 .841 .769 1.000 1.000 .995 1.000 1.000 1.000

(.046) (.079) (.083) (.000) (.000) (.009) (.205) (.000) (.000) (.053) (.068) (.046) (.000) (.000) (.015) (.000) (.000) (.000)

Notes: These simulation results are based on OLS estimates, under various true networks, network sizes and time periods T=500, 1000 and 1500. In all cases, 1000 Monte Carlo

iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. The % of true zeroes refers to the proportion of true zero elements in the social interaction

matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of true elements greater than .3 in the social interaction matrix that are estimated as

non-zeros. The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true network for the social interaction matrix W and the reduced form

matrix respectively. The recovered parameter are the estimated parameters averaged across iterations. All specifications include time and node fixed effects. Standard errors across

iterations are in parentheses.

Table A6: Simulation Results, OLS
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Table A7: Summary Statistics, Tax Competition Application

Obs Mean SD Min q25 Median q75 Max

State total tax per capita 1296 .371 .266 .036 .145 .300 .530 1.345

State income per capita 1296 9.951 2.130 4.105 8.585 9.919 11.375 18.808

Unemployment rate 1296 5.885 2.242 1.800 4.200 5.500 7.000 18.000

Proportion of young 1296 .234 .033 .160 .210 .240 .260 .310

Proportion of elderly 1296 .106 .020 .040 .090 .110 .120 .190

State governor's age 1296 51.088 7.441 33.000 45.000 50.000 56.000 73.000

Governor term limit dummy 1296 .258 .438 .000 .000 .000 1.000 1.000

State total tax per capita 2688 0.983 0.803 0.036 0.037 0.813 1.557 4.298

State income per capita 2736 13.268 4.016 4.147 10.348 12.960 15.879 27.974

Unemployment rate 2688 5.764 2.026 1.800 4.300 5.400 6.800 17.800

Proportion of young 2688 0.236 0.033 0.170 0.210 0.230 0.260 0.340

Proportion of elderly 2688 0.117 0.023 0.050 0.100 0.120 0.130 0.190

State governor's age 2736 53.557 8.134 33.000 47.000 53.000 59.000 78.000

Governor term limit dummy 2638 0.249 0.433 0.000 0.000 0.000 0.000 1.000

Notes: Summary statistics of variables (in levels) used in subsequent regressions. Besley and Case sample runs from 1962 to 1988 and

extended sample until 2014. State total tax per capita is the sum of sales, income and corporation tax in thousands of 1982 US dollars. State
income per capita in thousands of 1982 US dollars. Proportion of young is the proportion of the population between 5 and 17 years. Proportion
of elderly is the proportion of the population aged 65 or older. State governor's age in years. Governor term limit dummy is equal to 1 if governor
faces term limits in the current mandate. Data sources: State total tax per capita, Census of Governments (1972, 1977, 1982, 1987, 1992-2016)
and Annual Survey of Goverment Finances (all other years); Steta income per capita, Bureau of Economic Analysis; Unemployment rate,
Bureau of Labor Statistics; Proportion of young (aged 5-17) and elderly (aged 65+), Census Population & Housing Data; State governor's age
and political variables manually sourced from individual governor's webpages on Wikipedia.

A. Besley and Case sample (1962-1988)

B. Extended sample (1962-2014)



Table A8: Exogenous Social Effects

Dependent variable: Change in per capital income and corporate taxes

Coefficient estimates, standard errors in parentheses

(1) Initial (2) OLS

(3) 2SLS: IVs are

Characteristics of

Neighbors

(4) 2SLS: IVs are

Characteristics of

Neighbors-of Neighbors

Economic Neighbors' tax change (t - [t-2]) .645 .145** .332* .608***

(.072) (.199) (.220)

Economic Neighbors' income per capita .090 .098*** .091*** .080***

(.011) (.012) (.014)

Economic Neighbors' unemployment rate 37.200 9.899*** 11.780*** 13.714***

(3.443) (2.856) (3.022)

Economic Neighbors' population aged 5-17 1378.1 376.2 478.5 596.6

(399.0) (414.2) (401.7)

Economic Neighbors' population aged 65+ -4304.5 -842.8 -769.7* -641.3

(504.3) (450.2) (468.6)

Economic Neighbors' governor age -2.158 -0.311 -0.293 -0.263

(.281) (.285) (.294)

Period

First Stage (F-stat) 9.571 10.480

Controls Yes Yes Yes Yes

State and Year Fixed Effects Yes Yes Yes Yes

Observations 2,952 2,952 2,544 2,592

1962-2015

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The sample covers 48 mainland US states running from 1962 to 2015. The dependent

variable is the change in state i's total taxes per capita in year t. In all Columns, we penalize geographic neighbors in all Columns and allow for
exogenous social effects. In OLS and IV regressions, the economic neighbors' effect is calculated as the weighted average of economic neighbors'
variables. OLS regressions estimates are shown in Column 2. Column 3 shows the 2SLS regression where each geographic neighbors' tax change is
instrumented by lagged neighbor's state income per capita and unemployment rate. Column 4 shows a 2SLS regression where each geographic
neighbors' tax change is instrumented by lagged neighbor-of-neighbor's state income per capita and unemployment rate. At the foot of Columns 3 and
4 we report the p-value on the F-statistic from the first stage of the null hypothesis that instruments are jointly equal to zero. All regressions control for
state i’s income per capita in 1982 US dollars, state i’s unemployment rate, the proportion of young (aged 5-17) and elderly (aged 65+) in state i’s
population, and the state governor's age. All specifications include state and time fixed effects. With the exception of governor's age, all variables are
differenced between period t and period t-2. Robust standard errors are reported in parentheses.



Table A9: General Equilibrium Impacts of California Tax Rise

Geographic Neighbor
Network

Economic Neighbor
Network

Ratio

Average tax increase 0.0038 0.0066 1.74

Variance tax increase 0.0160 0.0153 0.96

Tax dispersion 0.0053 0.0141 2.66

States with tax increase 48 48 1.00

States with tax increase > 0.05% 11 44 4.00

States with tax increase > 0.5% 5 11 2.20

States with tax increase > 1% 4 8 2.00

States with tax increase > 2.5% 1 3 3.00

States with tax increase > 5% 1 1 1.00

Notes: This shows the equilibrium impulse responses in taxes set in each state as a result of California increasing its tax change by 10%. The rho

coefficient is derived from our preferred specification to estimate the economic network, where we penalize geographic neighbors to states, and
allow for exogenous social effects (based on a sample of 48 mainland US states running from 1962 to 2015). We compare these derived tax
changes under the identified economic network structure, relative to that assumed under a geographic neighbors structure. The final Column
shows the ratio of the same statistic derived under each network.



A. % of zeros B. % of non-zeros

C. Mean Absolute Deviation of D. Mean Absolute Deviation of

E. Endogenous Social Effect, F. Exogenous Social Effect

Notes: These simulation results are based on the Adaptive Elastic Net GMM algorithm, with penalization parameters chosen

by BIC, under various true networks and time periods T=5, 10, 15, 25, 50, 100, 125 and 150. In all cases, 1000 Monte Carlo

iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. In Panel A, the % of zeroes refers

to the proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. In Panel B, the %

of non-zeros refers to the proportion of true elements greater than .3 in the social interaction matrix that are estimated as non-

zeros. In Panels C and D, the Mean Absolute Deviations are the mean absolute error of the estimated network compared to

the true network for the social interaction matrix W and the reduced form matrix respectively. In Panels E and F, the true

parameter values are marked in the horizontal red lines. The recovered parameter are the estimated parameters averaged

across iterations. All specifications include time and node fixed effects.

Figure A1: Simulation Results, Adaptive Elastic Net GMM
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Figure A2: Simulated and True Networks

Notes: These simulation results are based on the Elastic Net algorithm, with penalization parameters chosen by BIC, under various

true networks and time periods T=50, 100 and 150. In the two stylized networks (Erdos-Renyi and political party), we set N=30, and

the real world networks, the high school friendship and village network are based on N=65 and 70 non-isolated nodes respectively.

Party leaders in the political party network are marked in black in Panel B. In all cases, 1,000 Monte Carlo iterations were performed.

The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. All specifications include time and node fixed effects. Kept edges are

depicted in blue: these links are estimated as non-zero in at least 5% of the iterations and are also non-zero in the true network.

Added edges are depicted in green: these links are estimated as non-zero in at least 5% of the iterations but the edge is zero in the

true network. Removed edges are depicted in red: these links are estimated as zero in at least 5% of the iterations but are non-zero in

the true network. The figures further distinguish between strong and weak links: strong links are shown in solid edges (whose strength

is greater than or equal to .3), and weak links are shown as dashed edges.

A. Erdos-Renyi B. Political Party

C. High-school D. Village



A. % of zeros B. % of non-zeros

C. Mean Absolute Deviation of D. Mean Absolute Deviation of

E. Endogenous Social Effect, F. Exogenous Social Effect

Figure A3: Simulation Results, Adaptive Elastic Net GMM

Erdos-Renyi graph (N=30)

Notes: Simulations with common shocks between the exogenous variable and the error term: time-constant and varying at the

individual level ("individual"), constant across individuals and varying over time ("time") and both types of shocks. These

simulation results are based on the Adaptive Elastic Net GMM algorithm, with penalization parameters chosen by BIC, under

various true networks and time periods T=25, 50, 100, 125 and 150. In all cases, 1000 Monte Carlo iterations were performed.

The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. In Panel A, the % of zeroes refers to the proportion of true zero

elements in the social interaction matrix that are estimated as smaller than .05. In Panel B, the % of non-zeros refers to the

proportion of true elements greater than .3 in the social interaction matrix that are estimated as non-zeros. In Panels C and D,

the Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true network for the social

interaction matrix W and the reduced form matrix respectively. In Panels E and F, the true parameter values are marked in the

horizontal red lines. The recovered parameter are the estimated parameters averaged across iterations. All specifications

include time and node fixed effects.
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Positive values indicate higher equilibrium taxes under Economic neighbors than geographic neighbors
Negative values indicate low equilibrium taxes under Economic neighbors than geographic neighbors

Figure A4: General Equilibrium Impacts of CA Tax Rise Shocks

State's Reaction to 10% increase in CA taxes

Log(equilibrium taxes under W-econ) - Log(equilibrium taxes under W-geo)

Notes: This shows the equilibrium impulse responses in taxes set in each state as a result of California increasing its tax change by 10%. This is as derived from our preferred

specification, where we penalize geographic neighbors to states, and allow for exogenous social effects. We compare these derived tax changes under the identified economic network
structure, relative to that assumed under a geographic neighbors structure. We graph the log change in equilibrium taxes under economic neighbors, minus the log change in equilibrium
taxes under geographic neighbors. Positive values (red shaded) states indicate higher equilibrium taxes under economic neighbors than geographic neighbors, and negative values
(blue shaded) states indicate lower equilibrium taxes under economic neighbors than geographic neighbors.
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