

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Gang, Ira N.; Landon-Lane, John S.; Yun, Myeong-Su

Working Paper Gender Differences in German Upward Income Mobility

IZA Discussion Papers, No. 580

Provided in Cooperation with:

IZA – Institute of Labor Economics

Suggested Citation: Gang, Ira N.; Landon-Lane, John S.; Yun, Myeong-Su (2002) : Gender Differences in German Upward Income Mobility, IZA Discussion Papers, No. 580, Institute for the Study of Labor (IZA), Bonn

This Version is available at: https://hdl.handle.net/10419/21348

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

IZA DP No. 580

Gender Differences in German Upward Income Mobility

Ira N. Gang John Landon-Lane Myeong-Su Yun

September 2002

Forschungsinstitut zur Zukunft der Arbeit Institute for the Study of Labor

Gender Differences in German Upward Income Mobility

Ira N. Gang

Rutgers University and IZA Bonn

John Landon-Lane

Rutgers University

Myeong-Su Yun

Tulane University and IZA Bonn

Discussion Paper No. 580 September 2002

IZA

P.O. Box 7240 D-53072 Bonn Germany

Tel.: +49-228-3894-0 Fax: +49-228-3894-210 Email: iza@iza.org

This Discussion Paper is issued within the framework of IZA's research area *Mobility and Flexibility of Labor.* Any opinions expressed here are those of the author(s) and not those of the institute. Research disseminated by IZA may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent, nonprofit limited liability company (Gesellschaft mit beschränkter Haftung) supported by the Deutsche Post AG. The center is associated with the University of Bonn and offers a stimulating research environment through its research networks, research support, and visitors and doctoral programs. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public. The current research program deals with (1) mobility and flexibility of labor, (2) internationalization of labor markets, (3) welfare state and labor market, (4) labor markets in transition countries, (5) the future of labor, (6) evaluation of labor market policies and projects and (7) general labor economics.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available on the IZA website (<u>www.iza.org</u>) or directly from the author.

IZA Discussion Paper No. 580 September 2002

ABSTRACT

Gender Differences in German Upward Income Mobility^{*}

We examine the upward labor income mobility of men and women in Germany using the GSOEP Cross National Equivalent File. Women have greater overall income mobility. However, utilizing a measure of upward income mobility and calculating the posterior probability that men's upward income mobility is greater than women's, we find that men have overall greater upward income mobility. Women have greater upward mobility in the lower initial income classes, in the upper initial income brackets men's mobility is higher than women's.

JEL Classification: D3, D63, J7

Keywords: upper income mobility, Markov chain, income distribution dynamics, gender discrimination

Corresponding author:

John Landon-Lane Department of Economics Rutgers University 75 Hamilton St New Brunswick, NJ 08901-1248 USA Email: lane@economics.rutgers.edu

^{*} An earlier version of this paper was presented at the 5th International German Socio-Economic Panel User Conference, July 3-4, 2002, Berlin, Germany.

1 Introduction

In this paper we explore the upward income mobility of men and women in Germany over the period 1984 to 1997. In terms of labor income mobility we examine whether men and women have approximately the same degree of upward mobility across the income distribution and whether upward income mobility varies by gender among the lower, middle and upper parts of the distribution.

We examine the labor income mobility of men and women in Germany using the GSOEP Cross National Equivalent File. We examine the dynamics of the income distribution – the movement of women and men through the distribution of income over time. We model the dynamics of the income distribution as a first order Markov chain. Bayesian methods are used to characterize the distribution of all the functions of the transition probability matrix. In particular, we are able to estimate the probabilities of an individual moving from one income classification to another, formally compare and contrast various mobility indices across different subsamples of the data, and formally compare and test various hypotheses on the convergence properties of the income distribution. We are most interested in developing measures of upward income mobility and testing different hypotheses on the transitional dynamics of the income distribution.

In the next section we discuss various income mobility measures and characterize our upward mobility measures. Section 3 discusses the data and our priors. Results are discussed in section 4. Section 5 concludes.

2 Measuring Upward Income Mobility

In this paper we apply the results from Gang, Landon-Lane and Yun (2002b) to data from Germany. In what follows is a brief discussion of the model and the estimation strategy. We model the dynamics of labor income using a first order Markov chain. The use of Markov-chain models to study income dynamics has a long history with notable contributions by Champernowne (1953) and Shorrocks (1976).

Using the Markov assumption there are many measures of overall income mobility that one may define. For complete discussions of the properties and definitions of a large number of mobility measures see Shorrocks (1978) and Geweke, Marshall and Zarkin (1986). A measure of overall income mobility measure that is commonly reported in the literature is the measure due to Shorrocks (1978), which is defined as

$$\mathcal{M}_s(\mathbf{P}) = \frac{C - tr(\mathbf{P})}{C - 1}.$$
(1)

There are *C* income classifications where *C* is a finite number. The probability of transiting from class *i* in period *t*-1 ($\pi_{t-1} = i$) to class *j* in period *t* ($\pi_t = j$) is $P(\pi_t = j | \pi_{t-1} = i) \equiv p_{ij}$, so that the Markov transition matrix, **P**, can be defined as $\mathbf{P} = [p_{ij}]$.

Note that we assume that the transition probability follows the first order Markov chain property, that is,

$$P(\pi_t | \pi_{t-1}, \pi_{t-2}, \dots, \pi_{t-j}) = P(\pi_t | \pi_{t-1}) \quad \forall \ j = 2, 3, \dots,$$
(2)

where P(.) represents the conditional probability distribution of π . The first order Markov property implies that $\pi'_t = \pi'_0 \mathbf{P}^t$, where π_0 is the initial income distribution. The invariant or limiting income distribution, $\overline{\pi}$, is any distribution that satisfies

$$\overline{\pi}' = \overline{\pi}' \mathbf{P}.\tag{3}$$

The invariant distribution is unique if there is only one eigenvalue of \mathbf{P} with modulus one.¹

¹Implicitly we are assuming that the eigenvalues have been ordered from highest to lowest in terms of magnitude. As \mathbf{P} is row stochastic we know that the highest eigenvalue, in terms of magnitude, is

The Shorrocks measure can be shown to be the inverse of the harmonic mean of the expected length of stay in an income class, scaled by a factor of C/(C-1). This index satisfies the monotonicity, immobility and strong immobility persistence criteria and hence is internally consistent.²

In Gang, Landon-Lane, and Yun (2002b), we show how this measure can be decomposed into its upward and downward income mobility components. We also show that these upward and downward income mobility indices are internally consistent with respect to the persistence criteria noted above.

The measure of upward mobility that we use is

$$\overline{\mathcal{M}}_{U|i}(\mathbf{P}) = \frac{1}{C-1} \sum_{k=1}^{C-1} \mathcal{M}_{U|k}(\mathbf{P}), \qquad (4)$$

where

$$\mathcal{M}_{U|i}(\mathbf{P}) = \sum_{k=i+1}^{C} p_{ik}.$$
(5)

Here, $\mathcal{M}_{U|i}$ measures the conditional probability of moving up from income class *i* to an income class above *i*, and $\overline{\mathcal{M}}_{U|i}$ is the average conditional probability of moving to a higher income class. These measures allow us to characterize any differences between males and females in terms of ability of moving to a higher income class.

The mobility measures estimated using a Bayesian methods will be reported in section 4. In Section 4 we also report the posterior probability that the upward income mobility for males is higher than the upward income mobility for females.

^{1.} If the magnitude of the second eigenvalue is strictly less than 1 then we know that the invariant distribution is unique.

 $^{^2 \}mathrm{See}$ Geweke, Marshall, and Zarkin (1986) for a complete discussion on the properties of these mobility indices.

3 Data and Prior Distribution

3.1 Data

We need panel data in order to study gender differences in upward mobility in labor income. We use samples drawn from the German Socio-Economic Panel (GSOEP) from Germany. The study is further facilitated by using GSEOP files from the Cross National Equivalent File (CNEF), which standardizes the information in the GSOEP.³ The GSOEP-CNEF contains information regarding not only demographic characteristics but also labor market activities including labor income. Our variable of interest is real annual labor income.⁴

We utilize the West German sample from the GSOEP (sample A). We also exclude those who work in agriculture. In order to study only workers who have strong attachment to the labor market, we restrict the sample to those who work in full-time jobs in both starting and ending years, 1984 and 1997.⁵ Full-time workers are those who work 35 hours or more per week on average. We study only workers not younger than 25 years in the beginning year and not older than 60 years in the ending year of the period. For example, we select people from age 25 to 47 in 1984 when we study the 13 year transition between 1984 and 1997.

Table 1 shows labor income and Germany for 1984 and 1997. To gain some perspective on the sample we use in our analysis, Table 1 shows the incomes and sample sizes of all workers (including part-time), full time workers in the unbalanced panel, and full time

³The GSOEP-CNEF are available thanks to efforts of researchers and staff at Cornell University and the German Institute for Economic Research (DIW). For details of making equivalent files across countries, see the homepage of this project, http://www.human.cornell.edu/pam/gsoep/equivfil.cfm.

⁴We compute labor income using the consumer price index (base year: 1991) and converting German Marks to US dollars using a purchasing power parity exchange rate (PPP) in 1991. The PPP in 1991 is 2.09 DM per one US dollar, while the exchange rate in the same year is 1.66 DM per a dollar. Also note that we rescaled German CPI by moving the base year to 1991 from 1999. This was done in preparation for other comparative work in which we are engaged. See Gang, Landon-Lane and Yun (2002a).

⁵We choose people who were full-time job workers in both year 1984 and 1997 and study study the 13 year transition. The fact that they worked in full-time jobs in both years does not necessarily mean that they worked in a full-time job throughout the period.

workers appearing in both the 1984 and 1997 samples. The sample we are using, "careerworkers", i.e., those who are full time workers both in the beginning and ending periods, have the highest incomes. In our sample, German men in 1984 enjoy an annual labor income premium of 46.71 percent over women. For 1997 this premium is 31.38 percent.

		Gerr	nany		
	19	84	19	97	
	Male	Female	Male	Female	
	Full-t	ime worke	rs in both	years	
mean	26553	18099	32377	24644	
std. dev.	(23694)	(8214)	(16569)	(10051)	
sample size	643	132	643	132	
	Full-tim	e workers	in respect	tive year	
mean	25507	17028	32618	22952	
std. dev.	(21857)	(12012)	(16565)	(12396)	
sample size	1480	503	748	241	
	Wo	rkers in re	espective y	vear	
mean	24276	12198	- 0	15716	
std. dev.	(21450)	(10367)	(16546)	(11891)	
sample size	1657	1035	824	566	

Table 1: Mean Income Level (constant US\$, base year = 1991)

Note1: Workers are restricted to working in non-agriculture and aged 25 to 47 years old in 1984. Note2: German Mark is converted to U.S. dollar using PPP in 1991 (2.09DM/US\$)

3.2 **Prior Distributions**

This paper uses Bayesian methods to estimate and make inferences from the Markov chain model outlined in section 2. One important consequence of using Bayesian methods is that it is simple to characterize the distribution of any function of the primal parameters, π_0 and **P**, of the model and any, possibly non-linear, function of these primal parameters. In this paper the functions of the primal parameters that we are interested in are the various mobility measures described above. As we use a Bayesian estimation strategy we need to construct priors for the unknown parameters of our model. The unknown parameters of the first order Markov chain model are π_0 and **P**. We propose conjugate Dirichlet priors for π_0 and **P** parameterized by the vector a_0 and the matrix **A** respectively. These priors have a notional data interpretation in that $a_{i0} - 1$ can be interpreted as the number of individuals initially contained in income class i, while $\mathbf{A}_{ij} - 1$ can be interpreted as the number of individuals transiting from income class i to income class j in the notional prior data set.

We take a neutral stance with our priors in that we want the data to tell the story. Noting that the prior has a notional data interpretation, we propose priors that are generated from a notional data set that is one tenth the size of the observed sample. For example, if the sample that we are using contains one thousand individuals then the prior would be parameterized so that it could be interpreted as coming from a notional sample of 100 individuals.

The prior distributions for all data sets used in this paper are scalar multiples of the following prior distributions. Table 2 contains the values for a_0 while Table 3 contains the values for **A** assuming a notional sample size of 100. In this analysis we define ten income classes that are equal in log length, following Champernowne (1953).

Table 2: Prior for Initial Distribution: π_0

Income Class 1 3 56 1011 11 11 11 11 11 11 11 11 11 a_{0i}

We place a flat prior over the parameters of the initial distribution. That is, we assume that all individuals have an equal chance of initially being in any income class. The prior for **P** has the characteristic, in order to be consistent with a_0 , that there are ten individuals initially in each income class. The matrix **A** is then designed so that the highest prior probability is given to an individual staying in the same income class that she started in with decreasing probability given to moves further away from the starting

Income Class	1	2	3	4	5	6	7	8	9	10
A_{1i}	6.21	3.60	2.30	1.65	1.13	1.06	1.01	1.01	1.01	1.01
A_{2i}	3.06	5.13	3.06	2.03	1.51	1.10	1.05	1.01	1.01	1.01
A_{3i}	1.93	2.87	4.75	2.87	1.93	1.46	1.09	1.04	1.01	1.01
A_{4i}	1.44	1.89	2.79	4.58	2.79	1.89	1.44	1.08	1.04	1.01
A_{5i}	1.08	1.44	1.88	2.77	4.55	2.77	1.88	1.44	1.08	1.04
A_{6i}	1.04	1.08	1.44	1.88	2.77	4.55	2.77	1.88	1.44	1.08
A_{7i}	1.01	1.04	1.08	1.44	1.89	2.79	4.58	2.79	1.89	1.44
A_{8i}	1.01	1.01	1.04	1.09	1.46	1.93	2.87	4.75	2.87	1.93
A_{9i}	1.01	1.01	1.01	1.05	1.10	1.51	2.03	3.06	5.13	3.06
A_{10i}	1.01	1.01	1.01	1.01	1.06	1.13	1.65	2.30	3.60	6.21

Table 3: Prior for Transition Matrix: **P**

income class. This prior is symmetric in the sense that the decline in the prior transition probability is not dependent on whether the move was to a lower or higher income class. This prior is neutral in the sense that there is equal prior probability assigned to all individuals of attaining any income class in the invariant distribution.

4 Results

We report a Shorrocks measure of overall income mobility, $\mathcal{M}_s(\mathbf{P})$ (see (1)), which is an average, across all income classes, of the conditional probabilities of an individual moving out of their current income class. Note that this measure is a measure of upward and downward mobility combined. We also report our measure of upward mobility, $\overline{\mathcal{M}}_{U|i}$. We report both measures for the full sample and we report $\overline{\mathcal{M}}_{U|i}$ for low, middle and high sub-groups of the income classes.

Following Champernowne (1953), real incomes for Germany were divided up into ten income classes that are equal in log length.⁶ The income class definitions are given in Table 4 below, as are the low, middle and high income subgroups. A number of different

 $^{^{6}}$ The first and tenth income class were designed to contain the bottom five percent and top five percent of the income distribution respectively.

models were estimated. When modelling income mobility there is always uncertainty over the appropriate definition of the transition period. In this paper we estimate a Markov chain model for a 13 year transition period, 1984 to 1997.⁷ For this estimation, we include in our sample only those individuals, age from 25 to 47 in the initial year, which in this case is 1984, that were full time employees in both the initial period and the final period of the transition. One benefit of defining the transition period to be thirteen years is that there is enough time to allow workers to progress in their chosen careers, hence allowing for the greatest chance of a transition out of their initial income class. However, defining such a large transition period comes at a price of reducing the number of individuals that we observe.

Table 4: Income Class Definitions: 1991 US\$

Income Class	Income Range	Sub-Group
1	[0, 10000)	Low
2	[10000, 12375)	Low
3	[12375, 15314)	Low
4	[15314, 18951)	Middle
5	[18951, 23452)	Middle
6	[23452, 29022)	Middle
7	[29022, 35915)	High
8	[35915, 44444)	High
9	[44444, 55000)	High
10	$[55000, \infty)$	High

The posterior means and standard deviations for π_0 , **P**, and $\overline{\pi}$ for males and females are presented in Appendix tables A.1 and A.2. The estimates can be characterized in the following way: Males in Germany have an initial income distribution that has more weight in the upper five income classes than the corresponding initial distribution for females. Moreover, the estimated transitions matrices are such that the invariant distributions for

⁷In order to check the robustness of the results to the definition of the transition period we also estimate a Markov chain with a five year transition using data from the beginning, middle and end of the sample. For the five year transitions we use full-time non-agricultural workers between the ages of 25 and 55 in the initial year of the transition. Qualitatively, all of our results are robust to the choice of transition period.

males, also have more mass in the upper income classes than the corresponding invariant distributions for females.

The mobility measures are presented in Table 5.

Mobility Measure	Transition Period	Group	Male	Female	Prob[Male > Female]
Germany					
$\mathcal{M}_s(\mathbf{P})$	1984-1997	All	0.918 (0.019)	0.940 (0.028)	0.250
$\overline{\mathcal{M}}_{U i}$	1984-1997	All	0.655 (0.021)	0.584 (0.029)	0.974
$\overline{\mathcal{M}}_{U i}$	1984-1997	Low	0.771 (0.045)	0.812 (0.042)	0.253
$\overline{\mathcal{M}}_{U i}$	1984-1997	Middle	0.722 (0.021)	0.703 (0.044)	0.641
$\overline{\mathcal{M}}_{U i}$	1984-1997	High	0.473 (0.038)	0.236 (0.064)	0.998

 Table 5: Mobility Measures for 13 year transition

We see that females in Germany have greater income mobility overall. The posterior probability that the value of $\mathcal{M}_s(\mathbf{P})$ for males is higher than the corresponding values for females is 0.250. This implies that females have more overall mobility than males. However, when we look at the conditional probability measures, a different story emerges. First, males in Germany have an higher average conditional probability of moving up to a higher income class, 0.655 for men, 0.584 for women, the posterior probability being 0.974. When broken down over subclasses, we see that females have higher upward mobility in the lowest income group, Low, whereas males and females have similar upward income mobility in the middle income group, Middle. However, in the highest income group we see males totally dominating females in terms of the conditional probability of moving to a higher income class.

We find that while females have higher mobility than males, a quite different story appears when we look at upward income mobility. Overall men's upward mobility exceeds women's. Higher female mobility is constrained to the lower income classes. In the middle income brackets the story is mixed. Females have a significantly lower upward income mobility than males in the highest income classes.

5 Conclusion

In this paper, we examined the dynamics of the income distribution of a country as a finite state first order Markov chain, using German data. We estimated this model using Bayesian methods with a neutral prior that was designed to reflect relative uncertainty on behalf of the researcher. Once estimated we then were able to analyze the income mobility properties of the data. In particular, we analyzed the upward income mobility characteristics of the data with respect to males and females.

We studied where women and men are located in the labor income distribution and the change in this position over time. Our study of the labor income mobility of men and women in Germany employed the Cross National Equivalent File, drawn from the German Socio-Economic Panel.

Overall, while females in Germany enjoy greater overall income mobility, we find that males have a significantly higher upward income mobility for the higher initial income classes. Females' upward income mobility measures compare favorably with males in the lower income classes, with mixed results in the middle income classes.

References

- Champernowne, D. G. (1953). 'A model of income distribution.' *Economic Journal* 63(250), 318–351.
- Gang, I. N., J. S. Landon-Lane, and M-S. Yun (2002a). 'Does the glass ceiling exist?: A cross-national perspective on gender income mobility.' mimeo.

____ (2002b). 'Measuring upward income mobility: Theory and applications.' mimeo.

- Geweke, J. F., C. Marshall, and G. A. Zarkin (1986). 'Mobility indices in continuous time Markov chains.' *Econometrica* 54, 1407–1423.
- Shorrocks, A. F. (1976). 'Income mobility and the Markov assumption.' *Economic Jour*nal 86, 566–578.
- (1978). 'The measurement of mobility.' *Econometrica* 46, 1013–1024.

A Posterior Estimates for German Data

Table A.1: Posterior Estimates: GERMAN Males (1984-1997)

Initial Distribution: π_0

0.023 (0.006)	$0.022 \\ (0.006)$	$0.070 \\ (0.009)$	$0.201 \\ (0.015)$	$0.233 \\ (0.016)$	$0.197 \\ (0.015)$	$0.130 \\ (0.012)$	$0.055 \\ (0.009)$	0.031 (0.007)	0.038 (0.007)		
	Transition Matrix : P										
$\begin{array}{c} 0.172\\ (0.075)\\ 0.176\\ (0.077)\\ 0.061\\ (0.031)\\ 0.021\\ (0.011)\\ 0.012\\ (0.008)\\ 0.014\\ (0.010)\\ 0.010\\ (0.010)\\ (0.010)\end{array}$	$\begin{array}{c} 0.106\\ (0.059)\\ 0.150\\ (0.072)\\ 0.053\\ (0.029)\\ 0.023\\ (0.011)\\ 0.013\\ (0.009)\\ 0.013\\ (0.010)\\ 0.010\\ (0.010)\\ (0.010)\end{array}$	$\begin{array}{c} 0.072\\ (0.052)\\ 0.094\\ (0.060)\\ 0.073\\ (0.033)\\ 0.027\\ (0.013)\\ 0.020\\ (0.010)\\ 0.015\\ (0.010)\\ 0.031\\ (0.017)\end{array}$	$\begin{array}{c} 0.136\\ (0.068)\\ 0.110\\ (0.062)\\ 0.207\\ (0.052)\\ 0.137\\ (0.027)\\ 0.080\\ (0.020)\\ 0.023\\ (0.012)\\ 0.013\\ (0.011) \end{array}$	$\begin{array}{c} 0.080\\ (0.052)\\ 0.139\\ (0.071)\\ 0.260\\ (0.057)\\ 0.271\\ (0.035)\\ 0.174\\ (0.029)\\ 0.082\\ (0.022)\\ 0.034\\ (0.018)\end{array}$	$\begin{array}{c} 0.161 \\ (0.071) \\ 0.087 \\ (0.056) \\ 0.141 \\ (0.044) \\ 0.323 \\ (0.039) \\ 0.372 \\ (0.036) \\ 0.180 \\ (0.031) \\ 0.089 \\ (0.027) \end{array}$	$\begin{array}{c} 0.077\\ (0.050)\\ 0.042\\ (0.040)\\ 0.103\\ (0.040)\\ 0.140\\ (0.028)\\ 0.225\\ (0.030)\\ 0.367\\ (0.039)\\ 0.130\\ (0.034) \end{array}$	$\begin{array}{c} 0.078\\ (0.051)\\ 0.121\\ (0.063)\\ 0.051\\ (0.029)\\ 0.039\\ (0.016)\\ 0.047\\ (0.016)\\ 0.211\\ (0.033)\\ 0.342\\ (0.047)\end{array}$	$\begin{array}{c} 0.040\\ (0.039)\\ 0.042\\ (0.040)\\ 0.033\\ (0.023)\\ 0.013\\ (0.010)\\ 0.045\\ (0.016)\\ 0.068\\ (0.020)\\ 0.203\\ (0.040) \end{array}$	$\begin{array}{c} 0.079\\ (0.049)\\ 0.040\\ (0.040)\\ 0.018\\ (0.017)\\ 0.007\\ (0.007)\\ 0.011\\ (0.008)\\ 0.028\\ (0.013)\\ 0.138\\ (0.035)\end{array}$		
$\begin{array}{c} (0.010) \\ 0.020 \\ (0.020) \\ 0.032 \\ (0.030) \\ 0.029 \\ (0.027) \end{array}$	$\begin{array}{c} (0.010) \\ 0.043 \\ (0.029) \\ 0.032 \\ (0.031) \\ 0.055 \\ (0.037) \end{array}$	$\begin{array}{c} (0.017) \\ 0.021 \\ (0.019) \\ 0.062 \\ (0.040) \\ 0.028 \\ (0.027) \end{array}$	$\begin{array}{c} (0.011) \\ 0.023 \\ (0.023) \\ 0.034 \\ (0.032) \\ 0.026 \\ (0.026) \end{array}$	$\begin{array}{c} (0.013) \\ 0.070 \\ (0.038) \\ 0.034 \\ (0.030) \\ 0.113 \\ (0.050) \end{array}$	$\begin{array}{c} (0.021) \\ 0.076 \\ (0.037) \\ 0.042 \\ (0.034) \\ 0.059 \\ (0.038) \end{array}$	$\begin{array}{c} (0.034) \\ 0.106 \\ (0.041) \\ 0.117 \\ (0.057) \\ 0.147 \\ (0.058) \end{array}$	$\begin{array}{c} (0.041) \\ 0.173 \\ (0.054) \\ 0.171 \\ (0.066) \\ 0.078 \\ (0.044) \end{array}$	$\begin{array}{c} (0.040) \\ 0.229 \\ (0.061) \\ 0.212 \\ (0.070) \\ 0.127 \\ (0.054) \end{array}$	$\begin{array}{c} (0.033) \\ 0.240 \\ (0.058) \\ 0.265 \\ (0.077) \\ 0.340 \\ (0.077) \end{array}$		

Invariant Distribution: $\overline{\pi}$

0.032	0.037	0.035	0.047	0.096	0.129	0.161	0.162	0.138	0.164
(0.010)	(0.011)	(0.009)	(0.010)	(0.014)	(0.015)	(0.016)	(0.019)	(0.021)	(0.027)

Sample Size

643

Initial Distribution: π_0

$0.093 \\ (0.023)$	0.087 (0.022)	$\begin{array}{c} 0.197 \\ (0.032) \end{array}$	$\begin{array}{c} 0.202 \\ (0.033) \end{array}$	$\begin{array}{c} 0.206 \\ (0.031) \end{array}$	$0.124 \\ (0.027)$	$0.028 \\ (0.013)$	0.021 (0.012)	$0.022 \\ (0.012)$	$0.022 \\ (0.012)$		
	Transition Matrix : P										
$\begin{array}{c} 0.198\\ (0.081)\\ 0.102\\ (0.061)\\ 0.028\\ (0.027)\\ 0.026\\ (0.025)\\ 0.049\\ (0.035)\\ 0.034\\ (0.032) \end{array}$	$\begin{array}{c} 0.146 \\ (0.073) \\ 0.069 \\ (0.053) \\ 0.032 \\ (0.028) \\ 0.028 \\ (0.026) \\ 0.025 \\ (0.023) \\ 0.036 \\ (0.034) \end{array}$	$\begin{array}{c} 0.224\\ (0.084)\\ 0.188\\ (0.082)\\ 0.135\\ (0.053)\\ 0.032\\ (0.027)\\ 0.027\\ (0.026)\\ 0.037\\ (0.035)\end{array}$	$\begin{array}{c} 0.133\\ (0.071)\\ 0.323\\ (0.095)\\ 0.266\\ (0.070)\\ 0.136\\ (0.052)\\ 0.030\\ (0.026)\\ 0.039\\ (0.036)\end{array}$	$\begin{array}{c} 0.043 \\ (0.041) \\ 0.048 \\ (0.044) \\ 0.283 \\ (0.070) \\ 0.354 \\ (0.075) \\ 0.156 \\ (0.056) \\ 0.043 \\ (0.037) \end{array}$	$\begin{array}{c} 0.040\\ (0.040)\\ 0.089\\ (0.059)\\ 0.103\\ (0.047)\\ 0.223\\ (0.065)\\ 0.248\\ (0.069)\\ 0.194\\ (0.071)\end{array}$	$\begin{array}{c} 0.045\\ (0.042)\\ 0.046\\ (0.042)\\ 0.051\\ (0.036)\\ 0.099\\ (0.047)\\ 0.320\\ (0.070)\\ 0.395\\ (0.088)\end{array}$	$\begin{array}{c} 0.087\\ (0.058)\\ 0.046\\ (0.045)\\ 0.050\\ (0.034)\\ 0.051\\ (0.036)\\ 0.075\\ (0.041)\\ 0.110\\ (0.058)\end{array}$	$\begin{array}{c} 0.043\\ (0.043)\\ 0.045\\ (0.043)\\ 0.025\\ (0.023)\\ 0.025\\ (0.026)\\ 0.023\\ (0.022)\\ 0.073\\ (0.048)\end{array}$	$\begin{array}{c} 0.041 \\ (0.040) \\ 0.043 \\ (0.042) \\ 0.026 \\ (0.025) \\ 0.025 \\ (0.024) \\ 0.049 \\ (0.033) \\ 0.038 \\ (0.037) \end{array}$		
$\begin{array}{c} (0.032) \\ 0.073 \\ (0.070) \\ 0.081 \\ (0.073) \\ 0.082 \\ (0.076) \\ 0.082 \\ (0.076) \end{array}$	$\begin{array}{c} (0.031) \\ 0.070 \\ (0.065) \\ 0.082 \\ (0.075) \\ 0.080 \\ (0.076) \\ 0.081 \\ (0.073) \end{array}$	$\begin{array}{c} (0.030) \\ 0.081 \\ (0.073) \\ 0.077 \\ (0.073) \\ 0.079 \\ (0.073) \\ 0.079 \\ (0.071) \end{array}$	$\begin{array}{c} (0.030) \\ 0.075 \\ (0.067) \\ 0.083 \\ (0.075) \\ 0.079 \\ (0.074) \\ 0.080 \\ (0.074) \end{array}$	$\begin{array}{c} (0.031) \\ 0.085 \\ (0.075) \\ 0.090 \\ (0.077) \\ 0.085 \\ (0.074) \\ 0.082 \\ (0.074) \end{array}$	$\begin{array}{c} (0.071) \\ 0.096 \\ (0.081) \\ 0.093 \\ (0.078) \\ 0.089 \\ (0.080) \\ 0.080 \\ (0.076) \end{array}$	$\begin{array}{c} (0.000)\\ 0.188\\ (0.104)\\ 0.107\\ (0.082)\\ 0.093\\ (0.085)\\ 0.085\\ (0.074) \end{array}$	$\begin{array}{c} (0.033)\\ 0.168\\ (0.098)\\ 0.199\\ (0.110)\\ 0.103\\ (0.088)\\ 0.177\\ (0.105) \end{array}$	$\begin{array}{c} (0.0310) \\ 0.083 \\ (0.070) \\ 0.100 \\ (0.080) \\ 0.122 \\ (0.090) \\ 0.108 \\ (0.085) \end{array}$	$\begin{array}{c} (0.031) \\ 0.081 \\ (0.072) \\ 0.089 \\ (0.078) \\ 0.188 \\ (0.106) \\ 0.146 \\ (0.101) \end{array}$		

Invariant Distribution: $\overline{\pi}$

0.068	0.059	0.082	0.106	0.128	0.137	0.174	0.114	0.064	0.068
(0.022)	(0.018)	(0.020)	(0.021)	(0.024)	(0.027)	(0.031)	(0.029)	(0.021)	(0.023)

Sample Size

132

IZA Discussion Papers

No.	Author(s)	Title	Area	Date
565	H. L. van Kranenburg F. C. Palm G. A. Pfann	Survival in a Concentrating Industry: The Case of Daily Newspapers in the Netherlands	3	09/02
566	R. Hujer M. Caliendo D. Radić	Skill Biased Technological and Organizational Change: Estimating a Mixed Simultaneous Equation Model Using the IAB Establishment Panel	5	09/02
567	H. Lehmann K. Phillips J. Wadsworth	The Incidence and Cost of Job Loss in a Transition Economy: Displaced Workers in Estonia, 1989-1999	4	09/02
568	H. O. Duleep D. J. Dowhan	Revisiting the Family Investment Model with Longitudinal Data: The Earnings Growth of Immigrant and U.SBorn Women	1	09/02
569	J. Haltiwanger M. Vodopivec	Worker Flows, Job Flows and Firm Wage Policies: An Analysis of Slovenia	4	09/02
570	T. K. Bauer S. Bender	Technological Change, Organizational Change, and Job Turnover	1	09/02
571	O. Ashenfelter M. Greenstone	Using Mandated Speed Limits to Measure the Value of a Statistical Life	5	09/02
572	C. Y. Co I. N. Gang MS. Yun	Self-Employment and Wage Earning: Hungary During Transition	4	09/02
573	R. T. Riphahn O. Serfling	Item Non-Response on Income and Wealth Questions	6	09/02
574	R. Kuhn S. Stillman	Understanding Interhousehold Transfers in a Transition Economy: Evidence from Russia	4	09/02
575	H. Antecol D. A. Cobb-Clark S. J. Trejo	Human Capital and Earnings of Female Immigrants to Australia, Canada, and the United States	5	09/02
576	M. Fertig C. M. Schmidt H. Schneider	Active Labor Market Policy in Germany – Is There a Successful Policy Strategy?	6	09/02
577	K. Ariga G. Brunello	Are the More Educated Receiving More Training? Evidence from Thailand	2	09/02
578	I. N. Gang F. L. Rivera-Batiz MS. Yun	Economic Strain, Ethnic Concentration and Attitudes Towards Foreigners in the European Union	1	09/02
579	I. N. Gang MS. Yun	Decomposing Inequality Change in East Germany During Transition	4	09/02
580	I. N. Gang J. Landon-Lane MS. Yun	Gender Differences in German Upward Income Mobility	1	09/02