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Abstract 
 
Factorial designs are widely used for studying multiple treatments in one experiment. While 
“long” model t-tests provide valid inferences, “short” model t-tests (ignoring interactions) yield 
higher power if interactions are zero, but incorrect inferences otherwise. Of 27 factorial 
experiments published in top-5 journals (2007–2017), 19 use the short model. After including 
all interactions, over half their results lose significance. Modest local power improvements over 
the long model are possible, but with lower power for most values of the interaction. If 
interactions are not of interest, leaving the interaction cells empty yields valid inferences and 
global power improvements. 
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1 Introduction

Cross-cutting or factorial designs are widely used in field experiments to study the ef-
fects of multiple treatments in a cost-effective way in the same experiment. However,
unbiased estimation and correct inference of the main treatment effects in such exper-
iments depend crucially on the assumption that the interaction between treatments is
negligible. As Kremer (2003) puts it: “Conducting a series of evaluations in the same
area allows substantial cost savings...Since data collection is the most costly element of
these evaluations, cross-cutting the sample reduces costs dramatically...This tactic can be
problematic, however, if there are significant interactions between programs”.

This paper is motivated by the observation that many field experiments seem to be
ignoring this caveat. To fix ideas, consider a setup with two randomly-assigned binary
treatments. The researcher can estimate either a fully-saturated “long” model (with
dummies for both treatments and for their interaction) or a “short” model (only includ-
ing dummies for both treatments). The long model yields consistent estimators for the
average treatment effect of both treatments, as well as the interaction, and is always cor-
rect for inference regardless of the true value of the interaction. However, if the true
value of the interaction effect is zero, the short model has greater power for conducting
inference on the main treatment effects. This is why researchers often focus on results
from the short model, with the implicit assumption that the interaction is zero.

The power gains based on the short model, however, come at the cost of an increased
likelihood of incorrect inference relative to a “business as usual” counterfactual (holding
other background conditions fixed) if the interaction effect is not zero. We classify 27
out of 124 field experiments published in top-5 economics journals during 2007–2017 as
using cross-cutting designs. Out of these 27 papers, 19 do not include all interaction
terms in the main specifications. We reanalyzed the data from these papers by also
including the interaction terms.1 Doing so has non-trivial implications for inference
regarding the main treatment effects. The median absolute change in the point estimates
of the main treatment effects is 96%, about 26% of estimates change sign, and 53% (29
out of 55) of estimates reported to be significant at the 5% level are no longer so after
including interactions. Even if we reanalyze only “policy” experiments, 32% of the
estimates (6 out of 19) are no longer significant after including the interactions.2

1The full list of 27 papers is in Table A.1. We reanalyzed 15 out of the 19 that do not include all
interactions in the main specification. The other four papers did not have publicly-accessible data.

2We define a policy experiment as one which studies a program or intervention that could be scaled
up; as opposed to a conceptual experiment, which aims to test for the existence of facts or concepts such
as discrimination (studied, for instance, by resume audit experiments).
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In practice, researchers often try to address the issue of interactions by first estimating
the long model and testing if the interaction is significant, and then focusing on the short
model if they do not reject that the interaction is zero. However, the distributions of the
estimators obtained from this data-dependent model selection procedure are compli-
cated and highly non-normal, making the usual t-statistics misleading (Leeb & Pötscher,
2005, 2006, 2008). Further, cross-cutting experiments are rarely adequately powered to de-
tect meaningful interactions.3 Thus, this two-step procedure will almost always fail to
reject that the interaction term is zero, even when it is different from zero. We show, as a
result, that the rate of incorrect inference using this two-step model-selection procedure
will continue to be nearly as high as that from just running the short model.

Textbook treatments of factorial designs (Cochran & Cox, 1957; Gerber & Green, 2012)
and guides to practice (Kremer, 2003; Duflo et al., 2007) are careful to clarify that treat-
ment effects using the short model should be interpreted as either (a) being conditional
on the distribution of the other treatment arms in the experiment, or (b) as a composite
treatment effect that includes a weighted-average of the interactions with other treat-
ments. However, as we argue, this weighted average is a somewhat arbitrary construct,
can be difficult to interpret in high-dimensional factorial designs, and is typically neither
of primary academic interest nor policy-relevant. Consistent with this view, none of the
19 experimental papers in our reanalysis that ignore the interactions motivate their ex-
periment as being about estimating this composite weighted-average treatment effect, or
caveat that the “main” treatment effects presented should be interpreted as being against
a counterfactual that also has the other treatments in the same experiment.

This status quo is problematic for at least three reasons. First, ignoring interactions
affects internal validity. If the interventions studied are new, the other programs may
not even exist in the study population. Even if they do, there is no reason to believe that
the distributions in the population mirror those in the experiment. Thus, to the extent
that estimation and inference of treatment effects depend on what other interventions
are being studied in the same experiment, ignoring interactions is a threat to internal
validity against a business-as-usual counterfactual.

Second, interactions are likely quantitatively important. The median absolute value of
interactions relative to the main treatment effects in papers we reanalyze is 0.37.4 The
view that interactions are second-order may have been influenced in part by the lack

3For example, one would need 16 times the sample size to detect an interaction than to detect a main
effect when the interactions are half the size of the main effects (Gelman, 2018).

4The median interaction term across studies is in fact close to zero, but the median absolute value of the
interaction term is not zero. Thus, in any given study, short model t-tests yield a non-trivial rate of false
rejections of the null hypotheses about the main effects against business-as-usual counterfactuals.
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of evidence of significant interactions in most experiments to date. However, this is
at least partly because few experiments are adequately powered to detect meaningful
interactions. Thus, “absence of evidence” of significant interactions may be getting erro-
neously interpreted as “evidence of absence.” There is now both experimental (Duflo et
al., 2015a; Mbiti et al., 2019) and non-experimental (Kerwin & Thornton, 2017; Gilligan
et al., 2018) evidence that interactions matter. Indeed, there is a long tradition in de-
velopment economics that has highlighted the importance of complementarities across
policies/programs in alleviating poverty traps (Ray, 1998; Banerjee & Duflo, 2005), which
suggests that assuming away interactions in empirical work may be a mistake.

Third, factorial designs may make sense if the goal is not hypothesis testing but to min-
imize mean squared error (MSE) criteria (or other loss functions), where the researcher
is willing to accept some bias for lower variance (e.g., Blair et al., 2019).5 However, ex-
perimental studies typically influence policies based on whether the intervention had
a “significant” effect. This is both because of the well-documented publication bias to-
wards significant findings (e.g., I. Andrews & Kasy, 2018; Christensen & Miguel, 2018;
Franco et al., 2014), and because meta-analyses and evidence reviews often simply count
the number of studies where an intervention has been found to have a significant effect.
Thus, the sensitivity of the significance of point estimates to the inclusion/exclusion of
interaction terms (which we document in this paper), is likely to have non-trivial impli-
cations for how evidence is published, summarized, and translated into policy.

The discussions in Kremer (2003) and Duflo et al. (2007) suggest that an important
motivation for cross-cutting designs is the belief that interactions are “small” relative to
the main treatment effects of interest. We, therefore, consider if it may be possible to
design tests that improve power relative to the long model while maintaining size control
for relevant values of the interactions. Before summarizing these econometric possibil-
ities, we note that the two-sided t-test based on the long model is the uniformly most
powerful unbiased test (e.g., van der Vaart, 1998). This classical result implies that any
procedure that is more powerful than the t-test for some values of the interactions, must
underperform somewhere else. Moreover, even in the best case, the scope for power
improvements is limited if one insists on size control for all values of the interactions.6

Keeping these constraints in mind, we explore four possible econometric approaches.

5They may also make sense for iterative series of experiments (e.g. on agricultural test plots, or online
A/B testing), where factorial designs make it possible to efficiently explore several treatments to identify
promising interventions for further testing. We present a more extensive discussion of the settings where
factorial designs may be appropriate in the Conclusion.

6For the corresponding one-sided testing problem, the one-sided t-test is uniformly most powerful.
Thus, the best one can hope for is to improve power from the two-sided to the one-sided test. This power
improvement is never larger than 12.5 percentage points at the 5% level.
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The first approach, based on Elliott et al. (2015), is a nearly optimal test that targets
power towards an a priori likely value of the interaction (such as a value of zero), while
controlling size for all values of the interaction. This approach comes close to achiev-
ing the maximal possible (modest) power gains near the likely values of the interaction,
while exhibiting lower power farther away from this value. The nearly optimal test can
be useful in 2×2 factorial designs, but becomes computationally prohibitive in more
complicated factorial designs.7 Our second approach, based on Armstrong et al. (2019),
is to construct confidence intervals for the main effects under prior knowledge on the
magnitude of the interactions. Incorporating prior knowledge is computationally fea-
sible even in complicated factorial designs but requires prior knowledge on potentially
many interactions to yield notable power improvements. When the prior knowledge is
correct, this approach controls size and yields power gains relative to the t-test based
on the long model. However, it suffers from size distortions if the prior knowledge is
incorrect. In the appendix, we explore two additional econometric approaches based on
work by Imbens & Manski (2004), Stoye (2009), and McCloskey (2017). Our simulations
show that these are unlikely to yield meaningful power improvements relative to the
first two approaches and the long model t-test.

Based on the analysis above, we recommend that all completed factorial experiments
report results from the long regression model and use t-tests based on it. It is easy to
compute even in complicated factorial designs and has appealing optimality properties.
Further, the justification for the short model should not be that the interactions were
not significant in the long model (because of the model selection issue discussed above).
Rather, if researchers would like to focus on results from the short model, they should
clearly indicate that treatment effects should be interpreted as a composite treatment
effect that includes a weighted-average of interactions with other treatments (and com-
mit to the estimand of interest in a pre-analysis plan). This will ensure transparency in
the interpretation of the main results and enable readers to assess the extent to which
other treatments may be typical background factors that can be ignored. Finally, even
in settings where the coefficients in the short model are of interest, they can always be
constructed based on the coefficients in the long model (the converse is not true).

For the design of new experiments, a natural alternative is to leave the “interaction
cell” empty and increase the number of units assigned exclusively to one of the treat-
ments or the control group. Our simulations show that leaving the interaction cell empty

7Since most of the experiments that we reanalyze have more complex factorial designs, this procedure
is of limited use for these experiments. Our code to implement this procedure for 2×2 factorial designs is
available at https://mtromero.shinyapps.io/elliott/.
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yields more power gains than the econometric methods discussed above for most of the
relevant values of the interaction effect. Thus, if one is not interested in the interac-
tion between the programs, we suggest avoiding factorial designs. If interactions are of
research interest, the experiment should be adequately powered to detect them.

The recommendations above are most relevant for the design and analysis of policy
experiments, where a business-as-usual counterfactual is important. Factorial designs,
and analyses of the short model may be fine in conceptual experiments, such as resume
audit studies, where many (or all) the characteristics that are randomized (such as age,
education, race, and gender) do exist in the population. In these cases, a weighted av-
erage “short model” effect may be a reasonable target parameter subject to researchers
indicating how the resulting effect should be interpreted. However, even in these cases,
there may be value in having the treatment share of various characteristics being stud-
ied be the same as their population proportion. Doing so will make the short-model
coefficient more likely to approximate a population relevant parameter of interest.

Our most important contribution is to the literature on the design of field experi-
ments. Athey & Imbens (2017), Bruhn & McKenzie (2009), and List et al. (2011) provide
guidance on the design of field experiments, but do not discuss when and when not to
implement factorial designs. Duflo et al. (2007) implicitly endorse the use of factorial
designs by noting that they “[have] proved very important in allowing for the recent
wave of randomized evaluations in development economics”. Our reanalysis of exist-
ing experiments as well as simulations suggest that there is no free lunch and that the
perceived gains in power and cost-effectiveness from running experiments with factorial
designs come at the cost of not controlling size and an increased rate of false positives
relative to a business-as-usual counterfactual. Alternatively, they come at the cost of a
more complicated interpretation of the main results as including a weighted-average of
interactions with other treatments that may not represent a typical counterfactual.

We also contribute to the literature that aims to improve the analysis of completed
field experiments. Two recent examples are Young (2018), who shows that randomiza-
tion tests result in 13% to 22% fewer significant results than those originally reported in
published papers, and List et al. (2016) who present a procedure to correct for multiple
hypothesis testing in field experiments. Our paper follows in this tradition by docu-
menting a problem with the status quo, quantifying its importance, and identifying the
most relevant recent advances in theoretical econometrics that can mitigate the problem.
Specifically, we show that the econometric analysis of nonstandard inference problems
can be brought to bear to improve inference in factorial designs which are ubiquitous in
economics field experiments.
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2 Theoretical analysis of cross-cut designs

In this section, we discuss identification, estimation, and inference in experiments with
factorial designs. For simplicity, we focus on factorial designs with two treatments, T1

and T2 (commonly known as “2×2 designs”), where a researcher randomly assigns some
subjects to receive treatment T1, some subjects to receive treatment T2, and some subjects
to receive both treatments (see Table 1). It is straightforward to extend the analysis to
cross-cut designs with more than two treatments; we do so in Section 7.

Table 1: 2×2 factorial design

T1
No Yes

T2
No N1 N2
Yes N3 N4

Note: Nj is the number of individuals randomly assigned to cell j.

2.1 Potential outcomes and treatment effects

We formalize the problem using the potential outcomes framework of Rubin (1974). Our
goal is to identify and estimate the causal effect of the two treatments, T1 and T2, on
an outcome of interest, Y. Potential outcomes {Yt1,t2} are indexed by both treatments
T1 = t1 and T2 = t2, and are related to the observed outcome as

Y = Y0,0 · 1{T1=0,T2=0} + Y1,0 · 1{T1=1,T2=0} + Y0,1 · 1{T1=0,T2=1} + Y1,1 · 1{T1=1,T2=1}, (1)

where 1{A} is an indicator function which is equal to one if the event A is true and zero
otherwise. There are different types of average treatment effects (ATEs):

E (Y1,0 −Y0,0) : ATE of T1 relative to a counterfactual where T2 = 0

E (Y0,1 −Y0,0) : ATE of T2 relative to a counterfactual where T1 = 0

E (Y1,1 −Y0,1) : ATE of T1 relative to a counterfactual where T2 = 1

E (Y1,1 −Y1,0) : ATE of T2 relative to a counterfactual where T1 = 1

E (Y1,1 −Y0,0) : ATE of T1 and T2 combined

We refer to E (Y1,0 −Y0,0) and E (Y0,1 −Y0,0) as the main treatment effects of T1 and T2

relative to a business-as-usual counterfactual, where no on exposed to either treatment
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analyzed in the experiment. The interaction effect — the difference between the effect of
jointly providing both treatments and the sum of the main effects — is

E (Y1,1 −Y0,0)− [E (Y1,0 −Y0,0) + E (Y0,1 −Y0,0)] = E (Y1,1 −Y0,1 −Y1,0 + Y0,0) (2)

We assume that both treatments are randomly assigned and independent of each other
such that the different ATEs are identified as

E (Y1,0 −Y0,0) = E (Y | T1 = 1, T2 = 0)− E (Y | T1 = 0, T2 = 0)

E (Y0,1 −Y0,0) = E (Y | T1 = 0, T2 = 1)− E (Y | T1 = 0, T2 = 0)

E (Y1,1 −Y0,1) = E (Y | T1 = 1, T2 = 1)− E (Y | T1 = 0, T2 = 1)

E (Y1,1 −Y1,0) = E (Y | T1 = 1, T2 = 1)− E (Y | T1 = 1, T2 = 0)

E (Y1,1 −Y0,0) = E (Y | T1 = 1, T2 = 1)− E (Y | T1 = 0, T2 = 0)

and the interaction effect is identified via Equation (2).

2.2 Long and short regression models

Researchers analyzing experiments based on cross-cut designs typically consider one of
the following two population regression models:

Y = β0 + β1T1 + β2T2 + β12T1T2 + ε, (long model) (3)

Y = βs
0 + βs

1T1 + βs
2T2 + εs (short model) (4)

The fully saturated “long” model (3) includes both treatment indicators as well as their
interaction. By contrast, the “short” model (4) only includes the two treatment indicators,
but ignores the interaction term.

We now relate the population regression coefficients in these models to the causal
effects defined in Section 2.1; see Appendix A.2 for detailed derivations.8 The coefficients
in the long regression model correspond to the main effects of T1 and T2 against a

8The population regression coefficient β in the model Y = X′β + ε is the solution to the population
least squares problem and is given by β = E (XX′)−1 E (XY).
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business-as-usual counterfactual, and the interaction effect:

β1 = E (Y1,0 −Y0,0) , (5)

β2 = E (Y0,1 −Y0,0) , (6)

β12 = E (Y1,1 −Y0,1 −Y1,0 + Y0,0) . (7)

By contrast, the regression coefficients in the short model are

βs
1 = E (Y1,1 −Y0,1) P (T2 = 1) + E (Y1,0 −Y0,0) P (T2 = 0) (8)

= E (Y1,0 −Y0,0) + E (Y1,1 −Y0,1 −Y1,0 + Y0,0) P(T2 = 1) (9)

= β1 + β12P(T2 = 1)

and

βs
2 = E (Y1,1 −Y1,0) P (T1 = 1) + E (Y0,1 −Y0,0) P (T1 = 0) (10)

= E (Y0,1 −Y0,0) + E (Y1,1 −Y0,1 −Y1,0 + Y0,0) P(T1 = 1) (11)

= β2 + β12P(T1 = 1)

Equation (8) shows that βs
1 yields a weighted average of the average treatment effect

(ATE) of T1 relative to a counterfactual where T2 = 1 and the ATE of T1 relative to a
business-as-usual counterfactual where T2 = 0. The weights correspond to the fractions
of individuals with T2 = 1 and T2 = 0, which are determined by the experimental design.
Alternatively, βs

1 can be written as the sum of the ATE of T1 relative to a counterfactual
where T2 = 0 and the interaction effect multiplied by the fraction of individuals with
T2 = 1; see Equation (9). Equations (10) and (11) present the corresponding expressions
for βs

2.
These derivations show that, unless the interaction effect is zero (in which case β1 = βs

1

and β2 = βs
2), the population regression coefficients in the short regression model neither

correspond to the main effects nor the interaction effect. Instead, the short model yields
a composite treatment effect that is a weighted average of ATEs relative to different
counterfactuals.9

9From a theoretical perspective, the choice between the long and the short model is related to the
problem of making inference on a single treatment effect with covariates, where one has to decide whether
to include the covariates linearly and to make inference on a weighted average of treatment effects or to
run fully saturated regressions and to make inference on the ATE (e.g., Angrist & Krueger, 1999; Angrist
& Pischke, 2009). However, the practical implications are not the same because experimental treatments
are fundamentally different in nature from standard covariates; see Section 2.3 for a discussion.
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2.3 Long or short model: What do we care about?

Section 2.2 shows that the long model identifies the main effects relative to a business-
as-usual counterfactual, whereas the short model yields a weighted average of treatment
effects that depends on the nature and distribution of the other treatment arms in the
experiment. However, this weighted average is typically neither of primary academic
interest nor policy-relevant. This view is consistent with how papers we reanalyze
motivate their object of interest, which is usually the main treatment effect against a
business-as-usual counterfactual. Of the 19 papers in Table A.1 in Appendix A.1 that
present results from the short model without all interactions, we did not find any study
that mentioned (in the main text or in a footnote) that the presented treatment effects
should be interpreted as either (a) a composite effect that includes a weighted average of
the interaction with the other treatments or (b) as being against a counterfactual that was
not business-as-usual but one that also had the other treatments in the same experiment.

One way to make the case for the short model is to recast the problem we identify as
one of external rather than internal validity. Specifically, all experiments are carried out
in a context with several unobserved “background” covariates. Thus, any experimental
treatment effect is a weighted average of the treatment interacted with a distribution
of unobserved covariates. If the other experimental arms are considered as analogous
to unobserved background covariates, then inference on treatment effects based on the
short model can be considered internally valid. In this view, the challenge is that the
unobserved covariates (including other treatment arms) will vary across contexts.

However, experimental treatments are fundamentally different in nature from stan-
dard background covariates. They are determined by the experimenter based on research
interest, and rarely represent real-world counterfactuals. In some cases, the interventions
studied are new and the other treatments may not even exist in the study population.
Even if they do exist, there is no reason to believe that the distributions in the population
mirror those in the experiment. Thus, we view this issue as a challenge to internal valid-
ity because the other experimental arms are also controlled by the researcher and not just
a set of “background unobservable factors”. Further, papers with factorial designs often
use the two-step procedure described in Section 4, and present results from the short
model after mentioning that the interactions are not significantly different from zero (see
for example, Banerjee et al. (2007) and Karlan & List (2007)). This suggests that our view
that interactions matter for internal validity is shared broadly.

There are settings where focusing on the short model may be fine. For example, in
experiments that focus on testing concepts or establishing existence results (such as re-
sume audit studies to study discrimination), treatment estimates are unlikely to directly
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affect discussions about policy or program implementation, and a weighted average ef-
fect may be a reasonable target parameter, subject to researchers indicating clearly how
the resulting effect should be interpreted.

However, even in settings where the coefficients in the short model are of interest, they
can always be constructed based on the coefficients in the long model, while the converse
is not true. One can also use the long model to test hypotheses about the coefficients
in the short regression model: H0 : βs

1 = β1 + β12P(T2 = 1) = 0. Which test is more
powerful depends on the relative sample size in the four experimental cells.10 Unlike the
short model, the long model additionally allows for testing a rich variety of hypotheses
about counterfactual effects such as H0 : β1 + β12p = 0 for policy-relevant values of p,
which generally differ from the experimental assignment probability P(T2 = 1).

Thus, to summarize, the long model estimates all the underlying parameters of interest
(the main effects and the interactions). In contrast, βs

1 is rarely of interest in its own right,
and even if it is, the long model allows for estimation and inference on βs

1 as well.

2.4 Estimation and inference

Suppose that the researcher has access to a random sample {Yi, T1i, T2i}N
i=1. Consider a

factorial design with sample sizes as in Table 1. In what follows, we focus on β1. The
analysis for β2 is symmetric and omitted.

Under random assignment and standard regularity conditions, the OLS estimator of
β1 based on the long regression model, β̂1, is consistent:

β̂1
p→ β1 = E (Y1,0 −Y0,0)

By contrast, the probability limit of the OLS estimators based on the short model is

β̂s
1

p→ βs
1 = β1 + β12P(T2 = 1).

Unless the true interaction effect is zero (i.e., β12 = 0), β̂s
1 is not consistent for the main

effects relative to a business-as-usual counterfactual. Thus, if the goal is to achieve
consistency for the main effects, one should always use the long model.

The choice between the long and the short regression model is less clear cut when it

10For example, when N1 = N2 = N3 = N4 = N/4, the tests based on the long model and the short
model exhibit the same power. In practice, we recommend comparing both tests when doing power
calculations.
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comes to inference. To illustrate, suppose that the data generating process is given by

Yi = β0 + β1T1i + β2T2i + β12T1iT2i + εi,

where εi ∼ N(0, σ2) is independent of (T1i, T2i) and σ2 is known. Normality allows us to
formally compute and compare the finite sample power of the t-tests based on the short
and the long regression model.

If the interaction effect is zero (i.e., β12 = 0), it follows from standard results that,
conditional on (T11, . . . , T1N, T21, . . . , T2N),

β̂1 ∼ N
(

β1, Var
(

β̂1
))

and β̂s
1 ∼ N

(
β1, Var

(
β̂s

1
))

,

where
Var

(
β̂s

1
)
≤ Var

(
β̂1
)

.

As a consequence, the t-test based on the short model exhibits higher finite sample
power than the t-test based on the long model. Appendix A.3 gives explicit formulas of
Var(β̂1) and Var(β̂s

1) in terms of (N1, N2, N3, N4), provides a formal comparison between
the power of the long and the short model, and discusses the role of the “size” of the
interaction cell, N4.

If, on the other hand, the interaction effect is not zero (i.e., β12 6= 0), ignoring the
interaction can lead to substantial size distortions as we demonstrate in Section 3.1.
Depending on the true value of the interaction effect, the finite sample power of the
t-test based on the short model can be higher or lower than the power of the t-test based
on the long model.

3 Factorial designs in practice

In this section we document common practices among researchers studying field exper-
iments with factorial designs. We analyze all articles published between 2007 and 2017
in the top five journals in Economics.11 Of the 3,505 articles published in this period
124 (3.5%) are field experiments (Table A.1 provides more details). Factorial designs
are widely used: Among 124 field experiments 27 (22%) had a factorial design.12 Only

11These journals are The American Economic Review, Econometrica, The Journal of Political Economy, The
Quarterly Journal of Economics, and The Review of Economic Studies. We exclude the May issue of the Ameri-
can Economic Review, known as “AER: Papers and Proceedings”.

12We do not consider two-stage randomization designs as factorial designs. A two-stage randomization
design is where some treatment is randomly assigned in one stage. In the second stage, treatment status is
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8 of these 27 articles with factorial designs (∼30%) used the long model including all
interaction terms as their main specification (see Table 2).

Table 2: Field experiments published in top-5 journals between 2007 and 2017

AER ECMA JPE QJE ReStud Total

Field experiments 43 9 14 45 13 124
With factorial designs 11 2 4 6 4 27

Interactions included 3 1 1 2 1 8
Interactions not included 8 1 3 4 3 19

3.1 Ignoring the interaction: Theory

The discussion above highlights that it is common for experimental papers with factorial
designs to ignore the interaction and focus on the short regression model. This is theoret-
ically justified if the researcher is certain that all the interactions are zero, in which case
it leads to consistent estimates of the main effects and to power improvements relative
to the long model (see Section 2.4). However, if the interactions are not zero, ignoring
the interaction yields inconsistent estimates and size distortions.

To illustrate, we introduce a running example based on a prototypical setting which
we will return to throughout the paper. We focus on the problem of testing the null
hypothesis that the main effect of T1 is equal to zero, H0 : β1 = 0. The analysis for β2 is
symmetric and omitted. We consider a 2×2 design with a total sample size of N = 1, 000,
where N1 = N2 = N3 = N4 = 250. The data are generated as

Yi = β1T1i + β2T2i + β12T1iT2i + εi, εi ∼ N(0, 1),

where T1i and T2i are randomly assigned treatments with P(T1i = 1) = P(T2i = 1) = 0.5.
This experiment has power 90% to detect an effect size of 0.2σ at the 5% level using

re-randomized to study behavioral changes conditional on a realization of the previous treatment. Exam-
ples of studies with two-stage randomization designs include Cohen & Dupas (2010), Karlan & Zinman
(2009), and Ashraf et al. (2010). Finally, we do not include experiments where there is no “treatment”, but
rather conditions are randomized to elicit individuals preference parameters (e.g., Andersen et al., 2008;
Gneezy et al., 2009; Fisman et al., 2008).
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the short regression.13 We use Monte Carlo simulations to assess the rejection rates
of different inference procedures under the null (size) and the alternative hypothesis
(power).

Figure 1 shows how bias, size, and power vary across different values of β12 in both
the long and the short model. As expected, the long model exhibits no bias and correct
size for all values of β12, while the short model has a bias and does not achieve size
control whenever β12 6= 0. As seen in Figure 1, even modest values of |β12| lead to
considerable size distortion. For instance, a |β12| greater than 0.1 (which occurs in over
36% of cases in the data we reanalyze) would more than double the rate of false rejection
of the null. The trade-off is that for β12 = 0, the short model controls size and exhibits
higher power than the long model. When β12 6= 0, the power of the t-test based on the
short model depends on β12 and may be higher or lower than the power of tests based
on the long model. The main takeaway from Figure 1 is that researchers should avoid
the short model, unless there is no uncertainty that β12 = 0.

Figure 1: Bias, size control and power trade-off
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size for figures 1b and
1c is α = 0.05.

3.2 Ignoring the interaction: Practice

Here, we examine the practical implications of ignoring the interactions in the papers
listed in Table A.1. We reanalyze the data from all field experiments with factorial
designs and publicly available data that do not include all the interactions in the main
specification. Of the ten most-cited papers with factorial designs listed in Table A.1 only

13The minimum detectable effect for the long model with power 90% and size 5% is 0.29σ.
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one includes all the interactions in the main specification. More recent papers (which are
less likely to be among the most cited) are more likely to include all interaction terms.
Out of the 27 papers with factorial designs published in top-5 journals, 19 papers do
not include all interaction terms. Of these 19, 4 papers did not have publicly-available
replication data. In an online appendix we describe the experimental design of each of
the 27 papers.14

We downloaded the publicly-available data files and replicated the main results in
each of the remaining 15 papers. We standardized the outcome variable in each paper
to have mean zero and standard deviation of one. We then compared the original treat-
ment effects (estimated without the interaction terms) with those estimated including
the interaction terms. In other words, we compare estimates based on the short model
(Equation (4)) to those based on the long model (Equation (3)).

3.2.1 Key facts about interactions

As the discussion above highlights, the extent to which the short model will not con-
trol size depends on the value of the interactions in practice. We therefore start by
plotting the distribution of estimated interaction effects (Figure 2) and documenting
facts regarding interactions from our reanalysis. We find that interactions are quantita-
tively important and typically not second-order. While the median (mean) interaction
for these papers is 0.00σ (0.00σ), the median (mean) absolute value of the interaction is
0.07σ (0.13σ). The median (mean) absolute value of interactions relative to the main
treatment effects is 0.37 (1.55). Thus, while it may be true that interactions are small on
average across all studies, they are often sizeable in any given study. In our data, the
absolute value of the interactions is greater than 0.1 in 36% and greater than 0.2 in 19%
of the cases. These lead to a 13% and 22% chance of rejecting the null of no effect in our
running example (as seen in Figure 1), which corresponds to more than a doubling and
a quadrupling, respectively, in the rate of false rejection at the 5% level.

The second key finding is that despite the interactions being quantitatively important,
most experiments will rarely reject the null hypothesis that they are zero (Figure 2 shades
the fraction of the interactions that are significant in the studies that we reanalyze).
Among the 15 papers that we reanalyzed, 6.2% of interactions are significant at the 10%
level, 3.6% are significant at the 5% level, and 0.9% are significant at the 1% level.15

These findings are not surprising because factorial designs are rarely powered to detect

14Available at http://mauricio-romero.com/pdfs/papers/Appendix crosscuts.pdf
15Among the papers that originally included all interactions, 4.5% of interactions are significant at the

10% level, 1.1% are significant at the 5% level, and 0.0% are significant at the 1% level.

14

http://mauricio-romero.com/pdfs/papers/Appendix_crosscuts.pdf


meaningful interactions. For example, one would need 16 times the sample size to
detect an interaction than to detect a main effect when the interactions are half the
size of the main effects (Gelman, 2018). Thus, the lack of inclusion of interactions may
reflect authors’ beliefs that the interactions are second order as inferred from their lack
of significance in the long model.

The implication of these results is that it is rarely justified to implement a factorial
design with the aim of detecting interactions since most experiments are not powered for
this. Rather, the reason for running experiments with factorial designs seems to be the
increase in power for detecting main effects. However, as we show below, this comes at
the considerable cost of an increased rate of false positives (which is unsurprising based
on the distribution of interactions shown in Figure 2).
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Figure 2: Distribution of the estimated interaction effects
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Note: This figure shows the distribution of the interactions between the main treatments. We trim the top and bottom
1% of the distribution. The median interaction for these papers is 0.00σ (dashed vertical line), the median absolute
value of the interaction is 0.07σ (solid vertical line), and the median relative absolute value of the interaction with
respect to the main treatment effect is 0.37. 6.2% of interactions are significant at the 10% level, 3.6% are significant
at the 5% level, and 0.9% are significant at the 1% level.

3.2.2 Implications of ignoring interactions

Figure 3a compares the original treatment effect estimates based on the short model to
the estimates based on the long model which includes the interaction terms (Figure 3b
zooms in to cases where the value of the main treatment effects in the short model is
between -1 to 1 standard deviation). The median change in the absolute value of the
point estimate of the main treatment effect is 96%. Roughly 26% of estimated treatment
effects change sign when they are estimated using the long regression.

Table 3 shows how the significance of the main treatment estimates changes when
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using the long instead of the short model. About 48% of treatment estimates that were
significant at the 10% level based on the short model are no longer significant based on
the long model. 53% and 57% of estimates lose significance at the 5% and 1% levels,
respectively. A much smaller fraction of treatment effects that were not significant in the
short model are significant based on the long regression (6%, 5%, and 1%, at the 10%,
5%, and 1% levels respectively).

We find similar results when we restrict our reanalysis to the ten most cited papers
with factorial designs that do not include the interaction terms (with data available for
reanalysis). When we re-estimate the treatment effects in these papers after including
all interactions, we find that out of 21 results that were significant at the 5% level in the
paper, 9 (or 43%) are no longer so after including all interactions. Corresponding figures
and tables are presented in Appendix A.1.2 (Figure A.2 and Table A.2).

Finally, following the discussion in Section 2.3, we also distinguish between policy
and conceptual experiments in Table A.1 (the latter typically have more treatments and
interactions) and see that the problem of incorrect inference from ignoring interaction
terms remains even when we restrict attention to the policy experiments. Of the 12 policy
experiments, 9 do not include all interactions. When we re-estimate the treatment effects
in these 9 papers after including all interactions, we find that out of 19 results that were
significant at the 5% level in the paper, 6 (or 32%) are no longer so after including all
interactions. Corresponding figures and tables are presented in Appendix A.1.3 (Figure
A.4 and Table A.3).
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Figure 3: Treatment estimates based on the long and the short model

(a) All estimates
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(b) Main treatment effects between -1σ and 1σ
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Note: This figure shows how the main treatment estimates change between the short and the long model across
all studies. Figure 3a has all the treatment effects, while Figure 3b zooms in to cases where the value of the main
treatment effects in the short model is between -1 to 1 standard deviation. The median main treatment estimate from
the short model is 0.01σ, the median main treatment estimate from the long model is 0.02σ, the average absolute
difference between the treatment estimates of the short and the long model is 0.05σ, the median absolute difference
in percentage terms between the treatment estimates of the short and the long model is 96%, and 26% of treatment
estimates change sign when they are estimated using the long or the short model.
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Table 3: Significance of treatment estimates based on the long and the short model

Panel A: Significance at the 10% level
Without interaction

With interaction Not significant Significant Total

Not significant 95 34 129
Significant 6 37 43
Total 101 71 172

Panel B: Significance at the 5% level
Without interaction

With interaction Not significant Significant Total

Not significant 111 29 140
Significant 6 26 32
Total 117 55 172

Panel C: Significance at the 1% level
Without interaction

With interaction Not significant Significant Total

Not significant 140 17 157
Significant 2 13 15
Total 142 30 172

This table shows the number of coefficients that are significant
at a given level when estimating the long regression (columns)
and the short regression (rows). This table includes informa-
tion from all papers with factorial designs and publicly avail-
able data that do not include the interaction in the original
study. Panel A uses a 10% significance level, Panel B uses 5%,
and Panel C uses 1%.

4 Model selection (or pre-testing) yields invalid inferences

As implied by the quote from Kremer (2003) in the introduction, researchers often rec-
ognize that using the short model is only correct for inference on the main treatment
effect if the interaction is close to zero. However, the problem is that the value of the
interaction is not known ex ante (also see the discussion in Section 5.3). Therefore, a
common practice is to employ a data-driven two-step procedure to determine whether
to estimate the full model or to ignore the interaction. Specifically, the steps are:

1. Estimate the long model and test the null hypothesis that β12 is zero (i.e., H0 : β12 =

0) using a two-sided t-test.
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2. (a) If H0 : β12 = 0 is rejected, test H0 : β1 = 0 using the two-sided t-test based on
the long model.

(b) If H0 : β12 = 0 is not rejected, test H0 : β1 = 0 using the two-sided t-test based
on the short model.

It is well-known that the distributions of the estimators obtained from this data-dependent
model selection procedure are complicated and highly non-normal, rendering the usual
t-statistic-based inference invalid (e.g., Leeb & Pötscher, 2005, 2006, 2008). To illustrate
this issue, we return to our running example. The size and power properties of the
two-step model selection approach are shown in Figure 4. For reference, we also include
results for the t-tests based on the long and the short model. The main takeaway from
Figure 4 is that model selection leads to incorrect inferences and false positives. Thus,
researchers should always avoid it.

The performance of the model selection approach to determine whether one should
run the short or the long model is particularly poor because field experiments are rarely
powered to reject that the interactions are zero. Figure 2 shows that only 3.6% of in-
teractions were significant at the 5% level in our reanalysis. Thus, using a rejection
threshold of 5%, the model-selection approach would lead to estimating the short model
in over 96% of the cases we reanalyze. Thus, the rate of incorrect inference under model-
selection will continue to be nearly as high as just running the short model.
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Figure 4: Model selection does not control for size
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(b) Power
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size for figures 4a and
4b is α = 0.05. For the model selection, the short model is estimated if one fails to reject β12 = 0 at the 5% level.

5 Can we improve power while achieving size control?

The motivation for factorial designs and estimating the short model is often the belief
that interactions are “small”. The problem in practice is that the actual value of the
interaction is not known ex ante and both the common approaches of directly estimating
the short model or doing a two-step model selection procedure do not control size. We
now examine whether it is possible to improve power relative to t-tests based on the
long model, while maintaining size control for relevant values of the interactions. We
first consider 2×2 factorial designs, and discuss factorial designs with more than two
treatments in Section 7.

To simplify the exposition, we focus on β1 and partial out T2, keeping the partialling-
out implicit. The analysis for β2 is symmetric and omitted. Defining T12 ≡ T1T2, the
regression model of interest is16

Y = β1T1 + β12T12 + ε. (12)

16We omit the intercept because all variables have mean zero after partialling-out T2 and the constant.
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Our goal is to test hypotheses about the main effect β1.

5.1 Optimality properties of the t-test based on the long model

The two-sided t-test based on the long regression model is the uniformly most powerful
test among tests that are unbiased for all values of the interaction effect (e.g., van der
Vaart, 1998).17 The practical implication of this classical result is that any procedure that
is more powerful than the t-test for some values of the interaction must underperform
somewhere else. As a consequence, to achieve higher power than the t-test based on
the long model, one has to make a choice about which values of the interaction to di-
rect power to. In practice, this choice needs to be made based on some form of prior
knowledge.

Even if one is willing to direct power to particular values of the interaction and to
sacrifice power somewhere else, the scope for power improvements relative to the two-
sided t-test based on the long regression model is limited if one insists on uniform size
control. The reason is that for the corresponding one-sided testing problem, the usual
one-sided t-test based on the long model is the uniformly most powerful test among all
tests (e.g., Proposition 15.2 in van der Vaart, 1998). Thus, at any parameter value, the
uniformly most powerful test is a one-sided t-test and the best one can hope for is to
improve the power from the two-sided to a one-sided test (see, e.g., Armstrong et al.
(2019) and Armstrong & Kolesar (2019) for a further discussion of this point). At the
5%-level, this power improvement is never larger than 12.5 percentage points. It can
also be shown that the scope for improving the average length of the usual confidence
intervals based on the long regression model is limited (e.g., Armstrong & Kolesar, 2018,
2019; Armstrong et al., 2019).18

Section 5.2 proposes a nearly optimal test which comes close to achieving the maximal
power gain at a priori likely values of the interaction, while controlling size for all values
of the interaction. In Section 5.3, we explore an approach based on prior knowledge on
the magnitude of the interaction. When the prior knowledge is correct, this approach
controls size and yields power gains relative to the t-test based on the long model.
However, unlike the t-test based on the long model and the nearly optimal test, it suffers
from size distortions if the prior knowledge is incorrect. Appendix A.5 explores two
additional econometric approaches based on work by Imbens & Manski (2004), Stoye
(2009), and McCloskey (2017).

17A test is unbiased if its power is larger than its size.
18Moreover, the results in Joshi (1969) imply the usual two-sided confidence interval based on the long

regression model achieves minimax expected length (Armstrong & Kolesar, 2019).
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5.2 Nearly optimal tests targeting power towards a likely value β̄12

Consider a scenario where a particular value β12 = β̄12 seems a priori likely and suppose
that we want to find a test that controls size and is as powerful as possible when β12 =

β̄12. For concreteness, we focus on the case where β̄12 = 0 and consider the following
testing problem

H0 : β1 = 0, β12 ∈ R against H1 : β1 6= 0, β12 = 0. (13)

We use the numerical algorithm developed by Elliott et al. (2015) to construct a nearly
optimal test for the testing problem (13). To describe their procedure, note that un-
der standard conditions, the t-statistics are approximately normally distributed in large
samples (

t̂1

t̂12

)
∼ N

((
t1

t12

)
,

(
1 ρ

ρ 1

))
, (14)

where t̂1 = β̂1
SE(β̂1)

, t̂12 = β̂12
SE(β̂12)

, t1 = β1
SE(β̂1)

, t12 = β12
SE(β̂12)

, and ρ = Cov(t1, t12). We

also define t̂ = (t̂1, t̂12) and t = (t1, t12). SE(β̂1), SE(β̂12) and Cov(t1, t12) can be con-
sistently estimated under weak conditions (here we use a standard heteroskedasticity
robust estimator).

Consider the problem of maximizing power in the following hypothesis testing prob-
lem:

H0 : t1 = 0, t12 ∈ R against H1 : t1 6= 0, t12 = 0. (15)

A common approach to construct powerful tests for problems with composite hypothe-
ses is to choose tests based on their weighted average power. In particular, we seek a
powerful test for “H0: the density of t̂ is ft, t1 = 0, t12 ∈ R” against the simple alter-
native “H1,F: the density of t̂ is

∫
ftdF(t)”, where the weighting function F is chosen

by the researcher. Now suppose that the null is replaced by “H0,Λ : the density of t̂ is∫
ftdΛ(t)”. To obtain the best test, one needs to find a least favorable distribution (LFD),

ΛLF, with the property that the size α Neyman-Pearson test of the simple hypothesis
H0,ΛLF against H1,F also yields a size α test of the composite null hypothesis H0 against
H1,F (e.g., Lehmann & Romano, 2005).

Since it is generally difficult to analytically determine and computationally approxi-
mate ΛLF, Elliott et al. (2015) suggest to instead focus on an approximate LFD, ΛALF,
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which yields a nearly optimal test for H0 against H1,F. The resulting test is then just a
Neyman-Pearson test based on ΛALF.

Figure 5: Elliott et al. (2015)’s nearly optimal test controls for size and yields power gains
over running the full model for “intermediate” values of β12
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size for figures 5a and
5b is α = 0.05. EMW refers to Elliott et al. (2015)’s nearly optimal test.

Figure 5 displays the results of applying the nearly optimal test in the context of our
running example.19 The test controls size for all values of β12 and, by construction, is
nearly optimal when β12 = 0. A comparison with the t-test based on the long model
shows that the nearly optimal test is more powerful when β12 is close to zero. The
nearly optimal test comes close to achieving the maximal possible power.20 However,
as expected given the discussion in Section 5.1, these power gains come at a cost. For
certain values of β12, the power can be much lower than that of the t-test based on
the long model. Appendix A.6.3 provides a more comprehensive assessment of the
performance of the nearly optimal tests by plotting power curves for different values of
β1.

19To improve the performance of their procedure, Elliott et al. (2015) suggest a switching rule that
depends on |t̂12| such that for large enough values of |t̂12|, one switches to regular hypothesis testing.
Following their suggestion, we use 6 as the switching value.

20For example, when β1 = 0.1 (β1 = 0.2) the power of the nearly optimal is 85.5% (98.5%) of the power
of the one-sided t-test.
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5.3 Inference under a priori restrictions on the magnitude of β12

Suppose that the researcher is certain that β12 = β̄12. In this case, she can obtain powerful
tests based on a regression of Y− β̄12T12 on T1. If β̄12 = 0, this corresponds to estimating
the short model. As shown in Section 2.4, the t-test based on the short model is more
powerful than t-test based on the long model when the prior knowledge that β12 = 0 is
correct, but does not control size when it is not.

Of course, exact knowledge of β12 may be too strong of an assumption. Suppose
instead that the researcher imposes prior knowledge in the form of a restriction on the
magnitude of the interaction effect β12.

Assumption 1. |β12| ≤ C for some finite constant C.

Assumption 1 restricts the parameter space for β12 and implies that

β12 ∈ {b12 : |b12| ≤ C} ≡ B12.

Here we use the approach developed in Armstrong & Kolesar (2018) and Armstrong
et al. (2019) to construct optimal confidence intervals under Assumption 1.21 To describe
their procedure, we write model (12) in matrix form as

Y = β1T1 + β12T12 + ε (16)

and assume that ε ∼ N(0, σ2IN) and σ2 is known. The implementation with het-
eroskedastic and non-Gaussian errors is discussed in Appendix A.4. An affine estimator
of β1 can be written as β̂1 = a + b′Y, for some a and b that can depend on X ≡ (T1, T12).
For example, for the long OLS regression model, a = 0 and b is the first row of (X′X)−1X′.

Define the “worst case” biases as

Bias
(

β̂1
)

= sup
β1∈R,β12∈B12

E(β1,β12)

(
β̂1 − β1

)
,

Bias
(

β̂1
)

= inf
β1∈R,β12∈B12

E(β1,β12)

(
β̂1 − β1

)
,

where E(β1,β12)
denotes the expectation under the distribution generated by model (16)

with (β1, β12). Assuming that (T1, T12) are fixed, β̂1 is normally distributed with mean
a + b′(β1T1 + β12T12) and variance SE(β̂1)

2 = ‖b‖2
2σ2. Thus, as (β1, β12) varies over

21Optimality here refers to minimizing the width of the confidence intervals. We focus on the width
of the confidence intervals because of the intuitive appeal and practical relevance of this criterion. If one
were to optimize the power of the test that the confidence interval inverts, the resulting procedure can be
different.
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R×B12, the t-ratio, (β̂1−β1)

SE(β̂1)
, is normally distributed with variance one and mean varying

from
Bias(β̂1)
SE(β̂1)

to
Bias(β̂1)
SE(β̂1)

. To construct a two-sided confidence interval, note that testing

H0 : β1 = β0
1 based on a t-statistic with critical value cvα

(
max{|Bias(β̂1)|,|Bias(β̂1)|}

SE(β̂1)

)
yields

a level α test, where cvα(t) denotes the 1− α quantile of a folded normal distribution
with location parameter t and scale parameter 1. Inverting this test yields the following
confidence interval:

β̂1 ± cvα

(
max

{
|Bias

(
β̂1
)
|, |Bias

(
β̂1
)
|
}

SE(β̂1)

)
SE(β̂1) (17)

The length of the confidence interval (17) is determined by the bias and the variance
of the estimator β̂1, and to obtain optimal confidence intervals one has to solve a bias-
variance trade-off. This problem is amenable to convex optimization and we describe
how to solve it in Appendix A.4.

Figure 6 reports the rejection probabilities of a test that rejects if zero is not in the
confidence interval. For the purpose of illustration, we consider C = 0.1 such that
B12 = [−0.1, 0.1]. Our results suggest that imposing prior knowledge in the form of
an upper bound on the magnitude of the interaction effect can yield substantial power
improvements relative to the t-tests based on the long regression model, while control-
ling size when this prior knowledge is in fact correct. However, this method exhibits
size distortions when the prior knowledge is incorrect, i.e., when |β12| > 0.1. Appendix
A.6.4 presents the corresponding power curves for different values of β1.
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Figure 6: Restrictions on the magnitude of β12 yield power gains if they are correct but
lead to incorrect inferences if they are not
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size for figures 6a and
6b is α = 0.05. AKK refers to Armstrong et al. (2019) approach for constructing optimal confidence intervals under
prior knowledge about the magnitude of β12.

6 Should we run experiments with factorial designs?

The discussion above focused on improving inference in existing experiments with facto-
rial designs. However, for the design of new experiments, a natural question is: Should
we run experiments with factorial designs in the first place? A design-based alternative
is to leave the “interaction cell” empty (i.e., to set N4 = 0) and to re-assign those subjects
to the other cells such that

T1
No Yes

T2
No N∗1 N∗2
Yes N∗3 0

Consider the following regression model

Y = β∗0 + β∗1T1 + β∗2T2 + ε∗. (18)
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Let β̂∗1 and β̂∗2 denote the OLS estimators of β∗1 and β∗2. We show in Appendix A.2.3 that
if T1 and T2 are randomly assigned, β̂∗1 and β̂∗2 are consistent for the respective main
effects.

To illustrate the power implications of leaving the interaction cell empty, consider an
experiment where the researcher cares equally about power to detect an effect of T1 and
T2, and thus assigns the same sample size to both treatments: N∗2 = N∗3 = N∗T. In
what follows, we focus on β∗1. The analysis for β∗2 is symmetric and omitted. Under the
assumptions of Section A.3.1, the (conditional) variance of β̂∗1 is given by

Var
(

β̂∗1
)

= σ2 N − N∗T
(N − 2N∗T)N∗T

.

Var
(

β̂∗1
)

is minimized when N∗T = N
2

(
2−
√

2
)

and we assume that the experiment is

designed in this manner.22 A comparison to the variance of the estimator based on the
long model, β̂1, shows that Var

(
β̂∗1
)
≤ Var

(
β̂1
)
. Thus, by the same reasoning as in

Section 2.4, leaving the interaction cell empty leads to power improvements for testing
hypotheses about the main effects relative to the long regression model.

Figure 7 presents the results based on our running example. As expected, leaving
the interaction cell empty yields tests that control size for all values of the interaction.
Moreover, among the approaches that achieve size control for all values of β12 (the long
model and the nearly optimal test), leaving the interaction cell empty yields the highest
power. This design (with the interaction cells empty) yields power gains relative to
running two separate experiments, because the control group is used twice. But it avoids
the problem of interactions discussed above.

Thus, if one is not interested in interaction effects, we recommend avoiding factorial
designs and leaving the interaction cell empty. An example of such a design is pro-
vided by Muralidharan & Sundararaman (2011) who study the impact of four different
interventions in one experiment with one common control group, but no cross-cutting
treatment arms.

22This exact sample split is impossible in any application since N
2

(
2−
√

2
)

is not an integer. In our
simulations we therefore use N∗T = 0.29N and N∗1 = 0.42N.
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Figure 7: Leaving the interaction cell empty increases power for most values of β12
relative to alternative approaches
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size for figures 7a and
7b is α = 0.05. EMW refers to Elliott et al. (2015)’s nearly optimal test. AKK refers to Armstrong et al. (2019)
approach for constructing optimal confidence intervals under prior knowledge about the magnitude of β12.

7 Factorial designs with more than two treatments

So far, our theoretical discussion has focused on 2×2 factorial designs. Here we briefly
discuss designs with more than two treatments.

The theoretical analysis of Section 2 straightforwardly extends to more complicated
factorial designs. In particular, estimators based on the long regression model are con-
sistent for the main and interaction effects, whereas the estimators based on the short
regression model are consistent for weighted averages of treatment effects with respect
to the counterfactuals defined by the other arms of the experiment. The more treatments
there are, the more complicated the interpretation of these composite effects will be. It is
thus not surprising that none of the experimental papers with high-dimensional designs
in our reanalysis that ignore the interactions motivate their experiment as being about
estimating these composite effects.

Conceptually, both econometric approaches discussed in Section 5 can be extended
beyond 2×2 settings. However, the nearly optimal tests become computationally pro-
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hibitive when there are many interactions (i.e., many nuisance parameters) and cannot
be recommended for complicated factorial designs. Incorporating prior knowledge in
the form of restrictions on the magnitude of interactions is computationally feasible but
can be problematic in practice because this approach requires reliable prior knowledge
on the magnitude of potentially very many interactions to yield notable power improve-
ments.23

Therefore, our recommendation for inference in more complicated factorial designs
is to use two-sided t-tests based on the long model. These tests are easy to compute
irrespective of the dimensionality of the problem and have desirable optimality proper-
ties. When the interaction effects are not of primary interest, we recommend leaving the
interaction cells empty at the design stage, which yields power improvements over the
t-test based on the long model.

8 Discussion and conclusion

In this paper, we study the theory and practice of inference in factorial designs. We
document that the popular approaches of directly estimating the short model or doing
a two-step model selection procedure yield invalid inferences about the main effects. In
contrast, the long model yields consistent estimates and always controls size. In prac-
tice, factorial designs are often motivated by the belief that the interactions are “small”
relative to the main effects. We therefore explore whether it may be possible to increase
power relative to the long model when the interactions are likely to be small. We show
that local power gains near a priori likely small values of the interactions are possible,
but that the scope for power improvements is small if one insists on size control for
all values of the interactions. Thus, our recommendation for the analysis of completed
experiments is to use the long regression model.

For the design of new experiments, an alternative is to leave the interaction cells empty
and to increase the number of units assigned exclusively to one of the treatments or the
control group. This simple design-based approach naturally controls size and yields
notable global power improvements relative to the long model. We recommend this
approach for policy experiments where a business-as-usual counterfactual is important.

Reviewing classic texts on experimental design, and reflecting on the historical use
of factorial designs in field experiments, we identify three cases where the short model
may be fine. The first is the case of iterative high-frequency experiments, where the

23Both approaches discussed in Appendix A.5 are computationally feasible in more complicated cross-
cut designs.
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goal of initial experiments is to explore several treatment dimensions in an efficient way
to generate promising interventions for further testing. For example, Cochran & Cox
(1957, p.152) recommend factorial designs for “exploratory work where the object is
to determine quickly the effects of a number of factors over a specified range”. This
may be relevant for cases like agricultural experiments, where sequential studies are
common, and even more so for online A/B testing where large technology companies
run thousands of randomized experiments each year.

The second case is to improve an experiment’s external validity. Cochran & Cox (1957,
p.152) recommend factorial designs for “experiments designed to lead to recommenda-
tions that must apply over a wide range of conditions. Subsidiary factors may be brought
into an experiment so as to test the principal factors under a variety of conditions sim-
ilar to those that will be encountered in the population to which recommendations are
to apply”; see also the discussion in Fisher (1992). This point may also be relevant to
examples such as resume audit studies, where the characteristics being experimentally
manipulated (such as age, education, gender, race, and work experience) also exist and
vary in the population. Our discussion suggests that it may make sense for these studies
to assign probabilities to specific characteristics that are similar to their incidence in the
population. Doing so will make the estimated short-model coefficient more likely to
approximate a population treatment effect of interest.

The third case is when the goal of the experiment is not hypothesis testing but to
minimize mean squared error (MSE) criteria (or other loss functions) which involve a
bias-variance trade-off. For example, Blair et al. (2019) document that for small values of
the interaction effects, estimators based on the short model can yield a lower root MSE
than the estimators based on the design which leaves the interaction cell empty. Such
alternative criteria are particularly relevant for problems where the goal is to make better
decisions in the specific setting of the experiment. This is often the case for agricultural
experiments that need to vary soil, moisture, temperature, fertilizer, and several other
inputs to determine the ideal combination of input use. In these settings, the goal of
the experiment is less about testing whether any of these factors have a “significant”
effect, and more to make better-informed decisions regarding the optimal combination
in which to use various inputs. Thus, it is not surprising that factorial designs were
popular for agricultural experiments on test plots (e.g., Cochran & Cox, 1957).

However, policy experiments are expensive and difficult to run iteratively, and are
typically used to inform policy based on whether the intervention had a “significant”
effect. Publication-bias towards significant findings is well documented, and evidence is
often aggregated for policy by counting studies where an intervention has been found to
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be effective at conventional significance levels. Thus, the sensitivity of the significance of
treatment effects to the inclusion/exclusion of interaction terms (as shown in this paper)
is likely to have non-trivial implications for how evidence is summarized and translated
into policy. Our recommendations for practice are motivated primarily by this concern.

In this paper, we focus on frequentist inference which is the most prevalent infer-
ence paradigm in experimental economics. However, especially in settings with many
treatments, Bayesian hierarchical methods may constitute a useful framework for effi-
cient learning in experiments with cross-cutting designs by adding additional parametric
structure and prior knowledge (e.g., Kassler et al., 2019).
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A Appendix

A.1 Papers with factorial designs published in Top-5 economics journals

Table A.1: Papers with factorial designs published between 2007 and 2017 in top-5 economics journals sorted by citation
count (as of July 4, 2019)

Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy
In Design Included Available Evaluation

Olken (2007) Monitoring Corruption: Evi-
dence from a Field Experiment
in Indonesia

JPE 2007 1529 3 2 0 Yes Yes

Banerjee et al. (2007) Remedying Education: Evi-
dence from Two Randomized
Experiments in India

QJE 2007 1213 2 1 0 Yes Yes

Duflo et al. (2011) Peer Effects, Teacher Incen-
tives, and the Impact of Track-
ing: Evidence from a Random-
ized Evaluation in Kenya

AER 2011 787 3 4 0 Yes Yes

Kleven et al. (2011) Unwilling or Unable to Cheat?
Evidence From a Tax Audit Ex-
periment in Denmark

ECMA 2011 776 2 1 0 No Yes

Karlan et al. (2014) Agricultural Decisions after
Relaxing Credit and Risk Con-
straints

QJE 2014 612 2 1 1 No Yes

Bertrand et al. (2010) What’s Advertising Content
Worth? Evidence from a Con-
sumer Credit Marketing Field
Experiment

QJE 2010 522 14 85 0 Yes No

Continued on next page

40



Table A.1 – continued from previous page
Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Karlan & List (2007) Does Price Matter in Charita-
ble Giving? Evidence from a
Large-Scale Natural Field Ex-
periment

AER 2007 506 7 28 0 Yes No

Thornton (2008) The Demand for, and Impact
of, Learning HIV Status

AER 2008 453 2 1 0 Yes Yes

Haushofer & Shapiro
(2016)

The Short-term Impact of Un-
conditional Cash Transfers to
the Poor: Experimental Evi-
dence from Kenya

QJE 2016 393 6 8 3 Yes Yes

Alatas et al. (2012) Targeting the Poor: Evidence
from a Field Experiment in In-
donesia

AER 2012 330 4 16 0 Yes Yes

Karlan & Zinman (2008) Credit Elasticities in Less-
Developed Economies: Impli-
cations for Microfinance

AER 2008 311 3 2 0 Yes No

Duflo et al. (2015a) Education, HIV, and Early Fer-
tility: Experimental Evidence
from Kenya

AER 2015 282 3 3 1 Yes Yes

Andreoni et al. (2017) Avoiding the Ask: A Field Ex-
periment on Altruism, Empa-
thy, and Charitable Giving

JPE 2017 270 2 1 1 Yes No

Jakiela & Ozier (2015) Does Africa Need a Rotten Kin
Theorem? Experimental Evi-
dence from Village Economies

ReStud 2016 245 3 6 6 Yes No

Continued on next page
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Table A.1 – continued from previous page
Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Eriksson & Rooth (2014) Do Employers Use Unemploy-
ment as a Sorting Criterion
When Hiring? Evidence from
a Field Experiment

AER 2014 238 34 71680 0 Yes No

Allcott & Taubinsky
(2015)

Evaluating Behaviorally Mo-
tivated Policy: Experimental
Evidence from the Lightbulb
Market

AER 2015 237 2 1 0 No No

Flory et al. (2014) Do Competitive Workplaces
Deter Female Workers? A
Large-Scale Natural Field Ex-
periment on Job Entry Deci-
sions

ReStud 2015 204 10 24 12 Yes No

Brown et al. (2010) Shrouded Attributes and In-
formation Suppression: Evi-
dence from the Field

QJE 2010 189 3 6 6 No No

DellaVigna et al. (2016) Voting to Tell Others ReStud 2017 169 4 15 0 Yes No
Fischer (2013) Contract Structure, Risk-

Sharing, and Investment
Choice

ECMA 2013 162 7 9 9 Yes No

Kaur et al. (2015) Self-Control at Work JPE 2015 154 8 16 0 Yes No
Cohen et al. (2015) Price Subsidies, Diagnostic

Tests, and Targeting of Malaria
Treatment: Evidence from a
Randomized Controlled Trial

AER 2015 151 3 7 7 Yes Yes

Continued on next page
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Table A.1 – continued from previous page
Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Blattman et al. (2017) Reducing Crime and Violence:
Experimental Evidence from
Cognitive Behavioral Therapy
in Liberia

AER 2017 135 2 1 1 Yes Yes

Khan et al. (2015) Tax Farming Redux: Exper-
imental Evidence on Perfor-
mance Pay for Tax Collectors

QJE 2016 133 6 8 0 Yes Yes

Balafoutas et al. (2013) What Drives Taxi Drivers? A
Field Experiment on Fraud in
a Market for Credence Goods

ReStud 2013 126 5 6 0 Yes No

Kendall et al. (2015) How Do Voters Respond to In-
formation? Evidence from a
Randomized Campaign

AER 2015 116 5 5 5 Yes No

Pallais & Sands (2016) Why the Referential Treat-
ment? Evidence from Field Ex-
periments on Referrals

JPE 2016 85 3 12 0 No No

Note: This table provides relevant information from all articles with factorial designs published in top-5 journals. Citation counts are from Google Scholar
on July 4th of 2019. Treatments is the number of different treatments in the paper. “Interactions in Design” is the number of interactions in the experimental
design. “Interactions Included” is the number of interactions included in the main specification of the paper. Data available, refers to whether the data
is publicly available or not. Allcott & Taubinsky (2015) has two field experiments. The table refers to the second one. Section B.1.16 provides for more
details. One of the three dimensions of randomization in Flory et al. (2014) does not appear in the publicly available data. Online Appendix B.1 (in
http: / / mauricio -romero .com/ pdfs/ papers/ Appendix crosscuts .pdf ) describes the experimental design of each of the 27 papers.
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A.1.1 All papers

Figure A.1: Distribution of the t-value of interaction terms across studies
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Note: If studies have factorial designs that cross-randomize more than two treatments only two-way interactions are
included in this calculation. The vertical lines are at ±1.96.
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A.1.2 Ten most cited papers

Figure A.2: Treatment estimates based on the long and the short model

(a) Main treatment estimates
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(b) Interaction
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Note: Both figures show treatment estimates from the ten most cited papers with factorial designs and publicly
available data that do not include the interaction in the original study. Figure A.2a shows how the main treatment
estimates change across the short and the long model across studies. The median main treatment estimate from
the short model is 0.01σ, the median main treatment estimate from the long model is 0.01σ, the average absolute
difference between the treatment estimates of the short and the long model is 0.05σ, the median absolute difference
in percentage terms between the treatment estimates of the short and the long model is 131%, and 28% of treatment
estimates change sign when they are estimated using the long instead of the short model. Figure A.2b shows the
distribution of the interactions between the main treatments. We trim the top and bottom 1% of the distribution.
The median interaction is -0.00σ (dashed vertical line), the median absolute value of the interactions is 0.05σ (dashed
vertical line), 5.6% of interactions are significant at the 10% level, 2.6% are significant at the 5% level, and 0.0%
are significant at the 1% level, and the median relative absolute value of the interaction with respect to the main
treatment effect is 0.37.
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Table A.2: Significance of treatment estimates based on the long and the short model

Panel A: Significance at the 10% level
Without interaction

With interaction Not significant Significant Total

Not significant 49 13 62
Significant 6 17 23
Total 55 30 85

Panel B: Significance at the 5% level
Without interaction

With interaction Not significant Significant Total

Not significant 60 9 69
Significant 4 12 16
Total 64 21 85

Panel C: Significance at the 1% level
Without interaction

With interaction Not significant Significant Total

Not significant 73 3 76
Significant 1 8 9
Total 74 11 85

This table shows the number of coefficients that are significant
at a given level when estimating the long regression (columns)
and the short regression (rows). This table only includes infor-
mation from the ten most cited papers with factorial designs
and publicly available data that do not include the interaction
in the original study. Table 3 has data for all papers with fac-
torial designs and publicly available data that do not include
the interaction in the original study. Panel A uses a 10% signif-
icance level, Panel B uses 5%, and Panel C uses 1%.
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Figure A.3: Distribution of the t-value of interaction terms across studies
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Note: If studies have factorial designs that cross-randomize more than two treatments only two-way interactions are
included in this calculation. The vertical lines are at ±1.96.
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A.1.3 Policy experiments

Figure A.4: Treatment estimates from the long and the short regression

(a) Main treatment estimates
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Note: Both figures show treatment estimates from the papers with factorial designs and publicly available data that
do not include the interaction in the original study and do policy evaluation. Figure A.4a shows how the main
treatment estimates change across the short and the long model across studies. The median main treatment estimate
from the short model is 0.06σ, the median main treatment estimate from the long model is 0.05σ, the average absolute
difference between the treatment estimates of the short and the long model is 0.07σ, the median absolute difference
in percentage terms between the treatment estimates of the short and the long model is 69%, and 21% of treatment
estimates change sign when they are estimated using the long or the short model. Figure A.4b shows the distribution
of the interactions between the main treatments. We trim the top and bottom 1% of the distribution. The median
interaction is -0.01σ (dashed vertical line), the median absolute value of interactions is 0.23σ (solid vertical line),
6.3% of interactions are significant at the 10% level, 3.2% are significant at the 5% level, and 0.0% are significant
at the 1% level, and the median relative absolute value of the interaction with respect to the main treatment effect is
1.01.
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Table A.3: Significance of treatment estimates from the long and the short regression

Panel A: Significance at the 10% level
Without interaction

With interaction Not significant Significant Total

Not significant 31 10 41
Significant 5 21 26
Total 36 31 67

Panel B: Significance at the 5% level
Without interaction

With interaction Not significant Significant Total

Not significant 43 6 49
Significant 5 13 18
Total 48 19 67

Panel C: Significance at the 1% level
Without interaction

With interaction Not significant Significant Total

Not significant 56 3 59
Significant 1 7 8
Total 57 10 67

This table shows the number of coefficients that are significant
at a given level when estimating the long regression (columns)
and the short regression (rows). This table only includes infor-
mation from papers with factorial designs and publicly avail-
able data that do not include the interaction in the original
study and do policy evaluation. Table 3 has data for all papers
with factorial designs and publicly available data that do not
include the interaction in the original study. Panel A uses a
10% significance level, Panel B uses 5%, and Panel C uses 1%.
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Figure A.5: Distribution of the t-value of interaction terms across studies
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Note: If studies have factorial designs that cross-randomize more than two treatments only two-way interactions are
included in this calculation. The vertical lines are at ±1.96.
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A.1.4 Studies with all interactions included

Figure A.6: Treatment estimates based on the long and the short model

(a) Main treatment estimates
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(b) Interaction
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Note: Both figures show treatment estimates from the papers with factorial designs and publicly available data that do
not include the interaction in the original study and do policy evaluation. Figure A.6a shows how the main treatment
estimates change across the short and the long model across studies. The median main treatment estimate from the
short model is -0.03σ, the median main treatment estimate from the long model is -0.02σ, the average absolute
difference between the treatment estimates of the short and the long model is 0.05σ, the median absolute difference
in percentage terms between the treatment estimates of the short and the long model is 37%, and 15% of treatment
estimates change sign when they are estimated using the long or the short model. Figure A.6b shows the distribution
of the interactions between the main treatments. We trim the top and bottom 1% of the distribution. The median
interaction is -0.01σ (dashed vertical line), the median absolute value of interactions is 0.08σ (solid vertical line),
4.5% of interactions are significant at the 10% level, 1.1% are significant at the 5% level, and 0.0% are significant
at the 1% level, and the median relative absolute value of the interaction with respect to the main treatment effect is
0.52.
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Table A.4: Significance of treatment estimates based on the long and the short model

Panel A: Significance at the 10% level
Without interaction

With interaction Not significant Significant Total

Not significant 61 13 74
Significant 4 39 43
Total 65 52 117

Panel B: Significance at the 5% level
Without interaction

With interaction Not significant Significant Total

Not significant 68 10 78
Significant 6 33 39
Total 74 43 117

Panel C: Significance at the 1% level
Without interaction

With interaction Not significant Significant Total

Not significant 77 12 89
Significant 2 26 28
Total 79 38 117

This table shows the number of coefficients that are significant
at a given level when estimating the long regression (columns)
and the short regression (rows). This table only includes infor-
mation from papers with factorial designs and publicly avail-
able data that do include the interaction in the original study.
Table 3 has data for all papers with factorial designs and pub-
licly available data that do not include the interaction in the
original study. Panel A uses a 10% significance level, Panel B
uses 5%, and Panel C uses 1%.
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Figure A.7: Distribution of the t-value of interaction terms across studies
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Note: If studies have factorial designs that cross-randomize more than two treatments only two-way interactions are
included in this calculation. The vertical lines are at ±1.96.

A.2 Derivation of expressions for the regression coefficients

A.2.1 Derivation of the expressions for β1, β2, and β12

Because the long regression model (3) is fully saturated, we have

β1 = E (Y | T1 = 1, T2 = 0)− E (Y | T1 = 0, T2 = 0) ,

β2 = E (Y | T1 = 0, T2 = 1)− E (Y | T1 = 0, T2 = 0) ,

β12 = E (Y | T1 = 1, T2 = 1)− E (Y | T1 = 0, T2 = 1)

− [E (Y | T1 = 1, T2 = 0)− E (Y | T1 = 0, T2 = 0)] .

Random assignment and the definition of potential outcomes in Equation (1) imply that,
for (t1, t2) ∈ {0, 1} × {0, 1},

E (Y | T1 = t1, T2 = t2) = E (Yt1,t2 | T1 = t1, T2 = t2)

= E (Yt1,t2) .
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Thus, it follows that

β1 = E (Y1,0 −Y0,0) ,

β2 = E (Y0,1 −Y0,0) ,

β12 = E (Y1,1 −Y0,1 −Y1,0 + Y0,0) .

A.2.2 Derivation of the expressions for βs
1 and βs

2

Here we derive (8). Equation (9) then follows from rearranging terms. The derivations
of Equations (10) and (11) are similar and thus omitted.

For the short regression model (4), independence of T1 and T2 implies that

βs
1 = E (Y | T1 = 1)− E (Y | T1 = 0) .

Consider

E (Y | T1 = 1) = E (Y | T1 = 1, T2 = 1) P(T2 = 1 | T1 = 1)

+E (Y | T1 = 1, T2 = 0) P(T2 = 0 | T1 = 1)

= E (Y1,1) P(T2 = 1) + E (Y1,0) P(T2 = 0),

where the first equality follows from the law of iterated expectations and the second
equality follows by the definition of potential outcomes and random assignment. Simi-
larly, obtain

E (Y | T1 = 0) = E (Y0,1) P(T2 = 1) + E (Y0,0) P(T2 = 0).

Thus, we have

βs
1 = E (Y | T1 = 1)− E (Y | T1 = 0)

= E (Y1,1 −Y0,1) P (T2 = 1) + E (Y1,0 −Y0,0) P (T2 = 0) .

A.2.3 Consistency of the OLS estimators based on model (18)

Here we show that when the interaction cell is empty and T1 and T2 are randomly
assigned, the OLS estimators based on the regression model (18) are consistent for the
main effects.
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Define β̂∗ ≡ (β̂∗0, β̂∗1, β̂∗2)
′ and β∗ ≡ (β∗0, β∗1, β∗2)

′ = E (XX′)−1 E (XY), where X =

(1, T1, T2)
′. Under standard conditions, β̂∗

p→ β∗. Hence, it remains to show that β∗1 and
β∗2 are equal to the main effects. In what follows, we focus on β∗1; the derivation for β∗2
is similar. To simplify the exposition, we define p1 ≡ P(T1 = 1), p2 ≡ P(T2 = 1) and
p12 ≡ P(T1 = 1, T2 = 1).

Multiplying out yields the following expressions for β∗1:

β∗1 =
(p2p12 − p1p2)E(Y) + p1(p2 − p2

2)E(Y | T1 = 1) + p2(p1p2 − p12)E(Y | T2 = 1)
−p2

1p2 − p1p2
2 + p1p2 + 2p1p2p12 − p2

12
.

Using the fact that the interaction cell is empty, which implies that p12 = 0, obtain

β∗1 =
−p1p2E(Y) + p1p2(1− p2)E(Y | T1 = 1) + p1p2

2E(Y | T2 = 1)
−p2

1p2 − p1p2
2 + p1p2

(19)

Because p12 = 0, we have that

E(Y) = E(Y | T1 = 1, T2 = 0)p1 +E(Y | T1 = 0, T2 = 0)(1− p1− p2)+E(Y | T1 = 0, T2 = 1)p2.
(20)

Combining (19) and (20) and simplifying yields:

β∗1 = E(Y | T1 = 1, T2 = 0)− E(Y | T1 = 0, T2 = 0)

The result now follows by random assignment of T1 and T2 and the definition of potential
outcomes.

A.3 Variance reductions and power gains based on the short model

A.3.1 Formal power comparison between the short and the long model

Suppose that the researcher has access to a random sample {Yi, T1i, T2i}N
i=1 and that the

data are generated according to the following linear model

Yi = β0 + β1T1i + β2T2i + β12T1iT2i + εi,

where εi ∼ N(0, σ2) is independent of (T1i, T2i) and σ2 is known. Normality allows us to
compute the finite sample power and to formally compare the t-tests based on the long
and the short regression model. In what follows, we focus on β1. The analysis for β2 is
symmetric and omitted.
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Define T1 ≡ (T11, . . . , T1N)
′ and T2 ≡ (T21, . . . , T2N)

′. If the interaction effect is zero
(i.e., β12 = 0), it follows from standard results that, conditional on (T1, T2), β̂1 ∼
N
(

β1, Var
(

β̂1
))

and β̂s
1 ∼ N

(
β1, Var

(
β̂s

1
))

, where

Var
(

β̂1
)
= σ2 N1 + N2

N1N2
and Var

(
β̂s

1
)
= σ2 N1N3 + N1N4 + N2N3 + N2N4

N1N2N3 + N1N2N4 + N1N3N4 + N2N3N4
.

The following lemma computes and compares the finite sample power of a two-sided
t-test for the hypothesis H0 : β1 = 0 against H1 : β1 6= 0 based on the short and the long
regression model. We show that because the variance of β̂1 is larger than the variance
of β̂s

1, the t-test based on the short model exhibits higher finite sample power than the
t-test based on the long model.24

Let t̂s = β̂s
1/SE

(
β̂s

1
)

and t̂ = β̂1/SE
(

β̂1
)
, let Pβ1 denote probabilities under the as-

sumption that β1 is the true coefficient and let c1−α/2 ≡ Φ−1(1− α/2), where Φ−1 is
the quantile function of the standard normal distribution and α ∈ (0, 0.5) is the nominal
significance level.

Lemma 1. Suppose that the assumptions stated in the text hold and that β12 = 0. Then:

(i) The finite sample power of the t-tests based on the short and the long model is

Pβ1

(
|t̂| > c1−α/2 | T1, T2

)
= Φ

(
β1

SE
(

β̂1
) − c1−α/2

)
+ 1−Φ

(
β1

SE
(

β̂1
) + c1−α/2

)
,

and

Pβ1

(
|t̂s| > c1−α/2 | T1, T2

)
= Φ

(
β1

SE
(

β̂s
1

) − c1−α/2

)
+ 1−Φ

(
β1

SE
(

β̂s
1

) + c1−α/2

)
.

(ii) The t-test based on the short model is more powerful than the t-test based on the long model:

Pβ1

(
|t̂s| > c1−α/2 | T1, T2

)
≥ Pβ1

(
|t̂| > c1−α/2 | T1, T2

)
.

24To see this, note that

Var
(

β̂1
)
−Var

(
β̂s

1
)
= σ2 N3N4(N1 + N2)

2

N1N2(N1N2N3 + N1N2N4 + N1N3N4 + N2N3N4)
≥ 0.
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Proof. Part (i): Under the assumptions in the statement of the lemma,

β̂1 − β1

SE
(

β̂1
) | T1, T2 ∼ N (0, 1) .

It follows that, for z ∈ R,

Pβ1

(
t̂ > z

∣∣∣∣ T1, T2

)
= Pβ1

(
β̂1

SE
(

β̂1
) > z

∣∣∣∣ T1, T2

)

= Pβ1

(
β̂1 − β1

SE
(

β̂1
) > z− β1

SE
(

β̂1
) ∣∣∣∣ T1, T2

)

= Φ

(
β1

SE
(

β̂1
) − z

)
.

Thus, the power of a two-sided test is

Pβ1

(
|t̂| > c1−α/2 | T1, T2

)
= Pβ1

(
t̂ > c1−α/2 | T1, T2

)
+ Pβ1

(
t̂ < −c1−α/2 | T1, T2

)
= Φ

(
β1

SE
(

β̂1
) − c1−α/2

)
+ 1−Φ

(
β1

SE
(

β̂1
) + c1−α/2

)
.

Similarly, one can show that

Pβ1

(
|t̂s| > c1−α/2 | T1, T2

)
= Φ

(
β1

SE
(

β̂s
1

) − c1−α/2

)
+ 1−Φ

(
β1

SE
(

β̂s
1

) + c1−α/2

)
.

Part (ii): To establish the result, we show that the power is decreasing in the standard
error. Using the same arguments as in Part (i), it follows that the power of a t-test based
on an estimator β̃1 which satisfies

t̃ ≡ β̃1 − β1

SE(β̃)
| T1, T2 ∼ N (0, 1)

is given by

Pβ1 (|t̃| > c1−α/2 | T1, T2) = Φ
(

β1

SE(β̃)
− c1−α/2

)
+ 1−Φ

(
β1

SE(β̃)
+ c1−α/2

)
.
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Consider25

∂Pβ1 (|t̃| > c1−α/2 | T1, T2)

∂SE(β̃)
= φ

(
β1

SE(β̃)
− c1−α/2

)
−β1

SE(β̃)2
− φ

(
β1

SE(β̃)
+ c1−α/2

)
−β1

SE(β̃)2

=
β1

SE(β̃)2

[
φ

(
β1

SE(β̃)
+ c1−α/2

)
− φ

(
β1

SE(β̃)
− c1−α/2

)]
≤ 0,

which follows from the shape of the normal distribution.

A.3.2 Power gains and the size of the interaction cell

Here we discuss how the power gains of the t-test based on the short model are related
to the size of the interaction cell. Recall that, in a 2×2 factorial design, the variance of
the estimate of β1 is given by

Var
(

β̂1
)
= σ2 N1 + N2

N1N2
and Var

(
β̂s

1
)
= σ2 N1N3 + N1N4 + N2N3 + N2N4

N1N2N3 + N1N2N4 + N1N3N4 + N2N3N4
.

Moreover, as shown in Lemma 1, the power of the t-test is decreasing in the variance of
the estimator.

To illustrate, we simplify the problem by assuming that N1 = N2 = N3, and hence
that the researcher simply has to determine the relative size of N4. Let α be such that
N4 = αN. Thus, N1 = N2 = N3 = 1

3(1− α)N. Then:

Var
(

β̂1
)
≡ σ2 6

(1− α)N
and Var

(
β̂s

1
)
≡ σ2 6(1 + 2α)

(1− α)N(1 + 8α)
.

Figure A.1 shows how the variance changes for different values of α. The more sample
we allocate to the interaction cell, the higher the variance of β̂1 (i.e., the lower the power)
of the long model. However, for the short model the relationship is non-monotonic. The
lowest variance (highest power) is achieved when the sample size is allocated equally
across cells (i.e., α = 0.25). Intuitively, given that we ignore the fact that some individuals
get both treatments, at this point the size of the treatment and the control group for T1

is the same.
25See, for example, Lemma 2 in Carneiro et al. (2017) for a similar argument.
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Figure A.1: Var
(

β̂1
)

and Var
(

β̂s
1
)

as the interaction cell becomes larger
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A.4 Implementation details for Section 5.3

Recall that under Assumption 1, β12 ∈ {b12 : |b12| ≤ C} ≡ B12. Hence, our problem falls
into the regularized regression setting of Armstrong et al. (2019). We therefore adopt the
algorithm outlined in their Section 5 to our problem. The algorithm has three steps:26

1. Obtain an estimator σ̂2 of σ2 by taking the square root of the average of the squared
residuals from estimating the long model by OLS.

2. Minimize cvα

(
|Bias(β̂λ)|

SE(β̂λ)

)
SE
(

β̂λ

)
with respect to λ over [0, ∞), where

SE
(

β̂λ

)
≡

√√√√σ̂2 ‖T1 − T12πλ‖2
2(

(T1 − T12πλ)
′ T1
)2

Bias
(

β̂λ

)
≡ C
|πλ|

(T1 − T12πλ)
′T12πλ

(T1 − T12πλ)′T1

and πλ solves minπ ‖T1 − πT12‖2
2 + λ|π|. Denote the solution by λ∗.

26The implementation of the optimal confidence intervals with potentially heteroskedastic and non-
Gaussian errors mimics the common practice of applying OLS (the validity of which requires homoscedas-
ticity) in conjunction with heteroscedasticity robust standard errors, rather than weighted least squares.
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3. Construct an optimal confidence interval as

β̂λ∗ ± cvα

(
|Bias

(
β̂λ∗
)
|

SE
(

β̂λ∗
) )

SE
(

β̂λ∗
)

,

where

β̂λ∗ =
(T1 − T2πλ∗)

′ Y
(T1 − T2πλ∗)

′ T1
.

In this last step, we use the residuals from the initial estimate to construct a het-
eroskedasticity robust version of SE

(
β̂λ∗
)
.

A.5 Additional econometric approaches

In this section, we discuss two additional econometric approaches.

A.5.1 Model selection with a Bonferroni-style correction

A natural approach to control size in the presence of model selection is to take a least
favorable (LF) approach and to use the largest critical value across all values for the
nuisance parameter (e.g., D. W. K. Andrews & Guggenberger, 2009; Leeb & Pötscher,
2017). However, it is well-known that this worst-case approach can exhibit poor power
properties. McCloskey (2017) suggests a procedure that improves upon the LF approach,
asymptotically controls size and has non-negligible power. The basic insight of this ap-
proach is that one can construct an asymptotically valid confidence interval for β12. As a
consequence, one can search for the largest critical value over the values of β12 in the con-
fidence interval rather than over the whole parameter space as in the LF approach. The
uncertainty about the nuisance parameter (β12) and the test statistic can be accounted
for using a Bonferroni-correction. Alternatively, one can adjust critical values according
to the null limiting distributions that arise under drifting parameter sequences. We refer
to McCloskey (2017, 2019) for more details as well as specific implementation details.27

27We implement the adjusted Bonferroni critical values outlined in Section 3.2 and use the algorithm
“Algorithm Bonf-Adj” in the Appendix of McCloskey (2017). We employ conservative model selection
and the use a tuning parameter of 0.9α, where α is the nominal level of the test.
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Figure A.2: McCloskey (2017)’s Bonferroni-style correction controls size but does not
exhibit power gains relative to the long model
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size for figures A.2a
and A.2b is α = 0.05. For the model selection, the short model is estimated if one fails to reject β12 = 0 at the 5%
level.

Figure A.2 reports the results of applying McCloskey (2017)’s Bonferroni-style correc-
tion to our running example. It shows that model selection with state-of-the-art Bon-
ferroni adjustments leads to tests that control size for all values of β12. However, this
method can be conservative and does not yield power gains relative to the t-test based
on the long model, at least not over the regions of the parameter space considered here.28

A.5.2 An alternative inference approach based on Assumption 1

Here we discuss an alternative inference approach based on Assumption 1. Suppose that
the researcher is certain that β12 = β̄12. In this case, she can obtain β ≡ (β0, β1, β2) from
a population regression of Y− β̄12T12 on T1 and T2. Letting X ≡ (1, T1, T2)

′, the resulting
regression population regression coefficients are given as

β ≡ (β0, β1, β2)
′ = E

(
XX′

)−1 E (X(Y− β12T12)) ,

28This conclusion is specific to our simulation design. Based on a different data generating process,
McCloskey (2017) finds local power gains relative to the long model. However, as we discuss in Section
5.1, the scope for improving power relative to the t-tests based on the long regression model is limited.
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Assumption 1 implies that β12 lies in a compact interval,

β12 ∈ [−C, C] ≡
[

βl
12, βu

12

]
.

The population regression coefficient from a regression of Y− β12T12 on X is

β(β12) ≡ E
(
XX′

)−1 E (X(Y− β12T12))

= E
(
XX′

)−1 E (XY)− β12E
(
XX′

)−1 E (XT12)

Note that E (XX′)−1 E (XT12) ≡ (γ0, γ1, γ2)
′ is the population regression coefficient from

a regression of T12 on X. Independence of T1 and T2 implies that γ1 = E(T12 | T1 =

1) − E(T12 | T1 = 0) and γ2 = E(T12 | T2 = 1) − E(T12 | T2 = 0) both of which are
positive. Consequently, the identified set for βt, t ∈ {1, 2}, is given by

βt ∈
{

βt(β12), β12 ∈ [βl
12, βu

12]
}
=
[

βt(βu
12), βt(βl

12)
]
≡
[

βl
t, βu

t

]
.

The lower bound βl
t can be estimated from an OLS regression of Y − βu

12T12 on X. Sim-
ilarly, the upper bound βu

t can be obtained from an OLS regression of Y − βl
12T12 on X.

Under standard conditions, the OLS estimators β̂l
t and β̂u

t are asymptotically normal and
the asymptotic variances Avar

(
β̂l

t
)

and Avar
(

β̂u
t
)

can be estimated consistently. We can
therefore apply the approach of Imbens & Manski (2004) and Stoye (2009) to construct
confidence intervals for βt:29

CI1−α =

β̂l
t − cIM ·

√
Âvar

(
β̂l

t
)

N
, β̂u

t + cIM ·

√
Âvar

(
β̂u

t
)

N

 , (21)

where the critical value cIM solves

Φ

cIM +
√

N · β̂u
t − β̂l

t√
max

(
Âvar

(
β̂l

t
)

, Âvar
(

β̂l
t
))
−Φ (−cIM) = 1− α.

Imbens & Manski (2004) and Stoye (2009) show that (21) is a valid confidence interval
for βt.

29By construction, the upper bound is always weakly larger than the lower bound. Hence Lemma 3 in
Stoye (2009) justifies the procedure in Imbens & Manski (2004).
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In Figure A.3, we report the rejection probabilities of a test that rejects if zero is not
in the confidence interval (21). For the purpose of illustration, we assume that C = 0.1
which implies that β12 ∈ [−0.1, 0.1]. Our results suggest that imposing prior knowledge
can improve power relative to the long regression model, while controlling size when
this prior knowledge is in fact correct. However, this method exhibits substantial size
distortions when the prior knowledge is incorrect.

Figure A.3: Restrictions on the magnitude of β12 yield power gains if they are correct
but lead to incorrect inferences if they are not
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size for figures A.3a
and A.3b is α = 0.05. IMS refers to Imbens & Manski (2004) and Stoye (2009) approach for constructing valid
confidence intervals under prior knowledge about the magnitude of β12.
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A.6 Additional figures and tables

Table A.1: Articles published in top-5 journals between 2007 and 2017

AER ECMA JPE QJE ReStud Total

Other 1218 678 367 445 563 3271

Field experiment 43 9 14 45 13 124

Lab experiment 61 16 5 10 18 110

Total 1322 703 386 500 594 3505
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A.6.1 Ignoring the interaction

Figure A.1: Long and short model: Size and power
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size across all figures
is α = 0.05.
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Figure A.2: Long and short model: Power curves
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size across all figures
is α = 0.05. In each figure, dashed lines show the power for the long model, while solid lines show power for the
short model.
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A.6.2 Pre-testing

Figure A.3: Model selection: Size and power
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size across all figures
is α = 0.05. For the model selection, the short model is estimated if one fails to reject β12 = 0 at the 5% level.

67



A.6.3 Elliott et al. (2015)’s nearly optimal test

Figure A.4: Elliott et al. (2015)’s nearly optimal test: Size and power
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size across all figures
is α = 0.05.
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Figure A.5: Long model and Elliott et al. (2015)’s nearly optimal test: Power curves
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size across all figures
is α = 0.05. In each figure, dashed lines show the power for the long model, while solid lines show power for Elliott
et al. (2015)’s nearly optimal test.
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A.6.4 Restrictions on the magnitude of β12: Armstrong et al. (2019)

Figure A.6: Armstrong et al. (2019)’s approach: Size and power
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size across all figures
is α = 0.05.
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Figure A.7: Long model and Armstrong et al. (2019)’s approach: Power curves
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size across all figures is
α = 0.05. In each figure, dashed lines show the power for the long model, while solid lines show power for Armstrong
et al. (2019)’s approach based on restrictions on the magnitude of β12.

71



A.6.5 Leaving the interaction cell empty

Figure A.8: No factorial design: Size and power
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. N∗T = 0.29N and
N∗1 = 0.42N. The size across all figures is α = 0.05.
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