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Abstract

In this paper we document the results of a forecast evaluation exercise for the real

world price of crude oil using VAR models estimated by sparse (regularization) es-

timators. These methods have the property to constrain single parameters to zero.

We �nd that estimating VARs with three core variables (real price of oil, index of

global real economic activity, change in global crude oil production) by the sparse

methods is associated with substantial reductions of forecast errors. The transforma-

tion of the variables (taking logs or di�erences) is also crucial. Extending the VARs

by further variables is not associated with additonal gains in forecast performance

as is the application of impulse indicator saturation before the estimation.

JEL classi�cation: C32, Q47
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1 Introduction

The oil price and its changes have been associated with U.S. macroeconomic aggregates as
well as the global business cycle (see e.g. Hamilton (1983), Kilian (2008)). The important
oil price shocks in the 1970s and 1980s gained widespread attention in the public. As of
today, crude oil is indispensable for keeping standards of living in developed economies as
well as for fueling economic growth in rapidly developing nations such as China and India.
Therefore, knowledge about the future price of oil is of importance for di�erent actors.
Researchers in central banks and international organizations such as the IMF use oil price
forecasts as input in their forward looking macroeconomic models (see Baumeister and
Kilian (2014)). Thus, improving crude oil price forecasts helps generating better macroe-
conomic projections as well as better future risk assessment associated with oil price
�uctuations. Oil price forecasts also are helpful for governments of oil exporting countries
which strongly depend on oil revenues to �nance public expenses in budget planning. Re-
latedly, forecasting the oil price aids governments of countries that heavily rely on crude
oil imports in shaping their environmental policies and energy tax setting. Improved oil
price forecasts also support �rms in their investment and purchasing decisions. For ex-
ample, airlines and automobile companies take oil price forecasts into consideration when
they decide about fares and product prices as well as product portfolios. Similarly, pri-
vate homeowners might upgrade to energy-saving heating systems when forecasts point
to future heating oil price increases.

In this paper we start from the global three-variable vector autoregressive (VAR) model
for crude oil as �rst proposed by Kilian (2009) as the benchmark and investigate variants
with enhanced variable sets using sparse (regularization) methods in order to evaluate and
compare their forecast properties. Sparse estimation methods gained widespread attention
in the machine learning literature (see e.g. Murphy (2012)) and now �nd more and more
economic applications as a variable selection procedure. This is particularly important
for vector autoregressions where a large number of parameters are to be estimated and
usually only a common lag length for all equations is selected by information criteria.

Also in previous research on oil price forecasting an increasing trend towards basing the
forecasts on a broader information set can be observed. This strand of research is mostly
focused on applications of forecast combination methods (see Baumeister et al. (2014),
Baumeister and Kilian (2015), Funk (2018), Garratt et al. (2019), Wang et al. (2017),
Zhang et al. (2018)) or model averaging (see Drachal (2016) and Naser (2016)). More
recently neural networks as well as regularization methods also have been employed to
improve oil price forecasts (see Chen et al. (2019), Zhang et al. (2019)).

The lessons from the forecast evaluation exercise reported in this paper can be summarized
as follows. First, the results show that the lag order commonly �xed at 12 or 24 months,
which is justi�ed for impulse-response analysis, is detrimental to forecast performance.
Second, appropriate variable transformation (logs, di�erences, levels) is crucial for the
forecast performance. Third, applying sparse estimators leads to improvements in forecast
performance when using the variable transformation originally employed by Kilian (2009)
and in the VAR in levels. Regularization also improves forecasts for shorter horizons when
we express the variables in di�erences. Finally, when augmenting the core variable set by
industrial production indices, exchange rates and �nancial variables, regularization does
not lead to forecast improvements and we even observe forecast deterioration in some
occasions.
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The paper unfolds as follows. Section 2 introduces the VAR framework as well as the
three sparse estimation methods which are subsequently applied. Section 3 presents the
core data series and discusses data transformation and stationarity assessment. In section
4 we discuss di�erent basic VAR speci�cations and select the best performing one as the
benchmark. We proceed by estimating the three-variable VAR with the sparse methods
and evaluate the forecast performance in comparison to the selected benchmark. Section
5 extends the three core variables by further variable sets containing production indices,
exchange rates, �nancial variables and impulse indicator saturation dummies and evalu-
ates the forecast performance. We conclude in section 6 with the discussion of the main
�ndings.

2 Sparse VAR Methods

Before we turn to the description of the data used and how we dealt with stationarity-
integration issues we brie�y explain the forecasting models used. Our forecast evaluation
exercise relies on the framework of a vector autoregression (VAR), pioneered by Sims
(1980). In addition, we explain the approaches to regularization which we employ to
prune the parameter matrices to obtain a more parsimonious (sparse) model speci�cation,
more precise parameter estimates and possibly reduced forecast errors. It is the primary
aim of this study to investigate the latter issue.

A vector autoregression is stated as a VAR(p) with p lags for m variables in the vector
yt = (y1t, ..., ymt)

′ observed for the periods t = 1, ..., T ,

yt = c+A1yt−1 + ...+Apyt−p + ut. (1)

A VAR can be consistently estimated by least squares equation by equation, which
amounts to minimizing the sum of squared residuals

SSR(θ) =
T∑

t=p+1

u′tut (2)

as the objective function, where the parameter vector θ is understood to stack all k =
m+pm2 parameters to be estimated (i.e. c and A1, ...,Ap). See Lütkepohl (2005) as well
as Kilian and Lütkepohl (2017) for a comprehensive account of VAR models.

Given the estimates for c and A1, ...,Ap, denoted ĉ and Â1, ..., Âp, respectively, the VAR
can be used for generating forecasts by iterating equation (1) forward. This leads to
forecasts one step and two steps into the future, written as

ŷT+1|T = ĉ+ Â1yT + ...+ ÂpyT−p+1 (3)

and

ŷT+2|T = ĉ+ Â1ŷT+1|T + ...+ ÂpyT−p+2, (4)

respectively. Here ŷT+1|T denotes the forecast for the variables one time step into the
future given that the available information ends in period T . Note that for the 2-step
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forecast ŷT+2|T the �rst lag on the right hand side would be yT+1 which is not available
in the data (the sample ends in period T ) and is therefore substituted by the 1-step
forecast ŷT+1|T . In general, the h-step forecasts generated by conditional expectations
are estimates of the conditional expectation E(yT+h |yT , ...,y1). The h-step forecasts are
computed by

ŷT+h|T = ĉ+ Â1ŷT+h−1|T + ...+ ÂpŷT+h−p|T , (5)

upon the substitution ŷT+j|T = yT+j whenever j ≤ 0. Forecasts constructed in this way
minimize the theoretical mean squared error (MSE).

The number of parameters arising in unconstrained VAR with lag length p is usually
quite large, i.e. k = m + pm2. Not all those parameters are di�erent from zero although
their estimates are so by chance and this may be detrimental to forecast performance.
Since information criteria for lag order selection only eliminate entire parameter matrices
Aj, it would be helpful to use statistical methods which constrain selective parameters
within these matrices to be zero. In the statistical literature this is known as sparsity or
regularization to reduce the number of parameters which are di�erent from zero.

Typical methods for regularization are the LASSO, the Elastic Net and the SCAD method
which are explained below. These methods have in common that a penalty term P (θ) for
the magnitude of the parameters is added to the objective function to be minimized

Z(θ) = SSR(θ) + λP (θ) (6)

with the penalty weight λ > 0 to be determined by cross-validation techniques. Hastie et
al. (2009) provide a lucid exposition of variable selection by regularization methods (also
known as shrinkage methods) in general.

In this work we investigate the forecast performance of VARs estimated by three common
variants of regularization methods. First, the LASSO (least absolute shrinkage and selec-
tion operator) by Tibshirani (1996) speci�es the penalty term as P (θ) =

∑k
j=1 |θj|.1 This

constrains some of the parameter estimates to be exactly equal to zero and thus eliminates
some of the lags of the corresponding variables in the VAR to reach sparsity. Second, the
Elastic Net (ENET) by Zou and Hastie (2005) chooses P (θ) =

∑k
j=1

(
α|θj|+ (1− α)θ2j

)
which is the a combination of the LASSO and Ridge penalties with α usually �xed at
0.5. Third, SCAD (smoothly clipped absolute deviation) by Fan and Li (2001) is based
on P (θ) =

∑k
j=1 p(θj) with p(θj) = |θj| if |θj| ≤ λ, p(θj) = (2γ|θj| − θ2j/λ − λ)/2(γ − 1)

if λ < |θj| ≤ γλ and p(θj) = λ(γ + 1)/2 if |θj| > γλ with γ > 2 (setting γ = 3.7 is
recommended by Fan and Li (2001) as providing �good practical performance for various
variable selection problems�). The SCAD penalty coincides with the LASSO for |θj| ≤ λ,
is a concave quadratic function until |θj| ≤ γλ and is constant for |θj| > γλ. This relaxes
the intensity of penalization when the absolute value of the parameter increases.2

Figure 1 shows the penalty functions for the three sparse variants considered depicted for
a scalar parameter θ (setting λ = 1, α = 0.5 and γ = 3.7). All computations in this paper
are performed using the packages �vars� and �sparsevar� for R.

1This is in contrast to Ridge regression, introduced by and Hoerl and Kennard (1970), using the

penalty term P (θ) =
∑k

j=1 θ
2
j which serves to shrink the parameter estimates towards zero but does not

set some of them exactly equal to zero as the LASSO does.
2A quite similar suggestion, called minimax concave penalty (MCP), has been made by Zhang (2010),

which leads to results which are almost indistinguishable from SCAD and is therefore not further con-
sidered in the empirical forecast evaluation exercise of this paper.
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Figure 1: Penalty Functions
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3 Data and Stationarity

In this section we discuss the properties of the three core variables used in the VAR
models in section 4. These variables are used by Kilian (2009) in his structural VAR
model to capture the main dynamics of the global market for crude oil as well as to
estimate historical oil price shocks. The same variables are also used for the evaluation
of oil price forecasting in the handbook article by Alquist, Kilian and Vigfusson (2013).
Later, in section 5, these variables are extended by further sets of variables.

Before we turn to the core variables, their data sources and properties we have a closer
look at the real price of crude oil, the target variable of our forecast evaluation exercise.
Figure 2 shows the real oil price (in unlogged form) with NBER recession bars depicted
in gray shades. This plot shows several distinct episodes of the history of the oil market
over the last 50 years. The period starts with the years 1974-1986 which can be named
the age of OPEC. This subperiod is characterized by the instability in the Middle East
in the aftermath of the the of the Yom Kippur war, with the subsequent oil embargo,
the Iranian revolution, the Iran-Iraq war and at least two major recessions in western
countries. During these years we can also observe a worldwide monetary expansion leading
to a depreciation of the US dollar and a higher oil price in dollars which compensated for
the decline in revenues (purchasing power) of crude oil producers. The subperiod 1986-
1997/8 witnessed the collapse of the OPEC cartel, an increase in worldwide oil supply and
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Figure 2: Real Oil Price (1974-2017)
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a lasting decline in world oil consumption, which kept the oil price low. The subperiod
1997/8-2008 was a phase of worldwide economic expansion, especially driven by emerging
economies in east Asia such as China and India (see Hamilton (2009), Kilian and Hicks
(2013)), with increasing demand for oil combined with slowing growth of crude oil supply.
In the following the �nancial crisis of 2007/8 triggered the Great Recession in the US and
lead to a prolonged worldwide economic downturn with the consequence of a collapse of
world oil demand. Later in this period oil supply increased as a result of the fracking
boom in the US, keeping the oil price under pressure. We refer to Baumeister and Kilian
(2016) for a historical review of the oil price evolution and the main in�uencing episodes
since 1973/74.

The real oil price is one of the three core variables used by Kilian (2009) and Alquist et al.
(2013). More speci�cally, the three core variables are the real price of crude oil (de�ated
by the US consumer price index and in contrast to the discussed �gure above expressed
in logs) rpot, the index of global real economic activity as by Kilian (2009) reat and the
percentage change in global crude oil production (computed as log di�erences) ∆prodt.
See Kilian (2009) for a more thorough discussion of the construction of the variables, in
particular regarding the real activity index. The index is constructed using dry cargo
shipping rates based on the idea that global economic activity is the main driver of
demand for international freight transport services. The updated data are retrieved from
the homepage of Lutz Kilian (http://www-personal.umich.edu/~lkilian/) and incorporate
the updates addressed in Kilian (2018) based on the methodological critique of Hamilton
(2018).

The time series of the three core variables are plotted in �gure 3. The sample period in
this paper spans January 1974 to December 2017 implying a total sample size of T = 528
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Figure 3: Time Series of the Core Variables
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months. This extends the sample period of Kilian (2009), which goes until December 2007,
now also comprising the time of the �nancial crisis, the breakdown of Lehman Brothers,
the Great Recession and the recovery thereafter. For the real price of crude oil we use the
re�ners acquisition price of imported oil de�ated by US CPI proposed by Kilian (2009)
as the best measure for global oil prices.3

In the �rst panel the real oil price is now expressed in logs. The �rst row of the �gure
shows a trend in the production series and long swings of the real oil price and to a
lesser degree in the case of the real activity index, pointing to a substantial degree of
persistence. Both trend and persistence are characteristics of unit root nonstationarity
(with and without a drift component, respectively). Therefore, this visual inspection
suggests using the transformations (∆rpot, ∆reat, ∆prodt) for the three core variables in
the VAR.

When we try to con�rm this by formal statistical testing the results (not shown in detail
here) are mixed. For all three variables we �nd a strong rejection of the stationarity
null hypothesis using the KPSS test of Kwiatkowski et al. (1992). This test is, however,
prone to severe size distortions and therefore leads to substantial overrejections of the
null hypothesis also under stationarity. The unit root null hypothesis is, however, also
rejected in the case of the (log) real oil price using the DF-GLS test (or ERS test) of

3The re�ners acquisition price of imported oil and global oil production series (in thousand barrels
per day) are retrieved from the US Energy Information Administration. US CPI is retrieved from the
FRED database with the series code CPIAUCSL.
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Elliott et al. (1996). For the real activity index and (log) oil production, the unit root
null can not be rejected. This is not overly surprising for the production series, but is
somewhat puzzling in the case of the real activity index and its appearance in the �gure
3. Applying the testing procedure to the �rst di�erences of the three variables we observe
strong rejections of the unit root null, jointly with no rejections of the stationarity null.
This is consistent with the visual inspection.

For control purposes and to achieve consistency with the literature (especially Kilian
(2009) and Alquist et al. (2013)) we also perform the forecast evaluation exercise for the
transformations (rpot, reat, ∆prodt), where, as de�ned above, the real price of oil and the
production are expressed in logs. Regardless of the transformations applied, the target
variable of the forecasts is the real price of oil (unlogged) which is the variable decisions
makers are most likely to focus on rather than the corresponding logs or growth rates
(di�erences of logs). According to Sims et al. (1990) determining the correct order of
integration is not problematic for consistent parameter estimation in VAR models and
should therefore not be problematic for forecasting.

4 Results with the Core Variables

In this section we discuss the results from the forecast evaluation exercise based on the
three core variables. We �rst compare VARs with lag lengths �xed at p = 12 and p = 24,
a VAR with lag length selected by AIC, and naïve no-change prediction (average real oil
price over the previous 12 months) to select a benchmark for the sparse VAR methods. In
the second step we evaluate the performance of the sparse VARs, estimated by LASSO,
ENET and SCAD, in comparison with this benchmark model for the forecast horizons
h = 1, 2, 3, 6, 9, 12.

Regarding the transformations of the three core variables we distinguish the Kilian VAR
with variables yt = (rpot, reat, ∆prodt)

′ as analyzed in Kilian (2009) and Alquist et
al. (2013), the VAR in di�erences with variables yt = (∆rpot, ∆reat, ∆prodt)

′ and the
VAR in levels with yt = (rpot, reat, prodt)

′. Using a VAR in levels, irrespective of the
orders of integration of the variables and possible cointegration among the variables, is a
standard approach in some �elds, e.g. the empirical assessment of monetary policy (see
e.g. Christiano et al. (2005)). There is a also considerable literature on the forecast
performance of VARs in levels versus �rst di�erences (see e.g. Ho�man and Rasche
(1996)).

When we suppose that all variables are integrated of order one and we are indeed able to
establish cointegration by the Johansen (1988, 1991) trace test. Using an expanding test
sample size starting from the �rst 100 observations up to the total sample we can estab-
lish cointegration for most of the samples before the �nancial crisis which is substantially
weakened by the impact of the crisis. In the presence of cointegration the Granger repre-
sentation theorem (Engle and Granger (1987)) justi�es the estimation of a VAR in levels
as a reduced form basis for forecasting. Even in the absence of cointegration there are
good arguments that the decision between di�erences or levels is rather inessential when
the VAR is used for forecasting. As explained by Kilian and Lütkepohl (2017, pp. 373f.)
the main reason is the inherent ability of the VAR in levels to encompass a VAR model
with integrated and possibly cointegrated variables as well as a VAR for stationary time
series. This argument is reinforced by the uncertainty about unit root and cointegration

8



properties of the time series and the often neglected fact that deciding between a VAR in
di�erences and a cointegrating VAR is also subject to pre-testing bias.

Depending on the speci�c transformation of the real oil price, we obtain a forecast of
the log (Kilian VAR and VAR in levels) or of the log di�erences (VAR in di�erences) of
the real oil price variable. To compare these forecasts with the unlogged real oil price
as our target variable, the forecasts are appropriately re-transformed (meaning taking
exponentials when the real oil price has been logged or cumulating growth rates starting
from the last observation in the data).

The forecast experiment is speci�ed with an expanding window for the estimation sample
with the �rst sample spanning 20 years (240 months) from January 1974 until December
1993 and the �rst forecast for January 1994 for a horizon h = 1 (February 1994 for h = 2,
March 1994 for h = 3, June 1994 for h = 6, September 1994 for h = 9 and December 1994
for h = 12). Note that in the subsequent �gures all forecast error measures are aligned
at the position of the �nal observation of the estimation sample (i.e. December 1993 in
the case of the �rst forecast) irrespective of the forecast horizon. Then the procedure is
repeated with a further month, January 1994, added to the estimation sample. Proceeding
in this way month by month we end up with a �nal estimation sample from January 1974
until December 2016 (43 years or 516 months) with forecasts for January 2017 (h = 1)
until December 2017 (h = 12) which are all assigned to December 2016 in the �gures.4

4.1 Benchmark VAR

The results for four candidates of our benchmark model are shown in �gure 4. The curves
show the recursive mean-squared error (MSE) measures5 for the VAR(24) with a �xed
lag length of p = 24 (VAR24, dotted line), used by Alquist et al. (2013), the VAR(12)
with reduced lag length of p = 12 (VAR12, dashed line), VAR(AIC) with the lag length p
chosen by the Akaike Information Criterion (VARAIC, dash-dotted line)6 and the naïve
no-change forecasts (solid line), which are used as the benchmark forecast in Alquist et
al. (2013).

Each column pertains to a di�erent transformation of the three variables (from left to
right: VAR with transformation as in Kilian (2009), VAR in di�erences, VAR in levels)
while the rows show the results for a particular forecast horizon of h ∈ {1, 2, 3, 6, 9, 12}
months. The horizontal lines indicate the smallest recursive MSE value at the end of
the evaluation period which is achieved by any of the methods under consideration. The
numerical value of this smallest MSE is printed directly above the horizontal line.

What we observe at �rst is the general tendency of a steady increase of the MSE over
time. Thus the accuracy of the oil price forecasts deteriorates systematically since the
1990s. This might be explained by the several changes a�ecting global oil markets in
the late 1980s (see Hamilton (2009)). The collapse of OPEC had lasting implications.

4Some corresponding results with a rolling window design of the forecast experiment (in fact a rolling
window of 240 months) are collected in the appendix.

5Depicted is MSEt = t−1
∑t

s=1(ys− ŷs,h)2 with the realization of the real oil price denoted by ys (not
in logs) and the h-step forecast ŷs,h for the same period s, obtained by a particular method (indicated in
the legend in the �rst row of the �gure) and appropriately retransformed from of the variables included
in the VAR.

6Using the Bayesian Information Criterion (BIC) leads to very similar lag length selection and very
similar results.
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Figure 4: Benchmark Selection (expanding window)
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The powerful cartel from the 1970s never recovered from the oil price collapse in 1986
and permanently lost in�uence on global markets. The fall of the Soviet Union and the
emergence newly independent oil producing countries was a further source of oil market
disruptions. The second obvious characteristic is the impact of the �nancial and economic
crisis with the consequence of a series of particularly bad forecasts, leading to a pronounced
rise of the MSE lines.7 After about 2010 forecast errors stabilize on a high level or appear
to to improve by a small margin.

The central column of the �gure clearly shows that MSE values obtained with a VAR in
di�erences are generally smaller than those obtained with the Kilian VAR and the VAR in
levels across all speci�cations. However, looking down the columns of the �gure we observe
that the forecast performance quickly deteriorates with increasing forecast horizon. For
the VAR in di�erences the VARAIC is the best forecasting method, closely followed by
VAR12 and VAR24. The left and right columns in the �gure, pertaining to the Kilian
VAR and the VAR in levels, respectively, roughly contain the same message. For the
shorter forecast horizons (h = 1, 2, 3) the VARAIC performs better than the VARs with a
lag order �xed at 12 or 24, while the no-change forecast performs worst. In contrast, for
the longer forecast horizons (h = 6, 9, 12), the VAR12 and VAR24 perform poorly, while
there is a close competition of the VARAIC and the naïve no-change forecasts with the
no-change forecasts becoming slightly better at the longest forecast horizons.

Taking these results together we select the VARAIC as the overall best forecasting method
and decide to use this method as the benchmark in the subsequent comparison with
the sparse VAR approaches.8 This allows for a direct comparison of the e�ects of the
regularization (imposing sparsity) within the common framework of a VAR model. The
main issue is the distinction of pruning entire coe�cient matrices versus pruning single
coe�cients within these matrices.

4.2 Sparse VARs

Figure 5 is an analogous depiction of the results for the sparse VAR models, i.e. the basic
LASSO, ENET and SCAD, shown by the solid, dashed and dotted black lines, respectively.
The recursive MSE of the benchmark VARAIC is shown as gray lines. We start with a
VAR(12) to which the regularization is applied. Note that the regularization in equation
(6) depends on the relative magnitudes of the parameters which in turn depends on the
scaling of the variables. Thus, all variables are normalized to have the same standard
deviation, which is the standard deviation of the log real oil price.

As before, we �nd the same general increase of the forecast error measures, especially
during the months of the �nancial crisis. Skimming through the forecast horizons in search
for the best combination of variable transformation and estimation method we �rst of all
observe that the forecasts from a VAR in di�erences remain slightly better than those
obtained from the VAR with variables transformed according to Kilian and the VAR in
levels at shorter forecast horizons but loses ground at longer forecast horizons. This holds
irrespective of the particular form of regularization used for the VAR estimation.

7This large increase of the forecast errors is also visible in the related plots of Zhang et al. (2019, p.
105).

8We also estimated vector error correction models (VECM) with imposing cointegration relations de-
termined by the Johansen (1988, 1991) methodology. The forecast errors do not point to an improvement
of the predictive performance compared to the VARAIC.
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Figure 5: Evaluation of the Sparse VARs (expanding window)
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Comparing the Kilian VAR and the VAR in levels we �nd that the MSE at the end
of the forecast period obtained with the best method (the number above the horizontal
line) is smaller in the case of the VAR in levels for all forecast horizons. The particular
estimation method which reaches the smallest MSE at the end di�ers, however. For the
shorter forecast horizons (h = 1, 2, 3) and the Kilian VAR the VARAIC is best, closely
followed by SCAD and LASSO, while ENET performs worst. In the case of the VAR in
levels the ranking is di�erent. Here, the LASSO and the ENET are the best methods and
are close to each other. The VARAIC is also close for the shortest forecast horizons with
a widening gap when the forecast horizon increases. The SCAD method performs worst
for all forecast horizons.

For the longer forecast horizons (h = 6, 9, 12) the LASSO and ENET are best in the
VAR in levels and overall. For the VAR in levels the VARAIC and SCAD get worse
with increasing forecast horizon. Interestingly, VARAIC and SCAD perform best before
the �nancial crisis and also perform better than the other methods when the forecast
performance worsens during the period of the �nancial crisis. SCAD remains best until
about 2010 as is visible by the dotted line being lower than the other lines. The ENET is
the worst method before the �nancial crisis and gains much in performance afterwards.
Again, there are di�erences when the Kilian VAR is considered. With this transformation,
SCAD and LASSO are best at the end of the sample period and also perform quite
well before, in particular since the �nancial crisis. While VARAIC and SCAD are best
performing before the �nancial crisis, VARAIC loses much more performance during the
�nancial crisis than SCAD does. The ENET generally performs worst in the Kilian VAR.

Considering all results together, we see that the forecast performance depends on the
transformation of the variables considered in the VAR and there are also pronounced
di�erences across all employed regularization approaches to induce sparsity. Most impor-
tant, if a particular regularization method performs well with a particular transformation
of the variables this does not imply that the same method also performs well with a dif-
ferent variable transformation. The comparison of ENET and SCAD shows this clearly.
The basic LASSO appears to be a quite good allrounder which not always performs best
but adapts well to di�erent transformations of the variables and is never far behind the
best performing method.

5 Extended Variable Sets

One of the main virtues of sparse regression methods is the property to deal with situa-
tions in which there are more variables than observations. This is enabled by the LARS
algorithm (least angle regression, Efron et al. (2004)) which can cope with those situa-
tions (see Hastie et al. (2009, ch. 18) for an exposition). When we extend the variable set
consisting of the three core variables considered so far by further variables the number of
parameters grows with the square of the number of variables in the VAR for a constant lag
length. Thus, it is of particular interest to investigate whether the sparse VAR methods
are able to exploit the predictive power of further variables in extended variable sets.

In this section the VAR model with the three core variables is extended by di�erent
variable sets containing industrial production indices of the G7 countries9, exchange rates

9Canada, France, Germany, Italy, Japan, United Kingdom and United States.
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to the US dollar and variables related to di�erent investment opportunities. Further more,
we also apply impulse indicator saturation (IIS) to eliminate the potentially adverse e�ects
of single observations on the forecast performance.

The panels in subsequent �gures are arranged analogous to the previous section. Now
the black lines show the cumulative MSE values with the extended variable sets (solid
for the LASSO, dashed for ENET and dotted for SCAD). The gray lines represent the
corresponding results only including the three core variables as discussed above (see �gure
5) for the purpose of a direct comparison of the e�ects of the enlarged variable sets.

5.1 Production Indices

The theoretical reasoning behind these additional variables is obvious in the case of the
industrial production (or changes thereof) which is a major driver of the oil price. Ad-
mittedly, large newly industrializing countries like China or India are not included for
reasons of data availability. Although this omission is not critical at the start of the sam-
ple period it may become increasingly crucial nearing the end of the sample period. As
far as the industrial production in these countries is linked to the industrial production
of the G7 countries this omission can be accommodated by the VAR coe�cients. The
data for industrial production are retrieved from the FRED database.10 Under our three
transformations of the variables we take log di�erences of the production indices in the
case of the Kilian VAR and the VAR in di�erences, whereas we use log levels in the case
of the VAR in levels.

Adding the production indices of the G7 countries leads to the results shown in �gure 6
under an expanding window design. Considering �rst the Kilian VAR with the growth
rates (computed as log di�erences) of the production indices added we observe that the
smallest �nal MSE values are reached by the SCAD method for all forecast horizons
considered. The results are almost indistinguishable from the previous results without
including the production indices (in the �gure the gray dots for the SCAD results are
almost completely plotted over the black dots from the extended model). It seems that
the additional variables are completely pruned out by SCAD regularization. The other
regularization methods, i.e. LASSO and ENET, are associated with larger �nal MSE
values when the production indices are included.

In the case of the VAR in di�erences we observe no smaller MSEs across all forecast
horizons compared to the results of the previous section. We also �nd substantially larger
MSE values across all horizons when the VAR in levels is extended by the log levels of the
production indices. Here, the increase in MSE is so large that the ranking of the Kilian
VAR and the VAR in levels reverses. Speci�cally, the Kilian VAR is now better than the
VAR in levels in terms of �nal MSE (black lines) but is not better than the VAR in levels
without the extension by the production indices (gray lines).

5.2 Exchange Rates

In parallel with the previous subsection we now extend the variable set by the exchange
rates of the G7 countries (excluding the US) to the US dollar. Since the international

10The respective codes are CANPROINDMISMEI, FRAPROINDMISMEI, DEUPROINDMISMEI,
ITAPROINDMISMEI, JPNPROINDMISMEI, GBRPROINDMISMEI and INDPRO.
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Figure 6: Sparse VARs Augmented with Industrial Production (expanding window)
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oil trade is conducted in US$, it makes sense to extend the VAR by the exchange rates
of the G7 countries (excluding the US) to the US dollar. This is especially true when
we consider that most G7 countries heavily rely on imported oil traded in US$ to satisfy
domestic demand. The theoretical justi�cation for adding the exchange rates is based
on models such as Krugman (1983a,b). For empirical work on the relationship between
crude oil prices and real exchange rates we refer to Zhou (1995), Amano and van Norden
(1995) and Bénassy-Quéré et al. (2007). The series on the exchange rates are also taken
from the FRED database.11 We apply the same transformations as in the case of the
production indices in the previous subsection.

The results are reported in �gure 7. The extension of the Kilian VAR by the log di�erences
of the exchange rates gives rise to similar results as the extension by industrial production
in the previous subsection. In the case of the the VAR in di�erences we observe no
improvement and the VAR in di�erences remains the worst performing model for the
longer forecast horizons with larger forecast errors than the Kilian VAR and the VAR
in levels. Finally, in the VAR in levels, extended by the log exchange rates, there is a
substantial deterioration of forecast performance of all three sparse estimation methods
across all forecast horizons. Here now the performance of SCAD also deteriorates.

Taken together, we �nd no improvement by augmenting the VARs with the production
indices or exchange rates and applying the sparse estimation methods to eliminate unim-
portant variables and lags. There are two aspects leading to this outcome. The �rst
possibility is that the sparse VAR estimators are not able to �lter out the relevant vari-
ables and lags. Given that, the sparse VAR methods apparently fail to set the parameters
to zero which actually are equal to zero leading to more noisy parameter estimates and
forecasts, �nally resulting in larger MSE values. The second possibility is that the vari-
ables used for extending the model are largely irrelevant for forecasting the world oil price
or contain information which is already comprised in the three core variables. In the case
of the production indices it seems quite plausible that they represent information about
economic activity in the G7 countries which is also contained in the global real activity in-
dex. This is, however, not born out by the correlations of the production indices with the
real activity index (max. correlation ≈ 0.12 with real activity and ≈ 0.38 with changes
of real activity). Here it is important to recall that the real activity index is a global
measure based on international dry cargo shipping rates and therefore also comprises the
activity of other large emerging economies like China and India.

5.3 Investment Opportunities

As a third extended variable set we consider the prices of di�erent investment opportu-
nities as possible candidate variables. There is a literature on the stock market e�ects of
oil price shocks (see Kilian and Park (2009) among many others). Here, the identifying
restrictions imposed postulate the instantaneous response of a stock market index (actu-
ally the real log returns of the CRSP value-weighted market portfolio), but not the other
way round. In a VAR there may be, however, also a response of the oil price to the stock

11The respective codes are EXCAUS, CCUSMA02FRM618N, CCUSMA02DEM618N,
CCUSMA02ITM618N, CCUSMA02GBM618N and EXJPUS. For France, Germany and Italy we
point out, that exchange rate is expressed in Euro to US$. Before the introduction of the common
currency in January �rst, 1999 the series are constructed by using the o�cial national �xed exchange
rates to the Euro.
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Figure 7: Sparse VARs Augmented with Exchange Rates (expanding window)
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market reaction in the next period. Thus, the information comprised in the returns of dif-
ferent investment opportunities may be suitable to improve the oil price forecasts. Those
forward-looking variables are also considered in business cycle research (see e.g. Stock and
Watson (2003)). The usefulness of �nancial market data in forecasting oil prices is also
subject of recent research (e.g. Degiannakis and Filis (2018), Zhang et al. (2019)), This
is also acknowledged by Zhang et al. (2019, p. 108) stating that "an increasing number
of �nancial institutions view crude oil as a new class of �nancial asset and start to invest
in the crude oil market to diversify their portfolios. This leads to a strong correlation
between the stock and oil markets."

To assess this issue we include the index values or the returns of CSRP market portfolio12,
the real gold price13, a comprehensive bond price index14 in the sparse VAR models. These
time series are transformed by logs and are di�erenced in the cases of the Kilian VAR
and the VAR in di�erences. In addition, the 3 month and 10 year treasury rates15 are
also included without transformation.

The relevance of the additional �nancial variables is mainly motivated by the arbitrage
condition linking the crude oil spot price to crude oil futures prices (see Fatouh et al.
(2012)). As Hamilton and Wu (2014) point out, the futures market started to expand
very quickly in the early 2000s, primarily due to crude oil futures viewed as an instrument
for portfolio diversi�cation. Thus, we include variables that have frequently been used
to determine returns in futures markets (see e.g. Bessembinder (1992), De Roon et al.
(2000) and Hong and Yogo (2012)).

The results are shown in �gure 8. As before in the case of the introduction of the produc-
tion indices and the exchange rates we �nd no improvement of the forecast performance,
in particular since the �nancial crisis and the great recession. In the Kilian VAR we
observe a deterioration of the forecasts based on LASSO and ENET estimates across all
forecast horizons. Only SCAD achieves the same performance as the basic model with
the three core variables (again shown as gray lines for reference), most likely caused by
the total elimination of the additional variables. Considering the VAR in di�erences we
�nd the forecast errors achieved with the additional variables to be very similar to those
without augmentation. The VAR in levels leads to worse forecasts for all augmented
models across all horizons. This holds in particular for the SCAD estimated models at
larger forecast horizons.

5.4 Impulse Indicator Saturation

The �nal attempt to improve the accuracy of the oil price forecasts is the introduction
of impulse indicator saturation (IIS) in the estimation procedure of the VARs. This
device, introduced by Santos et al. (2008), uses a complete set of dummy variables
(one for each observation) to prune out single observations from the whole data series

12This is a broad value-weighted index as the market portfolio, formed on the universe of all CRSP
�rms incorporated in the US. Data are from the data archive of Kenneth French.

13Price of one �ne ounce in US dollar, daily �xed at the London Bullion Market, averaged over the
respective month and transformed to a real price by the US CPI. Data are from the time series database
of the Deutsche Bundesbank.

14This is the BofA Merrill Lynch US Corp Master Total Return Index Value, transformed to a real
price by the US CPI.

15Both series are retrieved from the FRED database with the corresponding codes GS3M and GS10.
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Figure 8: Sparse VARs Augmented with Investment Opportunities (expanding window)
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which may represent outliers or result from structural breaks. Since the complete set
of dummy variables cannot be introduced into the VAR at once, the �rst step of the
procedure includes the dummy variables for the �rst half of the sample period and tests
which of them are signi�cant on a 5 percent level. In the second step, only the dummy
variables for the second half of the sample period are included and tested in the same way.
Finally, all dummy variables which have been found signi�cant in the �rst and the second
step are introduced simultaneously and again individually tested for their signi�cance.
The subset of those dummy variables which remain signi�cant in the �nal step are then
kept in the VAR for the estimation. This actually amounts to exclude the associated
observations. This procedure is conducted anew in each forecast step of our forecast
evaluation procedure.

Figure 9 shows the results when all t-tests in the IIS procedure are performed on a 5 per-
cent level of signi�cance. Compared are the VAR with 12 lags estimated by OLS (VAR12)
or subjected to the selection of variables by the Lasso operator (LASSO), represented by
gray lines, with their variants estimated after performing the IIS (denoted IISVAR12 and
IISLASSO), represented by black lines. In the case of the VAR(12) the application of IIS
does not lead to an improvement of the forecasts and even leads to deteriorations at the
longer forecast horizons. This holds likewise for the Kilian transformation and for the
VAR in levels, whereas the curves in the case of the VAR in di�erences are very close.

Comparing the LASSO-based forecasts with and without the IIS in advance we see that
those without IIS nearly always have an edge over those with IIS. Again, the di�erence
becomes larger with increasing forecast horizon for the Kilian transformation and the
VAR in levels and is negligible for the VAR in di�erences. Nevertheless, both LASSO-
based forecasts are not far away from the ordinary VAR forecasts before the �nancial
crisis but become much better thereafter. Repeating the analysis with a 1 percent level
of signi�cance leads to results (not shown) that are less favorable for the IIS in this
application. Finally, turning to a rolling window instead of an expanding window for the
estimation and IIS selection leads to considerably larger forecast errors when using IIS
(see the appendix).

In sum, we can draw the conclusion of the analysis with the extended information sets
in this section that the VAR in levels with just the three core variables estimated by
sparse VAR methods (as discussed in section 4.2 above) remains the best overall forecast
method.

6 Conclusion

In the above analysis we have conducted a forecast evaluation exercise for the world
real price of crude oil. Our point of departure was the three-variable VAR model of
Kilian (2009) which has already been subjected to a forecast evaluation by Alquist et al.
(2013). The value added of our analysis is the application of estimation methods based
on regularization to achieve sparsity in the parameter matrices of the VARs. Whereas
classical information criteria for lag-order selection such as AIC or BIC restrict entire
parameter matrices for lag orders higher than the selected to zero, the regularization
methods have the property to restrict speci�c parameters within the parameter matrices
to zero while others retain their values di�erent from zero. By that, the detrimental e�ect
of parameter estimates which are truly zero but are estimated with small magnitudes and
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Figure 9: Evaluation with IIS (expanding window)
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are likely to be insigni�cant on forecast performance is reduced. This holds the promise
of reaching a better forecast performance.

The main results of this forecast evaluation exercise can be summarized in three main
lessons. The �rst lesson is that the selection of the benchmark VAR reveals that �long�
VARs including many lags of the variables (e.g. 12 or 24) has a justi�cation for impulse
response analysis, but is detrimental to forecast performance. As emphasized in Kilian
and Lütkepohl (2017, pp. 63�.) covering a cycle of a year with monthly data (or a multiple
thereof) is important for impulse response analysis. However, we have seen that these
�long� VARs are clearly dominated by more parsimonious VARs with respect to forecasting
performance. The second lesson is that the application of regularization of the VARs for
improving forecast performance depends on the choice of variable transformations. We
�nd that regularization improves forecasts especially for the longer forecast horizons up
to 12 months for the VAR with variables transformed according to Kilian (2009) and the
VAR in levels. The forecasts for the VAR in di�erences are also improved by applying
the sparse estimators, but here only for the shorter forecast horizons. The third lesson
is that extending the variable set and then applying the sparse VAR estimators does not
generally lead to further reductions of the forecast errors. Thus, the general property of
the LASSO and related estimators as devices for the selection of suitable sets of predictors
out of a large set of candidate variables as supposed for simple linear regression is not born
out in the case of VARs. Instead, we �nd that the forecast performance of the augmented
VARs worsens or the additional variable-lag combinations are totally pruned out by the
sparse estimators.

This outcome stands in contrast to other related macroeconomic forecast evaluation exer-
cises (not focusing on the oil price) such as Nicholson et all. (2017). Therefore, it appears
that more experience with the regularization methods for estimating sparse VARs in dif-
ferent situations is required. This paper makes a contribution to this endeavor. Along
these lines an investigation of the suitability of other regularization approaches for VARs
such as the variants recently proposed by Nicholson et al. (2016, 2017) would be valuable.
The current implementation in the R-package �BigVAR� appears rather slow in terms of
computation time, however. This may not be a problem for computing a single or a small
number of forecasts, but it becomes prohibitive for a forecast evaluation exercise where
hundreds or thousands of forecasts need to be computed as we have done in this paper.
Hence, we have not applied these methods in the present paper, but look forward to do
so in the future when faster computers and/or software are available. Finally, it would be
interesting to have a closer look into the estimation results to investigate which variable-
lag combinations are eliminated by the regularization and to see whether is pattern is
stable over time or is subject to systematic changes. This is beyond scope of the present
paper, but is an interesting opportunity for future research.
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Appendix: Results Under a Rolling Window Design

The �gures A1, A2 and A3 in this appendix show the results with a rolling window design
of the forecast experiment. Used is a rolling window of 240 months for the estimation
sample.

Summarizing these results we can conclude that the overall pattern of results is quite
similar when using the rolling window instead of the expanding window. However, we
generally �nd larger forecast errors and larger �nal MSE values at the end of the evaluation
period. Using the sparse VAR methods results in smaller improvements for the shorter
forecast horizons and no visible improvements and even deteriorations at the longer hori-
zons. In particular, for the VAR in levels we �nd a tremendous deterioration of LASSO
and ENET at longer horizons in the aftermath of the �nancial crisis which does not occur
when using the expanding window. Invoking the IIS procedure does only occasionally
lead to improvements of the forecast performance and generally causes the forecast errors
to be larger.

Overall and irrespective of the variable transformations we �nd a better forecast perfor-
mance at the end of the sample period with the expanding window instead of the rolling
window. This outcome may be a cause of the larger sample size available when using the
expanding window. A major contribution can attributed to the �nancial crisis which is
comprised in each of the rolling window estimation samples until the end of the evaluation
period with a larger weight than in the expanding windows.
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Figure A1: Benchmark Selection (rolling window)
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Figure A2: Evaluation of the Sparse VARs (rolling window)
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Figure A3: Evaluation with IIS (rolling window)
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