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Abstract 
 
We estimate the cost of transporting corn and the resulting degree of spatial differentiation 
among downstream firms that buy corn from upstream farmers and examine whether such 
differentiation softens competition enabling buyers to exert market power (defined as the ability 
to pay a price for corn that is below its marginal value product net of processing cost). We 
estimate a structural model of spatial competition using corn procurement data from the U.S. 
state of Indiana from 2004 to 2014. We adopt a strategy that allows us to estimate firm-level 
structural parameters while using aggregate data. Our results return a transportation cost of 
$0.12 per bushel per mile (5% of the corn price under average distance traveled), which 
provides evidence of spatial differentiation among buyers. The estimated average markdown is 
$0.80 per bushel (16% of the average corn price in the sample), of which $0.34 is explained by 
spatial differentiation and the rest by the fact that firms operated under binding capacity 
constraints. We also find that corn prices paid to farmers at the mill gate are independent of 
distance between the plant and the farm, providing evidence that firms do not engage in spatial 
price discrimination. Finally, we evaluate the effect of hypothetical mergers on input markets 
and farm surplus. A merger between nearby ethanol producers eases competition, increases 
markdowns by 20%, and triggers a sizable reduction in farm surplus. In contrast, a merger 
between distant buyers has little effect on competition and markdowns. 

JEL-Codes: D430, L110, L130, L430, Q110, Q130. 

Keywords: corn procurement, transportation costs, spatial differentiation, buyer power, spatial 
price discrimination, merger. 
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Introduction 

Economists and regulators are paying increasing attention to spatial competition in agricultural 

procurement markets, or markets in which downstream firms purchase products from upstream 

farmers to use as inputs in their production processes. These markets are typically characterized 

by buyers that are spatially dispersed and by products that are costly to transport from the farm to 

the buyer. These features have led researchers to routinely assert, despite scant empirical evidence, 

that spatial differentiation among agricultural processors may soften competition, possibly 

allowing firms to price inputs below their marginal value product net of processing costs (that is, 

allowing input buyers to engage in input price markdown) (e.g. Durham, Sexton, and Song 1996; 

Alvarez et al. 2000; Fousekis 2011; Graubner, Balmann, and Sexton 2011). The extent to which 

transportation cost and the resulting spatial differentiation among buyers of farm products affects 

prices, markdowns, and surpluses is the empirical question we address in this study.  

When a farmer is located at a certain distance from the buyer, the price received by the 

farmer at the farm gate is lower than the price paid by the buyer at the plant gate. The difference 

between these prices is equal to transportation cost. Therefore, all else constant, farmers have 

incentives to sell to nearby buyers in order to avoid transportation cost and obtain a higher price. 

In a way this protects buyers from competition which may allow them to reduce the price offered 

to farmers, thereby increasing markdown. The buyer may even go as far as discriminating farmers 

based on their location, offering a lower plant-gate price to farmers located in close proximity to 

the plant and a higher plant-gate price to more distant farmers; i.e., buyers may engage in spatial 

price discrimination (see Graubner et al. 2011; Sesmero 2018).1 Our goal is to examine empirically 

 
1 Such concerns influenced regulatory interventions including the Robinson-Patman Act (O’Brien and Shaffer, 

1994), and the Grain Inspection, Packers, and Stockyards Administration (GIPSA), among others. 
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whether spatial differentiation introduced by transportation cost allows buyers to engage in corn 

price markdown and spatial price discrimination. 

We develop and estimate a structural model of possibly spatially differentiated buyers in 

the corn procurement market that closely mimics documented empirical features of this market. 

The model consists of downstream firms (corn processors, including ethanol firms and wet-milling 

food processors) buying corn from upstream firms (farmers), while accounting for a competitive 

fringe comprised of livestock operators, dry-milling food processors, and exporters. Ethanol and 

wet-milling firms set input prices (also referred to as mill-gate prices) paid to farmers, and farmers 

pay the transportation cost to ship the corn to buyers. The structural approach allows us to 

explicitly estimate transportation costs, firm-level production cost parameters, and parameters of 

the residual corn supply faced by buyers, all of which are necessary for computation of price 

markdowns in the presence of spatial competition. We also test for spatial price discrimination, 

examining whether markdowns vary depending on the distance between buyers and sellers. 

Finally, we use the structural estimates to conduct counterfactual experiments simulating mergers 

that differ in the distance between merging firms, thereby characterizing further the impact of 

spatial competition on prices, markdowns, and surplus. 

The empirical estimation of parameters necessary to compute markdowns in our structural 

model is challenging since input prices paid by individual firms are negotiated privately and rarely 

available to the public. Most input prices and input production data are available only at a more 

aggregate level. We overcome the aggregation problem by adopting an estimation strategy (similar 

to Miller and Osborne 2014) that allows us to retrieve firm-specific structural parameter estimates 

while using aggregate, county-level data. The estimation strategy builds on a firm-level 

optimization approach that accounts explicitly for spatial differentiation and the distance between 
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buyers and sellers. The optimization approach returns optimal plant-level input prices and 

shipments. These predictions are then aggregated to the level of data availability such that demand 

and supply parameters that rationalize the data can be estimated. 

In this study, we use county-level information on corn prices and supply in the U.S. state 

of Indiana from 2004 to 2014. The corn procurement market in Indiana is an ideal setting for 

several reasons. First, it displays all the features associated with spatial differentiation among 

buyers: A few large processors (oligopsonists) purchase corn from a large number of producers 

who pay transportation costs to deliver products to the buyers. Second, large processors in Indiana 

are relatively insulated (more so than their counterparts in Illinois, Iowa, or Nebraska) from other 

large processors in neighboring states, though they are likely to compete among themselves (more 

so than their counterparts in Minnesota, Ohio, or Wisconsin). Finally, confining the geographical 

scope of our analysis eases the computational burden of solving our optimization approach, which 

increases dramatically with the number of counties and plants considered. 

Our data show that corn is shipped more than 50 miles. The estimation results return a 

transportation cost of $0.12 per bushel per mile (5% of the corn price for average shipping 

distance), which provides evidence of spatial differentiation among buyers. This transportation 

cost softens competition and allows corn processors to exert buyer power, attaining an average 

input price markdown of $0.34 per bushel (7% of the corn price) derived from spatial 

differentiation. Our results also show that, over our study period, firms often set prices under 

binding capacity constraints, consistent with Bertrand-Edgeworth competition. Once capacity 

constraints are binding, markdown increases; on average, capacity constraints increase markdown 

by $0.46 per bushel, more than doubling the effect of spatial differentiation. We also find that the 
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corn prices buyers pay to farmers are independent of distance, which confirms that firms do not 

engage in spatial price discrimination. 

Finally, results from our counterfactual experiments on consolidation among ethanol 

plants—a prominent trend in the industry in recent years—indicate that a merger between nearby 

ethanol plants eases competition and increases markdowns attained by merging firms by $0.14 or 

20%. We also find that the effect of the merger is not limited to merging plants only; the merger 

also triggers spillover effects (which increase markdowns) on non-merging firms, but the 

magnitude of the markdown increases is smaller than those of the merging firms per se. 

Consequently, we find that mergers reduce farmers’ surplus, and it does so beyond a 

geographically confined area around the merging firms, suggesting strong spatial spillovers. In 

contrast, a merger between distant ethanol plants has little effect on competition and markdowns. 

Our results indicate clearly that the market and welfare effects of a merger depend upon the 

intensity of competition between merging firms, which is determined by their degree of spatial 

differentiation.  

Our study is related to work on spatial differentiation in fast food restaurants (Thomadsen 

2005), movie theaters (Davis 2006), coffee shops (McManus 2007), and retail gasoline 

establishments (Houde 2012). It also relates to Durham and Sexton (1992) in that it estimates 

residual supplies faced by agricultural processors. However, unlike Durham and Sexton (1992), 

our study follows an estimation strategy proposed by Miller and Osborne (2014) that will enable 

us to estimate firm-level structural parameters from market-level outcomes. Other prominent 

contributions that focus on buying power in the corn procurement market include Saitone, Sexton, 

and Sexton (2008) and Wang et al. (2019). The main differentiating attribute of our paper relative 

to these studies is that we do not impose buyer power, but estimate it. In this sense, our study 
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contributes to a rich empirical literature on buyer power in input markets, as reviewed by Azzam 

(1996), Sexton (2000), McCorriston (2002), Sexton (2013), Sheldon (2017), and Merel and Sexton 

(2017), among others. In contrast to these studies, however, our paper explicitly considers the 

relationship between spatial differentiation and competition. We also estimate the degree of spatial 

competition and identify it as a source of buying power. 

 

The Corn Market in Indiana and the Data 

In this section, we introduce the main data sources and use information extracted from these 

sources to document key institutional features of the corn market in Indiana. We identify four 

market features that lay out the foundation of our empirical structural model. 

We use county-level corn prices from Geo Grain. Geo Grain records corn prices at multiple 

elevator locations across Indiana. These data provide full coverage of Indiana. We use the local 

corn cash price instead of basis (as is common in other studies of spatial price patterns of corn) 

because our model identifies parameters based on the difference between observed and predicted 

county-level prices, differencing out forward prices (that are based on the Chicago Board of Trade). 

We also use information on location, capacity, and ownership of corn processing plants (which, as 

will soon be explained, are modeled as oligopsonists), total corn supply in each county in each 

crop year, and distance between processing plants and county centroids. We also gathered data on 

supply shifters, including distance between exporting ports and county centroids and corn 

requirements by the livestock and dry-milling sectors in each county.  

We obtained data on corn production, corn storage, and livestock inventory from the 

National Agricultural Statistics Service of the United States Department of Agriculture (NASS, 

USDA). Information on corn exports and international prices is taken from the Economic Research 
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Service (ERS) of the USDA and the Federal Reserve Bank of St. Louis (FRED), respectively. The 

information on ethanol plant location, ownership, capacity, and year built comes from the 

government of Nebraska, the Renewable Fuel Association (RFA), the U.S. Environmental 

Information Administration (EIA), and the Biofuel Atlas published by the National Renewable 

Energy Laboratory (NREL). Information on wet- and dry-milling food processors’ capacities and 

locations is based on Hurt (2012) and the authors’ own personal communications. Historical diesel 

and electricity prices are obtained from the EIA. Distances are calculated using Arc-GIS. 

Table 1 portrays an aggregate picture of the corn market in Indiana. The top part of table 1 

shows the presence of five destinations for Indiana corn: ethanol, wet milling, dry milling, 

livestock, exports, and other. This panel reports the annual shares of Indiana corn sold to each of 

these sectors during our period of analysis (2004 to 2014). The bottom part of table 1 describes the 

sources of corn supply in Indiana for each year. The numbers show that most of the corn supply in 

any given year comes from production in that same year. However, supply from storage can 

amount to more than 10% of the total corn supply. 

Our primary concern relates to the possible existence of concentrated procurement markets, 

which may be conducive to market power. Concentration takes place when a few large producers 

purchase a substantial fraction of corn supplied within relevant market boundaries, and market 

boundaries can be confined by transportation costs. Therefore, all else constant, concentration will 

increase with transportation cost and with the size of a purchasing firm. We now turn our attention 

to these two aspects. 

Corn farmers typically use trucks to ship corn to their buyers (Denicoff et al. 2014; Adam 

and Marathon 2015) since plants source corn locally and trucking within relatively short distances 

(i.e., below 500 miles) is less costly than other forms of transportation. According to the Grain 
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Truck and Ocean Rate (GTOR) report from the USDA, the transportation rate of grains in the 

North Central region2 in the first quarter of 2016 was 0.23 cents, 0.14 cents, and 0.11 cents per 

bushel-mile for 25, 100, and 200 miles, respectively.3 At an average corn price of $3.50 per bushel 

in 2016, this means that transportation costs amounted to about 3% to 7% of the price within these 

distances. This underscores the importance of transportation costs and suggests a possible 

geographical localization of corn procurement markets; that is, plants tend to source corn locally. 

Geographical localization of procurement markets is not by itself sufficient to soften 

competition. To exert market power, the buyer must be large relative to supply in the procurement 

market. Information reported in Table 2 reveals that ethanol plants and wet-milling processors are 

quite large, while individual livestock operations and dry millers are not. On average, ethanol 

plants and wet-milling plants are 4,000 times larger than the average individual livestock operator 

and 6 to 10 times larger than dry millers. Table 3 reports the ratio of each large processor’s (as 

identified in Table 2) annual corn processing capacity to annual corn produced in the county in 

which the plant operates. In each case, we report the average ratio over the sample period. The 

ratios reported in table 3 show that these processors are large relative to local supply. Most of these 

plants (88%) have an annual corn processing capacity larger than the corn produced in the county 

where they are located. In several years, ratios for many of these plants are well above 2.  

In line with the existence of large firms purchasing a substantial fraction of the corn 

supplied locally (table 3), available reduced-form estimates in the U.S. (McNew and Griffith 2005) 

and Indiana in particular (Jung et al. 2019) found a positive effect of a plant’s sitting on corn prices, 

but they also indicate that the price effect dissipates with distance. The positive price effect is 

 
2 The North Central region in the GTOR report includes North Dakota, South Dakota, Nebraska, Kansas, Minnesota, 

Iowa, Missouri, Wisconsin, Illinois, Michigan, Indiana, Kentucky, Tennessee, and Ohio. 
3 These are converted values from the rate reported in GTOR. GTOR reports the transportation rate per truckload-

mile. One truckload is equivalent to 984 bushels of corn. 
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consistent with large processing plants facing upward-sloping supplies; it means plants must offer 

suppliers a price above their opportunity cost (best bid from other procurement sectors including 

livestock, dry millers, or exporting companies) to redirect enough corn toward them. The 

dissipation of the price effect with distance is also consistent with procurement markets that are 

geographically localized due to transportation costs. In summary: 

 

Market Feature 1: The corn procurement market involves large buyers—ethanol and wet-

milling plants—that are spatially differentiated. Corn purchases involve transportation 

costs, such that firms prefer buying corn from nearby suppliers.  

 

Notwithstanding the geographically localized nature of procurement, the sheer size of these 

plants relative to localized supply also suggests that they have to travel considerable distances to 

procure enough input. This likely results in spatial overlap of these plants’ procurement areas, 

especially when they are spatially clustered. Figure 1 shows the locational pattern of ethanol plants 

(yellow circles) and wet-milling plants (red circles), as well as the spatial pattern of corn 

production in Indiana in 2014. This figure reveals substantial differences in spatial clustering of 

ethanol plants. The variations in the local market conditions have an effect on the intensity of 

competition for corn procurement. But large processors (as indicated by larger circles in Figure 1) 

will also compete with the dry-milling sector, the livestock sector, and exports, which are large 

consumers of corn supplied in Indiana (table 1). These facts lead to: 

 

Market Feature 2: Dry-milling firms, livestock operators, and exporting firms are small 

buyers acting as a competitive fringe. Large buyers (ethanol and wet-milling firms, as 
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identified in Market Feature 1) compete with the competitive fringe and also among 

themselves.  

 

Another important empirical feature of the corn procurement market is the nature of the 

procurement channels. A portion of the corn produced is sold immediately after harvest, but 

another portion is stored in elevators and sold throughout the year. Processors buy corn from both 

farmers and commercial elevators. They purchase corn both in the spot market and through 

contracts. Contracts are usually signed during the growing season and specify a post-harvest 

delivery date, a quantity, and a price. The composition of procurement channels matters because 

our estimation is based on elevator-level cash prices that are then aggregated to the county level. 

Therefore, measurement error in prices could arise if: (1) a large portion of corn is purchased 

directly from farmers and those prices differ from elevator prices; or (2) a large portion of corn is 

purchased through contracts and contract prices differ from cash prices. 

We consider the use of elevator cash prices to be an adequate strategy in our context for 

two reasons. First, while buyers often bypass elevators and purchase directly from farmers, 

elevator prices do not deviate substantially and systematically from farm prices. As for the second 

potential source of measurement error, a substantial fraction of corn procured by the processors is 

purchased in spot markets. Processors use contracts for hedging and protecting profitability during 

periods of thin margins, but hedging opportunities are limited by illiquid futures markets on the 

output side due to limited ethanol and food product storage (see Schill 2016).4 Moreover, corn 

 
4 According to Schill (2016) hedging also reduces upside profit potential further limiting the use of contracts. 
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futures markets are highly liquid, with efficient price discovery mechanisms, which causes 

convergence, albeit partial, of forward prices to spot prices.5 

Another important aspect of pricing is that buyers may offer low mill-gate prices soon after 

harvest, which nevertheless allows them to procure from local farmers, as they have fewer outside 

options. As those sources are exhausted, buyers may then increase mill-gate prices to procure from 

farmers located farther away from the plant. Such a pricing strategy would result in spatial price 

discrimination; that is, the difference between prices received at the farm gate by suppliers located 

at varying distances from the buyer will differ from transportation cost (Hardy et al. 2006). This 

requires a trading model that allows for heterogeneous firm-county price pairs in equilibrium.  

We summarize the information on procurement channels and pricing by: 

 

Market Feature 3: Large processors procure the majority of their corn in the spot market 

by posting purchase prices at the mill gate throughout the year, which may result in spatial 

price discrimination. Transportation costs are covered by the sellers. 

 

We now turn our attention to market conditions under which oligopsonists sell their 

processed products. If oligopsonist-owned plants exerted market power downstream, the output 

price would be a function of quantity processed and supplied, which would itself be a function of 

corn price. This would add a layer of complexity to our analysis. Beyond a residual input supply, 

an additional output residual demand function faced by each plant would have to be estimated. 

However, it is unlikely that individual oligopsonistic plants exert market power downstream for 

 
5 Ethanol plants considered in our sample are privately owned and, when they contract, they use forward contracts 

negotiated in the Chicago Board of Trade rather than exclusive contracts with farmers. Therefore, we are not 

concerned about exclusive vertical relationships as a source of market power. 
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two reasons. There are close substitutes in the market for the main outputs from both ethanol as 

well as wet-milling firms. The price of ethanol mostly followed the price of gasoline during our 

study period according to data from the state of Nebraska’s website (http://www.neo.ne.gov/ 

programs/stats/inf/ 66.html). Similarly, the price of high fructose corn syrup (one of the main 

products from wet millers along with starch and ethanol) was influenced strongly by the price of 

raw sugar (Oral and Bessler 1997). Moreover, capacity utilization of both ethanol (Renewable 

Fuels Association 2019) and wet-milling plants (Porter and Spence 1982) is typically very high, 

which limits the role of output price on the procurement decision. These facts determine the 

following feature: 

 

Market Feature 4: Corn buyers do not have market power when selling their processed 

products, and they often, but not always, operate at full capacity. 

 

In figure 2, we map the spatial structure of processing plants (yellow dots) and county-

level corn prices (color brightness) in 2014, the last year in our sample. The map shows a positive 

correlation between the location and the size of processors (oligopsonists) and corn prices. This 

pattern appears despite the fact that large processors tend to locate in areas with high corn supply 

(see figure 1). This suggests that large processors substantially increase local demand for corn, 

raising local corn prices, which is consistent with Market Feature 1. We note that market power 

exertion would not preclude an increase in local corn price, but it can limit this increase below 

what it would be in a competitive setting. Other areas without large processors also display 

relatively high corn prices. Consistent with Market Feature 2, these areas are located close to 

http://www.neo.ne.gov/%20programs/stats/inf/%2066.html
http://www.neo.ne.gov/%20programs/stats/inf/%2066.html
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exporting ports (plotted as green dots in Figure 2) or livestock production, which causes large 

shifts in corn demand. 

 

The Empirical Model 

We develop and estimate a structural model to evaluate oligopsonists’ buyer power while 

accounting for spatial differentiation. Our structural model consists of a set of equations that 

describes upstream firms’ selling behaviors and downstream firms’ buying behaviors. On the 

demand side, we consider ethanol and wet-milling plants that act as oligopsonists. On the supply 

side, we consider farmers in counties that sell corn to oligopsonists for plant-specific prices and to 

the competitive fringe.  

The corn buyers’ profit optimality conditions characterize optimal corn prices offered by 

each plant to each farmer in every county. Prices offered by a plant and its competitors in 

equilibrium will determine the amount of corn purchased by each plant from farmers in each 

county. The firm-level prices and quantities are then aggregated to the county level. Our estimation 

algorithm searches over a set of parameters that matches the firm-level predictions (aggregated to 

the county level) with the observed county-level data. Our estimation algorithm returns optimally 

predicted corn prices and quantities at the firm level, firm-level procurement and capacity 

utilization rates, and parameter estimates that characterize marginal processing costs. On the seller 

side, we estimate parameters that characterize how much each county sells to each buyer. 

Ultimately, these parameters determine the residual supply of corn faced by each buyer. A key 

parameter on the seller side is transportation cost, which reflects spatial differentiation and 

competition intensity among buyers. 
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Downstream Firms (Ethanol and Wet-Milling Firms) 

Our empirical model mirrors closely key features of the trading environment documented in our 

industry description. Motivated by Market Feature 1, the corn procurement market is characterized 

by an oligopsony, in which large downstream firms (buyers) are spatially differentiated and 

purchase corn from local small upstream firms (sellers) depending on transportation cost. In our 

model, oligopsonists compete with each other and with a competitive fringe composed of dry 

millers, livestock producers, and exports (as documented in Market Feature 2). We also model 

ethanol producers and wet millers as price-setting firms and allow these firms to engage in spatial 

price discrimination by setting different prices to different sellers such that markdown may vary 

across sellers, closely mimicking Market Feature 3. Finally, and reflecting Market Feature 4, we 

assume ethanol plants and wet millers do not exert market power downstream and operate under 

capacity constraints that may or may not be binding depending on market conditions. 

Turning to our empirical model, we allow oligopsonistic firms (F) to own multiple 

plants (𝑗). The firm determines for every plant j the corn price 𝑝𝑖𝑗𝑡
𝑐  (the superscript C refers to corn, 

and the subscript t refers to the time period) that is paid to suppliers (farmers) located in county 

𝑖=1,…,92 in Indiana. Since the structure of the problem is the same in all periods, and for notational 

simplicity, we drop the time subscript t. The firm-specific vector of corn prices 𝒑𝑭
𝒄  contains as its 

elements the county-specific corn prices 𝑝𝑖𝑗
𝑐  that are offered by every plant j owned by firm F to 

every county i. The quantity of corn shipped from county i to plant 𝑗 is denoted by 𝑞𝑖𝑗
𝑐 (𝒑𝒊

𝒄; 𝒙𝒊, 𝜷),6 

where 𝒑𝑖
𝑐 is the vector of corn prices offered by every plant to county 𝑖, 𝒙𝑖 is a vector of demand 

 
6 We assume that corn purchased is equal to corn processed because plants have limited storage relative to 

production capacity. 
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shifters that captures procurement by the competitive fringe from county i, and 𝜷 is a vector of 

parameters to be estimated. 

Oligopsonists maximize profits every period by determining the optimal corn prices 

offered by each of their plants to farmers in every county: 

(1)         𝑚𝑎𝑥
𝑝𝑖𝑗

𝑐
𝜋𝐹 = 𝑃ℎ ∗ 𝛼ℎ ∗ ∑ ∑ 𝑞𝑖𝑗

𝑐 (𝒑𝑖
𝑐; 𝒙𝑖, 𝜷)𝑗∈𝐹𝑖 − ∑ ∑ 𝑝𝑖𝑗

𝑐 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖 , 𝜷)𝑗∈𝐹𝑖 − ∑ 𝐹𝐶𝑗𝑗∈𝐹 −

                                                              ∑ ∫ 𝑚𝑐(𝑄; 𝒘𝑗 , 𝜶)
𝑄𝑗

ℎ

0
𝑑𝑄𝑗∈𝐹                                                 

subject to 

(2)                                    𝛼ℎ ∑ 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖, 𝜷)𝑖∈𝐼𝑁𝐶 ≤ 𝐶𝐴𝑃𝑗         ∀ 𝑗 ∈ 𝐹                                     

(3)                                             ∑ 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖 , 𝜷)𝑗∈𝐼𝑁𝑃 ≤ 𝑅𝑆𝑈𝑃𝑖        ∀ 𝑖.                                        

The first term in the first line of equation (1), 𝑃ℎ ∗ 𝛼ℎ ∗ ∑ ∑ 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖 , 𝜷)𝑗∈𝐹𝑖 ), is firm 𝐹’s revenue 

from selling the processed products denoted by  ℎ  (ℎ = 𝑒𝑡ℎ for ethanol, or ℎ = 𝑤𝑚 for wet-

milling products) at the corresponding prices 𝑃ℎ . The scalar 𝛼ℎ is the conversion productivity 

factor that describes the quantity of output ℎ (ethanol or wet-milling products) obtained per bushel 

of corn processed. The conversion productivity factors are specific to the outputs but homogeneous 

across plants. The second through fourth terms in the right-hand side of equation (1) represent cost 

components. The second term, (∑ ∑ 𝑝𝑖𝑗
𝑐 𝑞𝑖𝑗

𝑐 (𝒑𝑖
𝑐; 𝒙𝑖 , 𝜷)𝑗∈𝐹𝑖 ), represents firm 𝐹’s total costs from 

buying corn as an input. The third term in equation (1), ∑ 𝐹𝐶𝑗𝑗∈𝐹 , is the annualized cost of 

construction or installation, and it is summed across plants owned by that firm.  

The fourth term, (∑ ∫ 𝑚𝑐(𝑄; 𝒘𝑗 , 𝜶)
𝑄𝑗

ℎ

0
𝑑𝑄)𝑗  refers to the total processing cost of producing 

ethanol and wet-milling products, where 𝑄𝑗
ℎ refers to the corresponding production quantities, mc 

denotes marginal cost, 𝑄 is the amount of corn processed, 𝒘𝑗 is a vector of cost shifters (natural 
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gas and electricity prices) and a time trend to capture technological and/or efficiency change, and 

𝜶 is a vector of corresponding parameters. 

Our model also allows for binding capacity constraints, a distinctive feature of corn 

processors (Market Feature 4). We specify the marginal processing cost function as: 

(4)                             𝑚𝑐(𝑄𝑗
ℎ; 𝒘𝑗 , 𝜶) = 𝒘𝑗

′𝜶 + γ {1 −
𝛼ℎ ∑ 𝑞𝑖𝑗

𝑐 (𝑝𝑖
𝑐;𝒙𝒊 ,𝜷)𝑖

𝐶𝐴𝑃𝑗
}.                                   

Equation (4) allows marginal processing cost of plant 𝑗 to depend on capacity utilization 

𝛼ℎ ∑ 𝑞𝑖𝑗
𝑐 (𝑝𝑖

𝑐;𝒙𝒊 ,𝜷)𝑖

𝐶𝐴𝑃𝑗
. If γ is positive (negative) plants display economies (diseconomies) of capacity 

utilization, and if γ is zero, plants operate under constant marginal processing cost. 

Inequality (equation (2)) ensures that production by plant 𝑗 is not higher than what is 

technologically feasible to produce in any given year (𝐶𝐴𝑃𝑗 denotes capacity of plant j). Finally, 

inequality (equation (3)) ensures that corn purchased by all plants does not surpass the available 

amount of corn from a county (production plus storage minus demand from livestock and the 

fringe). 𝑅𝑆𝑈𝑃𝑖  refers to the residual corn supply from farmers in each county (the sum of annual 

corn production and the stock of corn in storage minus demand from the fringe). 

The solution to the optimization problem, as shown in equations (1)-(3), consists of a 

system of Karush-Kuhn-Tucker conditions fully characterized in Appendix A. 

 

Upstream Firms (Farmers) 

We consider corn supplied by farmers in each county to processors and the competitive fringe. 

Total corn supply in each period is determined by production and inventories7 carried over from 

 
7 Storage data is available only at the state level (NASS, USDA). We calculate county-level storage by attributing a 

fraction of state-level storage to each county, which is equal to each county’s average share of total production. 
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previous years. Inventories are shaped by the previous season’s weather, and production is 

determined by planted acres and growing season weather. Planted acres are driven largely by world 

market conditions that determine expected corn prices relative to other crops, which we do not 

model but take as a given. While oligopsonists’ pricing may have an effect on local planted acres 

(e.g., Wang et al. 2019), its relation to production (our variable of interest) is much weaker due to 

the mediating role of growing season weather. In addition, modeling firms’ internalization of the 

effect of pricing on future planted acres and supply would increase greatly the mathematical and 

computational burden in our analysis. It would require modeling and solving a complex dynamic 

pricing game, possibly rendering a solution intractable. We abstract away from such considerations 

and focus on a model of shipments and short-run supplies. 

Our model predicts corn supplied by each county to each procurement firm. It builds on 

two premises. First, suppliers can sell corn to one of three sectors: oligopsonists, local competitive 

fringe (dry millers and livestock producers), and exports competitive fringe. Second, sectors other 

than oligopsonists do not exert market power. Both of these premises are motivated by Market 

Feature 1. Previous studies have documented that corn demand from the local competitive fringe 

can be quite inelastic, especially from its larger source, livestock operators (Suh and Moss 2017). 

Therefore, we simply subtract that from the total supply. In contrast, export prices are determined 

in the international market and are not influenced by individual exporting firms. A competitive 

exporting sector implies exporting firms procure excess supply at their marginal value product. 

This is consistent with the stylized fact that exports are highly (and positively) correlated with 

production, as revealed by a relatively constant share of exports over time (see table 1). We follow 

Miller and Osborne (2014) and model the export component of the competitive fringe as an 
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additional plant 𝑗 = 𝐽 + 1 (where 𝐽 is the number of plants owned by oligopsonists), but a plant 

that does not engage in markdown and price discrimination. 

Suppliers obtain value from selling corn to plant 𝑗, where 𝑗 = 1, … , 𝐽 if the plant is owned 

by an oligopsonistic firm and  𝑗 = 𝐽 + 1 if the plant is an exporting port. Since there are 18 

oligopsonistic plants in our sample (14 ethanol plants and four wet-milling plants), 𝐽 = 18. The 

corn price for exports is determined by the international price. The suppliers have to pay the 

transportation cost. In terms of exports, the transportation cost is determined by the distance from 

the county’s centroid to the closest exporting port. The value function of supplier 𝑛 in county 𝑖, 

associated with selling their corn to plant 𝑗 is given as: 

(5)                                   𝑣𝑖𝑗
𝑛 = 𝛽𝑝𝑝𝑖𝑗

𝑐 + 𝛽𝑑𝑑𝑖𝑗 + 𝛽𝑒𝑒𝑗 + 𝜀𝑖𝑗
𝑛 = 𝒙𝒊

′𝜷 + 𝜀𝑖𝑗
𝑛 ,                                    

where 𝑝𝑖𝑗
𝑐  is the corn price offered by plant j to a farmer in county i, 𝑑𝑖𝑗 is the distance between 

the centroid of the supplier’s county 𝑖 and the centroid of the county where plant 𝑗 is located,  

𝑑𝑖,𝐽+1 denotes the distance between county 𝑖 and its nearest exporting port (there are three ports 

located in Clark, Porter, and Posey counties), and  𝑒𝑗 is a dummy variable that is set to 1 if plant 𝑗 

is an exporting port (𝑗 = 𝐽 + 1). 

The negative ratio of the distance coefficient to the price coefficient (−𝛽𝑑 𝛽𝑝⁄ ) captures 

corn suppliers’ willingness-to-pay for proximity to an oligopsonist. This ratio represents the 

transportation cost, since corn suppliers save this amount per bushel-mile when located one mile 

closer to a dominant firm. The error term (𝜀𝑖𝑗
𝑛 ) captures unobservable match characteristics, such 

as a supplier 𝑛’s preference for plant 𝑗 (due to reputation or relational contract considerations). 

The error term is extreme value distributed, so we get a closed-form solution for the share of 

residual corn supplied by each county to each plant: 
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(6)                               𝑆𝑖𝑗 (𝒑𝑖
𝑐; 𝒙𝑖 , 𝜷) = 𝑃𝑟𝑜𝑏(𝑌𝑛 = 𝑗) =

exp (𝒙𝒊
′𝜷)

∑ exp (𝒙𝑖
′𝜷)

𝐽+1
𝑗=1

,  

where 𝒙𝑖𝑗
′ = [𝑝𝑖𝑗

𝑐 , 𝑑𝑖𝑗 , 𝑒𝑗] and 𝑌𝑛  represents the farmer’s choice to sell corn to ethanol and wet-

milling plants or to exporters. The quantity sold from county 𝑖 to plant 𝑗 can be written as: 

(7)                                         𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖, 𝜷) = 𝑆𝑖𝑗(𝒑𝑖
𝑐; 𝒙𝑖 , 𝜷) ∗ 𝑅𝑆𝑈𝑃𝑖,                                          

where residual supply from county 𝑖  in each period, 𝑅𝑆𝑈𝑃𝑖 , is determined by the sum of 

production and inventories, minus demand from livestock and dry-milling firms. 

 

Estimation Strategy 

One empirical challenge in estimating our model is that corn prices are not available at the 

individual buyer and seller level. The prices and quantities are available only at a more aggregate 

(county) level. To overcome this challenge, we employ an estimation strategy similar to that 

developed by Miller and Osborne (2014). We use firms’ optimality conditions and iterate over sets 

of candidate parameters to find a vector of corn prices paid by each plant to farmers in each county 

and quantities shipped from each county to each plant. We then weigh the plant-specific prices 

with the plants’ share on corn purchases to calculate the predicted county-level prices. The 

predicted county-level prices are then compared with the observed county-level prices. The 

process is iteratively repeated until a set of structural parameters is found under which the predicted 

prices and quantities get sufficiently close to the observed counterparts. 

For estimation of the farmers’ supply equation (6), we employ a multinomial logit system 

that has been proposed previously in the agricultural economics literature (Hueth and Taylor 2013) 

and displays several desirable properties. First, it yields an analytical expression for the share and 

quantity of corn sold by each county to each plant (equations (6) and (7)), which makes 

computation less burdensome. Second, the logit structure produces a specification consistent with 
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heterogeneity in suppliers’ responses to prices, making the aggregate supply response smooth to 

changes in corn prices. Otherwise, small price changes would result in corner solutions at the 

county level and generate discontinuities in supply behavior. Third, it does not artificially constrain 

farmers to sell corn within a predetermined radius. This is important in our study since plants 

purchase corn from distant sellers (well beyond 50 miles in some cases). 

Next, we use the multinomial logit supply (as shown in equation (6)) and the solution to 

the oligopsonists’ profit maximization problem (as shown in equations (1)-(3)) to generate price 

predictions based on the set of candidate parameters. Those are matched closely with the observed 

prices applying a Minimum Distance Estimator while iterating over parameters:8 

(8)                               min
𝜽∈Θ

1

𝑇
∑ [𝒑𝑡

𝑐 − 𝒑̃𝑡
𝑐(𝜽; 𝑿𝑡)]′𝑪𝑡

−1[𝒑𝑡
𝑐 − 𝒑̃𝑡

𝑐(𝜽; 𝑿𝑡)]𝑇
𝑡=1 ,                                  

where Θ is a compact parameter space and 𝑪𝑡
−1 is an identity matrix, which is not only a positive 

definite matrix, but also uniformly weights equations defined in the vector 𝒑𝑡
𝑐 − 𝒑̃𝑡

𝑐(𝜽; 𝑿𝑡). We 

denote the vector of observed county-level prices in period t by 𝒑𝑡
𝑐 . We denote the predicted, 

county-level prices by 𝒑̃𝑡
𝑐(𝜽; 𝑿𝑡) , where 𝜽 = [ 𝜶, 𝜷]′  is a vector of parameter values and 𝑿𝒕 

encompasses exogenous variables, including distances (from oligopsonists to county centroids and 

from exporting ports to county centroids) as well as demand and cost shifters. The estimation 

process involves an inner loop and an outer loop. The inner loop computes 𝒑̃𝑡
𝑐(𝜽; 𝑿𝑡), and the 

outer loop minimizes the distance between 𝒑̃𝑡
𝑐(𝜽; 𝑿𝑡) and its empirical analog 𝒑𝑡

𝑐.  

The inner loop solves for the county-plant pairs of prices (𝒑̃𝑖𝑗
𝑐 ) and quantities (𝒒̃𝑖𝑗

𝑐 ) for all 

plants and all counties given the candidate parameters and exogenous variables. It does so in two 

steps. First, it generates a vector of firm-level Karush-Kuhn-Tucker (KKT) conditions in the Mixed 

Complementarity Problem structure that solves problem (1)-(3). Expressions for the KKT 

 
8 For expositional clarity, we reintroduce the time subscript. 
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conditions are reported in Appendix A. The KKT conditions constitute, in effect, best response 

functions, as they characterize the price offered by each plant to each county as a function of prices 

offered by other plants to that county. Therefore, the second step consists of finding the Nash 

equilibrium of the problem by simultaneously solving the system of KKT conditions. As a result, 

the inner loop generates 𝐽 × 𝑁  equilibrium predictions of firm-county price pairs in period t, 

𝒑̃𝑖𝑗𝑡
𝑐 (𝜽; 𝑿𝑡), which are functions of candidate parameters and data. Along with these prices, the 

inner loop also generates 𝐽 × 𝑁 equilibrium predictions of firm-county quantity pairs in period t, 

𝒒̃𝑖𝑗𝑡
𝑐 (𝜽; 𝑿𝑡) . The corn prices offered by all plants to each county are weighted using the 

corresponding procurement shares such that an aggregate, predicted county-level price 𝒑̃𝑖𝑡
𝑐 (𝜽; 𝑿𝑡) 

is obtained: 𝒑̃𝑖𝑡
𝑐 (𝜽; 𝑿𝑡) = ∑ (

𝒒̃𝑖𝑗𝑡
𝑐 (𝜽;𝑿𝑡)

∑ 𝒒̃𝑖𝑗𝑡
𝑐 (𝜽;𝑿𝑡)𝑗

) 𝒑̃𝑖𝑗𝑡
𝑐 (𝜽; 𝑿𝑡)𝑗 . These county-level price predictions are 

then stacked in vector 𝒑̃𝑡
𝑐(𝜽; 𝑿𝑡) of equation (8). 

The outer loop minimizes the distance between the observed and predicted equilibria by 

iterating over the candidate parameters in 𝜽. The conditions are stacked, and the estimator (see 

equation (8)) compares the aggregated equilibrium predictions 𝒑̃𝑡
𝑐(𝜽; 𝑿𝑡) to the empirical analogs 

in the dataset 𝒑𝑡
𝑐 . These comparisons yield total annual deviations between predicted market 

outcomes and their empirical analogs. The Minimum Distance Estimator minimizes the sum of 

squared errors.  

The iterative estimation algorithm is relegated to Appendix B. We model this problem as 

a Mathematical Programming with Equilibrium Constraints (MPEC) as suggested by Su and Judd 

(2012)9  and implement the double-loop structure in the General Algebraic Modeling System 

 
9 We summarize the structure of the algorithm implemented in MPEC in Appendix B. 



22 
 

(GAMS) software. 10  This strategy increases ease of computation, preventing common 

nonconvergence and infeasibility issues.  

 

Identification 

We consider 92 counties in Indiana over an 11-year time horizon, such that equation (8) includes 

92x11=1,012 aggregated equilibrium predictions and their empirical analogs. Identification 

proceeds based on these 1,012 nonlinear conditions stacked in equation (8). The vector 𝜽 contains 

parameters of the farmers’ supply equation (𝜷), along with the parameters characterizing marginal 

cost of processing corn (𝜶).  

The vector of parameters 𝜽 that minimizes the sum of squared errors is identified based on 

variation in 𝑿𝑡 and 𝒑𝑡
𝑐. The price coefficient 𝛽𝑝 is, as revealed by Karush-Kuhn-Tucker conditions 

in Appendix A, achieved based primarily on the correlation between county-level prices and the 

joint variation of output price and county-level residual supply. The latter is captured by the 

interaction term between these variables, which varies across space and over time. The parameter 

𝛽𝑑 is determined by the relationship between the spatial configuration of large processors’ plants 

relative to the county centroids (distance from all plants to the county centroids) and county-level 

corn prices. The parameter 𝛽𝑒 is identified by the correlation between the distance to the exporting 

port and corn prices. Distances from county centroids to plants and exporting ports varies only 

cross-sectionally, so parameters 𝛽𝑑 and 𝛽𝑒 are identified based on cross-sectional variation. 

Marginal cost parameters included in vector 𝜶 are determined by the correlation between 

corn price and natural gas price (𝛼𝑛𝑔), corn price and electricity price (𝛼𝑒𝑙𝑒𝑐), and corn price and 

 
10 The GAMS programming code is available from the authors upon request. 
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a time trend (𝛼𝑡𝑖𝑚𝑒). As noted in our description of the industry (figure 3), prices of natural gas 

and electricity, as well as the time trend, vary longitudinally but not cross-sectionally. Therefore, 

identification of cost parameters proceeds based on time series variability. Figure 3 presents the 

evolution of these variables over time. This figure reveals a negative correlation between natural 

gas price and corn price, no clear correlation between electricity price and corn price, and a positive 

trend for corn price until 2012, with a reversal afterward. 

 

Estimation Results  

In this section, we present the results of the farmers’ and the oligopsonists’ estimation equations 

and compute statistics that govern our market and surplus predictions. We pay special attention to 

estimating markdowns and evaluating the degree of spatial competition in the market. We validate 

these results based on their ability to generate observed data and against estimates from previous 

studies. 

 

The Upstream Firms (Farmers) 

Parameter estimates of the corn residual supply, as characterized in equation (7), are reported in 

the upper panel of table 4.11 The estimated coefficient for corn price (𝛽𝑝) is statistically significant 

and positive. The coefficient shows that the price of corn increases in the amount of corn sold to 

downstream firms. The positive effect is indicative of a “business-stealing” effect, whereby a 

downstream firm diverts corn away from its competing firms by offering a higher corn price. 

The negative estimate on the coefficient for transportation distance (𝛽𝑑) shows that farmers 

supply less corn to oligopsonistic plants that are located farther away. This result is expected since 

 
11 All standard errors, as shown in Table 4, are bootstrapped. 
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farmers have to pay the transportation cost for corn and a long-distance delivery becomes costly. 

Selling corn to other more closely located plants becomes an attractive alternative. The 

transportation cost, as computed by the ratio (−𝛽𝑑/𝛽𝑝), amounts to $0.12 per bushel per mile. It 

should be noted that our estimated transportation cost is very close to the $0.16 average cost 

estimate (within 200 miles) as reported by GTOR. The GTOR estimate represents an average for 

the entire North Central region, which may explain the small deviations from our transportation 

costs, which are specific to Indiana. The small deviations could be explained by road infrastructure 

and diesel prices being different between the North Central region states and Indiana. 

Evaluating the transportation costs at the average distance of corn delivery and the average 

corn price paid by oligopsonist-owned plants, our model predicts an average transportation cost of 

5% of the corn price. The corn price that farmers receive from plants (after subtracting 

transportation costs) declines in distance between farmers and plants. Hence, our results show that 

the presence of transportation costs has an effect on corn price received by the farmers, providing 

evidence for spatial differentiation being an important aspect to consider. 

The transportation costs and the resulting decline in the corn price received by farmers also 

provide evidence that oligopsonistic firms face upward-sloping residual corn supplies. Our 

parameter estimates return a firm-level residual indirect average supply elasticity (calculated 

across plants and time periods) of 0.065.12 This elasticity suggests that if the average plant in our 

sample doubles production (increases corn procurement by 29 million bushels), the price of corn 

would increase by about $.30 at the plant’s gate (it increases from $5 per bushel to about $5.30 per 

bushel, an equivalent of 6.5%).13 

 
12 The elasticity is significant at the 1% level. 
13 This is, of course, an oversimplification since such an increase in size would trigger an equilibrium displacement 

that would tend to make that price increase higher. This value should then be interpreted as a lower bound to the 

price effect. 
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Finally, the positive coefficient on the export dummy variable implies that proximity to an 

exporting port causes an upward shift in the farmers’ supply; in other words, exports cause a 

significant shift in residual supply, consistent with our discussion of figure 2.14 

 

The Downstream Firms (Ethanol and Wet-Milling Firms) 

We now focus on the estimation results of the marginal processing costs of the downstream firms 

(ethanol and wet-milling firms), as characterized in equation (4). The middle panel of table 4 

reports the estimation results. 

The positively estimated coefficients for natural gas prices (𝛼𝑛𝑔) and electricity prices 

(𝛼𝑒𝑙𝑒𝑐) provide evidence that these operate as cost shifters. An increase in input prices raises 

marginal processing cost. This effect is especially large for natural gas, which is consistent with 

the fact that expenditures on natural gas exceed those on electricity. The negatively estimated 

coefficient for the time trend (𝛼𝑡𝑖𝑚𝑒) shows that plants have become more efficient over time, 

which is consistent with findings from Hettinga et al. (2009). Our estimated cost parameters predict 

an average processing cost of $1.62 per gallon, which is close to the cost estimates (around $1.35 

per gallon) reported in Perrin et al. (2009) and Irwin (2018).  

The 𝛾 parameter measures the change in marginal processing cost per unit of unutilized 

capacity. The estimate is not statistically significantly different from zero, providing evidence that 

the marginal processing cost is constant. Constant marginal processing cost is consistent with 

widely held assumptions made in the literature (see, for example, Gallagher et al. 2005;  Perrin et 

al. 2009), but differs from findings in Sesmero et al. (2016).15 Our estimated capacity utilization 

 
14 Recall that other shifters—including demand from livestock and dry millers—have been subtracted from residual 

supply due to their inelastic nature. 
15 Our coefficient is positive, suggesting economies of capacity utilization as found in Sesmero et al. (2016). 

However, it is not statistically significant. 
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ratio amounts to 0.98, which is close to the ratios reported by Dale and Tyner (2006). In general, 

our empirical model predictions for revenues and profits of ethanol plants fall within the range 

published in financial reports (see, for example, Green Plains Renewable Energy 2017) and other 

independent reports (see also Irwin 2018). 

It is important to note that our estimation results generate predictions that closely match 

anecdotal or statistical evidence, and this lends credence to our parameter estimates. A further 

important validation exercise relates to our model’s ability to generate accurate price predictions, 

which forms the center of our identification strategy in the empirical model. Figure 4 shows the 

predicted and observed farm-gate prices across counties and over time periods. Each dot represents 

a combination of an observed price (in a county and a year) and the corresponding predicted price. 

The dot patterns fragment into clusters because prices differ substantially across years. The 

correlation between predicted and observed prices is close to 0.99, which supports our model’s 

goodness of fit. The figure illustrates that our structural model does a remarkable job of predicting 

close to observed prices. It should be noted, however, that our empirical model appears to 

overpredict prices slightly when observed prices are uncharacteristically low or high. This is less 

of a concern in our case, however, since we conduct counterfactual experiments around mean 

conditions, where our model seems to perform best. 

 

Corn Prices and Markdowns over Time 

In the following, we predict plant-county pair prices paid by ethanol and wet-milling plants and 

compare these to the value of marginal product of corn (net of marginal processing cost) to 

calculate markdowns. Figure 5 portrays a substantial average price markdown. The average 

markdown is around $0.80 per bushel, or 16% of the average corn price. To put this markdown in 
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context, we note that plants’ fixed costs are typically around $0.60 per bushel (see Irwin 2018). 

This comparison illustrates the following: While markdowns enabled oligopsonist-owned plants 

to push the average variable cost below the output price overall, the plants likely experienced 

economic losses in some periods. This is especially true in 2012, when a historical drought pushed 

the residual corn supplies from farmers (𝑅𝑆𝑈𝑃𝑖s) down (i.e., pushed the inverse residual supplies 

upward) such that corn prices increased for all ethanol firms. 

Figure 5 shows that the markdowns vary widely over time (they drop significantly from 

2006 to 2012 and then recover). Fluctuations over time are explained mostly by macroeconomic 

factors affecting the price of corn, and they are largely absorbed by 𝑅𝑆𝑈𝑃𝑖 s in our model. 

Nevertheless, conditional on residual supply, our model also finds substantial markdown variation 

across plants within a year, as suggested by the minimum and the maximum markdown curves in 

figure 5. The difference between the largest and smallest markdowns in a year averages $.50 per 

bushel over the study period but varies in magnitude from almost no variation in 2012 to $1 in 

2009. 

To explain the variation of markdowns across firms, we refer to the derived statistics 

reported in Table 4. The statistics emphasize two potential explanatory factors. The first factor 

relates to the spatial differentiation aspect and the fact that oligopsonistic firms face an upward- 

sloping residual input supply, which creates a wedge between marginal factor cost and input supply. 

The second factor relates to our finding that most firms operate at full capacity, with an average 

capacity utilization rate of 0.98. This creates a wedge between the value of marginal product and 

input supply. Therefore, our estimation results reveal a salient feature of the corn market—namely 

that spatially differentiated oligopsonistic firms operate in Bertrand-Edgeworth competition. 
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In Figure 6, we provide a graphical representation of markdown for an individual firm in 

this context. A profit-maximizing oligopsonist will operate at the level of production for which the 

value of marginal product is equal to the marginal factor cost. Markdown is equal to the distance 

between the value of marginal product and residual supply. However, if capacity is smaller than 

the profit-maximizing production quantity, then the plant will operate at capacity, and markdown 

is determined by the distance between the value of marginal product and residual supply at capacity. 

By construction, this distance is larger than the wedge between marginal factor cost and residual 

supply. 

Given the two potential factors underlying markdown in our context, it follows that if the 

value of marginal product of corn is sufficiently low relative to residual supply (for example, due 

to a reduction in output price or a bad corn crop), then firms operate below their maximum capacity 

limit and markdown is determined exclusively by spatial differentiation. But, if marginal product 

of corn is sufficiently high relative to residual supply (firms operate at capacity), markdown would 

also be determined by capacity constraints (above and beyond the spatial differentiation factor). 

Our results indicate that, on average, capacity constraints prevail, and markdowns are 

determined by the distance between the value of marginal product and residual supply at capacity. 

Therefore, as depicted in figure 6, markdowns are larger than they would be in the absence of those 

constraints. Specifically, for the average observation in our sample (average across firms and over 

time), the wedge between the value of marginal product and residual supply at capacity is $0.80, 

while the wedge between supply and marginal factor cost at capacity is $0.34. These findings are 

consistent with Bertrand-Edgeworth competition (a setting in which binding capacity constraints 

deliver a certain degree of localized market power to otherwise Bertrand-pricing buyers of spatially 

differentiated inputs). 
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We should note that oligopsonists cannot pay a price to farmers that is below their 

reservation price; i.e., the price they can get from the competitive fringe. Our model accommodates 

this by: 1) subtracting corn demand from the local competitive fringe (livestock) from local supply 

(due to its inelastic nature), and 2) including demand from exports (the non-local competitive 

fringe) as a shifter in shares (due to its elastic nature). Therefore, our model guarantees that even 

if oligopsonists pay a price below the competitive benchmark, the price they pay is above the 

farmers’ reservation price.  

 

Spatial Price Discrimination  

An additional focus in our study is whether oligopsonists engage in spatial price discrimination 

and vary markdown by distance. This is an important question, as spatial price discrimination is 

another source of deviation from the competitive benchmark and represents a further argument 

that determines the degree of spatial competition. 

In the absence of spatial price discrimination, the corn buyer pays the same mill price 

(before transportation costs) to all sellers, regardless of their locations. Consequently, the farm-

gate prices lie on the linear price-distance gradient, as shown in figure 7. In the presence of spatial 

discrimination, however, corn buyers pay mill prices such that markdowns are higher for corn 

supplies from nearby farmers. In this case, the farm-gate prices received by farmers located close 

to the corn buyers would lie below the linear price-distance gradient depicted in figure 7. The 

rationale is as follows: The corn buyer accounts for the sellers’ alternative selling options. The 

corn sellers that are close to the purchasing plant are presumably far from other plants, which 

makes it more costly to transport corn to them. The additional transportation cost is considered as 

a reference point and subtracted from the purchasing price, so corn sellers located in close 
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proximity to the buyer are paid a lower mill price. This enables the ethanol plant to set higher 

markdowns to closely located farmers. 

Figure 7 displays the predicted price-distance gradient (farm-gate prices received by 

suppliers located at varying distances from these plants), as well as the linear price-distance 

gradient for a selected plant. The plant we selected operates under rather average conditions in all 

important dimensions: ratio of capacity to local supply and distance to the nearest exporting port 

and competitors. Our analysis shows that the firm does not engage in spatial price discrimination, 

as demonstrated by the absence of deviations of predicted farm-gate prices from the linear price-

distance gradient. We have computed these gradients for all the firms in our sample, and our 

finding on the absence of price discrimination holds for all of them. This indicates that firms do 

not price discriminate, regardless of their size, distance to competitors and exporting ports, or 

conditions under which they operate (livestock and local supply). 

The absence of spatial price discrimination suggests that cash or mill-gate prices posted by 

firms at the plant gate throughout the year (documented in Market Feature 3) are, in fact, honored 

and that private transactions regarding which party pays for transportation costs are mostly absent; 

suppliers pay for transportation costs and receive the posted price at the plant gate, regardless of 

their location relative to the plant. This is consistent with previous descriptions of corn marketing 

to large processors (see Edwards 2017). Our model cannot elucidate why firms do not price 

discriminate spatially. Possible reasons could be related to antitrust concerns or the presence of 

transaction costs since spatial price discrimination would require the plant to decide whether it 

would absorb a fraction of transportation costs depending on the location of each supplier. 
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Spatial Purchase Patterns by Downstream Firms 

We further explore the relationship between spatial differentiation and competition. We examine 

how the quantity of corn purchased by oligopsonistic plants depends on the distance between their 

plants and farmers. We also consider how competition affects such spatial procurement patterns. 

The spatial pattern of corn purchases is determined by many factors, including capacity, 

geographical distribution of corn production, and local competition. Since we are especially 

interested in evaluating the spatial competition effect on the plants’ spatial pattern of procurement, 

we report the purchase-distance relationship for two plants that differ in the degree of spatial 

competition they face, but are similar otherwise (i.e., the plants display a ratio of capacity to local 

corn residual supply close to 2, and they are located far away from exporting ports). Figure 8 

compares the spatial procurement patterns for two plants. The first plant faces no nearby 

competitors and is located in Cass County. The second plant faces a close competitor plant, and it 

is operating in Randolph County. The figure shows that these plants procure most of their corn 

within a distance of 50 miles (as revealed by calculating the area below procurement curves), but 

also likely purchase corn at greater distances. The predicted procurement patterns coincide with 

previous descriptions of procurement regions under similar corn supply conditions (e.g., Kang et 

al. 2010). This finding further validates our estimates and lends credence to our analysis.16 

Next, we turn to the relationship between spatial competition and corn procurement. Figure 

8 shows that the plant facing more spatial competition (there is a competitor in close proximity) is 

forced to travel greater distances (in the direction of their uncontested markets) to procure corn. It 

 
16 These procurement patterns also support our choice of the logit supply specification. The logit specification 

allows for overlapping regions, but by imposing that competition is global (all plants purchase a positive amount 

from all counties), it may lead to an overprediction of local competition. However, our estimated model predicts that 

very little corn is procured from distances farther than 100 miles, suggesting the risk of overprediction of spatial 

competition is limited. 
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should be recognized that, given a certain level of spatial competition, plant size relative to local 

corn supply (which could be explained by plant expansion, a bad crop, or growth in corn demand 

shifters like livestock) would shift the functions in figure 8 upward and exert a similar effect as 

local competition. 

 

Counterfactual Experiments: Mergers, Markdowns, and Farm Surplus 

We have shown that spatial differentiation between oligopsonist-owned plants determines 

competition and the prices and quantities of corn purchased from farmers at various distances. To 

deepen our understanding of the effect of spatial differentiation on prices and surpluses, we 

evaluate the effect of different types of mergers between ethanol plants. These mergers are 

characterized by varying distances between merging partners.  

Mergers in the downstream market between ethanol plants are especially interesting in our 

context for two reasons. First, a merger enables firms to internalize competitive externalities 

having an effect on corn demand, prices, and production. As shown earlier, ethanol plants operate 

within geographically localized procurement areas, which implies they compete with plants 

located nearby, but not with distant ones. Hence, spatial differentiation between ethanol plants will 

presumably play a critical role in evaluating merger effects.  

Second, large corn processors do not have opportunities to relocate plants (because of 

prohibitively high costs) and seldom expand capacity; therefore, changing the ownership structure 

is a popular expansion strategy. In fact, a wave of consolidations virtually doubled the sales-based 

Herfindahl-Hirschman Index from 260 to 500 in the period 2013 to 2018, as indicated in the 

Federal Trade Commission’s 2018 Report on Ethanol Market Concentration. But while mergers 

have been a pervasive feature of the ethanol industry in recent years, they have not taken place 

https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-report-congress-ethanol-market-concentration/p063000_2018_ethanol_report.pdf
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among plants in Indiana. Consequently, Indiana offers an unconfounded marketplace for merger 

simulations, which seem particularly timely given recent trends in other states. 

A merger between plants j and k allows the merging firm to internalize competitive 

externalities that would not have been otherwise internalized. Suppose plants j and 𝑘 are owned 

by different firms, then the firms set their prices noncooperatively and do not account for any 

cross-price effects 
𝜕𝑞𝑖𝑗

𝑐 (𝒑𝑖
𝑐;𝒙𝑖,𝜷)

𝜕𝑝𝑖𝑘
 in the ownership matrix  𝛀(𝒑𝑐), which is a critical element of 

firms’ first-order conditions (as shown in equation (A3), Appendix A).17 Hence, the corresponding 

element in the ownership matrix is zero. The firm that owns plant j does not account for the effect 

that a price change by plant j has on the supply of corn to plant k.  

If plants j and 𝑘 are owned by the same firm via merger, then plant j considers the fact that 

an increase in its corn price to county 𝑖 causes a shift in the residual supply of corn from that county 

to plant 𝑘, represented by the cross-price effect in the ownership matrix. As indicated in the 

Karush-Kuhn-Tucker conditions in Appendix A, this change in ownership structure will result in 

a different Nash equilibrium of the pricing game. 

The cross-price effect governing the impact of mergers depends upon the spatial 

differentiation between plants 𝑘 and 𝑗 which, in our context, is determined by the distance between 

these plants, the estimated transportation cost, and the spatial pattern of corn supply. Since merger 

effects are likely dependent on the degree of spatial differentiation, we consider two mergers that 

differ in their geographical proximity between the merging ethanol plants. 

In the first merger, Poet purchases the plant in Randolph County, which is located close to 

two of its other plants in Jay County and Shelby County. Figure 9a shows the plants owned by 

Poet before the merger as yellow dots surrounded by black circles; and the plant purchased by Poet 

 
17 See Appendix A for a detailed description of this matrix and its elements. 
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through the merger is highlighted by a black dot. In the second merger, Poet purchases a more 

isolated plant (the average distance between this plant and those owned by Poet before the merger 

is larger than the average distance between the plant in Randolph County and Poet-owned plants) 

in Cass County, also denoted as a black dot, but in figure 9b.   

Figure 10 reports post-merger changes in markdowns for both merger cases. Focusing on 

the first merger case, in which Poet-owned plants merge with a nearby competing plant, we find 

substantial increases in markdowns. Based on our structural parameter estimates, we predict that 

plants owned by merging firms will increase markdown further, on average by $0.14 (which 

corresponds to a 20% increase in markdown for the average plant in our sample). Our analysis 

shows that under 2014 market conditions, consolidated plants operate at capacity before and after 

the merger. Therefore, the increase in markdown is not explained by reduced procurement, but by 

a downward shift in corn residual supply faced by each firm due to internalization of the 

competitive externalities. 

Turning to the second merger case in which Poet merges with a distant competitor, this 

merger has a much smaller effect on markdown by merging firms, as reported in figure 10a. A 

comparison between this and the effect of a merger with a nearby competitor clearly indicates that 

the magnitude of the downward shift in corn residual supplies as a result of a merger depends upon 

the degree of spatial differentiation between consolidating firms. In other words, a merger is likely 

to increase markdown, but only if it takes place between firms that are not strongly spatially 

differentiated. 

While consolidation between nearby ethanol plants increases markdown by the 

consolidated firms, it may also trigger competitive spillover effects to other, non-consolidating 

firms. As consolidating firms reduce corn prices due to internalization of competition externalities, 
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close competitors may benefit from weakened competition and reduce corn prices themselves. Our 

counterfactual simulation uncovers evidence of spillover effects; that is, non-consolidating firms 

also attain higher markdown due to the fact that mergers soften competition. In fact, as reported in 

figure 10b, a non-consolidating firm located 49 miles away from Poet’s plants increases markdown 

by $0.12, and a non-consolidating firm located 103 miles away from Poet’s plants increases 

markdown by $0.07. 

Price effects of mergers have a direct corollary on farm surplus. For the scenario where 

merging plants are located nearby, the spatial pattern of merger-induced changes in farm surplus 

is plotted in figure 11. Darker colors denote larger reductions in farm surplus due to weaker 

competition. Some of the largest reductions take place in close proximity to merging firms. But 

adverse effects on farm surplus extend well beyond the geographical confines of merging plants, 

revealing strong competitive spillover effects of mergers. Reductions in farm surplus across 

Indiana vary from $0 to $8 million per county, amounting to roughly a total of $300 million at the 

state level.   

 

Conclusion 

This study conducts an empirical investigation of the existence of spatial oligopsonistic market 

power and spatial price discrimination in the corn procurement market. While the literature has 

devoted some attention to models of spatial differentiation in output markets, there is a remarkable 

lack of empirical evidence on spatial differentiation in input markets. This is particularly relevant 

for agriculture, since market power exertion by processors buying from farmers—in combination 

with the high cost to transport products from farms to plants—has long concerned researchers and 

policy makers. 
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We adopt an estimation strategy recently proposed by Miller and Osborne (2014) to 

estimate firm-level structural parameters in a model of spatial competition based on market-level 

data. Our model extends this framework to include binding capacity constraints (which are 

common in our setting). Therefore, our extended framework can accommodate a model of 

Bertrand competition with differentiated inputs or a model of Bertrand-Edgeworth competition 

with binding capacities.  

Our estimation results return significant transportation costs and markdowns in the corn 

market, which characterize the relationship between spatial differentiation and competition. Our 

counterfactual simulations indicate that the effect of mergers among corn procurement 

oligopsonists (particularly in the corn ethanol industry, where mergers seem increasingly common) 

depends upon the spatial pattern of such mergers. A merger between plants in close proximity not 

only increases their markdown, but also triggers competitive spillover effects that allow nearby 

non-consolidating plants to increase markdown as well. Competitive spillovers amplify the 

negative impact of mergers on farm surplus and result in substantial losses for the farm sector. 

However, a merger between plants located far apart is much less consequential for markdown and 

farm surplus. This suggests that assessments of mergers between corn-purchasing firms should 

explicitly consider the location of merging firms’ plants. While our primary focus is consolidation 

counterfactuals, our structural model can be used also to simulate counterfactual scenarios on 

expansion, entry, and policies. However, this goes beyond the scope of this paper, and we plan to 

address this in future studies. 

More generally, our analysis indicates that assessment of mergers between spatial 

competitors in agricultural procurement markets should perhaps consider distance more explicitly. 

Previous studies have characterized efficiency gains associated with mergers that would restore 
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premerger equilibrium prices and quantities (i.e., that would offset increased market power effect) 

after the merger takes place (e.g., Werden-Froeb Index) and, thus, should not raise anticompetitive 

concerns. Our analysis suggests the need to develop such an index in agricultural procurement 

markets, which display two distinct features: (1) spatial differentiation; and possibly (2) binding 

capacity constraints. The development of a regulatory index of this nature seems relevant for both 

scientists and policy makers.  
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Tables 

 

Table 1. Estimated Share of Corn Use by Processing Sector in Indiana (% of total supply) 

 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Ethanol1 3.85 4.00 3.97 10.06 21.15 32.71 34.82 38.46 65.48 38.65 37.86 

Wet milling 21.58 22.44 22.26 19.81 22.61 20.72 21.94 23.33 32.52 19.362 18.972 

Livestock3  16.72 17.70 18.39 17.30 20.06 18.29 19.46 20.81 29.31 16.73 16.38 

Dry milling 2.84 2.95 2.93 2.60 2.97 2.72 2.88 3.07 4.27 2.55 2.49 

Corn export4 17.63 16.12 19.02 18.35 20.29 15.43 15.84 16.41 12.70 5.52 16.26 

Others (storage, ship outside Ind.) 37.39 36.78 33.44 31.87 12.91 10.13 5.06 -2.08 -44.28 17.19 8.03 

Total corn supply6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Annual production7 94.12 93.68 88.30 91.26 92.78 90.86 92.48 92.00 91.15 93.82 96.62 

Corn stock from the previous year8 5.88 6.32 11.70 8.74 7.22 9.14 7.52 8.00 8.85 6.18 3.38 

Note: Data source: Hurt (2012) for the period from 2007 to 2012, Author’s estimation (NASS Quick Stats, USDA; ERS, USDA) for the period from 2013 to 2014. 
1. Estimated based on the information of ethanol plants capacities. 

2. Assumed to stay constant from 2012 (Hurt, 2012). 

3. Estimated based on the livestock inventory data (NASS, USDA). This is converted to the annual amount fed based on the assumption of 11.6 bushels of corn 

per head of a hog over its lifespan (four months), 50 bushels of corn per head of a cattle over its lifespan (18 months), 0.62 bushels of corn per head of poultry 

over its lifespan (10 weeks). 

4. State export data (ERS, USDA) and survey data for global price of corn (FRED, Federal Reserve Bank of St. Louis). 

5. Total corn supply in Indiana is the sum of the corn production harvested in the crop year and the corn stock from the previous crop year.   

6. Survey data (2015), Quick Stats. NASS, USDA for both Hurt (2012) and author. 

7. Extremely low due to drought. 

8. This is the corn stock from the previous crop year of corn. 
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Table 2. Size of Individual Plants by Sector in Indiana in 2014 

 Count Total 

Capacity 

Mean 

Capacity 

Median 

Capacity 

Min 

Capacity 

Max 

Capacity 

Ethanol plants1 14 430.74 33.13 91.00 7.41 44.44 

Wet-milling plants 5 220.40 44.10 39.40 17.0 75.00 

Dry-milling plants 5 28.50 5.7 4.0 4.00 12.10 

Livestock operators 19,2762 184.19 0.013 N/A N/A N/A 

Note: Capacity measured in million bushels per year. 
1 Source: Nebraska Department of Environment & Energy (2015), the Biofuels Atlas of NREL, Hurt (2012), 

NASS, USDA. 
2 2,823 for hog, 14,106 for cattle, 2,347 for poultry (NASS, USDA). 
3 To estimate this, we divide the total corn demand from livestock operators by the total number of livestock 

operators in Indiana, due to the lack of data for individual operators. Mean capacity for other sectors is 

based on the actual data for individual capacities. 
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Table 3. Ratio of Ethanol and Wet-Milling Plants’ Corn Processing Capacity to Corn 

Production in the County where the Plant is Located 

Sector Firm County Ratio 

Ethanol Plants 

The Andersons Clymers Ethanol, LLC Cass 2.49 

Grain Processing Corp. Daviess 0.61 

Central Indiana Ethanol, LLC Grant 1.42 

Iroquois Bio–Energy Company, LLC Jasper 0.56 

POET Bio-refining Jay 2.41 

POET Bio-refining Madison 1.73 

Valero Renewable Fuels Company, LLC Montgomery 2.08 

Abengoa Bioenergy Corp. Posey 3.59 

POET Bio-refining Putnam 3.79 

Cardinal Ethanol Randolph 2.61 

Noble Americas South Bend Ethanol LLC St. Joseph 3.38 

POET Bio-refining Wabash 2.12 

Green Plains Renewable Energy Wells 3.58 

Wet Millers 

Tate & Lyle Tippecanoe 5.43 

Cargill Lake 6.93 

Grain Processing Corp. Daviess 2.89 

Ingredion Marion 24.31 

 Below 11  2 

 Above 12  15 

Note: All counties have one ethanol plant, except for Posey County, which has two ethanol plants. Status over the 

previous periods, 2004 through 2013, is available from authors.  

Source: Renewable Fuel Association (2016) and the Biofuels Atlas, NREL. 

1. The number of counties that ethanol plants demand less corn than produced among counties where at least one 

ethanol plant is located. 

2. The number of counties in which ethanol plants demand more corn than produced among counties where at least 

one ethanol plant is located. 

3. Grain Processing Corp. (GPC) operates an ethanol plant and a wet-milling plant in Daviess County.  
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Table 4. Parameter Estimates and Derived Statistics 

Variables Parameters Parameter Estimates 

Residual supply   

   Corn price 𝛽𝑝 

3.408*** 

(0.71) 

   Distance 𝛽𝑑 

-0.004*** 

(1.9e-5) 

   Export dummy 𝛽𝑒 

0.309*** 

(0.0005) 

Marginal costs   

   Natural gas price 𝛼𝑛𝑔 

0.132*** 

(0.005) 

   Electricity price 𝛼𝑒𝑙𝑒𝑐 

0.051*** 

(0.0015) 

   Time trend 𝛼𝑡𝑖𝑚𝑒  

-0.185*** 

(0.02) 

Extra costs per unit of unutilized capacity γ 

1.58e-4 

(2.8e-4) 

Derived statistics Previous Studies Our Estimates 

   Transportation cost ($ per bu-mile) 0.00161 

0.0012*** 

(9.3e-6) 

   Cap. utilization ratio 0.952 

0.98*** 

(0.007) 
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Table 4. Continued   

   Marg. processing cost (per gallon) 

1.353 

1.62*** 

(0.16) 

Firm elasticity of residual indirect corn supply4  0.065*** 

(0.016) 

Note: Standard errors are computed by bootstrapping and reported in parentheses. Statistical significance at the 10%, 

5%, and 1% levels are denoted as *, **, and ***, respectively. 

1. GTOR report by Transportation and Marketing Program (TMP) of Agricultural Marketing Service (AMS), USDA 

2. Dale and Tyner (2006). 

3. Average from Perrin et al. (2009) and Irwin (2018).  

4. This is an elasticity of residual corn supply faced by individual plants. We take the average of elasticity across 

plants over the whole period. This elasticity suggests that if the average plant in our sample doubles production 

(increases corn procurement by 29 million bushels), the price of corn within the plant’s procurement region 

would increase by $.30 (from $4/bushel to about $4.30/bushel, or 6.5%). This is, of course, an oversimplification 

since such an increase in size would trigger an equilibrium displacement that would tend to make the price 
increase higher. This value should then be interpreted as a lower bound to the price effect. 
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Figures 

 

 

Figure 1. Oligopsonists’ locations and corn production in Indiana counties in 2014 

Source: Renewable Fuel Association (2017), Geo Grain, and Nebraska Department of Environment & Energy 

(2017). 
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Figure 2. Oligopsonists’ locations and corn prices in Indiana counties in 2014 
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Figure 3. Evolution of relevant prices in the corn market 

 

 

 

Figure 4. Predicted versus observed farm-gate prices 
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Figure 5. VMP, Predicted corn prices, and markdown 

 

 

Figure 6. Sources of markdown for average plant in our sample 
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Figure 7. Spatial price discrimination for a selected plant in our sample a 

a Ratio of plant capacity to county corn supply is 2 for all three plants/counties. This makes plants comparable and 

allows us to tease out the effect of competition on the spatial pattern of corn purchases. 
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Figure 8. Predicted corn purchases by distance for selected plants in our sample a 

a Ratio of plant capacity to county corn supply is 2 for both plants considered. This makes plants comparable and 

allows us to tease out the effect of competition on spatial pattern of corn purchases. 
b In the equations, y represents procurement share and x represents distance from plant to farm. 
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Figure 9. Merging and non-merging plants in counterfactual simulations 

 
Figure 9a. Merger with a nearby competitor 

  
Figure 9b. Merger with a distant competitor 

County Corn Production (million bushels per 
year) 

Wet millers’ processing  
 capacities in 2014  
(million bushels per year) 

Ethanol plants processing  
 capacities in 2014  
(million bushels per year) 

Represents Exporting 
Port 

County Corn Production (million bushels per year) 

Wet millers’ processing  
 capacities in 2014  
(million bushels per year) 

Ethanol plants processing  
 capacities in 2014  
(million bushels per year) 

Represents Exporting 
Port 



58 
 

Figure 10. Spatial pattern of consolidation and change in markdown 

 
 

 

Figure 10a. Comparison between the merger with a nearby and a distant competitor 
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Figure 11. Change in producer surplus due to merger with nearby plant 
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Appendix A. Detailed Estimation Strategies 

a. Firms’ profit maximization. In this Appendix, we provide detailed information on how prices 

offered by each oligopsonist plant to each county are computed. Optimal prices are characterized 

by a system of Karush-Kuhn-Tucker (KKT) conditions: 

 

(A1)       
𝜕ℒ𝐹(∙)

𝜕𝒑𝑭
𝒄 = −𝒒𝑐(𝒑𝑐; 𝜷) + 𝛀(𝒑𝑐){𝚪 − 𝒑𝑭

𝒄 − 𝚳 − 𝚲} ≥ 𝟎,  𝒑𝑭
𝒄 ≥ 𝟎,  𝒑𝑭

𝒄 {
𝜕ℒ𝐹(∙)

𝜕𝒑𝑭
𝒄 } = 0  ∀ 𝑖 and 𝑗 ∈ 𝐹 

(A2)             
𝜕ℒ𝐹(∙)

𝜕𝜆𝑗
= −𝛼𝑗

ℎ ∑ 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖 , 𝜷)𝑖∈𝐼𝑁𝐶 + 𝐶𝐴𝑃𝑗 ≥ 0,  𝜆𝑗 ≥ 0,  𝜆𝑗 {
𝜕ℒ𝐹(∙)

𝜕𝜆𝑗
𝒄 } = 0  ∀ 𝑗 ∈ 𝐹, 

 

where 𝛀(𝒑𝑐) is a block diagonal matrix that combines 𝑖 = 1,∙∙∙ ,92 submatrices accounting for all 

the counties in Indiana, each of dimension 𝐽 × 𝐽 where 𝐽 is the total number of oligopsonist plants 

in Indiana: 

 

(A3)               Ω𝑗𝑘
𝑖 (𝒑𝑖

𝑐; 𝜷) = {
𝜕𝑞𝑖𝑗

𝑐 (𝒑𝑖
𝑐;𝒙𝑖,𝜷)

𝜕𝑝𝑖𝑘
     𝑖𝑓 𝑝𝑙𝑎𝑛𝑡𝑠 𝑗 𝑎𝑛𝑑 𝑘 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑜𝑤𝑛𝑒𝑟

0                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
. 

 

The reason that 𝛀(𝒑𝑐) is a block diagonal structure is that 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖, 𝜷) is a function of 

prices offered to that county by all plants 𝒑𝑖
𝑐, but independent of prices offered by those plants to 

other counties 𝒑−𝑖
𝑐 . Therefore, 𝛀(𝒑𝑐) is constructed based on two premises: (1) farmers in one area 

choose among all 𝐽 oligopsonist plants in Indiana; and (2) corn supply in one county 𝑖 is unaffected 

by prices received by farmers in other counties, −𝑖. 

Moreover, the elements of each submatrix reflect the extent to which a plant internalizes 

competition externalities imposed on another plant in the sample. Each plant 𝑗 sources corn from 

multiple counties. If firm 𝐹  owns multiple plants, then it will internalize pricing externalities 
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across its plants. In other words, if plant 1 increases its corn bid to county 𝑖 (an increase in 𝑝𝑖1), it 

will reduce the residual supply of corn from that county faced by plant 2 (all else constant, it will 

reduce 𝑞𝑖2
𝑐 )—which is the business stealing effect. If the same firm owns both plants, it will fully 

internalize this negative externality, 
𝜕𝑞𝑖2

𝑐 (𝒑𝑖
𝑐;𝒙𝑖,𝜷)

𝜕𝑝𝑖1
. Otherwise, the plant would not internalize the 

externality, and 
𝜕𝑞𝑖2

𝑐 (𝒑𝑖
𝑐;𝒙𝑖,𝜷)

𝜕𝑝𝑖1
 would take a value of zero. 

Matrix 𝛀(𝒑𝑐) is multiplied by 𝚪, which is a vector of marginal value products 𝑃ℎ ∗ 𝛼𝑗
ℎ. 𝚳 

is a vector of 𝛼𝑗
ℎ ∗ 𝑚𝑐(𝑄𝑗

ℎ; 𝒘𝑗 , 𝝃) , which represents the change in marginal processing cost 

associated with producing below capacity, and 𝚲 is a vector of Lagrangian multipliers 𝜆𝑗
𝒄. 

There is no analytical solution to the system (A1)-(A2), so we solve it numerically using a 

nonlinear equation solver. The solution consists of 1,656 (18*92) Nash equilibrium prices—one 

offered by each plant to each county—along with shadow prices for capacity constraints. The 

prices offered by all plants to a county are aggregated to a single county-level price prediction. 

The aggregation procedure consists of weighting plant-specific prices by the plant’s share on total 

corn purchases:   

 

(A4)                                          𝒑̃𝒊
𝒄(𝜷, 𝑿𝒕) = ∑ [{

𝑞𝑖𝑗
𝑐,∗(𝒑𝑖

𝑐,∗;𝒙𝑖,𝜷)

∑ 𝑞𝑖𝑗
𝑐,∗(𝒑𝑖

𝑐,∗;𝒙𝑖,𝜷)𝒋
} 𝑝𝒊𝒋

𝒄,∗]𝒋∈𝐹 . 

 

These predicted prices are compared to observed prices, as described in the following section. 

 

b. Summary of the economic modeling in MPEC structure. We now turn our attention to the 

estimation of structural parameters. Our estimation strategy consists of choosing a set of 
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parameters that minimize the sum of squared errors in predictions subject to equilibrium 

constraints: 

 

(A5)                               min
𝜽∈Θ

1

𝑇
∑ [𝒑𝑡

𝑐 − 𝒑̃𝑡
𝑐(𝜽; 𝑿𝑡)]′𝑪𝑡

−1[𝒑𝑡
𝑐 − 𝒑̃𝑡

𝑐(𝜽; 𝑿𝑡)]𝑇
𝑡=1  

subject to 

(A1) 

(A2) 

(A6)                                            𝑅𝑆𝑈𝑃𝑖 − ∑ 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖 , 𝜷)𝑗 ≥ 0             ∀ 𝑖. 

 

Constraints (A1) and (A2) guarantee that predicted prices are computed based on Nash 

equilibrium plant-county prices calculated as a Mixed Complementary Program (MCP). 

Therefore, the problem above has a Mathematical Programming with Equilibrium Constraints 

(MPEC) structure. Equation (A6) adds to the equilibrium constraints and guarantees that the 

total amount of corn purchased by all plants from a county is not larger than the residual supply 

of corn from that county. The MPEC structure is solved in the General Algebraic Modeling 

System (GAMS) software18 by using the algorithm solver developed by Dirkse and Ferris 

(1998). We apply a bootstrap method to compute standard errors of each parameter. 

 

 

 

 

 
18 The GAMS code is available from the authors upon request. 
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Appendix B. Algorithm of the Iterative Parameter Estimation 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                     

                                                                                                                    * MDE: Minimum Distance  
                                                                                                                                   Estimation  
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