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Abstract

This work develops likelihood-based unit root tests in the noncausal autoregressive (NCAR) model

formulated by Lanne and Saikkonen (2011, Journal of Time Series Econometrics 3, Iss. 3, Article

2). The possible unit root is assumed to appear in the causal autoregressive polynomial and for

reasons of identi�cation the error term of the model is supposed to be non-Gaussian. In order to

derive the tests, asymptotic properties of the maximum likelihood estimators are established under

the unit root hypothesis. The limiting distributions of the proposed tests depend on a nuisance

parameter determined by the distribution of the error term of the model. A simple procedure to

handle this nuisance parameter dependence in applications is proposed. Finite sample properties

of the tests are examined by means of Monte Carlo simulations. The results show that the size

properties of the tests are satisfactory and the power against stationary NCAR alternatives is

signi�cantly higher than the power of conventional Dickey-Fuller tests and the M -tests of Lucas

(1995, Econometric Theory 11, 331-346). In an empirical application to a Finnish interest rate

series evidence in favour of a stationary NCAR model with leptokurtic errors is found.

Key words: Maximum likelihood estimation; Noncausal autoregressive model; Non-Gaussian time

series; Unit root.
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1 Introduction

Testing for the unit root hypothesis is an important step in the analysis of economic time series,

and has attracted an enormous amount of interest during the past decades. In this context, the

most widely used model is the conventional (causal) autoregressive (AR) model where the current

observation is expressed as a weighted average of past observations and an error term. An essential

assumption of the conventional AR model is that the error term is unpredictable by the past of

the considered time series. However, in (say) economic applications this assumption may break

down because the impact of omitted variables, interrelated with the considered (univariate) time

series, is ignored. More speci�cally, if relevant variables are omitted their impact goes (at least

partly) to the error term of the model and, as the considered time series may help to predict the

omitted variables, the assumed unpredictability condition may break down. As economic variables

are typically interrelated, this point appears particularly pertinent in economic applications. In

cases like this the noncausal AR (NCAR) model may provide a viable alternative, for it explicitly

allows for the predictability of the error term by the past of the considered series.

Early studies of NCAR models and their extensions, noncausal and (potentially) noninvertible

autoregressive moving average (ARMA) models, were mainly motivated by applications to natural

sciences and engineering (see, e.g., Breidt et al. (1991), Lii and Rosenblatt (1996), Huang and

Pawitan (2000), Rosenblatt (2000), Breidt et al. (2001), Wu and Davis (2010), and the references

therein). More recently, a slightly di�erent formulation of the NCAR model was considered by

Lanne and Saikkonen (2011) (hereafter L&S), and further studied by Lanne et al. (2012a), Lanne

et al. (2012b), Lanne et al. (2012c), Lanne and Saikkonen (2013), and Gouri�eroux and Zakoian

(2013). These papers demonstrate that the NCAR model can successfully describe and forecast

many economic time series, and it often outperforms its conventional causal alternative in terms of

model �t and forecasting accuracy.

Even though the properties of the stationary NCAR model are by now well understood and

asymptotic distribution theory for various parameter estimators (typically maximum likelihood

estimators) have been developed, the nonstationary case and tests for a unit root have not yet been

studied in the literature. As unit root type nonstationarity appears quite common (particularly)

in economic time series, and hence potential applications of the NCAR model, this work aims at

proposing unit root tests in the context of the NCAR model of L&S. We develop Wald type unit root

tests by assuming that the possible unit root appears in the causal autoregressive polynomial of the

model, and to this end we �rst derive asymptotic properties of a (local) maximum likelihood (ML)

estimator of the parameters of the model under the unit root hypothesis. As in the stationary case,

a non-Gaussian error term is required to achieve identi�cation (see, e.g., Brockwell and Davis (1987,

pp. 124-125) and Rosenblatt (2000, pp. 10-11)). This renders the estimation problem nonlinear

which, in turn, makes the derivation of limiting distributions less straightforward than in the

context of conventional unit root tests, where estimation is carried out by linear least squares (LS)

techniques. To address this issue, we use ideas similar to those used in statistical models whose

likelihood ratios satisfy the so-called locally asymptotically mixed normal (LAMN) condition (see

Basawa and Scott (1983), Ch. 2). It turns out that the limiting distributions of our tests are

not distribution free and appear, in general, very complicated depending on a number of nuisance

parameters. To obtain tests with manageable limiting distributions we assume that the error term
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of the model has a symmetric distribution. Then the limiting distributions of our tests only depend

on a single nuisance parameter determined by the distribution of the error term, and this problem

can be rather easily circumvented by using estimated critical values (described in Section 5.1).

We examine the practical relevance of our asymptotic tests by means of Monte Carlo simulations.

The results show that our tests perform satisfactorily in terms of size and their power against

stationary NCAR alternatives is signi�cantly higher than the power of conventional Dickey-Fuller

(DF) tests and the M -tests of Lucas (1995). To illustrate the practical implementation of our tests

we present an application to a Finnish interest rate series for which a stationary NCAR model with

Student's t-distributed errors is found to provide a good description.

The plan of the paper is as follows. Section 2 de�nes the considered NCAR model and discusses

the testing problem. Parameter estimation and related asymptotic results are presented in Section

3 and used in Section 4 to obtain our unit root tests. Section 5 reports the results of the Monte

Carlo simulations and Section 6 presents the empirical application. Section 7 concludes. Three

appendices contain mathematical proofs and some technical details .

Finally, the following notation is used throughout the paper. The notation
p! signi�es conver-

gence in probability and
d! is used for convergence in distribution and also for weak convergence in

a function space. We write B (u) � BM (�) for a Brownian motion B (u) with indicated variance
or covariance matrix. Unless otherwise stated, all vectors will be treated as column vectors and,

for notational convenience, we shall write x = (x1; :::; xn) for the (column) vector x where the

components xi may be either scalars or vectors (or both).

2 Model and testing problem

Following L&S we consider the NCAR model

� (B)'
�
B�1

�
yt = �t; t = 1; 2; :::; (1)

where �t is a sequence of independent and identically distributed (IID) random variables with mean

0 and �nite variance �2 > 0, B is the usual backward shift operator (Byt = yt�k for k = 0;�1; :::),
and � (B) = 1 � �1B � � � � � �rB

r and '
�
B�1

�
= 1 � '1B

�1 � � � � � 'sB
�s. L&S assume that

the polynomials � (z) and ' (z) (z 2 C) have their roots outside the unit circle in which case the
di�erence equation (1) has a stationary solution. In this paper, we allow for the possibility that,

due to a unit root in the causal autoregressive polynomial � (B), the process yt is a nonstationary

integrated process. Thus, we assume that r > 0 and proceed in the conventional way by writing

the lag polynomial � (B) as

� (B) = �� �B � �1�B � � � � � �r�1�Br�1; (2)

where � = 1�B is the di�erence operator. Our focus is in testing for the unit root null hypothesis
H0 : � = 0 against the stationary alternative H1 : � < 0. At this point we abstract from any

deterministic terms such as a constant term or linear time trend in the process. These extensions

will be discussed in Section 4.2.

Unless otherwise stated we assume throughout the paper that the null hypothesis H0 holds and

that the roots of the polynomials � (z) = 1 � �1z � � � � � �r�1zr�1 and ' (z) lie outside the unit

circle or, formally, that

� (z) 6= 0 for jzj � 1 and ' (z) 6= 0 for jzj � 1: (3)
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Using equation (2) we can write equation (1) as

�yt = �yt�1 + �1�yt�1 + � � �+ �r�1�yt�r+1 + vt; t = 1; 2; :::; (4)

where the process vt = � (B) yt = '
�
B�1

��1
�t has the forward moving average representation

vt =
1X
j=0

�j�t+j ; �0 = 1: (5)

Here �j is the coe�cient of z
�j in the Laurent series expansion of '

�
z�1
��1
. By the latter condition

in (3) this expansion is well de�ned for jzj � b' with some b' < 1 and with the coe�cients �j

decaying to zero at a geometric rate as j !1. Equation (4) shows that our testing problem can be
thought of as testing for a unit root in an AR(r) process with stationary errors following the purely

noncausal AR(0; s) process '
�
B�1

�
vt = �t (as in L&S we use the acronym AR(r; s) for the model

de�ned in equation (1)). When r = 1 the lagged di�erences vanish from the right hand side of

equation (4) which becomes a special case of a �rst-order autoregression with general stationary (or

short-memory) errors. Testing for a unit root in such contexts has been considered in a number of

papers since the work of Phillips (1987) and Phillips and Perron (1988). That the errors in (4) are

generated by a purely noncausal AR(0; s) process distinguishes our formulation from its previous

counterparts. At this point we also note that the conceivable alternative of including a unit root

in the noncausal polynomial ' (�) involves the di�culty that there seems to be no meaningful way
to de�ne the process in that case.

For later use we also introduce the (causal) AR(r) process ut = '
�
B�1

�
yt or � (B)ut = �t

(t = 1; 2; :::). Under the null hypothesis, � (B)�ut = �t and the former condition in (3) yields the

conventional backward moving average representation

�ut =

1X
j=0

�j�t�j ; �0 = 1; (6)

where the coe�cients �j of the power series representation of � (z)
�1 decay to zero at a geometric

rate as j !1 for jzj � b� and some b� > 1. Thus, ut is a nonstationary I(1) process.

Finally, note that equation (1) and the conditions in (3) imply that there exist initial values

such that the di�erenced process �yt has the two-sided moving average representation

�yt =

1X
j=�1

 j�t�j ; (7)

where  j is the coe�cient of z
j in the Laurent series expansion of � (z)�1 '

�
z�1
��1 def

=  (z) so

that  (z) =
P1
j=�1  jz

j exists for b' � jzj � b� with b' < 1 < b� de�ned above and with  j

decaying to zero at a geometric rate as jjj ! 1. The representation (7) implies that �yt is a
stationary and ergodic process with �nite second moments. Hence, the invariance principle and

weak convergence results of sample covariance matrices given in Phillips (1988) apply to yt for any

(random or nonrandom) initial value y0. This implies that the usual asymptotic results needed

to develop limit theory for unit root tests are available. To simplify presentation we assume that,

under the null hypothesis, the processes �yt and �ut are stationary and not only asymptotically

stationary.

4



We derive a unit root test in a likelihood framework similar to that in L&S (for the employed

assumptions, see also Andrews et al. (2006)). Thus, we impose the following assumption on the

error term in (1).

Assumption 1. The zero mean error term �t is a sequence of non-Gaussian IID random variables

with a (Lebesgue) density ��1f
�
��1x;�

�
which depends on the (�nite and positive) error variance

�2 and (possibly) on the parameter vector � (d� 1) taking values in an open set � � Rd.

As discussed in Breidt et al. (1991), Rosenblatt (2000, pp. 10-11), L&S, and others, causal

and noncausal autoregressions are statistically indistinguishable if the error term (and hence the

observed process) is Gaussian. This explains why Assumption 1 includes the requirement of non-

Gaussian errors. Further assumptions on the density function f (x;�) will be made later.

3 Parameter estimation

3.1 Approximate likelihood function

To obtain our tests we �rst discuss the likelihood function based on the observed time series

fy1; :::; yT g generated by the AR(r; s) process (1). Proceeding in the same way as in Section 3.1 of
L&S suggests approximating the log-likelihood function by

lT (�) =
T�sX
t=r+1

gt (�) ; (8)

where

gt (�) = log f
�
��1 (�ut (')� �ut�1 (')� �1�ut�1 (')� � � � � �r�1�ut�r+1 (')) ;�

�
� log �

= log f
�
��1 (vt (�; �)� '1vt+1 (�; �)� � � � � 'svt+s (�; �)) ;�

�
� log �:

Here ut (') and vt (�; �) signify the series ut = '
�
B�1

�
yt and vt = � (B) yt, respectively, treated

as functions of the parameters ' = ('1; :::; 's) and (�; �) = (�; �1; :::; �r�1), and the parameter

vector � = (�; �; '; �; �) ((r + s+ 1 + d)� 1) contains the parameters of the model. Maximizing
lT (�) over permissible values of � gives an (approximate) ML estimator of �. In what follows, we

drop the word \approximate" from the ML estimator and related quantities.

Above we assumed unrealistically that the orders of the model, r and s, are known. As in Breidt

et al. (1991) and L&S we specify these orders in practice as follows. First, we �t a conventional

causal AR model by LS and determine its order by using conventional procedures such as model

selection criteria and residual diagnostics. We deem a causal model adequate when its residuals

show no signs of autocorrelation. Due to the aforementioned identi�ability issue we also need

to check for the non-Gaussianity of the residuals because otherwise there is no point to consider

noncausal models. If non-Gaussianity is supported by the data a non-Gaussian error distribution is

adopted and all causal and noncausal models of the selected order are estimated. Of these models

the one that maximizes the likelihood function is selected and its adequacy is checked by diagnostic

tests.

In practice a purely noncausal model (r = 0; s > 0) may turn out to be the most appropriate

choice but, due to the assumption r > 0, it is not in accordance with the assumed formulation. If

one wants to perform a formal test in a case like this one may augment the model with a �rst-order

causal polynomial and base the test on the AR(1; s) model.
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3.2 Score vector and Hessian matrix

As our goal is to derive a Wald type test for the unit root hypothesis, we have to assume that

the likelihood function satis�es conventional di�erentiability conditions similar to those used in the

related previous work of Andrews et al. (2006) and L&S. Thus, we impose the following assumption.

Assumption 2. For all (x; �) 2 (R;�), f (x;�) > 0 and f (x;�) is twice continuously di�erentiable
with respect to (x; �) and an even function of x, that is, f (x;�) = f (�x;�).

Unlike the aforementioned previous authors we require that the function f (�;�) is even. As will
be discussed in Section 4.1, this assumption is imposed to simplify the limiting distribution of the

obtained unit root test.

For the derivation of the Wald type test we need to estimate the unrestricted model and de-

rive the limiting distribution of the ML estimator of � under the null hypothesis. Because the

data are assumed to be generated by a nonstationary I(1) process the derivation of the limiting

distribution of the ML estimator involves features di�erent from those in the previous literature

on stationary NCAR models. Moreover, as the estimation problem is nonlinear, the presence of

an I(1) process implies that methods used in the context of conventional unit root tests based on

linear LS estimation are not directly applicable. Therefore, we use ideas similar to those developed

for likelihood-based statistical models whose estimation theory is nonstandard in the sense that

the information matrix is random even asymptotically. Such nonergodic models are discussed in

Basawa and Scott (1983) and Jeganathan (1995) amongst others, and to facilitate their treatment

we introduce the notation �0 for the true value of � and similarly for its components. As the null

hypothesis is assumed to hold, the true value of � is zero.

We shall now derive weak limits of (appropriately standardized versions of) the score vector and

Hessian matrix associated with the log-likelihood function evaluated at the true parameter value.

We use a subscript to signify a partial derivative indicated by the subscript; for instance g�;t (�) =

@gt (�) =@�, fx (x;�) = @f (x;�) =@x, and f� (x;�) = @f (x;�) =@�. Denote Vt+1 = (vt+1; :::; vt+s)

and �Ut�1 = (�ut�1; :::;�ut�r+1) where vt are �ut have the representations (5) and (6) with the

coe�cients replaced by their true values �0;j and �0;j so that the latter, for example, is obtained

from �0 (z)
�1 =

P1
j=0 �0;jz

j . The �rst and second partial derivatives of gt (�), the log-likelihood

based on a single observation, are presented in Appendix A. When evaluated at the true parameter

value, the vector of �rst partial derivatives is

g�;t (�0) =

26666664
g�;t (�0)

g�;t (�0)

g';t (�0)

g�;t (�0)

g�;t (�0)

37777775 =
26666664

���10 ex;tut�1

���10 ex;t�Ut�1

���10 ex;tVt+1

���20 (ex;t�t + �0)

e�;t

37777775
where ex;t = fx

�
��10 �t;�0

�
=f
�
��10 �t;�0

�
and e�;t = f�

�
��10 �t;�0

�
=f
�
��10 �t;�0

�
.

To obtain the weak limit of the score, we have to assume that the error density f (x;�) satis-

�es regularity conditions such as those employed by Andrews et al. (2006) and L&S. Rather than

presenting the needed conditions explicitly we simplify the presentation by using suitable \high

level" assumptions that can be veri�ed by using the regularity conditions given in the aforemen-

tioned papers. To this end, it is convenient to write � = (�; #) = (�; #1; #2) where #1 = (�; ') and

6



#2 = (�; �). The score of # (evaluated at �0) is clearly a stationary and ergodic process similar to

the score in L&S. We make the following assumption.

Assumption 3. (i) E [ex;t] = 0 and E
�
e2x;t
�
= J , where J =

R
(fx (x;�0)

2 =f (x;�0))dx > 1 is

�nite. Moreover, Cov [�t; ex;t] = ��0.
(ii) The score vector g#;t (�0) = (g#1;t (�0) ; g#2;t (�0)) has zero expectation and �nite positive de�nite

covariance matrix � = diag(�1;�2) where �i = Cov [g#i;t (�0)] (i = 1; 2) and the partition is

conformable to that of g#;t (�0).

Part (i) of this assumption can be veri�ed by using the de�nition of ex;t, the regularity conditions

in Andrews et al. (2006) and L&S, and direct calculation. Speci�cally, the expression of Cov [�t; ex;t]

is obtained from the de�nition of ex;t and condition (A2) of these papers, whereas condition (A5)

implies that the inequality J > 1 holds if and only if the distribution of �t is non-Gaussian. This

inequality and the explicit expressions of the matrices �1 and �2 obtained from L&S can further be

used to verify the positive de�niteness of the covariance matrix �1 in part (ii), whereas, due to the

generality of the error distribution, the positive de�niteness of �2 has to be assumed. The other

conditions in part (ii) can be veri�ed by using the regularity conditions imposed on the density

function f (x;�) in the aforementioned papers.

Assumption 3(i) and a standard functional central limit theorem for IID sequences yield

T�1=2
[Tu]X
t=1

(ex;t; �t)
d! (Bex (u) ; B� (u)) � BM

 "
J ��0
��0 �20

#!
; (9)

where the covariance matrix is positive de�nite when �t is non-Gaussian. Using Assumptions 1-3

we can further derive the limiting distribution of the score vector of �. The result is presented in

the following lemma.

Lemma 1. Suppose that Assumptions 1-3 hold. Then,

T�1
T�sX
t=r+1

g�;t (�0)
d! Z1 = �

1

�0�0 (1)

Z 1

0
B� (u) dBex (u) (10)

and

T�1=2
T�sX
t=r+1

g#;t (�0)
d! Z2 � N (0;�) : (11)

Moreover, joint weak convergence applies with Z1 and Z2 independent.

The proof of this lemma is presented in Appendix B. As discussed therein, the requirement that

the function f (�;�) is even is needed to establish the independence statement (further discussion
on this issue will be given at the end of Section 4.1).

Next consider the Hessian matrix associated with the log-likelihood function lT (�). Expressions

for the required second partial derivatives are obtained from Appendix A. Similarly to the �rst

partial derivatives we use notations such as g��;t (�) = @2gt (�) =@�@�
0, fxx (x;�) = @2f (x;�) =@x2,

and fx� (x;�) = @2f (x;�) =@x@�. We also de�ne

exx;t =
fxx
�
��10 �t;�0

�
f
�
��10 �t;�0

� � e2x;t
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and

e�x;t =
f�x

�
��10 �t;�0

�
f
�
��10 �t;�0

� �
f�
�
��10 �t;�0

�
f
�
��10 �t;�0

� ex;t;
and make the following assumption.

Assumption 4. E [exx;t] = �E
�
e2x;t
�
and E [g##;t (�0)] = �� with � given in Assumption 3(ii).

Moreover, E [exx;t�t] = 0 and E [e�x;t] = 0.

Similarly to Assumption 3, this assumption can be veri�ed by using the regularity conditions

in Andrews et al. (2006) and L&S. The �rst moment equality is obtained from Assumption (A3)

of these papers, whereas the second one states that the negative of the Hessian matrix of the

log-likelihood function with respect to the short-run parameter # equals the covariance matrix of

the score of #, a fact that can be established by direct calculation (see L&S). As for the last two

moment conditions, both exx;t�t and e�x;t are odd functions of �t so that, given Assumption 2, only

�niteness of the expectations is required. This in turn can be obtained from condition (A7) of

Andrews et al. (2006) and L&S.

Now we can prove the following lemma.

Lemma 2. Suppose that Assumptions 1-4 hold. Then,

�T�2
T�sX
t=r+1

g��;t (�0)
d! J
�20�0 (1)

2

Z 1

0
B2� (u) d (u)

def
= g�� (�0) ; (12)

�T�1
T�sX
t=r+1

g##;t (�0)
p! �; (13)

and

�T�3=2
T�sX
t=r+1

g�#;t (�0)
p! 0: (14)

Moreover, the weak convergences in (12) and in Lemma 1 hold jointly, and g�� (�0) and Z2 are

independent.

Using the limits obtained in Lemmas 1 and 2 we de�ne Z = (Z1; Z2) andG (�0) = diag(g�� (�0) ;�),

and we also introduce the matrix DT = diag
�
T; T�1=2Ir+s+d

�
. The following proposition is an im-

mediate consequence of Lemmas 1 and 2.

Proposition 1. Suppose that Assumptions 1-4 hold. Then,

ST (�0)
def
= D�1

T

T�sX
t=r+1

g�;t (�0)
d! Z (15)

and

GT (�0)
def
= �D�1

T

T�sX
t=r+1

g��;t (�0)D
�1
T

d! G (�0) ; (16)

where the weak convergences in (15) and (16) hold jointly with (Z1; G (�0)) and Z2 independent.

In the next section we derive the limiting distribution of the ML estimator of the parameter �

by using Proposition 1 and arguments similar to those used by Basawa and Scott (1983, Ch. 2.4)

in the context of statistical models whose likelihood ratios satisfy the LAMN condition.
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3.3 Limiting distribution of the ML estimator

To obtain the limiting distribution of the ML estimator of the parameter � we have to supple-

ment the assumptions made so far by conditions on the standardized Hessian matrix GT (�)
def
=

�D�1
T

PT�s
t=r+1 g��;t (�)D

�1
T . A su�cient \high level" condition, used by Basawa and Scott (1983,

pp. 33-34) in a more general form, requires that, for all c > 0,

sup
�2NT;c

kGT (�)�GT (�0)k
p! 0; (17)

where NT;c = f� : DT k� � �0k � cg. As discussed in Appendix C, this condition can be veri�ed by
using assumptions similar to those used by Lii and Rosenblatt (1996) in the context of (stationary)

noncausal and noninvertible ARMA models and by Meitz and Saikkonen (2013) in the context of

a (stationary) noninvertible ARMA model with conditionally heteroskedastic errors. Proposition 1

combined with condition (17) enables us to establish the limiting distribution of the ML estimator

of � under the unit root hypothesis.

Proposition 2. Suppose that Assumptions 1-4 and condition (17) hold. Then, with probability

approaching one, there exists a sequence of local maximizers of the log-likelihood function �̂T =

(�̂T ; #̂T ) such that �
DT (�̂T � �0); GT (�0)

�
d!
�
G (�0)

�1 Z;G (�0)
�
:

Moreover, GT (�̂T )�GT (�0)
p! 0.

Proposition 2 can be proved along the same lines as Theorems 1 and 2 of Basawa and Scott (1983,

pp. 56-59). An outline of the needed arguments is provided in Appendix B. Now all ingredients for

the derivation of our unit root tests are available.

4 Test procedures

4.1 Test statistic

With Proposition 2 at hand it is straightforward to derive Wald type unit root tests. As we are

interested in one-sided (stationary) alternatives we use a \t-ratio" type test statistic de�ned as

�T
def
=

�̂Tq
G1;1T (�̂T )

;

where G1;1T (�̂T ) abbreviates the (1,1)-element of GT (�̂T )
�1. The following proposition presents the

asymptotic distribution of �T .

Proposition 3. Suppose that Assumptions 1-4 and condition (17) hold. Then

�T
d!
�
J
Z 1

0
W 2
� (u) d (u)

��1=2�Z 1

0
W� (u) dW� (u)� (J � 1)1=2

Z 1

0
W� (u) dW (u)

�
def
= � (J ) ;

(18)

where W�(u) = ��10 B� (u) � BM (1), and W (u) � BM (1) is independent of W�(u).
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To see how this result can be obtained, note that Proposition 2 and the continuous mapping theorem

yield

�T
d! �

�
J
Z 1

0
B2� (u) d (u)

��1=2 Z 1

0
B� (u) dBex (u) :

The stated result is obtained by replacing the Brownian motion Bex (u) on the right hand side by

the expression

Bex (u) = ���10 B� (u) + (J � 1)1=2W (u) = �W�(u) + (J � 1)1=2W (u) ;

obtained via a Cholesky decomposition of the covariance matrix in (9).

Proposition 3 implies that the limiting distribution of test statistic �T is free of nuisance pa-

rameters except for the parameter J . For subsequent analysis and discussions we notice that for
Student's t-distributed errors with � > 2 degrees of freedom

J =
� (�+ 1)

(�� 2) (�+ 3) : (19)

Of course, the obtained limiting distribution is of limited practical use because it depends on the

the nuisance parameter J . Fortunately, this problem is rather easily circumvented and is further

discussed in Section 5.1. The distribution of the limiting variable � (J ) is a weighted average of
a standard normal distribution and a Dickey-Fuller type of distribution. More speci�cally, letting

J ! 1 in (18) a standard normal distribution is obtained, as

lim
J!1

� (J ) =
�Z 1

0
W 2
� (u) d (u)

��1=2 Z 1

0
W� (u) dW (u) = � � N(0; 1);

where the second equality holds true because
R 1
0 W� (u) dW (u) is a scale mixture of normal dis-

tributions and can be written as
R 1
0 W� (u) dW (u) =

�R 1
0 W

2
� (u) d (u)

�1=2
�. On the other hand,

letting J ! 1 in (18) the Dickey-Fuller type of distribution is obtained, as

lim
J!1

� (J ) =
�Z 1

0
W 2
� (u) d (u)

��1=2 Z 1

0
W� (u) dW� (u) :

That the limiting distribution of �T is relatively simple, depending only on the nuisance pa-

rameter J , is achieved by assuming that the function f (�;�) is even. This assumption is used
to establish the independence of g�� (�0) and Z2 in Lemma 2, and further the independence of

(Z1; G (�0)) and Z2 in Proposition 1, and it is also used to justify the block diagonality of G (�0)

(see the proof of Lemma 2 for some details). If these results do not hold the limiting distribution

of �T will be a considerably more complicated function of the short-run parameters of the model,

making the implementation of the resulting test very di�cult.

4.2 Tests allowing for deterministic terms

The result of Proposition 3 only applies to mean-zero data. To accommodate series with trend

components we consider the model

xt = �+ �t+ yt; t = 1; 2; :::;
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where xt is the observed time series and yt is a noncausal AR(r; s) process. The trend coe�cients

� and � are estimated by LS to obtain the estimates �̂ and �̂ after which the test statistic �T

introduced in the preceding section is formed by using yt = xt � �̂ in the case of demeaned data

and yt = xt � �̂ � �̂t in the case of detrended data. As in other unit root tests, the distribution

of the resulting test statistic depends on the trend component chosen, and therefore we denote

the test statistic by �T (m), where m = 0, m = 1, and m = 2 refer to mean-zero, demeaned, and

detrended data, respectively. The result of Proposition 3 applies even for �T (1) and �T (2) as long

as the Brownian motion W� (u) is replaced by corresponding detrended Brownian motion (see, e.g.,

Park and Phillips (1988)).

5 Simulation studies

5.1 Estimated critical values

The problem of the nuisance parameter J (2 (0;1)) appearing in the limiting distribution of test
statistic �T (m) is addressed next. We shall �rst illustrate how the value of the parameter J a�ects

the distribution of � (J ) (see (18)). It turns out to be convenient to study this e�ect by using the
correlation between the two Brownian motions B� (u) and Bex (u), that is, � = J �1=2 2 (0; 1) (see
(9)). The following �gure displays the 1% (dotted lines), 5% (dashed lines), and 10% (dashed-dotted

lines) percentiles of the distribution of � (J ) as a function of �.

Figure 1 Percentiles of the distribution of � (J ) as a function of � = J �1=2

Notes: 1st percentiles (dotted lines), 5th percentiles (dashed lines), and 10th percentiles (dash-dotted lines) for

the asymptotic distribution of the �T (m) statistic. The Brownian motions appearing in the limiting distribution

of test statistic �T (m) are approximated using (appropriately scaled) sums of normal IID(0; 1) variables with

T = 5; 000 and 500; 000 replications.
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In Figure 1 a monotonically decreasing relationship between the percentiles and � is seen.

As already mentioned, the Dickey-Fuller distributions and the standard normal distribution are

obtained as limiting cases by letting J ! 1 (� ! 1) and J ! 1 (� ! 0), respectively. Thus, in

Figure 1 the 1%, 5%, and 10% critical values for the DF-statistics and a standard normal variate

are found at the very left and very right, respectively.

Due to the percentiles monotonicity in � it is obvious that if the value of J were known Figure

1 could be used to determine (conventional) critical values. Taking a more rigorous approach

we proceed instead with curve estimation of the percentiles by �tting a second-order polynomial

cv�;m(�) = b0 + b1� + b2�
2 for � 2 f:01; :05:10g and m 2 f0; 1; 2g. The curve estimates, obtained

by LS, yield the coe�cients in Table 1 that can be used to compute asymptotic critical values.

To exemplify how Table 1 can be used, assume that we wish to test the unit root hypothesis in

the NCAR model at a 10% signi�cance level in the case of demeaned data with J = 2 (� = 1=
p
2).

Then, the estimated asymptotic critical value equals cv:10;1(2) = �1:276� 1:584� (1=
p
2)+ :289�

(1=
p
2)2 = �2:252. To this end, the value of J is in practice obviously not known and must be

estimated. In the case of Student's t-distributed errors we can use equation (19) with the estimator

�̂ used in place of �. More generally, in cases where the distribution of the error term comprises

less straightforward calculations of J we may, by virtue of Assumption 3(i), use the estimator

bJ =
1

T � r � s

T�sX
t=r+1

"
fx(�̂

�1�̂t; �̂)

f(�̂�1�̂t; �̂)

#2
; (20)

where �̂t = �ût � �̂ût�1 � �̂1�ût�1 � � � � � �̂r�1�ût�r+1 with ût = '̂(B�1)yt.

Table 1 Coe�cients to compute asymptotic critical values cv�;m(�) of test statistic �T (m)

Case Signi�cance level (�) b0 b1 b2 R2

mean-zero data 1% �2:321 �:492 :251 :998

(m = 0) 5% �1:639 �:495 :187 :999

10% �1:276 �:480 :131 :999

demeaned data 1% �2:322 �1:578 :474 1:00

(m = 1) 5% �1:639 �1:591 :367 1:00

10% �1:276 �1:584 :289 1:00

detrended data 1% �2:324 �2:201 :575 1:00

(m = 2) 5% �1:640 �2:230 :462 1:00

10% �1:276 �2:231 :381 1:00

Notes: For each signi�cance level and each trend speci�cation the coe�cients b0, b1, and b2 are obtained from the

regression of cv�;m(�) on (1; �; �
2) (using LS). R2 is the regression coe�cient of determination.
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5.2 Empirical size and power simulations

In this section, we examine �nite sample properties of the �T (m)-test for m 2 f0; 1; 2g by means of
simulation experiments. The nominal signi�cance level employed is 5%, and the benchmark process

is a noncausal autoregressive process as de�ned in (1) with r = s = 1, and with the independent

and identically distributed error term �t having Student's t-distribution with degrees of freedom

� equal to 3 and standard deviation � equal to 0:1. A realization fy1; :::; yT g from this process is

obtained by �rst generating the \noncausal" part as

vt = '1vt+1 + �t; t = T; T � 1; :::; 1;

where vT+1 = 0, and thereafter the \causal" part as

yt = �1yt�1 + vt; t = 1; 2; :::; T;

where y0 = 0. To eliminate e�ects of the terminal and starting values, 100 observations at the end

and beginning of each realization are discarded. Finally, in all experiments the true order of the

process is assumed known (i.e. r = s = 1), and the estimation of the parameter �̂ = (�̂; '̂1; �̂; �̂) is

carried out in GAUSS 12 using the BHHH algorithm in the CML library.

In the �rst experiment the empirical size of the �T (m)-test is examined when the parameter

'1 is varied and estimated (asymptotic) critical values based on di�erent estimates of J are used.

The parameter values and sample sizes considered are �1 = 1 (� = 0), '1 2 f:10; :50; :90g and
T 2 f100; 250g, respectively. Moreover, all the results in this experiment are based on 10; 000
realizations of the fy1; :::; yT g process, and for each realization 5% critical values are obtained by

the second-order polynomials in Table 2 using (19) with �̂ ( bJ1), the estimate in (20) ( bJ2), and
J = 2 (the true asymptotic value) as estimates. The outcomes of this experiment are reported in

Table 2.

Table 2 Empirical size of the �T (m)-test

mean-zero data demeaned data detrended data

Sample (m = 0) (m = 1) (m = 2)

Size '1 '1 '1

T 0:1 0:5 0:9 0:1 0:5 0:9 0:1 0:5 0:9

J = 2 :053 :053 :083 :059 :059 :086 :058 :056 :098

100 bJ1 � 2:127 :052 :052 :083 :054 :054 :080 :056 :059 :097bJ2 � 2:122 :052 :052 :083 :054 :053 :080 :055 :059 :097

J = 2 :054 :047 :045 :063 :061 :055 :057 :052 :056

250 bJ1 � 2:183 :053 :046 :044 :058 :058 :054 :056 :052 :057bJ2 � 2:181 :053 :046 :044 :058 :058 :054 :056 :052 :057

Notes: The results are based on 10,000 replications, and the nominal size of the tests is 5%. Reported

estimated values for J are based on the average value over the number of replications for each sample size

in the case of demeaned data with '1 = 0:5.
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In Table 2, the reported estimates for J are (for each sample size) based on the average number

of replications in the case of demeaned data with '1 = :5. It is seen that these estimates are close

to the true value even for moderate samples sizes. For the other cases the estimates of J are similar

and therefore omitted. It is further noticed that the empirical size is close to the nominal size for

most of the cases considered, and the inuence of the parameter '1 appears to be modest. One

exception, though, is for T = 100 and '1 = :90, where the test is somewhat over-sized so that some

cautiousness is required. Taken the results in Table 2 together, it appears that the asymptotic

distributions of the �T (m)-test, also with estimated J -values, yield reasonable approximations to
the �nite sample distributions even for relatively small sample sizes, various trend components, and

a wide range of parameter values for '1.

In our second Monte Carlo experiment the power of the �T (m)-test is examined when bJ2 is
used to obtain critical values. The data are generated as described above with '1 = :50 and

�1 2 [0:6; 1:0] (� 2 [�:4; 0]). The sample sizes considered are T 2 f100; 250g. For comparison we

Figure 2 Empirical power of the tests �T (m), �DF (m) and M(m)

T = 100

T = 250

Notes: �T (m)-test solid line, �DF (m)-test dotted line, andM(m)-test dashed line, nominal size short-dashed line.

The results are based on 10,000 replications and the nominal size of the tests is 5%.
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we also choose to report the outcomes of the conventional Dickey-Fuller unit root t-test based

on an AR(2) process, as well as the t-type unit root test of Lucas (1995) based M -estimation in

AR(1) model assuming strictly stationary strong-mixing errors. The former and the latter tests

are denoted by �DF (m) and M(m), respectively.
1 The �DF (m)-test is a natural competitor to our

test in that it is widely used among practitioners, and it has also been shown to be rather robust

against various misspeci�cations. The M(m)-test could also be viewed as a natural competitor, for

it is designed to be robust against innovation outliers (fat-tailed distributions). The results of this

experiment are summarized in Figure 2.

Figure 2 shows that the �T (m)-test is in general the most preferable test, and it performs

signi�cantly better than the �DF (m) andM(m)-tests for most of the cases considered. For instance,

in the case of detrended data with T = 250 and �1 = 0:95, the di�erences in power between

the �T (2)-test and the �DF (2) and M(2)-tests are (approximately) as large as :40 and :25 units,

respectively.

6 Empirical application

In this section, we provide an empirical illustration of our test by analyzing a Finnish interest rate

series (Government bonds). These data range from 1988:Q1 to 2012:Q4 (quarterly observations)

and yield a sample size of 100 observations.2 The Government bond series is shown in Figure 3.

For interest rate series (in general) it is most natural to use demeaned data. But, as the Finnish

interest rate series is trending in the sample we will also consider the case of detrended data. As

a �rst step in our analysis we �t an AR(p) model to the data by LS and thereafter check if the

residual series appears non-Gaussian. For the case of demeaned data both AIC and BIC select an

AR(3) model, whereas for the case of detrended data an AR(2) model is selected by both AIC and

Figure 3 Finnish Government bonds

1Following Lucas (1995) we use the Huber  -function  (x) = min fc;max(�c; x)g with c = 1:345 to obtain the

M -estimator. Furthermore, to operationalize the M(m)-test, nuisance parameters are estimated by the Newey-West

estimator with the lag-truncation parameter set at
h
4(T=100)2=9

i
. Finally, in the computations of the M -estimator

a scale free version is used (see Lucas, 1995, p. 337), and an iterative weighted LS algorithm (similar to the one

described in Van Dijk, Franses, and Lucas, 1999, p. 219) is applied.
2The series are obtained from IMF's International Financial Statistics.
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BIC.3 Even though the null hypothesis of no 4th-order remaining serial correlation is not rejected

by the Ljung-Box (LB) test for the two residual series (p-values: :492 and :811 for demeaned and

detrended residual series, respectively), we �nd that the normality assumption is strongly rejected

by the Lomnicki, Jarque, and Bera (LJB) test (p-values: < :001 and < :001 for demeaned and

detrended residual series, respectively), and some evidence of 4th-order ARCH e�ects are also found

by the McLeod-Li (McL) test (p-values: :089 and :250 for demeaned and detrended residual series,

respectively).4 In addition, quantile-quantile plots of the residuals of the AR(3) and AR(2) models

(not shown here) indicate that a normal distribution is not appropriate because excess kurtosis

in the data is left unexplained. Taken these results together it seems worthwhile to proceed with

estimation and unit root testing of NCAR speci�cations, and to capture the leptokurtic behavior of

the residuals series we will adopt t-distributed errors. More speci�cally, for demeaned and detrended

data we consider an AR(r; s) model with r+s = p = 3 and r+s = p = 2, respectively, and conduct

unit root testing for the AR(1; 2) and AR(2; 1) speci�cations in the former case and for the AR(1; 1)

speci�cation in the latter case. As will be discussed below, these noncausal models are supported

by the speci�cation strategy discussed in Section 3.1. For comparison we also employ the M -test

and the �DF -test based on AR(3) and AR(2) models in the case of demeaned and detrended data,

respectively. The outcomes of these unit root tests as well as various estimation results and LB,

LJB, and McL misspeci�cation tests are reported in Tables 3 and 4 below.5

Table 3 Unit root testing for demeaned and detrended Finnish interest rate series

T � = 97 m = 1

Model Test Outcome cv:05;1 cv:05;1(�̂1) cv:05;1(�̂2)

AR(3) �DF �1:041 �2:860
AR(1) M :038 �3:060

AR(2; 1)-t �T �5:101��� �2:558 �2:577
AR(1; 2)-t �T �5:997��� �2:542 �2:531

T � = 98 m = 2

Model Test Outcome cv:05;2 cv:05;2(�̂1) cv:05;2(�̂2)

AR(2) �DF �3:213� �3:410
AR(1) M �1:435 �3:660

AR(1; 1)-t �T �5:379��� �3:072 �3:048
Notes: T � is the e�ective sample size. AR(r; s) abbreviates an autoregressive model with rth-order and sth-order

polynomials �(B) and '(B�1), respectively. N and t refer to Gaussian and t-distributed errors. ��� and � denote

signi�cance at the 1% and the 10% level, respectively. cv:05;m (m = 1; 2) is the 5% critical value for the �DF -test

(see Fuller (1976, p. 373)) and the M -test(see Lucas (1995, p. 339)), and cv:05;m(b�1) and cv:05;m(b�2) (m = 1; 2)

are the 5% estimated critical values obtained by letting �̂1 =
bJ�1=2
1 and �̂2 =

bJ�1=2
2 ( bJ1 and bJ2 are estimators

of J using (19) and (20), respectively).

3In this exercise we choose the maximum lag considered as pmax =
h
4(T=100)2=9

i
= 4.

4The skewness part of the LJB-test is signi�cant at 7.6% and 8.8 % levels for demeaned and detrended data,

respectively, indicating that the rejection of Gaussian errors mainly stems from the kurtosis part of the LJB-test.
5As discussed in L&S (see p. 12), we use least absolute deviation estimators to �nd starting values for � and '1

(~� and ~'1, say), and thereafter maximize lT (
~�; ~'1; �; �) to also �nd starting values for � and �.
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Table 4 NCAR estimation results for demeaned and detrended Finnish interest rate series

m = 1 AR(r; s) speci�cations

T � = 97 AR(3; 0)-N AR(3; 0)-t AR(2; 1)-t AR(1; 2)-t AR(0; 3)-t

� �:015
(:013)

:003
(:013)

�:472
(:093)

�:425
(:071)

�1 :568
(:099)

:590
(:091)

:056
(:091)

�2 �:180
(:099)

�:084
(:104)

'1 :941
(:025)

:873
(:068)

1:550
(:118)

'2 :056
(:067)

�:695
(:160)

'3 :130
(:093)

� :447
(:170)

:457
(:085)

:477
(:126)

:498
(:155)

:461
(:069)

� 3:585
(1:356)

3:017
(:987)

2:831
(:868)

4:129
(1:731)

LL �59:556 �49:111 �46:052 �45:637 �53:437
LB(4) :492 :324 :674 :348 :522

McL(4) :089 :233 :256 :306 < :001

LJB < :001

m = 2 AR(r; s) speci�cations

T � = 98 AR(2; 0)-N AR(2; 0)-t AR(1; 1)-t AR(0; 2)-t

� �:104
(:032)

�:052
(:032)

�0:418
(:078)

�1 :505
(:086)

:563
(:085)

'1 :806
(:057)

1:445
(:108)

'2 �:521
(:103)

� :433
(:031)

:442
(:073)

:440
(:091)

:451
(:071)

� 3:861
(1:581)

3:293
(1:058)

3:966
(1:596)

LL �57:055 �48:998 �43:480 �51:528
LB(4) :811 :358 :503 :584

McL(4) :250 :257 :338 < :001

LJB < :001

Notes: T � designates the e�ective sample. AR(r; s) abbreviates an autoregressive model with rth-order and sth-

order polynomials �(B) and '(B�1), respectively. N and t refer to Gaussian and t-distributed errors, respectively.

The �gures in parentheses are standard errors, and they are computed using the square root of the diagonal

elements of the matrix D�1
T GT (�̂T )

�1D�1
T . LL denotes the value of the log-likelihood evaluated at the ML

estimates. LB(4) and McL(4) signify the Ljung-Box test and the McLeod-Li test with four lags, and LJB is the

Lomnicki, Jarque, and Bera normality test, and the p-value of these tests are reported.
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In Table 3 we see that the �T -tests based on NCAR speci�cations give rise to strong rejections

(in the case of demeaned data the strongest rejection arises from the NCAR(1; 2) model). On the

other hand, the �DF -test fails to reject the unit root hypothesis in the case of demeaned data and

yields a rejection only at the 10% level using detrended data, whereas theM -test strongly supports

the unit root hypothesis irrespective of detrending procedure.

By the results in Table 4 we conclude that in the case of demeaned data the log-likelihood

(LL) is maximized for an AR(1; 2) model with t-distributed errors, albeit closely followed by an

AR(2; 1) model with t-distributed errors. In the case of detrended data the LL is maximized for

an AR(1; 1) model with t-distributed errors. The maximized LL's of causal and pure noncausal

models are substantially lower than those of the aforementioned three NCAR models. Moreover,

according to the LB test and the McL test these NCAR models are satisfactory, and an inspection

of their quantile-quantile plots (not shown here) lends support to the choice of t-distributed errors.

The estimation accuracy of the parameters appears reasonable perhaps with the exception of the

degrees of freedom parameter � whose small point estimates still clearly point to a non-Gaussian

error distribution. Altogether, the results in Tables 3 and 4 suggest that a stationary NCAR process

with non-Gaussian leptokurtic errors provides a reasonable approximation for the Finnish interest

rate series.

7 Concluding Remarks

In this paper, we consider likelihood-based unit root tests in the NCAR model of L&S. In order

to derive such tests, we derive asymptotic properties of the ML estimator under the unit root

hypothesis. Most of the employed assumptions are common to those in the previous literature

on noncausal autoregressions, but to obtain unit root tests with feasible limiting distributions

a symmetric error distribution is adopted. With this assumptions the limiting distributions of

our tests are shown to depend on a single nuisance parameter the e�ect of which can readily be

eliminated by using estimated critical values.

In our simulation study we demonstrate that the size properties of our tests are satisfactory

and that the use of estimated critical values has no appreciable e�ect on the size properties of the

tests. Our simulations also show that, compared to conventional DF-tests and theM -tests of Lucas

(1995), the power of our tests against stationary NCAR alternatives is very good.

In an application to a Finnish interest rate series we demonstrate how the tests are implemented

in practice. In this application we �nd that NCAR models with t-distributed errors provide better

descriptions to the data than causal AR models and that our tests clearly reject the unit root

hypothesis, whereas no evidence or only week evidence against a unit root is obtained by using

DF-tests and the M -tests.
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Appendix A: partial derivatives of the log-likelihood function

First partial derivatives. As in Section 3.2, we use a subscript to denote a partial derivative

indicated by the subscript. For notational brevity, denote

ex;t (�) =
fx
�
��1�t (�) ;�

�
f (��1�t (�) ;�)

and e�;t (�) =
f�
�
��1�t (�) ;�

�
f (��1�t (�) ;�)

where �t (�) = � (B)'
�
B�1

�
yt is treated as a function of the parameters � and ' (for notational

convenience we do not make explicit that �t (�) is independent of the parameters � and �). Note

also the alternative expressions

�t (�) = �ut (')� �ut�1 (')� �1�ut�1 (')� � � � � �r�1�ut�r+1 (')
= (vt (�; �)� '1vt+1 (�; �)� � � � � 'svt+s (�; �)) ;

where ut (') = '
�
B�1

�
yt and vt (�; �) = � (B) yt (see (2)). We also set Ut�1 (') = (ut�1 (') ; :::; ut�r+1 ('))

and Vt+1 (�; �) = (vt+1 (�; �) ; :::; vt+s (�; �)). With straightforward di�erentiation one now obtains

from (8)

g�;t (�) =

26666664
g�;t (�)

g�;t (�)

g';t (�)

g�;t (�)

g�;t (�)

37777775 =
26666664

���1ex;t (�)ut�1 (')
���1ex;t (�)�Ut�1 (')
���1ex;t (�)Vt+1 (�; �)
���2 (ex;t (�) �t (�) + �)

e�;t (�)

37777775
Second partial derivatives. To simplify notation, de�ne

exx;t (�) =
fxx
�
��1�t (�) ;�

�
f (��1�t (�) ;�)

�
 
fx
�
��1�t (�) ;�

�
f (��1�t (�) ;�)

!2

e�x;t (�) =
f�x

�
��1�t (�) ;�

�
f (��1�t (�) ;�)

�
f�
�
��1�t (�) ;�

�
f (��1�t (�) ;�)

fx
�
��1�t (�) ;�

�
f (��1�t (�) ;�)

e��;t (�) =
f��

�
��1�t (�) ;�

�
f (��1�t (�) ;�)

�
f�
�
��1�t (�) ;�

�
f (��1�t (�) ;�)

f�
�
��1�t (�) ;�

�0
f (��1�t (�) ;�)

;

and let Yt stand for the (r�1)�s matrix with elements yt�i+j (i = 1; :::; r � 1, j = 1; :::; s) whereas
Y 01t (1� s) is used to signify the �rst row of Yt.

The following �ve second partial derivatives involve the long-run parameter �:

g��;t (�) = ��2exx;t (�)u
2
t�1 (')

g��;t (�) = ��2exx;t (�)ut�1 (')�Ut�1 (')

g'�;t (�) = ��2exx;t (�)ut�1 (')Vt+1 (�; �) + �
�1ex;t (�)Y1t

g��;t (�) = ��3exx;t (�) �t (�)ut�1 (') + �
�2ex;t (�)ut�1 (')

g��;t (�) = ���1ut�1 (') e�x;t (�) :

The remaining partial derivatives are as in L&S expect that r is replaced by r � 1 and di�erences
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of Ut�1 (') and Yt are used. We have

g��;t (�) = ��2exx;t (�)�Ut�1 (')�U
0
t�1 (')

g'';t (�) = ��2exx;t (�)Vt+1 (�; �)V
0
t+1 (�; �)

g��;t (�) = 2��3ex;t (�) �t (�) + �
�4exx;t (�) �

2
t (�) + �

�2

g��;t (�) = e��;t (�)

g�';t (�) = ��2exx;t (�)�Ut�1 (')V
0
t+1 (�; �) + �

�1ex;t (�)�Yt

g��;t (�) = ��3exx;t (�) �t (�)�Ut�1 (') + �
�2ex;t (�)�Ut�1 (')

g'�;t (�) = ��3exx;t (�) �t (�)Vt+1 (�; �) + �
�2ex;t (�)Vt+1 (�; �)

g��;t (�) = ���1e�x;t (�)�U 0t�1 (')
g�';t (�) = ���1e�x;t (�)V 0t+1 (�; �)
g��;t (�) = ���2e�x;t (�) �t (�) :

These partial derivatives form the matrix g##;t (�).

Appendix B: proofs for Section 3

Proof of Lemma 1. Recall the notation �ut =
P1
j=0 �0;j�t�j and vt =

P1
j=0 �0;j�t�j . Using the

expression of the components of g�;t (�0) one obtains (10) as a straightforward application of the

theorem in Phillips (1988) whereas (11) can be justi�ed by a central limit theorem for stationary

ergodic processes (see Breidt et al. (1991) or L&S). The stated joint convergence holds because

both g�;t (�0) and g#;t (�0) are generated by the same IID sequence �t.

To establish the independence of the limits, let F �t signify the the �{algebra generated by
(�t; �t�1; :::) and consider the random vector wt = (ex;t; �t; g#;t (�0)). Using the de�nitions of ex;t

and g#;t (�0), and Assumption 3 it is straightforward to check that (wt;F �t ) is an L2{mixingale
with size �1 (for the de�nition of an L2{mixingale and its size, see Davidson (1994, p. 247)).

Thus, Theorem 3 of Scott (1973) shows that a functional central limit theorem applies to wt and

the resulting limiting Brownian motion, Q (�) say, determines the limits in (10) and (11). Thus, it
su�ces to show that the �rst two components of Q (�) are independent of the remaining components,
which in turn follows if the long-run covariance matrix between the component vectors (ex;t; �t) and

g#;t (�0) of wt is block diagonal.

That the long-run covariance matrix between (ex;t; �t) and (g�;t (�0) ; g';t (�0)) is block diagonal

is easy to see. For instance, g';t (�0) = ���10 ex;tVt+1 is uncorrelated with (ex;t; �t) because Vt+1 is

independent of (ex;t; �t) and has zero mean, and g';t (�0) is also uncorrelated with (ex;t+k; �t+k) ;

k 6= 0; because ex;t is independent of (Vt+1; ex;t+k; �t+k) and has zero mean. This implies the desired
result and a similar reasoning applies to g�;t (�0) = ���10 ex;t�Ut�1.

The long-run covariance matrix between (ex;t; �t) and (g�;t (�0) ; g�;t (�0)) reduces to the ordi-

nary covariance matrix. Assumption 2 and the de�nition of ex;t imply that ex;t is an odd function

of �t. Thus, as E [g�;t (�0) �t] = ���30 E
�
ex;t�

2
t

�
, the fact that ex;t�

2
t is an odd function of �t yields

E [g�;t (�0) �t] = 0. In the same way it is seen that E [g�;t (�0) ex;t] = ���30 E
�
e2x;t�t

�
= 0. Further-

more, g�;t (�0) is an even function of �t so that E [g�;t (�0) �t] = 0 and E [g�;t (�0) ex;t] = 0. Thus,

we have shown that the long-run covariance matrix between (et; �t) and g#;t (�0) is block diagonal.
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We still note that in some of the foregoing derivations the assumption that the function f (x;�)

is even is needed. For instance, consider the expectation

E [g�;t (�0) ex;t] = ���30
Z
x

 
fx
�
��10 x;�0

�
f
�
��10 x;�0

� !2 f ���10 x;�0
�
dx

= ���20
Z
z
(fx (z;�0))

2

f (z;�0)
dz;

which need not vanish if the function f (�;�) is not even.

Proof of Lemma 2. First conclude from the de�nitions that the elements of the matrix

g##;t (�0) (see Appendix A) are (jointly) stationary and ergodic so that an application of a law of

large numbers yields (13). Thus, it su�ces to consider (12) and (14). We use the well-known fact

that a functional central limit theorem applies to the process �ut (see (6)) and that T
�1=2u[T �]

d!
�0 (1)

�1B� (�) (see the discussion at the beginning of the proof of the theorem in Phillips (1988)).

Similarly it is seen that T�1=2y[T �] obeys a functional central limit theorem.

As exx;t = exx;t (�0) the expression of g��;t (�) in Appendix A yields

g��;t (�0) = ��20
fxx
�
��10 �t;�0

�
f
�
��10 �t;�0

� u2t�1 � ��20 e2x;tu
2
t�1;

where

E

 
fxx
�
��10 �t;�0

�
f
�
��10 �t;�0

� ! = 0
by Assumption 4(i). As T�1=2u[T �] converges weakly, the continuous mapping theorem implies that

the same is true for
�
T�1=2u[T �]

�2
, so that from Theorem 3.3 of Hansen (1992) we obtain

T�2
T�sX
t=r+1

fxx
�
��10 �t;�0

�
f
�
��10 �t;�0

� u2t�1 = op (1) :

Hence,

T�2
T�sX
t=r+1

g��;t (�0) = ���20 J T�2
T�sX
t=r+1

u2t�1 � ��20 T�2
T�sX
t=r+1

(e2x;t � J )u2t�1 + op (1)

= ���20 J T�2
T�sX
t=r+1

u2t�1 + op (1) ;

where the second equality can again be justi�ed by Theorem 3.3 of Hansen (1992) and the assump-

tion E
�
e2x;t
�
= J . Thus, as T�1=2u[T �]

d! �0 (1)
�1B� (�), an application of the continuous mapping

theorem yields (12).

To establish (14), �rst consider

g��;t (�0) = ��20
fxx
�
��10 �t;�0

�
f
�
��10 �t;�0

� ut�1�Ut�1 � e2x;tut�1�Ut�1;
where

E

 
fxx
�
��10 �t;�0

�
f
�
��10 �t;�0

� �Ut�1! = 0 and E
�
e2x;t�Ut�1

�
= 0
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because E (�Ut�1) = 0 and �Ut�1 is independent of (�t; ex;t). Thus, Theorem 3.3 of Hansen (1992)

can again be used to obtain

T�3=2
T�sX
t=r+1

g��;t (�0) = op (1) :

As T�1=2y[T �] converges weakly, arguments similar to those already used yield

T�3=2
T�sX
t=r+1

g'�;t (�) = ��20 T�3=2
T�sX
t=r+1

exx;tut�1Vt+1 + �
�1
0 T�3=2

T�sX
t=r+1

ex;tY1t

= op (1) :

Note, however, that the summand in the �rst term on the right hand side of the former equation

di�ers from its counterpart in g��;t (�0) in that, unlike �Ut�1, the zero mean stationary process

Vt+1 depends on �t+j , j > 0. Hence, the process exx;tVt+1 is not adapted to F �t and does not
satisfy the assumptions imposed on the sequence feig in Hansen's (1992) Theorem 3.3. However,

an inspection of the proof of that theorem reveals that this theorem applies even if feig is a general
mixingale such as exx;tVt+1 instead of the assumed special type of mixingale (that exx;tVt+1 is a

mixingale, see Davidson (1994, p. 247)).

Finally, arguments similar to those used for g��;t (�0) apply to g��;t (�0) and g��;t (�0). Because

E [exx;t�t] = 0, E [ex;t] = 0, and E [e�x;t] = 0 by Assumption 4, Hansen's (1992) Theorem 3.3 can

be used to obtain

T�3=2
T�sX
t=r+1

g��;t (�0) = op (1) and T�3=2
T�sX
t=r+1

g��;t (�0) = op (1) :

Thus, we have established (14). Note that here we also need the assumption that the function

f (x;�) is even which, for instance, guarantees that E [exx;t�t] = 0, and hence the applicability of

Hansen's (1992) Theorem 3.3.

The stated independence follows in the same way as in the proof of Lemma 1 because the long-

run covariance matrix between �t and g#;t (�0) is block diagonal (here the assumption E [exx;t�t] = 0

or that the function f (�;�) is even is also needed). This completes the proof of the lemma.

Proof of Proposition 2. As indicated after Theorem 1, the proof follows the arguments in

Basawa and Scott (1983, pp. 56-59) with suitable modi�cations. In particular, our probability

statements assume that the true parameter value �0 is a �xed point in the parameter space so that,

instead of uniform and continuous weak convergence employed by Basawa and Scott (1983, pp.

56-59), we employ ordinary weak convergence. A minor modi�cation is that in place of the scaling

matrix In (�) in Assumptions (B.2) and (B.3) of Basawa and Scott (1983, pp. 33-34) we have the

matrix DT that is independent of the parameter �. It is straightforward to check that, as far as the

proof is concerned, this replacement has no essential e�ect. The same applies to the fact that in

our case the limits Z and G (�0) (see Proposition 1) are not independent, implying that the LAMN

condition does not hold.

Now, to see how the proof proceeds, note �rst that, with the preceding modi�cations, we

can repeat the arguments in the proof of Theorem 1 of Basawa and Scott (1983, pp. 56-58) and

conclude that, with probability approaching one, there exists a local ML estimator �̂T such that
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DT (�̂T � �0) = Op (1). Next, as in he proof of Theorem 2 of Basawa and Scott (1983, pp. 58-59)

we �nd that

DT (�̂T � �0)�G�1T (�0)ST (�0) = op (1) :

The �rst result of the theorem now follows from Proposition 1 and the continuous mapping theorem.

The second one can be established by using arguments similar to those used to prove Proposition

3.2 of Saikkonen (1993, p. 161) modi�ed as above to concern ordinary weak convergence instead of

continuous weak convergence (see also Remark 3.1 of Saikkonen (1993, p. 161)).

Appendix C: su�cient conditions for assumption (17)

To provide a discussion on su�cient conditions for the \high level" condition (17) we �rst note that

the regularity conditions employed by Andrews et al. (2006) and L&S can be used to show that

this condition holds for the lower right hand block of the Hessian,
PT�s
t=r+1 g##;t (�). Thus, assuming

these conditions, it su�ces to consider the blocks involving the parameter �, that is g��;t (�) and

g#�;t (�) (in what follows the null hypothesis of a unit root will also be assumed)

We denote by �0 a neighborhood of �0 and assume that, for all x 2 R, 4x 2 R, and � 2 �0,
and for some C <1 and d1; d2 > 0,

jw(x+4x;�)� w(x;�)j � C
h
(1 + jxjd1) j4xj+ j4xjd2

i
(21)

for the following choices of the function w(x;�):

w(x;�) =

8>><>>:
fx(x;�)
f(x;�)

fxx(x;�)
f(x;�) �

�
fx(x;�)
f(x;�)

�2
f�x(x;�)
f(x;�) �

f�(x;�)
f(x;�)

fx(x;�)
f(x;�) :

This assumption is an analogue of Assumption B of Lii and Rosenblatt (1996) who used it with

the �rst two choices of w(x;�) and with f (x;�) independent of � in the context of (stationary)

noncausal and noninvertible ARMA models. The third choice is a simpli�ed analog of Assumption 7

of Meitz and Saikkonen (2013) who developed an estimation theory for a (stationary) noninvertible

ARMA model with conditionally heteroskedastic errors. Note that replacing the argument x with

��1�t (�) the three choices of w(x;�) become ex;t (�), exx;t (�) and e�x;t (�) (see Appendix A), and

for the second one, for instance, condition (21) implies

jexx;t (�)� exx;t (�0)j � C
h�
1 +

����10 �t (�0)
��d1� ����1�t (�)� ��10 �t (�0)

��+ ����1�t (�)� ��10 �t (�0)
��d2i ;
(22)

where �t (�0) = �t, and E[j�tj2+d1 ] <1 and E[j�tj1+d2 ] <1 is assumed.

It su�ces to establish analogs of condition (17) for g��;t (�), � = �; �; '; �; �, or to show that,

for all c > 0,

sup
�2NT;c

T�b�
T�sX
t=r+1

[g��;t (�)� g��;t (�0)]
 p! 0; � = �; �; '; �; �; (23)

where b� = 2 for � = � and b� = 3=2 otherwise. Unless otherwise stated, � 2 NT;c will be assumed.
We only establish (23) for � = �; '. The other cases can be handled with similar arguments.
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Case � = �. First note that (see Appendix A)

T�2
T�sX
t=r+1

[g��;t (�)� g��;t (�0)] = T�2
T�sX
t=r+1

�
��2exx;t (�)u

2
t�1 (')� ��20 exx;t (�0)u

2
t�1 ('0)

�
= T�2

T�sX
t=r+1

��20 exx;t (�0)
�
u2t�1 (')� u2t�1 ('0)

�
+ T�2

T�sX
t=r+1

�
��2exx;t (�)� ��20 exx;t (�0)

�
u2t�1 (')

def
= A

(1)
T (�) +A

(2)
T (�) :

Now consider A
(1)
T (�) and note that

u2t�1 (')� u2t�1 ('0) = 2ut�1 ('0) (ut�1 (')� ut�1 ('0)) + (ut�1 (')� ut�1 ('0))
2 ;

where

ut�1 (')� ut�1 ('0) = '
�
B�1

�
yt � '0

�
B�1

�
yt = Y 01;t+1('� '0)

with Y1;t+1 = [yt+1 � � � yt+s]0. Thus,

sup
�2NT;c

���A(1)T (�)
��� � sup

�2NT;c
T�2

T�sX
t=r+1

����20 exx;t (�0)
�� ��u2t�1 (')� u2t�1 ('0)��

� 2

�20
sup
�2NT;c

T�2
T�sX
t=r+1

jexx;t (�0)j jut�1 ('0)j kY1;t+1k k'� '0k

+
1

�20
sup
�2NT;c

T�2
T�sX
t=r+1

jexx;t (�0)j kY1;t+1k2 k'� '0k2

def
= A

(1;1)
T +A

(1;2)
T :

As a functional central limit theorem applies to T�1=2y[T �], we have max1�t�T
��T�1=2yt�� = Op (1).

Thus, max1�t�T
T�1=2Y1;t+1 = Op (1) and, as ut ('0) = yt � '0;1yt+1 � � � � � '0;syt+s, also

max1�t�T
��T�1=2ut ('0)�� = Op (1). Because sup�2NT;c k'� '0k � c=T 1=2 we get, for all c,

A
(1;1)
T � 2c

�20
max
1�t�T

���T�1=2ut ('0)��� max
1�t�T

T�1=2Y1;t+1T�3=2 T�sX
t=r+1

jexx;t (�0)j = op (1) :

Here the equality follows because jexx;t (�0)j has �nite expectation by Assumptions 3(i) and 4.
Similar arguments also yield A

(1;2)
T = op (1) so that altogether we have shown that

sup
�2NT;c

���A(1)T (�)
��� = op (1) :

To obtain a similar result forA
(2)
T (�) note �rst that, by the de�nition of ut ('), max1�t�T

��T�1=2ut (')�� �
C1max1�t�T+s

��T�1=2yt�� = Op (1) for a �nite C1 independent of '. Thus,

sup
�2NT;c

���A(2)T (�)
��� � C21 max

1�t�T

�
T�1y2t

�
sup
�2NT;c

T�1
T�sX
t=r+1

����2exx;t (�)� ��20 exx;t (�0)
�� ;
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so that it su�ces to consider

sup
�2NT;c

T�1
T�sX
t=r+1

����2exx;t (�)� ��20 exx;t (�0)
�� � sup

�2NT;c

����2 � ��20 ��T�1 T�sX
t=r+1

jexx;t (�0)j (24)

+ sup
�2NT;c

��2T�1
T�sX
t=r+1

jexx;t (�)� exx;t (�0)j

def
= A

(2;1)
T +A

(2;2)
T :

We need to establish that A
(2;i)
T = op (1), i = 1; 2. As sup�2NT;c

����2 � ��20 �� = o (1), A
(2;1)
T = op (1)

immediately follows from the aforementioned fact that E [jexx;t (�0)j] < 1. A proof for A
(2;2)
T =

op (1) is obtained by using the inequality (22) and arguments similar to those above. To provide

an idea of the needed arguments, �rst notice that (see Appendix A)

�t (�) = �ut (')�
r�1X
j=1

�j�ut�j (')� �ut�1 (')
def
= ~�t (�)� �ut�1 (') ;

where ut (') = yt � '1yt+1 � � � � � 'syt+s with '1; :::; 's belonging to a bounded set. Thus, as

j�j � c=T for � 2 NT;c, max1�t�T j�ut (')j = Op
�
T�1=2

�
holds uniformly in NT;c and����1�t (�)� ��10 �t (�0)

�� � ��1 j~�t (�)� �t (�0)j+
����1 � ��10 �� j�t (�0)j+Op �T�1=2� ;

where the termOp
�
T�1=2

�
is uniform over 1 � t � T and � 2 NT;c. As ja1 + a2jd �Md

�
ja1jd + ja2jd

�
,

Md <1, for any real numbers a1, a2 and d > 0, the desired result A(2;2)T = op (1) can be obtained by

applying the inequality (22) with the term
����1�t (�)� ��10 �t (�0)

�� on the right hand side replaced
by ��1 j~�t (�)� �t (�0)j +

����1 � ��10 �� j�t (�0)j. As E [j�t (�0)j] = E [j�tj] < 1, arguments similar to
those used for the �rst term on the right hand side of (24) show that here the contribution of latter

term is of order op (1) so that we can replace
����1�t (�)� ��10 �t (�0)

�� on the right hand side of (22)
by ��1 j~�t (�)� �t (�0)j and obtain

A
(2;2)
T � C sup

�2NT;c
��2T�1

T�sX
t=r+1

h�
1 +

����10 �t (�0)
��d1���1 j~�t (�)� �t (�0)j+ ��d2 j~�t (�)� �t (�0)jd2i+op (1) :

Here ~�t (�) � �t (�0) = �
Pr�1
j=1(�j � �0;j)�ut�j (') and sup�2NT;c k� � �0k � c=T�1=2 . Thus, as

�ut (') = �yt � '1�yt+1 � � � � � 's�yt+s with '1; :::; 's belonging to a bounded set, it follows

that the majorant of A
(2;2)
T is of order op (1) (note that here use is also made of the assumptions

E[j�tj1+d1 ] < 1 and E[j�tjd2 ] < 1 implied by their more stringent counterparts mentioned below

(22)). Thus, we have established (23) with � = �.

Case � = '. By the de�nition of g'�;t (�) (see Appendix A)

T�3=2
T�sX
t=r+1

[g'�;t (�)� g'�;t (�0)]

= T�3=2
T�sX
t=r+1

�
��2exx;t (�)ut�1 (')Vt+1 (�; �)� ��20 exx;t (�0)ut�1 ('0)Vt+1 (�0; �0)

�
+ T�3=2

T�sX
t=r+1

�
��1ex;t (�)� ��10 ex;t (�0)

�
Y1t

def
= B

(1)
T (�) +B

(2)
T (�) :
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We need to show that sup�2NT;c

���B(i)T (�)
��� = op (1), i = 1; 2. First consider

sup
�2NT;c

���B(2)T (�)
��� � sup

�2NT;c
T�3=2

T�sX
t=r+1

����1ex;t (�)� ��10 ex;t (�0)
�� kY1;t+1k

� max
1�t�T

T�1=2Y1;t+1 sup
�2NT;c

T�1
T�sX
t=r+1

����1ex;t (�)� ��10 ex;t (�0)
�� ;

where max1�t�T
T�1=2Y1;t+1 = Op (1), as already noted. That the supremum in the last expres-

sion is of order op (1) can be established by using arguments similar to those used for A
(2)
T (�) above,

so details are omitted.

As for B
(1)
T (�), we write

B
(1)
T (�) = T�3=2

T�sX
t=r+1

��20 exx;t (�0) [ut�1 (')Vt+1 (�; �)� ut�1 ('0)Vt+1 (�0; �0)]

+ T�3=2
T�sX
t=r+1

�
��2exx;t (�)� ��20 exx;t (�0)

�
ut�1 (')Vt+1 (�; �)

def
= B

(1;1)
T (�) +B

(1;2)
T (�) ;

and demonstrate that sup�2NT;c

���B(1;i)T (�)
��� = op (1), i = 1; 2.

First consider B
(1;1)
T (�) and recall that Vt+1 (�; �) = (vt+1 (�; �) ; :::; vt+s (�; �)) with vt (�; �) =

� (B) yt or

vt (�; �) = �yt �
r�1X
j=1

�j�yt�j � �yt�1
def
= ~vt (�)� �yt�1

(see (4)). De�ne ~Vt+1 (�) = (~vt+1 (�) ; :::; ~vt+s (�)) so that Vt+1 (�; �) = ~Vt+1 (�) � �yt�11s where

1s = (1; :::; 1) (s� 1). Clearly, max1�t�T
Vt (�; �)� ~Vt (�)

 = p
smax1�t�T j�ytj = Op

�
T�1=2

�
uniformly in NT;c, and ~Vt+1 (�0) = Vt+1 (�0; �0) is stationary. As we also have E [j�xx;t (�0)j] < 1
and max1�t�T

��T�1=2ut (')�� = Op (1) uniformly in NT;c, we can replace Vt+1 (�; �) in B
(1;1)
T (�) by

~Vt+1 (�) and consider

sup
�2NT;c

 ~B(1;1)T (�)
 = sup

�2NT;c

T�3=2
T�sX
t=r+1

��20 exx;t (�0)
h
ut�1 (') ~Vt+1 (�)� ut�1 ('0)Vt+1 (�0; �0)

i
� sup
�2NT;c

T�3=2
T�sX
t=r+1

��20 exx;t (�0)ut�1 ('0)
h
~Vt+1 (�)� Vt+1 (�0; �0)

i
+ sup
�2NT;c

T�3=2
T�sX
t=r+1

��20 exx;t (�0) [ut�1 (')� ut�1 ('0)] ~Vt+1 (�)


def
= ~B

(1;3)
T + ~B

(1;4)
T :

First consider ~B
(1;4)
T and recall that ut�1 (')�ut�1 ('0) = Y 01;t+1('�'0) and sup�2NT;c k'� '0k �
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c=T 1=2 (see the treatment of A
(1)
T (�) in case � = �). Thus,

~B
(1;4)
T � ��20 sup

�2NT;c
T�3=2

T�sX
t=r+1

jexx;t (�0)j kY1;t+1k k'� '0k
 ~Vt+1 (�)

� c��20 max
1�t�T

T�1=2Y1;t+1 sup
�2NT;c

T�3=2
T�sX
t=r+1

jexx;t (�0)j
 ~Vt+1 (�) ;

where max1�t�T
T�1=2Y1;t+1 = Op (1). That the last term is of order op (1) now follows from the

following two facts: (i) The components of ~Vt+1 (�) satisfy j~vt+i (�)j � C2 (j�yt+ij+ � � �+ j�yt+i�r+1j)
for some �nite constant C2 independent of � and (ii) using condition (A7) in L&S one can show

that E [jexx;t (�0)�yt+i�j j] <1 (i = 1; :::; s; j = 1; :::; r � 1).
Now consider ~B

(1;3)
T for which we have

~B
(1;3)
T � ��20 sup

�2NT;c
T�3=2

T�sX
t=r+1

jexx;t (�0)j jut�1 ('0)j
 ~Vt+1 (�)� Vt+1 (�0; �0)

� ��20 max
1�t�T

���T�1=2ut ('0)��� sup
�2NT;c

T�1
T�sX
t=r+1

jexx;t (�0)j
 ~Vt+1 (�)� Vt+1 (�0; �0) ;

where max1�t�T
��T�1=2ut ('0)�� = Op (1) as seen in the case � = �. That the last term is of

order op (1) follows from the fact that the components of the vector ~Vt+1 (�) � Vt+1 (�0; �0) arePr�1
j=1(�j � �0;j)�yt+i�j with sup�2NT;c k� � �0k � c=T 1=2, and E [jexx;t (�0)�yt+i�j j] < 1 (i =

1; :::; s; j = 1; :::; r � 1), as noted above. Thus, we have established sup�2NT;c
���B(1;1)T (�)

��� = op (1),

and we still need to obtain a similar result for B
(1;2)
T (�).

By using arguments similar to those used for B
(1;1)
T (�) it can �rst be seen that we can replace

��20 in the de�nition of B
(1;2)
T (�) by ��2, so that denoting the resulting quantity by ~B

(1;2)
T (�) we

can consider

sup
�2NT;c

 ~B(1;2)T (�)
 = sup

�2NT;c

��2T�3=2
T�sX
t=r+1

[exx;t (�)� exx;t (�0)]ut�1 (')Vt+1 (�; �)


� C3 max
1�t�T

���T�1=2yt��� sup
�2NT;c

T�1
T�sX
t=r+1

jexx;t (�)� exx;t (�0)j kVt+1 (�; �)k ;

where C3 < 1 is independent of �. Here the inequality is obtained by dominating jut�1 (')j in
the same way as in handling A

(2)
T (�). As max1�t�T

��T�1=2yt�� = Op (1) it su�ces to show that the

supremum in the last expression is of order op (1). As seen above, max1�t�T

Vt (�; �)� ~Vt (�)
 =

Op
�
T�1=2

�
which in conjunction with condition (A7) of L&S can be used to show that we can here

replace Vt (�; �) with the (stationary) variable ~Vt (�) whose components, ~vt+i (�), satisfy j~vt+i (�)j �
C2 (j�yt+ij+ � � �+ j�yt+i�r+1j) (C2 <1, i = 1; :::; s). Thus, for i 2 f1; :::; sg it su�ces to consider

sup
�2NT;c

T�1
T�sX
t=r+1

jexx;t (�)� exx;t (�0)j j�yt+ij

� C sup
�2NT;c

T�1
T�sX
t=r+1

h�
1 +

����10 �t (�0)
��d1� ����1�t (�)� ��10 �t (�0)

��+ ����1�t (�)� ��10 �t (�0)
��d2i j�yt+ij

� C sup
�2NT;c

��2T�1
T�sX
t=r+1

h�
1 +

����10 �t (�0)
��d1���1 j~�t (�)� �t (�0)j+ ��d2 j~�t (�)� �t (�0)jd2i j�yt+ij+ op (1) :
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Here the �rst inequality is based on (22) and the second one is obtained in the same way as its

analog for A
(2;2)
T in case � = �. That the �rst term in the last expression is of order op (1) can be

seen in the same way as in the case of A
(2;2)
T (see the end of case � = � and note that here we need

the more stringent assumptions E[j�tj2+d1 ] <1 and E[j�tj1+d2 ] <1).
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