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Effects of unobserved defaults on correlation between 
probability of default and loss given default on 
mortgage loans 

Bank of Finland Research 
Discussion Papers 3/2009 

Peter Palmroos 
Monetary Policy and Research Department 
 
 
Abstract 

This paper demonstrates how the observed correlation between probability of 
default and loss given default depends on the fact that defaults in which collateral 
provides 100% recovery are not observed. Creditors see only the defaults of 
mortgagors who suffer from a fall in collateral value to less than the remaining 
loan principal. Consequently, the default data available to creditors amounts to a 
mere truncated sample from the underlying population of defaults. Correlation 
estimates based on such truncated samples are biased and differ substantially from 
estimates derived from representative non-truncated samples. Moreover, the 
observed correlation between default probability and loss given default is 
sensitive to the truncation point, which may explain the differences in correlation 
estimates found in the literature. This may also explain why correlation estimates 
seem to be specific to cycle phase. 
 
Keywords: credit risks, mortgage loans, truncated distributions, sample selection, 
log-normal distribution 
 
JEL classification numbers: G21, G28, C46, E32 
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Havaitsemattomien maksukyvyttömyystapausten 
vaikutus asuntoluottojen tappiotodennäköisyyden ja 
tappio-osuuden väliseen korrelaatioon 

Suomen Pankin keskustelualoitteita 3/2009 

Peter Palmroos 
Rahapolitiikka- ja tutkimusosasto 
 
 
Tiivistelmä 

Tämän työn tarkoituksena on osoittaa, miten havaintojen perusteella estimoitu 
korrelaatio tappiotodennäköisyyden (probability of default, PD) ja tappio-odotuk-
sen (loss-given-default, LGD) välillä riippuu siitä, etteivät kaikki maksukyvyt-
tömyystapaukset (default) ole pankkien havaittavissa. Lainanantajat pystyvät var-
muudella havaitsemaan vain ne maksukyvyttömyystapaukset, joissa vakuuden 
arvo ei enää kata jäljellä olevaa lainaa. Tapaukset, joissa vakuus kattaa koko jäl-
jellä olevan lainapääoman ja kertyneet korot, eivät sen sijaan ole varmuudella 
havaittavissa, ja niitä on joka tapauksessa vaikea erottaa normaaleista asunnon-
vaihtoon liittyvistä ennenaikaisista takaisinmaksuista. Näin ollen lainanantajien 
rekisteröimät maksukyvyttömyystapaukset ovat ainoastaan katkaistu otos kaikkien 
maksukyvyttömyystapahtumien joukosta. Korrelaatioestimaatit, jotka perustuvat 
tällaisiin katkaistuihin otoksiin ovat harhaisia ja eroavat huomattavastikin niistä 
estimaateista, jotka on laskettu katkaisemattomasta havaintojoukosta. Lisäksi 
havaitut korrelaatiot tappiotodennäköisyyden ja tappio-odotuksen välillä ovat 
herkkiä katkaisupisteen sijainnin suhteen. Toisistaan poikkeavat katkaisupisteet 
saattavat selittää eron julkaistujen tutkimusten korrelaatioestimaattien välillä. 
Jakauman katkaisu selittää myös, miksi joissain tutkimuksissa on havaittu korre-
laation suhdanneriippuvaisuutta. 
 
Avainsanat: luottoriski, asuntoluotot, katkaistu jakauma, kaksiulotteinen log-
normaali jakauma 
 
JEL-luokittelu: G21, G28, C46, E32 
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1 Introduction

The subprime crisis has underlined the role of mortgage loans as a potential
source of credit risk and contagion. The crisis has also spotlighted the
importance of correct risk-based pricing of mortgage loans. Due to the growing
risks and the modeling of credit risk under the new Basel capital accord,
mortgage loans have become an important topic of research.
One of the key issues in credit risk modeling is the correlation between

probability of default (PD) and loss given default (LGD). In earlier studies
a nonzero correlation has been found in corporate loan and bond data. For
example, Frye (2000b), Altman et al (2002), and Das (2007) find support for
the assumption of positive correlation between these risk components. Altman,
Resti and Sironi (2002) also find that many recent studies present evidence
of the same economic factors being behind both PD and LGD which would
explain positive correlation.
The macroeconomic mechanism for the PD-LGD dependence of mortgage

loans is very similar to that for corporate loans. Conditions that lead to an
increase in corporate bankruptcies also raise the probability of unemployment;
and the dependence between housing prices and collateral values for corporate
loans is presumably very strong. One might well expect to see similar
correlations and interdependence among mortgage credit risk components. Van
Order (2007) finds evidence that the correlation effect exists within a group of
mortgage loans, which supports this expectation.
Using an incorrect correlation estimate might cause serious errors in the

risk and price calculations that are essential to mortgage lenders as well as to
financial supervisors. But these two are not the only possible victims of false
estimates of such correlations. For whole markets, even bigger effects can come
via mispricing and underestimation in connection with CDOs and mortgage
backed securities. Incorrectly estimated correlation between PD and LGD
can lead to underestimation of expected credit losses and undersized capital
allocations. Such misspecification of credit risks could falsely lull banks and
supervisors concerning the safety issue just when allocated capital is insufficient
due to the low expected PD-LGD correlation. Frye (2000a) highlights the
importance of correlation and reminds us that a severe downturn might bring
a double hit on banks if macro factors simultaneously increase both PD and
LGD and cause larger credit losses to banks than are predicted by the models.
The double hit is possible when both the number of defaults and the collateral
values are dependent on the same macroeconomic factors.
The empirical literature includes a wide range of estimated correlation

between PD and LGD. Using data on corporate loans with different
breakdowns, researchers have found correlations from zero to as high as 0.8.1

Most of the reported estimates are near the lower end of this range. For
example, for data from Altman and Kishore (1996), the correlation is 0.3. This
evidence should not, however, be seen to indicate that assuming independence
between PD and LGD would be realistic. The independence assumption has

1Carey and Gordy (2001) report correlations close to zero and Frye (2000b) reports a
correlation as high as 0.8 in a subsample of subordinated debts.
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also been rejected, for example, in papers by Chabaane et al (2004) and
Schuermann (2004). This is also in line with Altman et al (2001), who
argue that a model in which both PD and LGD behave stochastically and
are partially dependent, seems to be the most realistic. Altman, Resti and
Sironi also present a list of other papers supporting this argument.
At least a couple of explanations for the low correlation estimates can

be found in the literature. Schuermann (2004) presents evidence that the
correlation has been masked by the weighting of the data. Hu and Perraudin
(2002) have another explanation: the reported correlation might be lower than
the true correlation because of the industry breakdown that was used. Both
explanations could contain seeds of truth, but neither tells the whole story nor
is applicable to all datasets.
Estimated correlations have also varied across data subsets. A common case

in the literature is where the data are divided into subsets using a variable
that describes the different phases of the business cycle. This resulted in
unequal estimates of correlations for the different subsets. For example, Hu and
Perraudin (2002) estimate the correlation to be 0.2 in normal situations and
0.3 inside the tail subsample.2 Das (2007) report that in the set of observations
for years when default rates were high and recovery rates low, the correlation
became larger in absolute value. Similar findings are reported in the survey of
Altman et al (2002), which compares the results of Carey and Gordy (2001) and
Frye (2000b). Using the whole sample, Carey and Gordy obtain a correlation
very close to zero, in contrast to the findings of Frye. After dividing the sample
into different time periods, the subsample correlations are closer to the higher
correlation reported by Frye. Although there is evidence to suggest that the
relationship between default rates and LGD is influenced by the current phase
of the business cycle, as in Altman et al (2002), we still lack a convincing
explanation of the dependency on cycle phase.
This paper presents a possible reason for these lower-than-expected

observed correlations and for the cycle-phase-specific correlation estimates.
Findings presented in this paper help explain why one should be suspicious
of small correlations between PD and LGD presented in the other papers. A
critical attitude toward the estimates and estimation methods presented in the
literature should obtain, especially when these correlation estimates are to be
used in credit risk modeling and eg in identifying downturns or stressed LGD.
In estimating the correlation between PD and LGD one typically uses the

observed number of defaults and realized LGDs. However creditors’ ability
to observe defaults is limited. If the value of collateral covers the remaining
principal and accrued interest on the loan, the creditor might be unable to
observe the default, because the debtor is able to pay the remaining principal
after realizing the collateral. The situation can be considered a default because
the debtor is unable to pay amortization and interest without realizing the
collateral. If the realization of collateral occurs without delay, the creditor
cannot distinguish a default without loss from the normal house transfer
process. If there is some delay in the realization, a creditor might be able

2Hu and Perraudin (2002) found a negative correlation between PD and recovery rate
which equals positive correlation between PD and LGD.
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to observe a lossless default. But observations of defaults without loss are of
limited usefulness because creditors are unable to determine the number of
these from the total number of lossless defaults.
Creditors can certainly observe defaults where the value of collateral is less

than the remaining principal. These observed defaults, whose LGD is strictly
between zero and one, make up a truncated sample from the set of all defaults.
If a borrower has other collateral in addition to the house or there is some kind
of safety net for defaulting borrowers, even these defaults may be difficult to
observe. For simplicity, this paper assumes that the house is the only collateral
and that there is no safety net.
The correlation from a truncated sample is, except for some extreme cases,

lower than that from the unrestricted data set, and the difference may be huge.
Because of the possibility of a huge difference, it is important to ensure that
the truncation of default events is accounted for in the credit risk calculations.
The low correlation estimates found in the literature could result from the
omission of the effects of truncating and including only observed defaults in
the correlation calculations.
The value of collateral is dependent on the current phase of the business

cycle. In a boom phase, the value of collateral increases, and hence the coverage
of the collateral increases and the LGD decreases. In times of recession, these
changes are reversed. The effect of the dependence between cycle phase and
LGD strengthens if the number of defaults-LGD data is divided into two
subsets based on cycle phase and the correlation estimated separately for
the subsets. Because of the dependence between cycle phase and LGD, data
splitting can be considered sample selection. Such sample selection leads to
doubly truncated data where correlations of non-recession events are lower
than correlations of recession events and the correlation estimates for both
groups are substantially lower than the correlation found in the dataset as in
total between defaults and LGDs.
Using these observed correlations instead of the correlation between

unconditional variables in credit risk modeling and in risk-based capital
allocation models leads to underestimation of both expected losses and
capital requirements. This can be readily seen when banks try to calculate
downturn LGD estimates where downturn LGD is a cycle-phase-dependent
LGD estimate. The use of parameters estimated from such a misconstructed
distribution in this type of calculation can lead to totally misleading point
estimates and confidence intervals.
The empirical data fromFinland, Germany, UK, USA, and Spain supported

the assumption of negative correlation between probability of default and value
of collaterals and shed light on the level of this unobserved correlation. Finnish
data are used for estimating observable correlations, which are calculated using
several loan-to-values truncation points.
This paper is organized as follows. Section 2 describes the theory and

the default framework used in this paper. Section 3 presents the concept
of conditional probability of default and conditional loss given default, as
well as the closed solutions to correlations of truncated bivariate normal and
log-normal distributions. Section 4 discusses the empirical implications, and
some concluding remarks are given in section 5.
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2 Default in mortgage loan credit risk model

Papers on credit risk of mortgages have already adopted well known theories of
corporate loans, such as the various extensions of the Merton (1974) structured
model and the hazard rate models. The dominance of corporate loan credit
risks in modeling can be seen from the fact that only a few mortgage-specific
credit risk theories have been presented in the literature. This has also been
observed by Whitley et al (2004), who find that most papers on mortgages
focus on describing empirical findings rather than establishing theories for
credit risks. Comprehensive surveys of credit risk theories applied to corporate
loans include Allen and Saunders (2003) and Altman et al (2001).
One of the differences between corporate and private loans is in the meaning

of default. Neither in practice nor in the literature has there been a complete
description of a default on a mortgage. The papers on mortgages have either
relied on default descriptions presented in the literature on corporate-loan
credit risk or they have formulated descriptions specific to the particular paper.
Not only is the description of a mortgage loan default more difficult than
that for a corporate loan but so too are the observation and identification of
mortgage defaults more problematic in practice.
One way to explain the concept of default is to assume that behind a default

is some trigger event. Depending on the economic and juridical environment,
the significance of these triggers can vary. Some of them may be independent
of the borrower’s debt. One example of an independent trigger event is to
become unemployed. In contrast, some triggers are dependent on the features
of the loan. For example, a decrease in the coverage of collateral can lead to
default in certain legal environments. Some of the possible triggers have been
presented and categorized in the paper by Cairns and Pryce (2005).
The economic and juridical environment has a pronounced effect on which

triggers can lead to default. One way to categorize mortgage credit risk theories
is by the manner in which rational debtors react to certain possible triggers.
Whitley et al (2004) separate these theories into two groups: equity theories
and ability-to-pay -theories.
In the equity-theories framework, the rational debtor, with a slight

simplification, defaults as soon as the value of collateral sinks below the
remaining mortgage loan principal. Such behavior is rational if the local
law allows personal bankruptcy and if the mortgage loan can be cleared by
assigning the collateral to the creditor. An example of such a theory is
presented by Kau et al (1992).
In many countries the law does not allow personal bankruptcy, so that

the debtor is liable for the remaining loan after realization of the collateral.
In such an environment, voluntary default is irrational because the difference
between the loan principal and the value of the collateral remains as customer’s
debt after the default. Whitley et al (2004) refer to these approaches as
’ability-to-pay’ theories. These assume that a default is an undesired result of
debtor insolvency and never a result of rational choice.
The model presented in this paper can fit into either of these approaches

without substantial modification. In the equity-theory approach there should
be an additional trigger describing the borrower’s rational choice to default.
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Such a rationality trigger is positively dependent on the current loan-to-value
ratio (LtV). One model in which the probability of default is dependent on the
collateral value is that by Dimou et al (2005).
In neither of the two frameworks is the creditor is able to observe the

borrower’s default if the collateral value exceeds the remaining principal plus
accrued interest. This is a consequence of the assumption of a rational debtor.
Should a rational debtor face any of the default-triggering events when the
collateral value covers the remaining principal, he will realize the collateral
and repay the loan.
In this paper a default event is independent of whether or not it is

observable to creditor. To separate observable defaults from those that are
not dependent on the creditor’s ability to observe them, the later are referred
to as unconditional defaults and their probabilities are denoted as PDU .
The concept of unconditional default makes it possible that the LGD is

negative. In such case the value of the collateral exceeds the value of remaining
principal. Of course, it is only the debtor who benefits here; for the creditor
the LGD is equal to zero.
For defaults that creditors can observe, LGD is between zero and one.

In this paper such defaults will be called conditional defaults and their
probabilities are denoted PDC . The connection between unconditional and
conditional default can be written as

PDC = PDU |LGD>0 (2.1)

The observed defaults do not comprise a random sample from all defaults,
because all observations where the default occurs when the collateral value
exceeds the remaining principal are omitted, and so the ability to observe
default is dependent on the value of the collateral. This is in line with the
papers of Ambrose et al (1997), Chabaane et al (2004), and Dimou et al
(2005).

3 Derivation of conditional correlation between PD
and LGD

The model used in this paper has elements of both hazard rate models and
structural models based on the paper of Merton (1974). The connection with
the hazard rate model is clear from the assumption that the default-trigger is
exogenous. In this paper, we assume that only one trigger event can cause the
default and that the trigger event is independent of the collateral value. These
assumptions simplify the default modeling, since possible interdependences
among triggers are omitted. The assumptions also mean that the default
process coincides with the trigger event process.
The probability of a single default depends on the probability of a trigger

event. In this model, default D and trigger T are binary variables equal to
zero for events without default and unity for default events. The probability
that default occurs (that D = 1) is equal to the probability that one or more
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triggers T take the value one . The number of possible triggers is m. The
probability of a trigger taking the value one, like the probability of default,
is dependent on the macroeconomic variables included in vectors C and G1.
Under the assumption that there is no dependence between single defaults, ie
that one borrower’s default does not cause another’s default, we can calculate
PDU . Researchers such as Allen and Sounders (2003), Gross and Souleles
(2002), and Erlenmaier and Gersbach (2001) have found evidence supporting
the assumption of PD being dependent on macroeconomic variables. This
dependence can be seen as higher numbers of defaults in economic downturns.

PDU = P (D = 1 |C,G1 ) = P [(T1 = 1 ∨ T2 = 1 ∨ . . . ∨ Tm = 1) |C,G1 ] (3.1)

The value of collateral, as well as the value of PD, is dependent on several
macroeconomic variables. At least Allen and Saunders (2003), Frye (2000b),
Frye (2003), and Schuermann (2004) have found evidence of higher LGD in
recessions than during expansions. Frye (2000a) states that higher LGDs in
recessions are a consequence of lower collateral values. The assumptions of this
paper are in line with these findings. Due to the dependence between LGD
and macroeconomic variables, both PD and LGD seem to move simultaneously,
and this also causes the correlation between these components.
The loan-to-value (LtV) is the ratio of remaining principal to collateral

value. The amortization period is assumed here to coincide with the
observation period, so that the remaining principal can be taken as a
constraint. The LtV follows the known process g, which is dependent on
the values of the vectors C and G2, which include macroeconomic variables,
and the λ vector of loan-specific parameters. The function g should take only
positive values:

LtVU = g(C,G2, λ) (3.2)

Both PD and LtV are dependent on the common explanatory variables C. As
long as C is not a zero length vector, there is a relation between PDU and
LtVU .
Hence the model has some similarities with structural models. In the basic

case of structural models, default occurs when asset value falls below a certain
threshold, ie total liabilities. This kind of default trigger works only partly in
equity-theories. In ability-to-pay contexts, this type of approach is suitable for
the LGD but not the PD.
In our model the process of collateral value replaces the process of asset

value used in the structural models. The threshold value can be replaced by
the remaining mortgage loan principal. If both of these values are divided by
the remaining principal, the collateral process can be replaced by the LtV−1

process and the threshold value is equal to 1.
When creditors estimate the LGD, they should include not only the

remaining principal and accrued interest but also other default-related costs,
such as recovery commissions. LGD is not unambiguous even after of all the
included costs are determined, as long as the timetable for recovery is not
determined. In this paper LGD is divided into long and short term LGD.
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The difference between short and long term LGD is important when the
ability to observe default depends on the ratio between remaining principal
and collateral value. Short term LGD is the ratio of remaining principal to
collateral value at the moment of default. The definition of long term LGD
is closer to the definition used in Basel II. In environments where personal
bankruptcy is not possible and where the remaining principal after realization
of collateral remains as a liability to the debtor, the long term LGD will be
close to zero. When a private person’s bankruptcy ‘clears the table’ from the
debtors’ perspective and leaves the rest of the loan as a loss to creditor, the
long term LGD will be much higher. Assuming the ability-to-pay context and
a rational creditor, the short term LGD is always higher than the long term
LGD.
In this paper the ability to observe default is dependent on the ratio of

remaining principal to collateral value at the moment of default. For this
reason, the short term LGD is a more reasonable value than the long term
LGD for the purpose of modeling risk. Later in this paper the LGD is assumed
to coincide with short term LGD.
LtV can be transformed into LGDU where the subscript U means

unconditional

LGDU = 1− LtV −1U (3.3)

The value of LtVU determines whether a default can be observed. Defaults
where LGDU ≤ 0 (LtVU ≤ 1) are unobservable to the creditor.
The findings of this paper do not depend on the functional forms of PD

and LtV, and so we simplify the analysis by assuming that the PD and LtV
values come from known distributions Φ and Θ with parameter vectors α1 and
α2. The assumption of a single trigger behind unconditional PD implies that
Φ is actually the distribution of the trigger event

PDU ∼ Φ(α1) (3.4)

When there is only one type of collateral, ie the house, Θ is the distribution
of collateral values.

LtV −1U ∼ Θ(α2) (3.5)

Because the processes of both PD and LGD are assumed to be dependent on
the same variables, this relation can be observed as a correlation between PD
and LGD

Cor(PDU , LtV
−1
U ) = ρPD,LtV

U (3.6)

Replacing the variable LtV by the variable LGD, yields the correlation

Cor(PDU , LGDU) = −Cor(PDU , LtV
−1
U ) (3.7)
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The correlation between PDU and LGDU can be written as

Cor(PDU , LGDU) = ρU (3.8)

Thus

ρU = −ρPD,LtV
U (3.9)

To move to the conditional (observable) variables PDC and LGDC, we write

PDC = PDU |LtV −1U >1 = PDU |LGDU>0 (3.10)

LGDC = LGDU |LtV −1U >1 = LGDU |LGDU>0 (3.11)

And the correlation between these conditional variables is

Cor(PDC , LGDC) = ρC (3.12)

When the variables PDU and LGDU generate a bivariate distribution with
correlation ρU , the conditional variables PDC and LGDC generate a similar
distribution, except that it is truncated at the point where LGDU = 0, so that
only events on the right side of the truncation point (0 < LGDU ≤ 1) are
included.
It should be noted that in most of the cases the observed correlation ρC

is not equal to the unconditional correlation ρU . The key issue concerns the
difference between unconditional and observed conditional correlation.
The methodology used in this paper can be applied (after small

modifications) also in the case where all defaults can be observed but LGDs
with zero or negative values are observed as zero values. In the latter case, we
end up with a bivariate censored distribution instead of the bivariate truncated
distribution.

3.1 Correlation of truncated bivariate distribution

It is possible (albeit not likely) that correlations between PDU and LGDU

change over time and that the dependence between credit risk factors differs for
different time spans. But even with the assumption of constant unconditional
correlation between these factors it is possible to observe different correlations.
In this paper the unconditional correlation between the value of collateral and
the probability of default is assumed to remain stable.
Since the distributions of defaults and collateral values are known, the

truncated correlation can be estimated via simulation. But with certain
bivariate truncated distributions one can use closed solutions. This paper
utilizes the closed solutions of the truncated bivariate normal distribution and
log-normal distributions. Normal distributions are more widely used and better
known, whereas log-normal distributions have many more favorable properties.
Use of the log-normal distribution also gets support from both theory and
empirical findings.
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3.2 Bivariate normal distribution

The closed solution to the observable correlation ρC between two normally
distributed variables with only one variable truncated and unconditional
correlation ρU , can be found in the econometric and statistics literature. The
derivation of the formula is in Kotz et al (2000) and the solved correlation
equation is presented for example in Cambell et al (2008)

ρC =
ρUr

ρ2U + (1− ρ2U)
σ2LGD

σ2
LGD|Truncated

(3.13)

The variance of the truncated variable LGD can be solved using the formula
given in Johnson and Kotz (1970). The slightly modified equation for a single
truncation point is presented in the book by Greene (2003). Variance of the
truncated variable can be calculated as

σ2LGD|Truncated = σ2LGD(1− δ(α)) (3.14)

where the normalized truncation point α is

α = (
a− μLGD
σLGD

) (3.15)

and

λ(α) =

( −φ(α)
Φ(α)

right truncated from α (x > a omitted)
φ(α)
1−Φ(α) left truncated from α (x < a omitted)

(3.16)

and

δ(α) = λ(α)(λ(α)− α) (3.17)

It can be seen that the absolute value of the observed correlation is less than
or equal to the unconditional correlation. The points where both observed and
unrestricted correlations are equal are where there is no correlation between
the variables (ρObserved = ρUnrest = 0) and where the variables are perfectly
positively or negatively correlated (ρObserved = ρUnrest = ±1).
The correlation formula also applies with a double truncated variable. The

variance formula for a double truncated variable is found for example in Kotz
(1970).
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3.3 Bivariate log-normal distribution

A theoretically more viable framework than that of normally distributed
variables is provided by the bivariate log-normal distribution, which forces
values of both variables to be positive. The closed solution for this kind of
setup is more complex than the solution for the truncated bivariate normal
distribution. The solution presented here was used to enable the double
truncation that will be used later in this paper. Values for the single truncation
cases can be obtained by setting the unrestrictive limit at positive or negative
infinity. Derivation of truncated bivarite log-normal formulas can be found in
Vilmunen (2008).
In the following formulas, the probability of default follows a log-normal

distribution LN(μPD, σPD) and loss given default follows LN(μLGD, σLGD).
Thus the mean (M) and variance (Σ2) of PD are

MPD = eμPD+
σ2PD
2 (3.18)

Σ2PD = e2μPD+σ
2
PD(eσ

2
PD − 1) (3.19)

The mean and variance of LGD can be calculated with the same formulas.
If PD ∼LN(μPD, σPD), then ln(PD) ∼N(μPD, σPD), and this also holds

for LGD. For calculating the truncated correlation, one needs the correlation
between ln(PD) and ln(LGD). This correlation is denoted ρPD,LGD. Thus,
when the correlation between PD and LGD is ρU , the correlation of ln(PD)
and ln(LGD) can be calculated using the formula

ρPD,LGD =
ln(ρU

p
eσ

2
PD − 1

p
eσ

2
LGD − 1 + 1)

σPDσLGD
(3.20)

The previous formula and the requirement that the value of ρU and ρPD,LGD

must be contained in [-1, 1] imply that the smallest possible ρU can be
calculated by using ρPD,LGD and solving the equation for ρU .
The correlation formula for the truncated bivariate log-normal distribution

follows the conventional correlation formula.

ρC =
σLGD,PD|Truncatedq

σ2LGD|Truncated
q
σ2PD|(LGD|Truncated)

(3.21)

The restricted variances and covariance needed for calculating the correlation
can be obtained using the following formulas. A complementary way to
solve for the variance of the truncated variable is to use the relation between
non-truncated and truncated moments. This type of solution is presented in
Johnson and Kotz (1970).
The variance of truncated log-normally distributed variable LGD is

σ2LGD|Truncated = e2μLGD+σ
2
LGD

n
eσ

2
LGD

h
Φ(U3)−Φ(L3)
Φ(U1)−Φ(L1)

i
−
h
Φ(U2)−Φ(L2)
Φ(U1)−Φ(L1)

i2¾ (3.22)
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where the upper (U) and the lower (L) limit parameters with truncation points
aU > aL are

U1 =
ln(aU )−μLGD

σLGD

L1 =
ln(aL)−μLGD

σLGD

(3.23)

U2 =
ln(aU )−(μLGD−σ2LGD)

σLGD

L2 =
ln(aL)−(μLGD−σ2LGD)

σLGD

(3.24)

U3 =
ln(aU )−(μLGD−2σ2LGD)

σLGD

L3 =
ln(aL)−(μLGD−2σ2LGD)

σLGD

(3.25)

The variance of the other log-normal variable PD conditional on the truncation
of variable LGD is

σ2PD|(LGD|Truncated) = e2μPD+σ
2
PD

n
eσ

2
PD

h
Φ(U6)−Φ(L6)
Φ(U1)−Φ(L1)

i
−
h
Φ(U5)−Φ(L5)
Φ(U1)−Φ(L1)

i2¾ (3.26)

where the upper (U) and the lower (L) limit parameters for truncation point
aU > aL are

U5 =
ln(aU )−(μLGD+σLGDσPDρPD,LGD)

σLGD

L5 =
ln(aL)−(μLGD+σLGDσPDρPD,LGD)

σLGD

(3.27)

U6 =
ln(aU )−(μLGD+2σLGDσPDρPD,LGD)

σLGD

L6 =
ln(aL)−(μLGD+2σLGDσPDρPD,LGD)

σLGD

(3.28)

The last required value, the covariance between variables LGD and PD after
truncation of LGD, is

σLGD,PD|Truncated = eμLGD+μPD+
1
2
(σ2LGD+σ

2
PD)

×
n
eρPD,LGDσLGDσPD

h
Φ(U4)−Φ(L4)
Φ(U1)−Φ(L1)

i
−
h
Φ(U2)−Φ(L2)
Φ(U1)−Φ(L1)

i h
Φ(U5)−Φ(L5)
Φ(U1)−Φ(L1)

io (3.29)

and the upper (U) and the lower (L) limit parameters and truncation point aU
> aL are

U4 =
ln(aU )−(μLGD−σ2LGD+σLGDσPDρPD,LGD)

σLGD

L4 =
ln(aL)−(μLGD−σ2LGD+σLGDσPDρPD,LGD)

σLGD

(3.30)

An example of dependence between ρU and ρC with a varying truncation
point is presented in figure 1. With the log-normal distribution, the truncated
correlation can be lower or higher than the unconditional correlation. A higher
truncated correlation is possible only when ρU is very close to its lower limit
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(here, -0.968). When the parameter values are close to those used in figure
1, the truncated correlation is lower than ρU for all correlations found in the
economic data samples. If the highly improbable extremely high negative
correlations are eliminated, then the larger the gap between collateral value
and the remaining principal at the start of the observation period, the lower
the correlation between observed defaults and positive LGDs
This finding has at least two implications. First, the correlation in a sample

of observed defaults should be lower if the sample is taken from a market
where LtV is systemically lower than it would be if the sample were taken
from a market with higher LtVs. It should be noted that changes in loan
markets, ie tightening competition between creditors, might also change the
LtV for new loans. This is one possible explanation for the differences in
correlation estimates across the various papers that use samples from similar
environments.
The other implication is that in times of booming markets the ratio of

remaining principal to collateral value decreases and in recession the ratio
increases. Thus, during different cycle phases, the older loans could affect
the number of observed defaults, which could widen the difference between
correlations, at least in the sample selection case.
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Figure 1. Dependence between ρU and ρC .Dependence between ρU and
truncated variables ρC when MPD = 0.120, ΣPD = 0.035, MLGD = 1.045,
ΣLGD = 0.08. Minimum value of ρU is -0.968, and LtV is between 0.1 and 1.
Z-axis is reversed, to facilitate interpretation.
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3.4 Difference in correlation between subsamples and the case
of sample selection

Besides the low correlations, the earlier papers have found that the correlation
can vary depending on the phase of the business cycle. One possible reason
for this is the ignored sample selection.
Sample selection could be a consequence of using a macroeconomic variable

as an instrument for selecting events to include in different subsamples in
cases where the variable is also a factor in the changes in LGD. Thus
dividing the sample of observed defaults using a macro factor such as GDP
growth as an instrument cause an extra truncation of the sample. This
extra truncation divides the former single truncated sample into the single
truncated severe downturn subsample and a double truncated subsample
including non-recession observations.
Such sample selection might lower the observed correlation of a double

truncated subsample nearly to zero. The correlation of a double truncated
subsample is always smaller than that of a single truncated sample. The
smaller the fraction of observations in the middle range, the lower the
correlation. This can be seen from figure 2. Note the very large, almost
flat area, where the truncated correlation is close to zero. Also the correlation
for tail observations, shown in figure 3, is smaller than the correlation for the
original single truncated sample. The larger the fraction of observations in the
downturn tail, the closer will be the correlation of these tail observations to
the original single truncated PD-LGD correlation.
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Figure 2. Dependence between ρU and ρC of double truncated subsample.
Dependence between double truncated subsample ρC and ρU with MPD =
0.120, ΣPD = 0.035, MLGD = 1.045, ΣLGD = 0.08. Minimum value of ρU
is -0.968, and LtV is between 0.1 and 1. Z-axis is reversed, to facilitate
interpretation.
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Figure 3. Dependence between ρU and ρC of tail observations. Dependence
between recession observations (single truncated left tail) ρC and ρU with
MPD= 0.120, ΣPD = 0.035, MLGD = 1.045, ΣLGD = 0.08. Minimum value
of ρU is -0.968, and LtV is between 0.1 and 1. Z-axis is been reversed, to
facilitate interpretation.

4 Some empirical results and implications

The Finnish empirical data illustrate how wide the gap may be between
unconditional and observed correlations and how large the effect of sample
selection on observed correlations may be.
From the creditor’s viewpoint, default means the customer’s insolvency or

falling into arrears in a situation where the value of collateral is insufficient
to cover the remaining loan. For credit risk research, as already has been
established, this view is much too narrow, and it gives a distorted view of the
default frequency of private persons and of the distribution of defaults in the
whole population. Observing a private person’s default is not as unequivocal
as is a default for a corporation. The accuracy of the estimated probability of
default and the significance of the estimate for mortgage credit risk modeling
are however dependent on successful observation of private persons’ defaults.
To get a broader and a more economically oriented view of a borrower’s

default, this paper omits the default concepts used by banks and other
creditors. Instead, a private person’s default is interpreted as a situation
following a trigger event when the borrower is no longer able to pay
amortizations and interest and collateral realization is the only possibility.
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One commonly used trigger is unemployment. Because the possibility of
becoming unemployed is independent of whether one has a mortgage loan, we
can consider the probability of the borrower becoming unemployed as equal to
the probability of a randomly chosen employed person becoming unemployed.
In Finland, a house or shares in a housing company are the most commonly

used types of collateral for mortgage loans. For this reason, the housing price
index suffices as an indicator of overall developments in collateral values and
changes in LtV. In this paper, the percentage changes in the Finnish housing
price index (HPI) are used to estimate developments in collateral values. The
time series of the housing price index can be found from the website of Statistics
Finland (www.tilastokeskus.fi).
To estimate the default probability for a mortgagor, we need the probability

of an appropriate trigger event. In this paper, we use the probability that
an employee will become unemployed during a single observation period.
The probability of default is calculated by dividing the number of persons
unemployed at the end of the observation year whose unemployment bout has
lasted less than a full year by the number of persons employed at the start of
the period.
The idea behind this measure of PD is in the assumptions that only

employed persons can obtain mortgage loans and that the probability of
becoming unemployed does not depend on whether the employee has a
mortgage loan. The time series used in the PD calculation can be found
from the website of the Finnish Ministry of Employment and the Economy
(www.tem.fi).
Correlation estimates using data from Finland, Germany, UK, USA, and

Spain supported the assumption of negative dependence between PD and
value of collateral. These estimates are presented in table 1. The correlation
between collateral values and probability of default is calculated using three
different lags for the housing price index (0, 6, and 12 months) relative to the
observation period for unemployment. The motivation for the lags comes from
the term of notice for layoff and the delay between layoff and registration as an
unemployed job-seeker. As can be seen from the table, the correlation seems
to vary remarkably depending from the lag structure. The US correlations
are estimated using the number of newly unemployed whose unemployment
period has been shorter than 27 weeks. For this reason, US estimates are not
comparable with the others, but do support the assumption of this paper.
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Table 1. Estimated correlation between PD and collateral value
in Finland, Germany, UK, USA, and Spain

Finland Germany UK USA Spain
Correlation:
No lag -0.236 -0.249 -0.647 -0.308 -0.722
Correlation:
HPI lagged 6 m -0.402 -0.210 -0.819 -0.305 -0.824
Correlation:
HPI lagged 12 m -0.522 -0.126 -0.779 -0.277 -0.782
Time period 1992—2007 1991—2006 1991—2007 1976—2007 1991—2007
Sample size 16 16 17 32 17
Data sources: Finnish Ministry of Employment and the Economy, Statistics

Finland, Eurostat, Bundesarchitektenkammer e. V. (Germany), OFHEO (US),
Bureau of Labor Statistics (US), Ministerio de vivienda (Spain), Office of Deputy
Prime Minister (UK), and www.communities.gov.uk (UK).

When the unconditional correlation between PD and LGD is known, the
conditional correlation can be estimated for both the single truncation and
sample selection cases.
In the single truncation case, the importance of loan-to-value for the

observed correlation can be seen from table 2. The table shows that both
the loan-to-value ratio and the unconditional correlation should be relatively
high before the absolute value of conditional correlation is high enough to be
observed. These low correlations estimates, relative to the unobservable ones,
are in line with figures reported by Hu and Perraudin (2002) and Carey and
Gordy (2001), which are presented in the introduction.

Table 2. Estimates of observable correlations ρC of Finnish data with
single truncation at different loan-to-value points and with
three unconditional correlations from table 1.

LtV ρU =-0.236 ρU =-0.402 ρU =-0.522
1.0 -0.127 -0.239 -0.341
0.9 -0.086 -0.169 -0.252
0.8 -0.060 -0.121 -0.184
0.7 -0.043 -0.088 -0.136
0.6 -0.032 -0.067 -0.103
0.5 -0.025 -0.051 -0.079

In the sample selection case, the observed correlations for the tail and
middle subsets depend on the truncation point dividing the data. In tables 3
and 4, the location of the truncation point was determined using the portion
of observations to be included in the tail subset. In table 3 the loan-to-value
at the start of the period was set at 0.7 and in table 4 all loans were assumed
to be granted at 100% collateral value of, ie LtV was set at one.
Table 2 illustrates the fact that the estimated correlation is dependent on

the location of truncation points. If for example the truncation point shifts due
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to changes in banks’ lending (LtV) policies, the estimated correlations before
and after the policy change will be different.
The effect of changing truncation points is even stronger in the case of

sample selection, where the differences in cycle phase are used. This leads to
the situation where, depending on the size of the double truncated area, the
correlation estimate can be anything between zero and the correlation estimate
of the single truncated data.
Tables 3 and 4 present results that are similar to those for example of

Hu and Perraudin (2002), where the observed correlation for recession phases
seems to be higher than the estimated correlation for normal conditions. It
should be noted that the unconditional correlation remains constant even when
the conditional observed correlations vary according to cycle phase.

Table 3. Observable correlations ρC of Finnish data with double truncation
with loan-to-value equal to 0.7, number of double truncated
mid-range observations in row headers and with three
unconditional correlations from table 1.

Share of ρU= -0.236 ρU= -0.402 ρU= -0.522
Mid-range Left Tail Mid-range Left Tail Mid-range Left Tail Mid-range
Observations

10 % -0.043 -0.001 -0.088 -0.003 -0.136 -0.004
20 % -0.043 -0.003 -0.088 -0.006 -0.135 -0.009
50 % -0.042 -0.009 -0.086 -0.018 -0.132 -0.028
80 % -0.041 -0.019 -0.084 -0.040 -0.127 -0.062
90 % -0.041 -0.026 -0.082 -0.053 -0.124 -0.082

Table 4. Estimates of observable correlations ρC of Finnish data with
double truncation withloan-to-value equal to 1.0, number of
double truncated mid-rangeobservations in row headers and
with three correlations from table 1.

Share of ρU= -0.236 ρU= -0.402 ρU= -0.522
Mid-range Left Tail Mid-range Left Tail Mid-range Left Tail Mid-range
Observations

10 % -0.123 -0.006 -0.233 -0.012 -0.332 -0.019
20 % -0.120 -0.013 -0.226 -0.025 -0.323 -0.038
50 % -0.109 -0.036 -0.205 -0.070 -0.292 -0.104
80 % -0.094 -0.069 -0.176 -0.133 -0.251 -0.195
90 % -0.086 -0.087 -0.161 -0.167 -0.230 -0.242

5 Conclusion

Although this paper focuses on mortgage loans, the basic idea applies to other
types of loans as well. The effect of truncation on pricing and risks should be
studied at least with mortgage-linked products such as CDO and MBS. For
these products, the effect of using only conditional correlation leads to large
differences in estimated risks and thus to large differences in risk-adjusted
prices.
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Credit risk has been divided here into the same risk components used in the
Basel capital requirement calculations and presented in the new Basel capital
accord. The model presented here focuses on PD and LGD and the correlation
between them. Due to assumption of homogeneous position, the effects of
changes in exposure at default (EAD) were omitted. In reality, the phase
of the business cycle could affect EAD, via changes in new loan principals, as
well as in parameters such as LtV. These effects could be key to understanding
differences in the credit risks of dynamic mortgage portfolios at different times
and different phases of the business cycle.
As for future research, one might want to assume heterogeneous (rather

than homogeneous) loan portfolios. Such a model can provide more
information on the possible effects of a pick-up in the economy and mortgage
lending on credit losses and on the effects of these on the observed correlations.
The assumption of heterogeneous position structure would bring this credit risk
model even closer to reality and so is worthy of further study.
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