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Optimal structure and dissolution of partnerships

Simon Loertscher
Department of Economics, University of Melbourne

Cédric Wasser
Department of Economics, University of Bonn

For a partnership model with general type distributions and interdependent val-
ues, we derive the optimal dissolution mechanisms that, for arbitrary initial
ownership, maximize any convex combination of revenue and social surplus.
The solution involves ironing around typically interior worst-off types, which
are endogenously determined. The optimal ownership structures are such that,
with identical distributions, equal shares are always optimal. With nonidenti-
cal distributions, the optimal shares are typically asymmetric, the identity of the
agents with large shares may change with the importance of revenue generation,
and even fully concentrated initial ownership and assigning zero shares to the
strongest agents can be optimal.

Keywords. Partnership dissolution, mechanism design, property rights, interde-
pendent values, asymmetric type distributions.

JEL classification. D23, D61, D82.

1. Introduction

The Coase theorem provides the fundamental insight that the connection between the
efficiency of the final allocation and the initial ownership structure depends on the ease
with which property rights can be reallocated. The final allocation will be efficient ir-
respective of initial ownership if transaction costs are negligible and property rights are
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well defined. By now, there is, however, ample evidence that initial misallocations are
not always easily and quickly mended through subsequent transactions, indicating in
the light of the Coase theorem that transaction costs can be substantive.1 For example,
business deadlocks are notoriously costly. Likewise, land reallocation has proved diffi-
cult and time-consuming even in countries like the United States with a well functioning
legal system and well defined property rights. It poses major challenges for countries
with less well defined property rights such as China.2 Similarly, the reallocation of spec-
trum licenses whose initial allocation was deemed inefficient has been slow and costly.
This brings to the forefront the question of what, in the presence of transaction costs,
are optimal ownership structures.

Partnership dissolution models, initiated by Cramton et al. (1987), provide a flexible
framework to analyze this question when one source of transaction costs is the private
information held by economic agents and when there may be additional costs associ-
ated with reallocating ownership shares such as legal costs, rent extraction by a designer,
or other resource costs. Previous literature has analyzed the conditions on the initial
allocation of property rights under which ex post efficient reallocation is (im)possible
without running a budget deficit. With private values, ex post efficient reallocation is
impossible with an extreme ownership structure that concentrates all property rights
at a single agent, and ex post efficient reallocation is possible with a sufficiently non-
extreme ownership structure. Moreover, when types are identically distributed, sym-
metric ownership is the only ownership structure that maximizes the revenue that can
be generated under ex post efficiency, making it easiest to avoid a deficit. When the
agents’ type distributions are ranked according to first-order stochastic dominance, the
revenue-maximizing ownership structure under ex post efficiency assigns larger shares
to stronger agents in terms of stochastic dominance, but also strictly positive shares to
the weakest agents.3

1For example, Bleakley and Ferrie (2014) show that initial land parcel size after the opening of the fron-
tier in Georgia predicts farm size essentially one-for-one for 50–80 years after land opening, with the effect
of initial conditions attenuating gradually and disappearing only after 150 years. Milgrom (2004) makes a
similar point in the context of the allocation of radio spectrum licenses, and Che and Cho (2011) describe
vividly the inefficiencies associated with the Oklahoma land rush at the turn to the 20th century. Inter-
estingly, Coase’s own argument (Coase 1959) favoring the use of auctions to allocate spectrum licenses is
consistent with the notion that subsequent market transactions will not easily fix initial misallocations,
which is the central premise of the insightful theorem that bears his name (Coase 1960) and that continues
to be influential in public policy debates. As a case in point, consider Fowlie and Perloff (2013), whose ab-
stract states, “Standard economic theory predicts that if property rights to pollute are clearly established,
equilibrium outcomes in an efficient emissions permit market will be independent of how the emissions
permits are initially distributed.”

2For legal and other costs associated with business deadlock, see, for example, Brooks et al. (2010),
Landeo and Spier (2014b), and Landeo and Spier (2014a) and the accounts therein. Bleakley and
Ferrie (2014) document the time-consuming nature of reallocating land property that was initially al-
located using lotteries. Popular press reports tell of the challenges modern China faces in reallo-
cating farm lots that are deemed inefficiently small; see, for example, https://www.ft.com/content/
9d18ee2a-a1a7-11e6-86d5-4e36b35c3550. Milgrom (2004) provides an account of the slow reallocation
of spectrum licenses.

3See Myerson and Satterthwaite (1983), Cramton et al. (1987), Che (2006), and Figueroa and Skreta
(2012).

https://www.ft.com/content/9d18ee2a-a1a7-11e6-86d5-4e36b35c3550
https://www.ft.com/content/9d18ee2a-a1a7-11e6-86d5-4e36b35c3550
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In this paper, we drop the restriction to ex post efficient reallocation. We study
which ownership structures are optimal in partnership dissolution problems where the
designer maximizes a convex combination of social surplus and revenue, and, there-
fore, optimally deviates from ex post efficient reallocation in line with the importance
of revenue. If types are identically distributed, symmetric ownership is always optimal,
independently of the revenue weight. However, asymmetric but sufficiently equal own-
ership is also optimal. Interestingly, the set of optimal ownership structures expands
as the revenue weight increases, but never includes structures where some shares are
zero. In contrast, if the agents’ types are drawn from different distributions, optimality
of extreme ownership structures is a robust and prevalent phenomenon. In particu-
lar, we show extreme ownership structures to be optimal when revenue is sufficiently
important and asymmetries are sufficiently pronounced. Moreover, who optimally ob-
tains the largest ownership share depends on how important generating revenue is. As
mentioned, under ex post efficiency, the strongest agents in terms of first-order stochas-
tic dominance receive the largest shares. As the importance of generating revenue in-
creases, weaker agents may receive larger shares, even to the point that the strongest
agents receive shares of zero.

We also show that these results are, by and large, robust to the introduction of inter-
dependent values, where there may not exist any ownership structure that avoids run-
ning a deficit under ex post efficient reallocation (Fieseler et al. 2003).

Exclusively assigning ownership to the weakest agents occurs, for example, in star-
tups that are set up with the goal of being bought up further down the track because the
strong agent, that is, the ultimate buyer like Google or a pharmaceutical company, has
no share in the partnership at the outset. It also resonates with the ownership structure
chosen by the U.S. government in the lead up to the “incentive auction,” where the ar-
guably stronger agents such as telecom companies received shares of zero and where
revenue generation was an explicit goal of the government.4,5

Our optimal ownership results when the agents draw their types from identical dis-
tributions imply, for example, that for the case for which Fieseler et al. (2003) establish
the impossibility of ex post efficiency with interdependent values, symmetric ownership
is an optimal ownership structure under second best. More fundamentally, the general
optimality of symmetric ownership with identically distributed types means that, given
ex ante symmetric agents, symmetric ownership is robust in the sense that it remains

4For examples, see Milgrom and Segal (2015), the Middle Class Tax Relief and Job Creation Act of 2012,
which specifies in section 6402G(iii)(I) that “$1,750,000,000 of the proceeds from the incentive auction of
broadcast television spectrum [. . . ] shall be deposited in the TV Broadcaster Relocation Fund,” and Mil-
grom (2017). Further evidence of the importance and explicit emphasis of revenue generation for the “in-
centive auction” is provided in footnote 30 in Loertscher et al. (2015). Both commissioners of the Federal
Communications Commission and lawmakers emphasized the importance of generating revenue, with one
commissioner saying, “Yes, we should focus on maximizing revenue” and one congressman saying that the
law required “maximizing the proceeds from the auction.”

5Of course, a more basic and perhaps simpler motivation for assigning full ownership to current license
holders may have been to avoid lengthy and costly battles in court about the somewhat grey area regarding
what a licensee was entitled to by holding a license. But there is comfort in knowing that the two goals—
avoiding time-consuming legal battles and generating revenue—can be almost perfectly aligned.
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optimal even if, at the stage at which the ownership structure is determined, there is un-
certainty about the importance of rent extraction or interdependent values at the disso-
lution stage. Consequently, our analysis also provides an explanation for the widespread
organizational structure of fifty–fifty, and more generally, symmetric partnerships.

Of course, to determine the optimal ownership structure, we first need to derive the
optimal dissolution (or reallocation) mechanisms for the general partnership model that
we study. The initial property rights define the agents’ outside option in the dissolution
process and, hence, represent the individual rationality constraints in the problem of
optimally designing this process. The broad intuition is that an ownership structure
is optimal if it relaxes individual rationality constraints as much as possible. With the
nature of optimal ownership thus being tightly connected to the properties of optimal
dissolution mechanisms, we develop the intuition for the optimal ownership structures
after discussing these mechanisms.

Solving for the optimal dissolution mechanisms that maximize any weighted sum of
designer’s revenue and social surplus is in itself economically relevant and, regardless,
technically challenging. At the heart of the challenge lies the fact that shared initial own-
ership creates countervailing incentives (Lewis and Sappington 1989): A high type of an
agent is more likely to buy additional shares and has an incentive to underreport, while
a low type is more likely to sell his share and has an incentive to overreport. Types for
whom the expected after-dissolution share equals the initial share have no incentive to
misreport. Because they thus enjoy no information rent, they are worst off among all
types. As they depend on the allocation rule, the worst-off types—which are the types
for which individual rationality binds—are endogenous to the design problem.6

We overcome the problem of simultaneously determining the optimal allocation
rule and the endogenous worst-off types by noticing and exploiting a saddle point prop-
erty of the problem. Given a critical type for each agent, we define the virtual surplus
as the value of the allocation in terms of virtual types. An agent’s virtual type equals
his virtual cost for types below the critical type and his virtual valuation for types above
it, reflecting binding upward and downward incentive constraints. We show that there
is an essentially unique combination of critical types and an allocation rule such that,
first, the allocation rule maximizes the virtual surplus given the critical types and, sec-
ond, the critical types are worst-off types under the allocation rule. This is the allocation
rule of all optimal dissolution mechanisms. Because virtual costs always exceed virtual
valuations, the optimal dissolution mechanisms allocate based on ironed virtual type
functions that are flat for types around the critical type. These are all worst-off types.
Depending on the ownership structure, ties in terms of ironed virtual types may happen
with positive probability. In this case, an appropriately specified tie-breaking rule is an
essential ingredient in the optimal allocation rule.

We are now in a position to develop the intuition behind the results on optimal
ownership structures. Consider a situation in which the worst-off types of, say, agent

6The initial shares in our model represent type-dependent outside options. For the case of a single agent,
principal–agent problems with this feature are well understood (see Jullien 2000, for the most general treat-
ment). Much less is known for the case of multiple agents, making our analysis of such a setting a relevant
contribution to that literature also.
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1, have a higher expected valuation than those of another agent, say, agent 2. Intuitively,
a marginal transfer of ownership from the first to the second agent would then relax the
first agent’s individual rationality constraint by more than it would tighten the second
agent’s and thus allow for more rent extraction. Under an optimal ownership structure,
such beneficial transfers should not be possible. Indeed, we formally show that the op-
timal ownership structures are fully characterized by the condition that the expected
valuation of the critical worst-off types is the same for all agents with nonzero shares
and is higher for agents with zero shares. Intuitively, this condition specifically consid-
ers the critical among the worst-off types to also account for the marginal changes in the
optimal allocation rule in response to a marginal transfer of ownership.

When types are identically distributed, this condition immediately yields optimal-
ity of symmetric ownership because this ensures that optimal dissolution mechanisms
treat all agents the same, yielding equal critical worst-off types. As long as the designer
puts positive weight on revenue, ownership structures that are asymmetric but suffi-
ciently equal require only adjusting the tie-breaking rule of the dissolution mechanism,
which does not change the critical worst-off types. Consequently, such ownership struc-
tures are also optimal. Moreover, as rent extraction becomes more important and dis-
tortions in the allocation hence grow, tie-breaking plays a greater role, which explains
why the set of optimal ownership structures expands. However, ownership structures
that assign zero shares to some agents can never be optimal with identical distributions
since this necessarily results in the lowest types of those agents being worst off, whereas
worst-off types of the agents with positive shares are higher.

When types are drawn from different distributions, the expected valuation of each
agent’s critical worst-off type is typically not equal under symmetric ownership. In this
case, unequal initial shares are needed to account for the heterogeneity of agents. As
mentioned, even extreme ownership that concentrates all property rights at one agent
is optimal under sufficient heterogeneity in type distributions.

To build intuition for this result, consider a bilateral partnership with private values,
implying that valuations are equal to types. Under an extreme ownership structure, the
two agents are seller and buyer (as in Myerson and Satterthwaite 1983). The optimal
allocation rule compares the seller’s virtual cost with the buyer’s virtual valuation, re-
sulting in the highest (lowest) types of the seller (buyer) being excluded from trade and
being worst off. This ownership structure is optimal if the critical worst-off type of the
seller is weakly below that of the buyer. Because the critical type of the seller (buyer) is
in the interior of the set of worst-off types at the top (bottom) of the support, this con-
dition can indeed hold. Intuitively, it requires that sufficiently many types are excluded
and, therefore, are worst off, which happens if high (low) types are sufficiently unlikely
for the seller (buyer) and the distortions caused by the revenue weight are sufficiently
pronounced. This also explains why the agent with the lowest expected valuation is the
sole owner if extreme ownership is optimal. Note that the same forces are at work un-
der interdependent values and when considering more than two agents, which can be
thought of as adding replicas of the buyer.

Now suppose we let the weight on revenue go to zero in the buyer–seller example
with private values just discussed. As the distortions disappear, the optimal allocation
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rule becomes ex post efficient, and worst-off types become unique and are at the top of
the support for the seller and at the bottom for the buyer. Of course, this makes it impos-
sible that extreme ownership is optimal. Moreover, the expected valuation of the highest
type of an agent with a share of one cannot be below that of the lowest possible type of
agents with shares of zero even with interdependent values as long as an agent’s own
type affects his valuation more than the other agents’ types, rendering extreme owner-
ship always suboptimal under ex post efficiency.

With a few notable exceptions, which we discuss below, the literature on partnership
dissolution has focused on ex post efficient allocation rules and on the question of the
conditions on distributions, valuations, and property rights under which ex post effi-
cient reallocation is possible subject to incentive compatibility and individual rational-
ity without running a deficit. For the case in which all agents draw their types from the
same distribution, Cramton et al. (1987) and Fieseler et al. (2003) analyze, respectively,
models with private values and with interdependent values. Cramton et al. show that
with equal ownership, ex post efficiency is always possible. In contrast, Fieseler et al.
establish that if interdependence is positive, ex post efficient reallocation may be im-
possible for any initial ownership structure. Their analysis gives thus additional salience
to the question of what are optimal dissolution mechanisms, which is part of our study.
Subsequent contributions with interdependent values are made by Kittsteiner (2003),
Jehiel and Pauzner (2006), and Chien (2007).

Considering symmetric bilateral partnerships, Kittsteiner (2003) performs a first at-
tack on the problem of having to avoid deficits when valuations are positively interde-
pendent. He shows that adding veto rights restores individual rationality of double auc-
tions, but noticed at the same time that the resulting allocation is suboptimal by pro-
viding a superior mechanism for an example with uniformly distributed types, which he
(as we show) correctly conjectures to be the second-best mechanism. One contribution
of our paper is that it generally derives the optimal mechanisms, thereby providing a
benchmark to evaluate specific mechanisms that are or have been proposed to be used
in practice, such as Kittsteiner’s and those analyzed by Brooks et al. (2010) and Landeo
and Spier (2014b). Moreover, for the important special case of identical distributions
and equal shares, which was, for example, the focus of Kittsteiner (2003), we introduce
a simple two-stage game that implements the optimal dissolution mechanism for a bi-
lateral partnership. In this game, the designer first asks the agents to report buy, sell,
or hold. Trade occurs at posted prices that are contingent on the agents’ reports un-
less both agents report buy or both report sell.7 If both report buy (sell), a standard
(reverse) auction ensues to allocate the good efficiently.

Focusing on private values, Che (2006) and Figueroa and Skreta (2012), with the lat-
ter building on the results of Schweizer (2006), extend the analysis to settings where each
agent’s type is drawn from a different distribution. When distributions can be ranked by
stochastic dominance, Che and Figueroa and Skreta show that the ownership structure
that maximizes revenue, given an ex post efficient allocation rule, assigns larger shares

7To be precise, if both agents report hold, there is no trade.
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to stronger agents. Segal and Whinston (2011) provide, among other things, a general-
ization of the results of Schweizer (2006) to interdependent values. However, their con-
ditions for possibility of ex post efficiency with interdependent values preclude those
under which Fieseler et al. (2003) establish impossibility.

To the best of our knowledge, the following papers are the only ones that analyze
objectives other than ex post efficiency for partnership models with multilateral private
information. Segal and Whinston (2016) study a second-best bargaining problem un-
der a liability rule with two agents and private values. Our work complements theirs.
While Segal and Whinston study a richer class of property rights, called liability rules,
their analysis in this part of the paper is confined to two agents, private values, and
the second-best mechanism, taking as given the initial allocation of property rights. In
contrast, we first characterize the efficient frontier for an arbitrary number of agents,
allowing for interdependent values and asymmetric distributions, and then derive the
optimal ownership structure for any such partnership. Mylovanov and Tröger (2014)
solve the informed principal problem one obtains when maximizing one agent’s payoff
in a bilateral partnership with private values. Our analysis differs from theirs insofar as
our designer is not a member of the partnership and his objective attaches the same wel-
fare weight to all agents. Other precursors to our paper are Lu and Robert (2001) and the
unpublished paper by Chien (2007). Lu and Robert study the same objective function
as we do in the derivation of optimal dissolution mechanisms, but they confine atten-
tion to private values and identical type distributions, and they do not address which
allocation of initial shares is optimal. Allowing for interdependent values, Chien solves
for the second-best mechanism under given initial ownership for the special case of two
agents. Our approach is both simpler and more general. Moreover, unless types are
identically distributed, the second-best mechanism differs from what Chien’s analysis
suggests.

The remainder of this paper is organized as follows. Section 2 introduces the setup as
well as basic mechanism design results. Section 3 derives and characterizes the optimal
dissolution mechanisms and introduces a simple implementation game. Section 4 de-
termines the optimal ownership structures, that is, the initial property rights that max-
imize the designer’s objective. As an extension, Section 5 studies the ownership struc-
tures that the partners would choose. Section 6 concludes. The Appendix contains omit-
ted proofs.

2. Model

2.1 Setup

There is a set of n risk-neutral agents N := {1�2� � � � � n} who jointly own one object. Each
agent i ∈N owns share ri ∈ [0�1] in the object, where

∑
i∈N ri = 1. Accordingly, the initial

property rights are represented by a point r := (r1� � � � � rn) in the (n − 1)-dimensional
standard simplex �n−1 := {r ∈ [0�1]n :∑n

i=1 ri = 1}.
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Each agent i privately learns his type xi, which is a realization of the continuous
random variable Xi. Each Xi is independently distributed according to a twice contin-
uously differentiable cumulative distribution function Fi with support [0�1] and den-
sity fi. Agent i’s ex post valuation for the object is

vi(x) := xi +
∑
j �=i
η(xj)�

where x := (x1� � � � � xn) and where η is a differentiable function with η′(xj) < 1 for all xj .
Agent i’s status quo utility from owning share ri is rivi(x).

Dissolving the partnership results in a reallocation of initial property rights r and
monetary transfers. By the revelation principle, it is without loss to focus on incentive
compatible direct dissolution mechanisms. A direct dissolution mechanism (s� t) con-
sists of an allocation rule s : [0�1]n → �n−1 and a payment rule t : [0�1]n → R

n, where
s(x) = (s1(x)� � � � � sn(x)) and t(x) = (t1(x)� � � � � tn(x)). The agents report their types x
whereupon agent i receives share si(x) and pays the amount ti(x), resulting in ex post
payoff vi(x)si(x)− ti(x).8

Define Si(xi) := E[si(xi�X−i)] and Ti(xi) := E[ti(xi�X−i)] to be the interim expected
share and payment of agent i. Moreover, let

Ui(xi) :=E[vi(xi�X−i)
(
si(xi�X−i)− ri

)]− Ti(xi)
denote i’s interim expected net payoff from taking part in the dissolution. A direct dis-
solution mechanism is Bayesian incentive compatible if

Ui(xi)≥E[vi(xi�X−i)
(
si(x̃i�X−i)− ri

)]− Ti(x̃i) ∀xi� x̃i ∈ [0�1]� i ∈ N � (IC)

and is interim individually rational if

Ui(xi)≥ 0 ∀xi ∈ [0�1]� i ∈ N � (IR)

The designer’s objective is to maximize a weighted sum of the ex ante expected so-
cial surplus E[∑i vi(X)si(X)], which is the value of the final allocation, and the ex ante
expected revenue E[∑i ti(X)] subject to the incentive compatibility and individual ra-
tionality constraints. Suppose the designer puts weight α ∈ [0�1] on revenue9 and let

Wα(s� t) := (1 − α)
∑
i∈N

E
[
vi(X)si(X)

]+ α∑
i∈N

E
[
ti(X)

]
�

In Section 3, we take the initial property rights r as given and study optimal dissolu-
tion mechanisms that solve

max
s�t
Wα(s� t) s.t. (IC) and (IR). (1)

8Note that restricting attention to deterministic allocation rules is without loss of generality since payoffs
are linear in the ex post shares. Agent i obtaining share si = σ can equivalently be interpreted as i becoming
the sole owner with probability σ and some other agent becoming the sole owner with probability 1 − σ .

9Note that α can also be interpreted as a reduced-form parameter measuring the degree of competition
the designer faces, ranging from perfect competition to monopoly.
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Note that the initial shares r enter this problem solely through the constraint (IR). Opti-
mal dissolution mechanisms are denoted by (sr

α� tr
α).

In Section 4, we then turn to analyzing optimal ownership structures that solve

max
r
Wα
(
sr
α� tr

α

)= max
r�s�t

Wα(s� t) s.t. (IC) and (IR). (2)

The set of all optimal ownership structures will be denoted by R∗(α).

2.2 Incentive compatibility, worst-off types, and virtual surplus

The standard characterization of Bayesian incentive compatibility applies to our envi-
ronment (see, e.g., Myerson 1981): (IC) holds if and only if

Si is nondecreasing (IC1)

Ui(xi)=Ui(x̂i)+
∫ xi

x̂i

(
Si(y)− ri

)
dy ∀xi� x̂i ∈ [0�1]� (IC2)

For a given monotone allocation rule, payoff equivalence (IC2) pins down interim ex-
pected payoffs Ui and payments Ti up to a constant.

Consider a dissolution mechanism (s� t) that satisfies (IC1) and (IC2). Let the set of
worst-off types of agent i be denoted by �i(s) := arg minxi Ui(xi). By (IC2), Ui is differ-
entiable almost everywhere and U ′

i (xi) = Si(xi) − ri wherever Ui is differentiable. The
monotonicity of Si implies the following characterization of the set of worst-off types
(see also Cramton et al. 1987, Lemma 2). If there is an xi such that Si(xi)= ri, then�i(s)
is a (possibly degenerate) interval and

�i(s)= {xi : Si(xi)= ri
}
�

If Si(xi) �= ri for all xi ∈ [0�1], then �i(s) is a singleton and

�i(s)= {xi : Si(z) < ri ∀z < xi and Si(z) > ri ∀z > xi
}
�

Let �(s) :=�1(s)× · · · ×�n(s).
In addition to identifying the set of worst-off types, (IC2) also allows us to eliminate

t from the designer’s objective and rewrite it as a function of the the interim payoff of an
arbitrarily fixed critical type for each agent and the virtual surplus generated by s under
these critical types. To do so, we first define, for each i, the α-weighted virtual cost and
virtual valuation

ψSα�i(xi) := xi −η(xi)+ αFi(xi)
fi(xi)

and ψBα�i(xi) := xi −η(xi)− α1 − Fi(xi)
fi(xi)

�

The first part of ψSα�i and ψBα�i, the term xi −η(xi), represents the effect of i’s type on the

cost from reducing and gain from increasing, respectively, i’s share.10 The second part,

10The change in surplus from moving the object from j to i is vi(x)− vj(x)= xi −η(xi)− xj +η(xj).
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with the designer’s revenue weight α, accounts for the information rent that has to be
granted to i to prevent him from overstating and understating, respectively, his type.

For an exogenously fixed critical type x̂i ∈ [0�1], we define agent i’s virtual type func-
tion given x̂i as

ψα�i(xi� x̂i) :=
{
ψSα�i(xi) if xi < x̂i

ψBα�i(xi) if xi > x̂i�

The virtual surplus under allocation rule s and exogenously fixed critical types x̂ =
(x̂1� � � � � x̂n) is then given by

W̃α(s� x̂) := E
[∑
i∈N

(
si(X)− ri

)
ψα�i(Xi� x̂i)

]
�

i.e., the expected gains from trade in terms of virtual types given x̂ when reallocating
property rights from r to s. Using standard techniques, we obtain the following lemma.

Lemma 1. Suppose the dissolution mechanism (s� t) satisfies (IC1) and (IC2). Then

Wα(s� t)= W̃α(s� x̂)− α
∑
i∈N

Ui(x̂i)+ (1 − α)
∑
i∈N

E
[
vi(X)ri

]
for all x̂ ∈ [0�1]n� (3)

Moreover,

�(s)= argmin
x̂∈[0�1]n

W̃α(s� x̂)� (4)

Most proofs are provided in Appendix B.
According to (3), we can write the designer’s objective for any exogenously fixed crit-

ical types x̂ as the virtual surplus given x̂ minus the α-weighted sum of the interim pay-
offs of the critical types plus (1 − α) times the value of the initial allocation. Since for a
given allocation rule s, (3) is constant over all x̂, the critical types with the smallest in-
terim payoffs must also be the critical types that minimize the virtual surplus, implying
(4). Identifying the worst-off types as the critical types that minimize the virtual surplus
proves useful below.

2.3 Regularity and virtual type distributions

We will throughout impose the regularity assumption that each agent’s α-weighted vir-
tual cost and valuation is strictly increasing, i.e.,

d

dxi
ψSα�i(xi) > 0 and

d

dxi
ψBα�i(xi) > 0 for all xi ∈ [0�1] and i ∈ N � (5)

This represents a joint assumption on α, η, and F1� � � � �Fn. Note that the higher are α
and η′(·), the more restrictive is (5) for Fi. Assumption (5) holds for all α and η if each fi
is log-concave.
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For our analysis below, it is useful to define the cumulative distribution functions
GSα�i and GBα�i of agent i’s virtual cost ψSα�i(Xi) and virtual valuation ψBα�i(Xi): Under (5),
we have

GJα�i(y) :=

⎧⎪⎪⎨⎪⎪⎩
0 if y < ψJα�i(0)

Fi
((
ψJα�i

)−1
(y)
)

if y ∈ [ψJα�i(0)�ψJα�i(1)]
1 if y > ψJα�i(1)

for J ∈ {S�B} and i ∈ N . Observe that for every i and y,GSα�i(y)≤ Fi(y)≤GBα�i(y).

3. Optimal dissolution mechanisms

3.1 General partnerships

In this section, we determine the solution to the designer’s problem stated in (1). From
Section 2.2, it follows that we can replace the constraints (IC) and (IR) with (IC1), (IC2),
and Ui(ωi) ≥ 0 for all i and ωi ∈ �i(s). Define S := {s : Si is nondecreasing for each i ∈
N }. Consequently, (IC1) is equivalent to s ∈S.

Consider an allocation rule s ∈ S and some worst-off types ω = (ω1� � � � �ωn) ∈�(s).
Under (IC2), (3) in Lemma 1 implies that we can write the designer’s objective as

Wα(s� t)= W̃α(s�ω)− α
∑
i∈N

Ui(ωi)+ (1 − α)
∑
i∈N

E
[
vi(X)ri

]
� (6)

Note that the individual rationality constraint Ui(ωi)≥ 0 is binding when choosing pay-
ments t that maximize (6) for a given s. Using Ui(ωi)= 0, (IC2) implies that any optimal
t has to be such that interim expected payments satisfy, for all i,

Ti(xi)=E[vi(xi�X−i)
(
si(xi�X−i)− ri

)]− ∫ xi

ωi

(
Si(y)− ri

)
dy� (7)

It remains to determine the optimal allocation rule. Since the second term in the ob-
jective (6) is zero under optimal payments and the third term is independent of the dis-
solution mechanism, we can restrict attention to maximizing W̃α(s�ω)= minx̂ W̃α(s� x̂),
where the equality follows from (4) in Lemma 1. Consequently, an optimal allocation
rule sr

α has to satisfy

sr
α ∈ argmax

s∈S
min

x̂∈[0�1]n
W̃α(s� x̂)� (8)

Instead of directly solving the max-min problem (8), we look for a saddle point
(s∗�ω∗) of W̃α that satisfies

s∗ ∈ argmax
s∈S

W̃α
(
s�ω∗) (9)

ω∗ ∈ argmin
x̂∈[0�1]n

W̃α
(
s∗� x̂

)
� (10)

For a saddle point, (9) requires that the allocation rule s∗ maximizes the virtual surplus
W̃α under given critical types ω∗, whereas (10) requires that the critical types ω∗ are
worst-off types under allocation rule s∗, i.e., ω∗ ∈�(s∗).
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Note that if a saddle point (s∗�ω∗) exists, then sr
α solves the problem in (8) if and

only if (sr
α�ω

∗) is a saddle point.11 In what follows, we show that a saddle point (s∗�ω∗)
exists and that s∗ is essentially unique.12 The characterization of optimal dissolution
mechanisms we thereby obtain represents the main result of this section. We proceed
by first determining the class of allocation rules that is consistent with (9). Then we
argue that an essentially unique member of this class also satisfies (10).

Consider the optimization problem in (9). Pointwise maximization of

W̃α
(
s�ω∗)=E

[∑
i∈N

(
si(X)− ri

)
ψα�i

(
Xi�ω

∗
i

)]
would require allocating the object to the agent i with the highest virtual type
ψα�i(xi�ω

∗
i ). Yet, since ψSα�i(xi) > ψ

B
α�i(xi) for all xi, ψα�i(xi�ω∗

i ) is not monotone at ω∗
i ,

resulting in the violation of the monotonicity constraint s ∈S. The solution to (9) there-
fore involves ironing (Myerson 1981): the object is allocated to an agent i with the high-
est ironed virtual type

ψα�i(xi� zi) :=

⎧⎪⎪⎨⎪⎪⎩
ψSα�i(xi) if ψSα�i(xi) < zi

zi if ψBα�i(xi)≤ zi ≤ψSα�i(xi)
ψBα�i(xi) if zi < ψ

B
α�i(xi)�

where the ironing parameter zi ∈ [ψBα�i(ω∗
i )�ψ

S
α�i(ω

∗
i )] is the unique solution to

E
[
ψα�i

(
Xi�ω

∗
i

)]=E[ψα�i(Xi� zi)]� (11)

According to (11), there is a one-to-one relation between the critical type ω∗
i and the

corresponding ironing parameter zi, which can be expressed in closed form as follows.
As is easily verified, E[ψα�i(Xi� x̂i)] = αx̂i + (1 − α)E[Xi] −E[η(Xi)]. Hence, (11) yields

ω∗
i =ωα�i(zi) := 1

α
E
[
ψα�i(Xi� zi)− (1 − α)Xi +η(Xi)

]
� (12)

Note that ωα�i(·) is a continuous and strictly increasing function.
Figure 1 illustrates the ironed virtual type function. Agent i’s ironed virtual type

ψα�i(xi� zi) is constant and equal to zi for an interval of types that contains the critical
type ωα�i(zi), and it is strictly increasing otherwise. Any allocation rule consistent with
(9) allocates based on ironed virtual types and, hence, features for each agent bunching
around the critical type. Note that (9) does not pin down the allocation when several
agents tie for the highest ironed virtual type. To handle this indeterminacy, we next
introduce a convenient class of tie-breaking rules.

Let H denote the set of all n! permutations (h(1)�h(2)� � � � �h(n)) of (1�2� � � � � n). We
call each h ∈ H a hierarchy among the agents in N . A hierarchical tie-breaking rule

11Suppose (s∗�ω∗) satisfies (9) and (10). Then minx̂ W̃α(s∗� x̂) = W̃α(s∗�ω∗) ≥ W̃α(s�ω∗) ≥ minx̂ W̃α(s� x̂)
for all s ∈ S and, hence, s∗ solves the problem in (8). Conversely, the last two inequalities have to hold with
equality for s = sr

α if sr
α satisfies (8), implying that (sr

α�ω
∗) is a saddle point.

12The allocation rule s∗ is unique up to the exact specification of a tie-breaking rule.
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Figure 1. Ironed virtual type function.

breaks ties in favor of the agent who is the highest in the hierarchy: If the set of agents
I ⊆ N tie for the highest ironed virtual type and there is hierarchical tie-breaking ac-
cording to hierarchy h, the object is assigned to agent arg maxi∈I h(i).

Under a split hierarchical tie-breaking rule a, ownership of the object is split up into
n! shares a := (a1� � � � � an!) ∈ �n!−1, one for each hierarchy in H = {h1� � � � �hn!}, and then
each al is assigned according to hierarchy hl, i.e., to agent arg maxi∈I hl(i).13 The out-
come in terms of interim expected shares S1� � � � � Sn of any tie-breaking rule can equiva-
lently be obtained by a split hierarchical tie-breaking rule a.

Define the ironed virtual type allocation rule sz�a with ironing parameters z =
(z1� � � � � zn) and split hierarchical tie-breaking rule a as, for all i ∈ N ,

sz�a
i (x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if ψα�i(xi� zi) >max
j �=i

ψα�j(xj� zj)∑
h∈Ĥi

ah if ψα�i(xi� zi)= max
j �=i

ψα�j(xj� zj)

0 if ψα�i(xi� zi) <max
j �=i

ψα�j(xj� zj)�

where Ĥi := {h ∈ H : h(i) > h(k) ∀k ∈ arg maxj �=i ψα�j(xj� zj)}. For a given ω∗, s∗ = sz�a

solves the problem in (9) for z = (ω−1
α�1(ω

∗
1)� � � � �ω

−1
α�n(ω

∗
n)) and any tie-breaking rule a ∈

�n!−1.
Figure 2 presents two examples of ironed virtual type allocation rules sz�a for bilat-

eral partnerships. The tie-breaking rule a = (a1� a2) is such that a1 corresponds to the
hierarchy according to which agent 1 beats agent 2. In both examples, the right-hand
(left-hand) area represents all type realizations where agent 1’s ironed virtual type is
strictly greater (smaller) than agent 2’s, resulting in full ownership of the object being

13An alternative interpretation is that one hierarchy h is randomly selected from H according to the
probability distribution a overH and ties are then broken according to h.
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Figure 2. Ironed virtual type allocation rules for n= 2.

allocated to agent 1 (2). In panel (a), ironing parameters are set such that z1 = z2 = z for
some z. This implies that for all type realizations in the center area, the ironed virtual
types are the same for both agents, which happens with strictly positive probability. In
this case, share a1 is allocated to agent 1 and share a2 = 1 − a1 is allocated to agent 2.
The interim expected share of each agent’s critical type Si(ωα�i(z)) therefore depends on
the tie-breaking rule. In panel (b), ironing parameters satisfy z1 > z2, implying that ties
have probability 0 and the tie-breaking rule does not affect interim expected shares.

Having established that all allocation rules consistent with (9) are equivalent to
ironed virtual type allocation rules sz�a, we now turn to the second requirement for a
saddle point. (10) requires that the critical types ω∗ are worst-off types under allocation
rule s∗. A simultaneous solution to (9) and (10) hence corresponds to a vector of ironing
parameters z and a tie-breaking rule a such thatωα�i(zi) ∈�i(sz�a) for each agent i. Note
that because of the bunching property, the interim expected share Sz�a

i (xi) is constant
for an interval of types xi that contains the critical type ωα�i(zi). The characterization of
the set of worst-off types in Section 2.2 hence implies that for critical types to be worst
off, we must have Sz�a

i (ωα�i(zi))= ri for all i ∈ N .
We show that there is typically a unique z such that Sz�a

i (ωα�i(zi)) = ri for all i for
some a, yielding the existence of a saddle point and a characterization of optimal disso-
lution mechanisms. To prove this result and make its statement precise, the following
definitions are useful. Let z := −η(0) and z := 1 − η(1), and define the correspondence
�n : [z� z]n → [0�1]n such that

�n(z) := {(Sz�a
1

(
ωα�1(z1)

)
� � � � � Sz�a

n

(
ωα�n(zn)

)) : a ∈ �n!−1}�
The correspondence �n(z) yields the set of all vectors of expected shares for critical
types ωα�1(z1)� � � � �ωα�n(zn) that can be obtained with ironing parameters z and some
tie-breaking rule a. If zi = zj for two agents i, j, there is a strictly positive probability
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for a tie and the expected shares depend on tie-breaking. The correspondence �n(z) is
singleton-valued if and only if zi �= zj for all i and j �= i.

We are now ready to state our main result on optimal dissolution mechanisms.

Theorem 1. For each r ∈ �n−1, there exists a unique z ∈ [z� z]n such that r ∈ �n(z). Let
z∗ = �−1

n (r). All optimal dissolution mechanisms (sr
α� tr

α) that solve (1) consist of an allo-
cation rule sr

α that allocates the object to an agent i with the greatest ironed virtual type
ψα�i(xi� z

∗
i ), where ties are broken such that Sr

α�i(ωα�i(z
∗
i ))= ri for all i ∈ N , and a payment

rule tr
α such that interim expected payments satisfy

T r
α�i(xi)=E[vi(xi�X−i)

(
sr
α�i(xi�X−i)− ri

)]− ∫ xi

ωα�i(z
∗
i )

(
Sr
α�i(y)− ri

)
dy for all i ∈ N �

A split hierarchical tie-breaking rule a∗ exists such that sz∗�a∗
is an optimal allocation rule.

The proof of Theorem 1 is provided in Appendix A. The most challenging part of
the proof is to establish the first line of the theorem, which ensures that the inverse cor-
respondence �−1

n (r) is singleton-valued for all initial shares r. We uncover a recursive
structure to �n by partitioning its domain in a suitable way. This allows us to prove that
�n has the required properties by induction, using the tractable two-agent case as the
base case. The existence of a unique z∗ = �−1

n (r) in turn implies that s∗ = sz∗�a∗
and ω∗ =

(ωα�1(z
∗
1)� � � � �ωα�n(z

∗
n)) constitute a saddle point that satisfies (9) and (10) for all split

hierarchical tie-breaking rules a∗ such that (Sz∗�a∗
1 (ωα�1(z

∗
1))� � � � � S

z∗�a∗
n (ωα�n(z

∗
n))) = r.

Consequently, sr
α = sz∗�a∗

is an optimal allocation rule that solves the max-min prob-
lem (8). Any other optimal allocation rule sr

α may differ from sz∗�a∗
only with respect

to the tie-breaking rule. Finally, interim expected payments are pinned down by payoff
equivalence (IC2), as stated in (7).

For all tie-breaking rules a, (Sz∗�a
1 (ωα�1(z

∗
1))� � � � � S

z∗�a
n (ωα�n(z

∗
n))) is equal to the con-

vex combination with coefficients a of the n! vectors of the critical types’ expected shares
under hierarchical tie-breaking. Hence, �n(z∗) is the convex hull of the expected shares
under hierarchical tie-breaking. Once the ironing parameters z∗ = �−1

n (r) are deter-
mined, finding a corresponding tie-breaking rule a∗ to implement an optimal allocation
rule is straightforward: one just has to find a convex combination of the extreme points
of the convex hull �(z∗) that is equal to r.14

To summarize, optimal dissolution mechanisms reallocate shares based on ironed
virtual types, where for each ownership structure, the intervals of types where bunching
occurs are uniquely determined to ensure, together with the tie-breaking rule, that the
corresponding critical type of each agent expects to retain his initial ownership share.

As the mechanisms identified by Theorem 1 maximize Wα for any α, there are no
mechanisms that yield higher combinations of social surplus and revenue. Importantly,
this means that Theorem 1 identifies, at the same time, the second-best dissolution
mechanisms that maximize social surplus subject to a revenue constraint (such as bud-
get balance) whenever ex post efficient dissolution is impossible.15

14One can further show that a tie-breaking rule with these properties that uses at most n hierarchies
always exists.

15See the beginning of Section 5 for more details.
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3.2 Bilateral partnerships

To illustrate the working of the optimal dissolution mechanisms, we now specialize the
setup to one with two agents. According to Theorem 1, an optimal dissolution mecha-
nism allocates the object to the agent i with the higher ironed virtual type ψα�i(xi� z

∗
i ),

where (z∗
1� z

∗
2)= �−1

2 (r1� r2). For bilateral partnerships, characterizing (z∗
1� z

∗
2) further is

possible at little additional cost.
Suppose z∗

1 > z
∗
2 . Then the critical type of agent 1 expects to obtain the object with

probability S1(ωα�1(z
∗
1))=GBα�2(z∗

1), whereas the critical type of agent 2 expects to obtain

the object with probability S2(ωα�2(z
∗
2))=GSα�1(z

∗
2).

16 Moreover, these probabilities are
equal to the initial shares r1 and 1− r1, making the critical types worst off. Consequently,
all initial shares that are consistent with z∗

1 > z
∗
2 satisfy (GBα�2)

−1(r1) > (G
S
α�1)

−1(1 − r1).

This is true for all r1 ∈ (r1�1], where r1 uniquely solves (GBα�2)
−1(r1)= (GSα�1)−1(1 − r1).

Similarly, z∗
1 < z∗

2 if and only if r1 ∈ [0� r1), where r1 is the unique solution to
(GSα�2)

−1(r1) = (GBα�1)
−1(1 − r1). Observe that 0 < r1 < r1 < 1 for all α > 0, and that r1

is decreasing and r1 is increasing in α.
It follows that for r1 ∈ [r1� r1] we must have z∗

1 = z∗
2 . In this case, agents tie for the

highest ironed virtual type with positive probability. If agent i obtains share ai in case
of a tie, then i’s critical type expects to obtain share Si(ωα�i(z∗

i )) = aiG
B
α�j(z

∗
i ) + (1 −

ai)G
S
α�j(z

∗
i ). The optimal allocation rule makes sure that this expected share is equal

to ri. We thus obtain the following corollary to Theorem 1.

Corollary 1. Suppose n = 2. The optimal allocation rule sr
α allocates the object to the

agent iwho has the higher ironed virtual typeψα�i(xi� z
∗
i ) and in case of a tie assigns share

a∗
1 to agent 1 and 1 − a∗

1 to agent 2.

(i) If r1 ∈ [0� r1), then z∗
1 = (GSα�2)−1(r1) < (G

B
α�1)

−1(r2)= z∗
2 and a∗

1 ∈ [0�1].
(ii) If r1 ∈ [r1� r1], then z∗

1 = z∗
2 = z∗, where z∗ and a∗

1 are the unique solution to

a∗
1G

B
α�2
(
z∗)+ (1 − a∗

1
)
GSα�2

(
z∗)= r1� a∗

1G
S
α�1
(
z∗)+ (1 − a∗

1
)
GBα�1

(
z∗)= r2�

(iii) If r1 ∈ (r1�1], then z∗
1 = (GBα�2)−1(r1) > (G

S
α�1)

−1(r2)= z∗
2 and a∗

1 ∈ [0�1].

In cases (i) and (iii) of Corollary 1, ties occur with probability 0, which explains why
ties can be broken arbitrarily, i.e., why any a∗

1 ∈ [0�1] is optimal. In contrast, for case (ii)
the tie-breaking rule a∗

1 of the optimal allocation rule is unique.
The optimal allocation rule described in Corollary 1 is illustrated in Figure 2. Panel

(a) depicts case (ii) of Corollary 1 and panel (b) depicts case (iii), which after interchang-
ing the agents’ names also applies to case (i). The figures are drawn for a situation where
F1 �= F2, i.e., where agents draw their types from different distributions. From the figures
we can infer how the optimal allocation rule for α > 0 differs from the ex post efficient

16To see this, note that the cumulative distribution function of agent i’s ironed virtual type Yi =
ψα�i(Xi� z

∗
i ) corresponds toGSα�i(yi) for yi ≤ z∗

i andGBα�i(yi) for yi > z∗
i .
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allocation rule that assigns the object to agent 1 (2) if (x1�x2) is below (above) the dashed
45-degree line.

Suppose the ownership structure is sufficiently symmetric such that r1 ∈ (r1� r1),
implying optimal ironing parameters z∗

1 = z∗
2 = z∗ as in panel (a) of Figure 2. Types

x1 ∈ [(ψSα�1)−1(z∗)� (ψBα�1)
−1(z∗)] of agent 1 and types x2 ∈ [(ψSα�2)−1(z∗)� (ψBα�2)

−1(z∗)] of
agent 2 all have the same ironed virtual type z∗. If both type realizations are within
these intervals, share a∗

1 ∈ (0�1) of the object is assigned to agent 1, as represented by
the center rectangle. This inefficiency of the allocation is reminiscent of the traditional
undersupply by a monopolist and of auctions with revenue-maximizing reserve prices.
If both agents draw a sufficiently high type, the object is allocated to the agent with the
highest virtual valuation, whereas for sufficiently low types, the allocation is based on
comparing virtual costs. Thus the object may end up in the hands of the agent who
values it less, resulting in a second kind of inefficiency, similar to the optimal auction of
Myerson (1981) with asymmetric bidders. Whereas the first kind of inefficiency is always
present for α> 0, the second kind vanishes if types are identically distributed.

As we increase r1 within [r1� r1], the share a∗
1 increases and z∗ may change (it stays

constant if F1 = F2) until we reach r1, where a∗
1 = 1. At this point, we leave the case un-

derlying panel (a) of Figure 2 and switch to the situation depicted in panel (b). As we
increase r1 further, z∗

1 increases and z∗
2 decreases, eventually reaching z and z, respec-

tively, when r1 = 1.
Now consider r1 ∈ (r1�1], which implies z∗

1 > z
∗
2 as in panel (b) of Figure 2. If types

(x1�x2) ∈ [(ψSα�1)−1(z∗
2)�1] × [0� (ψBα�2)−1(z∗

1)] realize, the optimal allocation rule assigns

the object to agent 1 if his virtual cost ψSα�1(x1) is higher than the virtual valuation

ψBα�2(x2) of agent 2. Otherwise, the object is assigned to agent 2. For type realiza-
tions within this region, the optimal allocation thus corresponds exactly to the alloca-
tion rules derived by Myerson and Satterthwaite (1983), giving rise to the same ineffi-
ciency. If x1 < (ψ

S
α�1)

−1(z∗
2), the object is allocated on the basis of virtual costs, whereas

if x2 > (ψ
B
α�2)

−1(z∗
1), the object is assigned to the agent with the higher virtual valuation.

In those cases, we again obtain the second kind of inefficiency that disappears if types
are drawn from the same distribution. Note that for r1 = 1, where (ψSα�1)

−1(z∗
2)= 0 and

(ψBα�2)
−1(z∗

1)= 1, the optimal allocation rule coincides with the solution of Myerson and

Satterthwaite (1983) on the entire type space [0�1]2. This is, of course, consistent with
the partnership model approaching a bilateral trade setting where agent 1 is the seller
and agent 2 is the buyer as r1 approaches 1.

As α increases while r1 is kept fixed, the inefficiency of the optimal allocation in-
creases: In panel (a) the center rectangle with tie-breaking becomes larger and in panel
(b) the demarcation line where 1’s virtual cost coincides with 2’s virtual valuation moves
upward and to the left. This is because a higher α makes the difference between virtual
types and actual net types xi −η(xi) larger. The comparative static effects of increasing
the (positive) interdependence of valuations on the optimal allocation are similar to the
effects of increasing α under private values. This is easiest to see for the case with linear
interdependence η(x)= ex with e < 1. In this case, i’s virtual type ψKα�i(xi) is larger than

j’s virtual type ψLα�j(xj) with K�L ∈ {B�S} if and only if for private values (i.e., η′(x)= 0),
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ψKα/(1−e)�i(xi) ≥ ψLα/(1−e)�j(xj). The effect of increasing e in the model with linear inter-
dependence is thus qualitatively the same as that of increasing α in the private values
model.

3.3 Simple mechanisms and implementation

Dissolution mechanisms used in practice typically have simpler rules than the optimal
direct mechanisms we characterize. For example, in the Texas shootout (or buy–sell
clause), a commonly used procedure for breaking up bilateral business partnerships,
one partner proposes a per-unit price and the other partner decides whether to sell his
share or buy out his partner at that price (McAfee 1992, de Frutos and Kittsteiner 2008,
Brooks et al. 2010). Under private information, the Texas shootout is typically ineffi-
cient, even in settings where ex post efficient dissolution would be feasible. A simple al-
ternative that usually performs better is to run a standard auction among partners, with
the highest bidder buying out the others at the price determined in the auction. Under
private values, identical distributions, and equal shares, such an auction dissolves effi-
ciently (Cramton et al. 1987). Under nonidentical distributions or unequal shares, while
still satisfying individual rationality, the resulting allocation is inefficient, as shown in
Wasser (2013) for the bilateral case. For positively interdependent valuations and equal
shares, Kittsteiner (2003) showed that partners suffer from both a winner’s and a loser’s
curse, which may result in a violation of individual rationality. Giving veto rights to
agents fixes this problem at the cost of losing efficiency.

The optimal dissolution mechanisms of Theorem 1 are an important benchmark
for assessing how severe the inefficiencies are of simple mechanisms such as those just
discussed. Moreover, our results provide some guidance for improving the design of
simple mechanisms. For the important special case of symmetric bilateral partnerships,
we propose the following simple mechanism with appealing features for practical use
that implements the optimal mechanism.

A simple dissolution procedure Consider a symmetric bilateral partnership, i.e., n= 2,
F1 = F2, and r1 = r2 = 1

2 . Moreover, suppose η′(x) ∈ (−1�1) for all x. This setting allows
for a particularly simple and intuitive implementation of the optimal dissolution mech-
anism as a combination of posted prices and standard auctions. The optimal allocation
rule of Theorem 1 for this setting is based on ironed virtual types with z∗

1 = z∗
2 = z∗ and

leaves ownership equally split in case of a tie. To simplify the notation, let ω :=ωα�i(z∗)
denote each agent’s critical worst-off type and let [ω�ω] denote the interval of worst-off
types, where ω := (ψSα�i)−1(z∗) and ω := (ψBα�i)−1(z∗).

The simple dissolution procedure works as follows. First, the designer announces
four per-unit prices: a standard and a modified sell price, denoted respectively pS and
p̂S , as well as a standard and a modified buy price, denoted pB and p̂B. These prices are

pS := E[vi(ω�Xj)|ω<Xj]� pB := E[vi(ω�Xj)|Xj <ω]
p̂S := E[vi(ω�Xj)|ω≤Xj ≤ω]� p̂B := E[vi(ω�Xj)|ω≤Xj ≤ω]�
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Then each agent is asked whether he prefers to sell, hold, or buy. If both agents re-
quest something different or if both request hold, their requests are called compatible.
Otherwise, i.e., if both request buy or both request sell, their requests are called incom-
patible. If the agents’ requests are compatible, shares are traded at fixed prices in the
required direction (unless both request hold): If agent i requests sell and agent j re-
quests buy, i sells his share at pS to the designer who then sells it to j at pB, resulting in
revenue of 1

2(p
B − pS) for the designer; if agent i requests hold while agent j requests

sell (buy), then agent i buys j’s (sells his) share at the standard price pB (pS), whereas
agent j sells (buys) at the modified price p̂S (p̂B); and if both agents request hold, they
keep their shares and no payments are made.

Incompatible requests are resolved using a standard auction. If both agents request
buy, the designer first buys the agents’ shares at price pS and then sells the entire object
through an open ascending forward auction, with the price starting at vi(ω�ω). If both
agents request sell, the designer first short sells share 1

2 to each agent at price pB and
then buys back one unit through an open descending reverse auction, starting at price
vi(ω�ω). Figure 3 summarizes the procedure.

The following proposition asserts that the simple dissolution procedure implements
an optimal dissolution mechanism of Theorem 1.

Proposition 1. The simple dissolution procedure has a perfect Bayesian equilibrium in
which agent i = 1�2 chooses sell if xi < ω, hold if xi ∈ [ω�ω], and buy if xi > ω, and
in case of an auction, agent i drops out when the price reaches vi(xi�xi). Moreover, the
resulting allocation and payments correspond to those of an optimal dissolution mecha-
nism (sr

α� tr
α).

Note that the dissolution procedure is simple in that it often requires only coarse
communication and uses a standard auction that preserves the privacy of the winner of
the auction when more granular information is required. This simplicity suggests that it
may be of practical use for designers of dissolution mechanisms such as courts.

Agent 2

sell hold buy

sell Both buy at pB

& reverse auction

1 sells at p̂S ,
2 buys at pB

1 sells at pS ,
2 buys at pB

Agent 1 hold
1 buys at pB,
2 sells at p̂S

No trade
1 sells at pS ,
2 buys at p̂B

buy
1 buys at pB,
2 sells at pS

1 buys at p̂B,
2 sells at pS

Both sell at pS

& forward auction

Figure 3. A simple dissolution procedure for symmetric bilateral partnerships.
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4. Optimal ownership structures

The optimal dissolution mechanisms (sr
α� tr

α) that solve (1) described in Theorem 1 de-
pend on r and the designer’s preference parameter α. In this section, we study how the
designer’s value functionWα(sr

α� tr
α) varies with r. Most importantly, we characterize the

set of all optimal ownership structures that maximizeWα(sr
α� tr

α), which we denote by

R∗(α) := argmax
r∈�n−1

Wα
(
sr
α� tr

α

)
�

Hence, the initial shares in R∗(α) are the solutions to the problem stated in (2).

4.1 The main characterization result

To develop intuition, suppose, temporarily, that the allocation rule s is fixed and each
interim share Si is strictly increasing, implying that there is a unique worst-off type ωi
for each agent i. Accordingly, surplus is fixed and revenue extraction is restricted by the
fact that each agent i’s worst-off type must at least obtain his interim expected status
quo utility riE[vi(ωi�X−i)] to ensure participation. If there are two agents i, j such that
E[vi(ωi�X−i)]>E[vj(ωj�X−j)], then a marginal transfer of ownership from i to j relaxes
i’s individual rationality constraint by more than it tightens j’s and therefore increases
the revenue that can be extracted. Since decreasing ri decreases i’s worst-off type ωi
and increasing rj increases ωj , the positive effect on revenue gradually diminishes as
we transfer ownership further. Revenue is thus concave in the ownership structure and
maximized when interim valuations of worst-off types are equal. We now show that this
concavity property carries over to any combination of surplus and revenue under an
optimal allocation rule that changes with the ownership structure.

Our approach of relating optimal dissolution mechanisms to saddle points of the
virtual surplus W̃α is also useful here because it enables us to easily obtain concavity of
Wα(sr

α� tr
α) as follows. According to Section 3.1, we have

Wα
(
sr
α� tr

α

)= (1 − α)
∑
i∈N

E
[
vi(X)ri

]+ max
s∈S

min
x̂∈[0�1]n

W̃α(s� x̂)� (13)

The saddle point property of W̃α implies that max-min and min-max are equivalent, i.e.,

max
s∈S

min
x̂∈[0�1]n

W̃α(s� x̂)

= min
x̂∈[0�1]n

max
s∈S

W̃α(s� x̂)

= min
x̂∈[0�1]n

{
−
∑
i∈N

riE
[
ψα�i(Xi� x̂i)

]+ max
s∈S

E

[∑
i∈N

si(X)ψα�i(Xi� x̂i)
]}
� (14)

Note that (14) is the minimum of a family of affine functions of r (indexed by x̂). Conse-
quently, (14) is concave in r, and by (13) the same is true forWα(sr

α� tr
α).

Concavity of the objective allows us to study optimal ownership structures using
first-order conditions and to obtain an intuitive characterization of optimality that is
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based on the interim expected valuations of the critical worst-off types. The following
theorem is our main result on optimal ownership structures.

Theorem 2. (i) The objectiveWα(sr
α� tr

α) is concave in the ownership structure r.

(ii) The optimal ownership structures form a convex set R∗(α) that is a strict subset of
�n−1.

(iii) An ownership structure r is optimal if and only if, under the corresponding opti-
mal dissolution mechanisms, the interim valuation of the critical worst-off type is
the same for all agents with nonzero shares and is higher for all agents with zero
shares. That is, r ∈R∗(α) if and only if for all i ∈ N , for someY , and for z∗ = �−1

n (r),

E
[
vi
(
ωα�i

(
z∗
i

)
�X−i

)]= Y if ri > 0 and

E
[
vi
(
ωα�i

(
z∗
i

)
�X−i

)]≥ Y if ri = 0�
(15)

Concavity of the designer’s objective, as established in part (i) of Theorem 2, means
that if the designer is indifferent between two different ownership structures, then he
weakly prefers any convex combination of the two ownership structures. Accordingly,
the set of optimal ownership structures is convex. Although multiple ownership struc-
tures may be optimal, part (ii) of Theorem 2 implies that it is never the case that all possi-
ble ownership structures are optimal. Finally, part (iii) of Theorem 2 provides a clear-cut
characterization of optimal ownership structures: exactly those initial shares are opti-
mal that equalize the interim valuations of the induced critical worst-off types across
agents with strictly positive initial shares and that lead to higher interim valuations for
agents with an initial share of zero.

Recall that under any optimal dissolution mechanism, each agent i’s individual ra-
tionality constraint is binding for the interval of worst-off types that results from bunch-
ing around the critical type ωα�i(z∗

i ). The optimality condition (15) ensures that there is
no marginal transfer of ownership from an agent i to an agent j that improvesWα(sr

α� tr
α)

via marginally relaxing i’s individual rationality constraint by E[vi(ωα�i(z∗
i )�X−i)] and

tightening j’s by E[vj(ωα�j(z∗
j )�X−j)]: such marginal changes are either not beneficial

(because the interim valuation of i’s and j’s critical worst-off type are equal) or not fea-
sible (because ri = 0).

As α→ 0, every optimal dissolution mechanism approaches a mechanism with the
ex post efficient allocation rule and transfers that maximize revenue under this alloca-
tion rule. The optimal ownership structure for α→ 0 hence yields the initial shares that
allow for the highest revenue under ex post efficient allocation (put differently, these
shares minimize the subsidy required for efficient trade). As α→ 0, sr

α approaches the
ex post efficient allocation rule and the set of worst-off types �i(sr

α) shrinks to the sin-
gleton ω0�i that solves

∏
j �=i Fj(ω0�i) = ri, which is thus agent i’s critical worst-off type

under the ex post efficient allocation rule. As each ω0�i is strictly increasing in ri, there
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is thus a unique ownership structure that meets the optimality condition of Theorem 2,
and optimal ownership can then be characterized as follows.17

Corollary 2. The ownership structure {r0} = limα→0R
∗(α) that maximizes revenue un-

der ex post efficiency is unique and is given by

r0
i =

∏
j �=i
Fj
(
Ŷ +E[η(Xi)]) for each i ∈ N � (16)

where Ŷ solves
∑
i∈N

∏
j �=i Fj(Ŷ +E[η(Xi)])= 1. Moreover, if r0

i > 0 for some i ∈ N , then

r0
j > 0 for all j such that E[η(Xj)] ≥E[η(Xi)].

4.2 Less inequality is better with identical type distributions

We explore the implications of Theorem 2, beginning with the case where the types of
all agents are drawn from the same distribution F . In this case, the objective Wα(sr

α� tr
α)

stays constant if we interchange the initial shares of two agents, and concavity of the
objective implies that it increases if we assign to both agents the average of their original
shares. This suggests that the combination of surplus and revenue that can be achieved
through optimal dissolution increases as the ownership structure becomes more equal.

To obtain a precise notion of one ownership structure being more equal than an-
other, we make use of the theory of majorization.18 Given two vectors r and q with n
components, we say r is majorized by q, denoted by r ≺ q, if

k∑
i=1

r[i] ≤
k∑
i=1

q[i] for k ∈ {1� � � � � n− 1} and
n∑
i=1

r[i] =
n∑
i=1

q[i]�

where r[1] ≥ · · · ≥ r[n] denotes the components of r = (r1� � � � � rn) in decreasing order. In-
tuitively, r ≺ q means the components of r are more equal than the components of q.
A real-valued function φ is Schur-concave if r ≺ q implies φ(r) ≥ φ(q). In particular, a
function is Schur-concave if it is symmetric (i.e., φ(r)=φ(r′) if r′ is a permutation of r)
and concave (see Marshall et al. 2011, p. 97). Hence, we obtain the following corollary to
part (i) of Theorem 2.

Corollary 3. Suppose Fi = F for all i ∈ N . Then Wα(sr
α� tr

α) is Schur-concave in r: the
objective increases as the ownership structure becomes more equal.

Schur-concavity immediately implies that Wα(sr
α� tr

α) is minimized when ownership
is concentrated at one agent (ri = 1 for one i), which is strictly suboptimal by part (ii) of
Theorem 2. The objective is maximized for symmetric ownership (ri = 1/n for all i).

17For the special case of private values where η(x) = 0, the revenue-maximizing ownership structure
under ex post efficiency was obtained by Che (2006) and Figueroa and Skreta (2012). Corollary 2 generalizes
their results to interdependent values.

18For a comprehensive reference, see Marshall et al. (2011).
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Symmetric ownership is optimal because in this case optimal dissolution mecha-
nisms treat all agents the same, which clearly induces the same valuation at the critical
worst-off type for each agent. However, this is not the only optimal ownership structure.
Any ownership structure that, like symmetric ownership, is associated with optimal dis-
solution mechanisms where the ironing parameters are all equal (i.e., z∗

i = z∗ for all i and
some z∗) also results in equal critical worst-off types as required by the optimality con-
dition (15) of Theorem 2. These are ownership structures that are sufficiently equal such
that only the tie-breaking rule needs to be adapted to the asymmetry in initial shares
while agents are treated the same otherwise. The least equal ownership structures with
this property are those that can be accommodated by hierarchical tie-breaking: Using
the same ironing parameters and tie-breaking according to hierarchy h(i)= i (i.e., agent
iwins ties against all agents j < i), for example, yields an optimal dissolution mechanism
for the ownership structure

rα := (rα1 � � � � � rαn ) where rαi :=GSα
(
z∗)n−iGBα(z∗)i−1

for each i

and where z∗ is the unique solution to
∑
i∈N GSα(z∗)n−iGBα(z∗)i−1 = 1.19 Moreover, split

hierarchical tie-breaking rules yield optimal dissolution mechanisms for any ownership
structure that is a convex combination of permutations of rα, i.e., all ownership struc-
tures that are more equal than rα in the sense that r ≺ rα.20 As all ironing parame-
ters equal z∗, all these ownership structures satisfy the optimality condition (15). All
other ownership structures require heterogenous ironing parameters and therefore fail
to meet (15).

Note that increasing α strictly increases the difference between virtual costs and val-
uations, and thus between GSα and GBα . In turn, the components of rα become more
spread out, thereby enlarging the set of optimal ownership structures.

Corollary 4. Suppose Fi = F for all i ∈ N . Then the optimal ownership structures con-
sist of all initial shares that are more equal than rα: R∗(α)= {r ∈ �n−1 : r ≺ rα}. Moreover,
the set of optimal ownership structures strictly increases in the revenue weight: for all
α< α′, R∗(α)⊂R∗(α′).

As α→ 0, Corollary 2 implies that symmetric ownership becomes uniquely optimal.
In contrast, for α > 0, there is always some leeway in specifying an optimal ownership
structure, and this leeway is greater the more important is generating revenue.

Most findings of this subsection straightforwardly extend to situations where some
but not all agents’ types are identically distributed. For any group of agents I ⊂ N with
identically distributed types, the designer’s objective is Schur-concave in the shares of
the agents in I , and it is always optimal to assign equally sized shares to all agents in I .

19Under this tie-breaking rule, i’s critical type obtains the object if the n − i agents k > i have virtual
costs below z∗ and the i − 1 agents j < i have virtual valuations below z∗, resulting in interim expected
share Si(ωα(z∗)) = GSα(z

∗)n−iGBα(z∗)i−1. Optimal dissolution mechanisms induce Si(ωα(z∗)) = ri , which
together with

∑
i∈N ri = 1 uniquely pins down z∗ sinceGSα andGBα are strictly increasing.

20The set {r : r ≺ q} is equal to the convex hull of points obtained by permuting the components of q; see,
for example, Marshall et al. (2011, Corollary 2.B.3).
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4.3 (Sub)optimality of extreme ownership structures

When types are drawn from different distributions, symmetric ownership typically does
not result in the same expected valuation for the critical worst-off type of each agent.
Optimality hence requires unequal initial shares that account for the ex ante asymmetry
among agents. Most importantly, as demonstrated below, even an extreme ownership
structure that fully concentrates property rights at one agent can then be optimal. We
start with a specific example to illustrate the rich variety of optimal shares that may ob-
tain depending on the interplay of type distributions, value interdependence, and the
importance of generating revenue.

Example 1. Consider a bilateral partnership (n= 2) with

F1(x)= xb� F2(x)= 1 − (1 − x)b� and η(x)= ex� where b > 1 and e < 1� (17)

Under these assumptions, E[v1(X)] = (b+ e)/(1 + b) > (1 + eb)/(1 + b)= E[v2(X)] and
F1(x) < F2(x) for all x ∈ (0�1). Agent 1 is hence the stronger agent in the sense that F1
first-order stochastically dominates F2, and the higher is b, the more pronounced is this
dominance.

Assume first b= 1�2, which corresponds to a moderate degree of asymmetry in type
distributions. Figure 4 shows the set of optimal shares R∗

1(α) = {r1 : (r1� r2) ∈ R∗(α)} for
agent 1 as a function of the revenue weight α for e ∈ {−0�35�0�0�35}. For private values
(e = 0) and for negative interdependence (e = −0�35), the optimal r1 is unique and de-
creasing. For positive interdependence (e= 0�35), however, there is a unique α for which
the interval of shares [r1� r1] is optimal as indicated by the vertical line segment in Fig-
ure 4.21 That is, for this value of α, we have R∗

1(α)= [r1� r1], while for all other values of

Figure 4. Optimal bilateral ownership structures R∗
1(α) under moderate asymmetry (b = 1�2)

for e= 0�35, e= 0, and e= −0�35.

21For bilateral environments where F2(x) = 1 − F1(1 − x) for all x and η(x) = ex for some e < 1, as is
satisfied here, the virtual type distributions satisfyGBα�2(z)= 1 −GSα�1(1 − e− z) andGSα�2(z)= 1 −GBα�1(1 −
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Figure 5. Optimal bilateral ownership structures R∗
1(α) under pronounced asymmetry (b= 5)

for e= 0�35, e= 0, and e= −0�35.

α, the optimal r1 is unique, increasing in α when α is smaller and decreasing when α is
larger. Hence, optimal ownership structures are not necessarily monotone in α. Note
also that for small α, R∗

1(α) decreases in e and agent 1 is the majority owner, whereas for
large α, it is increasing in e and agent 1 is the minority owner.

Next we consider an increase in the asymmetry in type distributions to b= 5, which
is illustrated in Figure 5. For all three kinds of interdependence, a change in the revenue
weight may now drastically change optimal ownership. Whereas for low values of α, the
stronger agent’s share is close to but strictly less than 1, it is optimal to assign sole own-
ership to the weaker agent if generating revenue is important. Moreover, the stronger
agent’s share is now overall decreasing in α and increasing in the value-interdependence
parameter e. ♦

Motivated by Example 1, we proceed by asking under what conditions concentrated
ownership is optimal. An extreme ownership structure with ri = 1 for some i ∈ N and
rj = 0 for all j �= i represents a trade setting in the spirit of Myerson and Satterthwaite
(1983) with one seller and n− 1 potential buyers. An optimal allocation rule assigns the
object to a buyer with the greatest virtual valuation conditional on this being greater
than the seller’s virtual cost, which corresponds to optimal dissolution with ironing pa-
rameters zi = z and zj = z for j �= i. The intervals of highest seller types [(ψSα�i)−1(z)�1]
and of lowest buyer types [0� (ψBα�j)−1(z)] are excluded from trade and are thus worst off,
with ωα�i(z) and ωα�j(z), respectively, being the critical among those worst-off types.

e− z) for all z. For the optimal dissolution mechanism of Corollary 1, this symmetry property implies that
z∗

1 = z∗
2 = (1 − e)/2 for all r1 ∈ [r1� r1]. Hence, if the optimal ownership structures are such that z∗

1 = z∗
2 , then

the entire interval [r1� r1] is optimal.
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Condition (15) of Theorem 2 implies that it is optimal to concentrate ownership at
agent i if and only if

E
[
vi
(
ωα�i(z)�X−i

)]≤E[vj(ωα�j(z)�X−j
)]

for all j �= i� (18)

That is, the interim expected valuation of the seller’s critical excluded type can be no
larger than that of each buyer’s critical excluded type. Moreover, if (18) holds, then no
other ownership structure is optimal (i.e.,R∗(α) is a singleton): for any ownership struc-
ture with ri < 1 and rj > 0 for some j �= i, optimal dissolution requires ironing parame-
ters z∗

i < z and z∗
j > z, resulting in a strictly lower (higher) critical worst-off type for i (j),

implying that condition (15) cannot hold.
Using the definition of ωα�i in (12) as well as ψα�i(Xi� z) = min{ψSα�i(Xi)� z} and

ψα�j(Xj� z)= max{ψBα�j(Xj)� z}, one can show that

E
[
vi
(
ωα�i(z)�X−i

)]=E
[
vi(X)+ min

{
Fi(Xi)

fi(Xi)
�
z−Xi +η(Xi)

α

}]
E
[
vj
(
ωα�j(z)�X−j

)]=E
[
vj(X)− min

{
1 − Fj(Xj)
fj(Xj)

�
Xj −η(Xj)− z

α

}]
�

Hence, (18) can be rewritten as (19) below to obtain the following result.

Corollary 5. The extreme ownership structure with ri = 1 is optimal if and only if

E

[
vi(X)+ min

{
Fi(Xi)

fi(Xi)
�
z−Xi +η(Xi)

α

}]
≤E

[
vj(X)− min

{
1 − Fj(Xj)
fj(Xj)

�
Xj −η(Xj)− z

α

}]
(19)

for all j �= i. Moreover, if (19) holds, then the optimal ownership structure is unique
and assigns sole ownership to the agent with the lowest ex ante expected valuation, i.e.,
E[vi(X)] ≤E[vj(X)] for all j �= i.

Corollary 5 gives a precise condition for extreme ownership to be optimal. In ad-
dition, if extreme ownership is optimal, sole ownership is assigned to the agent who
is weakest in terms of ex ante expected valuations. Intuitively, the critical among the
seller’s excluded highest types has to be sufficiently low and the critical among each
buyer’s excluded lowest types has to be sufficiently high for the former to have a lower
valuation than the latter. This requires that sufficiently many types on both sides of
the market are excluded: the seller’s probability density has to be relatively low for high
types (so that the virtual cost is above z for many) and each buyer’s probability density
has to be relatively low for low types (so that the virtual valuation is below z for many).
Hence, the agent with the lowest ex ante expected valuation must be the seller whenever
an extreme ownership structure is optimal.

We now show that optimality of extreme ownership is a robust feature of partnership
models insofar as, for any α > 0 and any valuation interdependence η, there are type
distributions such that condition (19) is satisfied.
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Proposition 2. Suppose α > 0. For any i, there exist type distributions such that the
extreme ownership structure with ri = 1 is optimal. More generally, for any nonempty set
of agents I , there exist type distributions such that for all i ∈ I and j /∈ I , Fi(x) > Fj(x) for
all x ∈ (0�1) and all optimal ownership structures have ri > 0 and rj = 0.

The proof makes use of the family of distributions considered in Example 1: if the
type of i is drawn from F2 and the type of each j �= i is drawn from F1 specified in (17),
then (19) holds if the parameter b is sufficiently large. The second part of Proposition 2
then follows from the insight that if (19) holds and one adds replicas of agent i, the strong
agents’ optimal shares remain zero. Whenever the revenue weight is positive, there thus
are type distributions such that it is optimal to assign zero shares to a group of agents
who are strong in the sense of first-order stochastic dominance.

We next consider the role of the revenue weight. Consider an extreme ownership
structure and an optimal dissolution mechanism for some given α. Now suppose α
increases, which increases the distortions in the optimal allocation rule. In turn, the
length of the intervals of worst-off seller types at the top and buyer types at the bottom
increases. The critical types move further away from the boundary, which decreases the
seller’s and increases the buyers’ valuations at the critical worst-off types. This is why the
left-hand side of (19) is decreasing and the right-hand side is increasing in α. Thus, if an
extreme ownership structure is optimal for some value of α, then it remains optimal for
any larger value of α, as stated in part (i) of Proposition 3 below. Conversely, if extreme
ownership is suboptimal for some α, then it must also be suboptimal for any smaller α.

This implies that the condition for optimality of extreme ownership is most restric-
tive for α = 0. Indeed, under the efficient allocation rule, the seller’s unique worst-off
type is 1 and the buyers’ unique worst-off types are all 0. As long as an agent’s own type
has a larger effect on his valuation than the other agents’ types, it is impossible that the
valuation of type 1 of the seller is less than that of type 0 of each buyer. Hence, in this
case, extreme ownership is always suboptimal for sufficiently small values of α, as es-
tablished in part (ii) of Proposition 3. However, if the other agents’ types have a large
impact, which requires strongly negative interdependence of valuations, then extreme
ownership may be optimal even for α= 0. Part (iii) of Proposition 3 provides the precise
condition under which this happens.

Proposition 3. (i) If the extreme ownership structure with ri = 1 is optimal for revenue
weight α̂, then it is also optimal for all revenue weights α> α̂.

(ii) If η′(x) ≥ −1 for all x, then there is an α̃ > 0 such that the optimal ownership
structures are non-extreme (i.e., ri < 1 for all i) for all revenue weights α ∈ [0� α̃).

(iii) The extreme ownership structure with ri = 1 is optimal for all α ∈ [0�1] if and only
if η′(x) <−1 for some x and E[η(Xi)−η(Xj)] ≥ 1 for all j �= i.

For any positive revenue weight, there exist distributions such that extreme owner-
ship is optimal (Proposition 2), and if extreme ownership is optimal, it concentrates all
property rights at the agent with the lowest expected valuation (Corollary 5). In contrast,
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for α= 0, extreme ownership is never optimal unless interdependence is strongly nega-
tive. Moreover, as the following result shows, if the interdependence is nonnegative and
type distributions are ordered by stochastic dominance, the largest share is optimally
awarded to the agent with the highest expected valuation.22

Proposition 4. Consider the ownership structure {r0} = limα→0R
∗(α) that maximizes

revenue under ex post efficiency and suppose η′(x) ≥ 0 for all x. If Fi(x) > Fj(x) for all
x ∈ (0�1) for two agents i� j ∈ N , then 0 ≤ r0

i < r
0
j < 1 or r0

i = r0
j = 0.

Under ex post efficiency, Fi > Fj implies that i’s unique worst-off type is strictly
higher than j’s when their ownership shares are equal (as for any given type, i is less
likely to obtain the object than j). Moreover, under positive interdependence, for
the same type x, i’s interim valuation E[vi(x�X−i)] is greater than j’s interim valua-
tion E[vj(x�X−j)]. Hence, to equalize interim valuations of worst-off types, a smaller
share has to be assigned to agent i. In contrast, under negative interdependence,
E[vi(x�X−i)]<E[vj(x�X−j)], which may outweigh the asymmetry in worst-off types and
induce r0

i > r
0
j . This happens, for example, in the case of extreme ownership considered

in Proposition 3(iii).

5. Extension: Ownership structures chosen by agents

So far we have studied optimal ownership structures and dissolution mechanisms for
an exogenously given revenue weight in the designer’s objective. We now address the
closely related yet distinct question of what initial ownership structures the agents
would choose ex ante, that is, before any private information is realized, anticipating
the costs associated with subsequent reallocation of property rights due to incentive
compatibility and individual rationality constraints and, possibly, additional costs (such
as legal costs).

Specifically, we now assume that there are two stages. In the first stage, the agents
choose the ownership structure, anticipating that reallocating shares in the second stage
will be possible only if the mechanism they use generates revenue that covers the known
fixed costK. We allow for arbitraryK, whereK = 0 corresponds to requiring budget bal-
ance,K > 0 can be interpreted as costs caused by the reallocation procedure, and K < 0
describes cases where trade is to some extent subsidized.23 Because there is no pri-
vate information in the first stage, we assume that agents agree on an ownership struc-
ture that maximizes their joint expected surplus. In the second stage, agents privately
learn their types and then either reallocate property rights using an individually rational
mechanism that generates revenueK or stick to their initial shares.

22For the special case of private values where η(x) = 0, this was observed by Che (2006) and Figueroa
and Skreta (2012).

23We assume that K does not depend on the ownership structure. That is, if K is the fee charged by
the designer of the dissolution mechanism, we assume that this designer cannot price-discriminate across
partnerships. While interesting, we leave for future research the analysis of ownership structures chosen by
agents who anticipate that a price-discriminating designer wants to maximize revenue.
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5.1 Characterization

Consider the second stage. Having privately learned their types, agents may now reallo-
cate property rights or stick with the initial shares r. In case of reallocation, the agents
optimally use a dissolution mechanism (s� t) that maximizes surplus subject to raising
revenueK. That is, they solve the problem

max
s�t

∑
i∈N

E
[
vi(X)si(X)

]
s.t.

∑
i∈N

E
[
ti(X)

]≥K� (IC), and (IR)� (20)

Whether this problem has a solution, which means that reallocation is feasible, depends
on the costK and property rights r chosen in the first stage.

For any given α and r, let W0(α� r) := ∑
i∈N E[sr

α�i(X)vi(X)] be the surplus and let
W1(α� r) :=∑i∈N E[trα�i(X)] be the revenue generated by any optimal dissolution mech-

anism (sr
α� tr

α).
24 Because α= 1 means maximizing revenue, W1(1� r) is the highest rev-

enue that can be generated given ownership structure r.
If W1(1� r) ≥ K, reallocation is thus feasible. It is easy to see that the solutions

to problem (20) are then the optimal dissolution mechanisms (sr
α� tr

α) for the revenue
weight α= α∗(K� r),25 where

α∗(K� r) := min
{
α ∈ [0�1] :W1(α� r)≥K}�

If α∗(K� r)= 0, the revenue constraint in (20) is not binding and the resulting allocation
is ex post efficient. Otherwise, the revenue constraint is binding and the second-best
reallocation is given by Theorem 1 for α = α∗(K� r). In any case, the resulting payoff to
the agents isW0(α

∗(K� r)� r)−K. Note that agents always prefer this over sticking to the
initial shares r and avoiding cost K because the reallocation mechanism satisfies (IR).
In contrast, ifW1(1� r) < K, reallocating property rights at cost K is not feasible.

In the first stage, agents anticipate the effect of the initial shares on the second stage.
The sum of the agents’ payoffs from agreeing on r initially is

P(K� r) :=

⎧⎪⎨⎪⎩
W0
(
α∗(K� r)� r

)−K ifW1(1� r)≥K∑
i∈N

riE
[
vi(X)

]
ifW1(1� r) < K�

i.e., the value of the final allocation minus the cost K in case of reallocation. Bargaining
efficiently prior to the realization of any private information, the agents will agree on an
ownership structure that solves maxr∈�n−1 P(K� r). Let

R(K) := argmax
r∈�n−1

P(K� r)

denote the set of all agent-optimal ownership structures given reallocation cost K.

24Surplus and revenue are the same across all optimal dissolution mechanisms because the interim ex-
pected shares Sr

α�i(xi) are uniquely pinned down by Theorem 1 and, e.g., using Lemma 1, one can show that
W0(s� t)=∑i∈N E[(Si(Xi)− ri)(Xi −η(Xi))+ rivi(X)].

25Denoting by λ≥ 0 the Lagrange multiplier on the revenue constraint, the Lagrangian for problem (20) is∑
i∈N E[vi(X)si(X)]−λ(K−∑i∈N E[ti(X)])= (1 +λ)Wλ/(1+λ)(s� t)−λK, so the statement follows by setting

α= λ/(1 + λ).
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In the following discussion, we distinguish between three different ranges of K,
which we characterize using the optimal ownership structures R∗(α) for fixed α from
Section 4. Define K1 := W1(1� r1) for r1 ∈ R∗(1) to be the highest revenue that can be
generated under any ownership structure. Moreover, consider the ownership structure
{r0} = limα→0R

∗(α) that maximizes revenue under ex post efficiency (cf. Corollary 2)
and letK0 :=W1(0� r0) denote the associated revenue.

If K > K1, reallocation costs are prohibitively large: even if agents were to choose
revenue-maximizing initial shares, reallocation would still not be feasible. Hence, the
agents choose an ownership structure that maximizes the expected surplus in the ab-
sence of reallocation, resulting in joint payoff maxi∈N E[vi(X)].

If K ≤ K1, although reallocating shares is feasible provided that the agents choose
the initial property rights appropriately, doing so is in the agents’ interest if and only if

max
r∈�n−1

W0
(
α∗(K� r)� r

)−K ≥ max
i∈N

E
[
vi(X)

]
� (21)

i.e., if and only if the best ownership structures that render reallocation feasible yield
a higher payoff than an ownership structure that is optimal without reallocation. Note
that the left-hand side of (21) is strictly decreasing in K since W0(α

∗(K� r)� r) is nonin-
creasing in K for any fixed r. Consequently, there is a unique critical cost level K̂ ≤ K1

such that (21) is satisfied if and only if K ≤ K̂. For any K > K̂, the agents abstain from
reallocation and R(K)= argmaxr∈�n−1

∑
i∈N riE[vi(X)].26

If K ≤ K̂ and K ≤ K0, generating revenue K and reallocating ex post efficiently is
feasible under appropriately chosen initial ownership. As doing so results in the highest
possible surplus, agents choose an ownership structure in {r ∈ �n−1 :W1(0� r) ≥K} and
then use an ex post efficient dissolution mechanism to reallocate.

If K ≤ K̂ and K > K0, ex post efficient reallocation is not feasible under any initial
ownership. In this case, agents choose an ownership structure that maximizes surplus
given that they reallocate using an optimal dissolution mechanism with α > 0 that gen-
erates revenueK. The following proposition provides a summary.

Proposition 5. There is a critical cost level K̂ ≤K1 such that the agent-optimal owner-
ship structures R(K) are as follows:

(i) If K ≤ min{K0� K̂}, then R(K)= {r ∈ �n−1 :W1(0� r)≥K} and agents reallocate us-
ing an ex post efficient dissolution mechanism.

(ii) If K ∈ (min{K0� K̂}� K̂], then R(K)= argmaxr∈�n−1 W0(α
∗(K� r)� r) and agents real-

locate using an optimal dissolution mechanism for α∗(K� rK) > 0, rK ∈R(K).
(iii) IfK > K̂, then R(K)= argmaxr∈�n−1

∑
i∈N riE[vi(X)] and there is no reallocation.

There are two slightly different reasons why agents do not reallocate in part (iii) of
Proposition 5: forK >K1, reallocation is not feasible for any ownership structure, while
for K ∈ (K̂�K1], there are ownership structures that would permit reallocation but they
are dominated by ownership structures that are optimal without reallocation.

26Note that this does not require that agents can commit to abstain from reallocating: when (21) is vio-
lated, there is no individually rational dissolution mechanism that yields revenueK under r ∈R(K).
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5.2 Illustration and discussion

We now briefly illustrate Proposition 5 and its implications, beginning with the case of
identical type distributions. If Fi = F for all i ∈ N , the expected surplus without real-
location is independent of the choice of the initial ownership structure. As any indi-
vidually rational dissolution mechanism guarantees a higher payoff than sticking to the
initial shares, agents therefore never gain from choosing an ownership structure that
prevents reallocation, implying K̂ = K1. From Corollary 4, we know that equal owner-
ship rE := (1/n� � � � �1/n) is both an optimal ownership structure for all α and maximizes
revenue under ex post efficiency. Hence, for all K, it is optimal for agents to choose rE
and reallocate whenever feasible.

While equal ownership is always contained in R(K), R(K) is not a singleton unless
K =K0. ForK <K0, R(K) contains all sufficiently symmetric ownership structures that
allow for ex post efficient reallocation, and the size ofR(K) decreases inK as the revenue
constraint tightens. In contrast, forK ∈ (K0�K1], we haveR(K)=R∗(α∗(K� rE)) and the
size of R(K) increases in K because R∗(α) is increasing in α (Corollary 4): the grow-
ing distortions in the allocation again allow for more flexibility in the optimal choice of
ownership. At K =K1, there is a discontinuity since R(K)= �n−1 for allK >K1.

Figure 6 illustrates how the set of agent-optimal shares for agent 1 R1(K) = {r1 :
(r1� r2) ∈ R(K)}, changes with K for a bilateral partnership with uniformly distributed
types and η(x)= 0�6. Note that under this specification with positive interdependence
of valuations, K0 < 0, i.e., ex post efficient dissolution is impossible under any initial
ownership structure even if K = 0.

Under identically distributed types, equal initial ownership is robust in the sense
that it is always agent optimal, independently ofK. Equal shares are hence also an opti-
mal choice should there be some uncertainty at the ex ante stage regarding the size ofK.
In contrast, how much flexibility the agents have in choosing the initial ownership, i.e.,
the size of R(K), depends nonmonotonically onK.

Figure 6. Set of agent-optimal r1 as a function of K for n= 2, η(x)= 0�6x, and with identically
and uniformly distributed types, where K0 = − 1

60 and K̂ =K1 = 19
735 .
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To illustrate the effects of non-identical type distributions, we turn to a specific
parametrization.

Example 2. Consider a bilateral partnership with private values (η(x) = 0), assuming
that type distributions are F1(x)= xb and F2(x)= 1 − (1 − x)b for some b > 1 as in (17)
in Example 1. Numerical computations reveal that K̂ decreases in b, satisfying K̂ =K1

for b < 1�116, K̂ ∈ (K0�K1) for b ∈ (1�116�1�579), and K̂ ≤ K0 for b > 1�579. Thus, for b
sufficiently close to 1, the agents choose initial shares that induce reallocation whenever
feasible (as with identically distributed types). In contrast, for b sufficiently large, K̂ ≤K0

such that there is either ex post efficient reallocation or no reallocation.
Assume now that b = 1�2, resulting in K0 = 0�0781 < K̂ = 0�1068 <K1 = 0�1131. Fig-

ure 7 displays the set of agent-optimal initial shares R1(K) for agent 1. Similar to the
case of identically distributed types, for K <K0, R1(K) is not a singleton and its size is
decreasing inK. The revenue-maximizing share under ex post efficiency, which is char-
acterized in Corollary 2 and always contained in R1(K), is equal to 0.56, favoring the
stronger agent. For all K >K0, however, R1(K) is a singleton: it is first decreasing in K
until it reaches 0.34 at K̂, favoring the weaker agent, and then jumps to 1 (sole ownership
by the stronger agent), even though, for K ∈ (K̂�K1], reallocation would still be feasible
(the heavy dashed line indicates the optimal share for that purpose). For K ∈ (K0� K̂],
R(K) coincides with the optimal ownership structure R∗(α) for the unique α that yields
revenue K, where R∗

1(α) is depicted in Figure 4 of Section 4. As the revenue constraint
tightens, the weaker agent has to be favored to equalize critical worst-off types of the
two agents (which is required for optimal reallocation). For K ∈ (K̂�K1], however, these
distortions are too costly, making reallocation undesirable. ♦

The parameterK can equivalently be interpreted as measuring costly frictions for re-
allocating property rights due to legal uncertainty, lengthy and costly legal procedures,

Figure 7. Set of agent-optimal r1 as a function ofK for b= 1�2 in Example 2, whereK0 = 0�0781,
K̂ = 0�1068, and K1 = 0�1131.



Theoretical Economics 14 (2019) Structure and dissolution of partnerships 1095

or simply the level of corruption. Our findings suggest that such frictions have a pro-
found impact on the structure of businesses, which in turn lead to indirect and addi-
tional costs to society. Moderate to relatively large frictions limit the partners’ ability to
restructure their business (case (ii) of Proposition 5) and can even prevent them from
doing so altogether (case (iii) of Proposition 5). Unless partners are ex ante symmetric,
a small increase in frictions K from below to above K̂ can also drastically change the
initially chosen ownership structure. For the example displayed in Figure 7, the stronger
partner’s position changes from owning a minority share to sole ownership. Moreover,
even for relatively small frictions (case (i) of Proposition 5) that allow for agent-optimal
ownership structures that permit efficient restructuring, increasingK has the effect that
the set of optimal ownership structures shrinks. This is costly to the extent that it con-
strains the partners’ flexibility in setting up initial ownership structures, which is valu-
able if incentive reasons as in the work of Grossman and Hart (1986) and Hart and Moore
(1990) or other reasons that are outside our model constrain the set of desirable owner-
ship structures.

6. Conclusions

We fully characterize the optimal dissolution mechanisms for a general partnership
model. Beyond identifying optimal breakup procedures for business partnerships, our
results broadly provide guidance for the design of trading platforms for homogeneous
goods with arbitrary initial endowments. To curb information rents, the optimal mech-
anisms allocate based on uniquely determined ironed virtual type functions, which for
each agent are constant for a (typically interior) range of types while corresponding to
virtual costs and valuations, respectively, for lower and higher types. Ceteris paribus,
the allocation is biased toward agents with larger initial shares through an upward shift
of the range where the virtual type is constant or through favorable treatment in case
of a tie. Ex ante heterogeneity in type distributions directly translates to asymmetric
virtual types, such that, for example, stronger agents in terms of (reverse) hazard rate
dominance are discriminated against.

We use the optimal dissolution mechanisms to derive the optimal ownership struc-
tures. For identically distributed types, we show that symmetric (extreme) ownership
is always (never) optimal and that the set of optimal ownership structures expands as
rent extraction by the designer becomes more important. In contrast, with heteroge-
neously distributed types, optimal ownership structures are typically asymmetric and
vary with the weight the designer puts on rent extraction. Even extreme ownership
structures are optimal when heterogeneity and the motive of rent extraction are both
sufficiently strong. Interestingly, whenever extreme ownership is optimal, sole owner-
ship is assigned to the agent with the lowest ex ante expected valuation.

There are several promising avenues for future research that emerge from this paper.
For example, one could relax the assumption that payoffs are linear in types and shares
by allowing for complementarities across units an individual agent receives. In a related
vein, one could extend the setup to include public goods such as the classic problem
of an upstream firm that wants to set up a plant and downstream residents who want
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clean water, with the residents’ property rights representing the probability that they
would prevail in court. Finally, one could consider agents’ incentives to invest. Assum-
ing an incomplete contracting environment in which an agent’s investment improves
his type distribution and type realizations are private information, this would permit an
incomplete information counterpart to the canonical framework in the property rights
literature. While some of these questions have been tackled in the previous literature
under ex post efficiency, our methods may prove helpful in solving problems like these
more generally.

Appendix A: Proof of Theorem 1

We first prove the second part of the theorem, i.e., the statements after the first line,
taking as given that the statement in the first line is true. Then we prove the statement
in the first line.

Suppose there exists a unique z ∈ [z� z]n such that r ∈ �n(z), as stated in the first line
of the theorem. It follows that for this unique z and some tie-breaking rule a, the ironed
virtual type allocation rule sz�a and the critical types (ωα�1(z1)� � � � �ωα�n(zn)) constitute
a saddle point satisfying (9) and (10), making sz�a an optimal allocation rule consistent
with (8).

Note that by restricting the definition of �n and the statement of Theorem 1 to zi ∈
[z� z] = [ψSα�i(0)�ψBα�i(1)] ⊂ [ψBα�i(0)�ψSα�i(1)], we have confined attention to critical types
ω∗
i ∈ [ωα�i(z)�ωα�i(z)] ⊂ [0�1]. This restriction is without loss when we are looking for

optimal allocation rules. As becomes apparent below, for z = �−1
n (r) we have zi = z if

and only if ri = 0. Hence for all r, zj > z for at least one j. Accordingly, Sz�a
i (ωα�i(zi))= 0

for all zi ≤ z. If there is a saddle point involving critical type ω∗
i = ωα�i(z), then there

is also a saddle point for each ω∗
i ∈ [0�ωα�i(z)). However, all these saddle points are

equivalent in terms of the implied allocation rule s∗ and i’s worst-off types �i(s∗)= {xi :
S∗
i (xi)= 0} = [0� (ψBα�i)−1(z)]. A similar line of argument can be invoked for zi ≥ z, which

only occurs if ri = 1.
From the preceding paragraph, we conclude that whereas there can be multiple sad-

dle points satisfying (9) and (10), the corresponding allocation rule s∗ is unique up to the
tie-breaking rule and can be defined as allocating to the greatest ironed virtual type for
ironing parameters z = �−1

n (r). Whereas the exact specification of the tie-breaking rule
may differ, all optimal allocation rules result in the same interim expected shares, which
in turn pin down interim expected payments, as explained in the main text.

It remains to prove the first line of the theorem. For any A ⊆ [z� z]n, let �n(A) =
{y ∈ [0�1]n : y ∈ �n(z) for some z ∈A} denote the image of A under �n. To prove that for
each r ∈ �n−1, there is a unique z ∈ [z� z]n such that r ∈ �n(z), we show that �n has the
following two properties.

Property 1. For every y ∈ �n([z� z]n), there is a unique z such that y ∈ �n(z).

Property 2. We have �n−1 ⊂ �n([z� z]n).
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Property 1 implies the uniqueness part. It says that every point in the image of �n
corresponds to exactly one z. Put differently, the inverse correspondence �−1

n (y) := {z ∈
[z� z]n : y ∈ �n(z)} is singleton-valued for all y ∈ �n([z� z]n). Property 2 implies the exis-
tence part. It says that the image of �n contains the standard simplex �n−1.

The proof proceeds as follows. After some definitions and preliminary results in Ap-
pendix A.1, we show in Appendix A.2 that Property 1 and Property 2 hold for n = 2. In
Appendix A.3, we first uncover the recursive structure of �n. This then allows us to prove
by induction that the two properties hold for all n, using n= 2 as the base case.

A.1 Preliminaries

Recall the virtual cost distributions GSα�i and the virtual valuation distributions GBα�i de-

fined in Section 2. In what follows, we drop the subscript α and writeGSi andGBi instead.
Suppose zi > zj . Then agent i’s critical type ωα�i(zi) expects that his ironed virtual type
ψα�i(ωα�i(zi)� zi) = zi is greater than the ironed virtual type ψα�j(xj� zj) of agent j with
probabilityGBj (zi). Similarly, the critical typeωα�j(zj) of agent j expects to have a higher

ironed virtual type than agent iwith probabilityGSi (zj). Note thatGSi andGBi are strictly
increasing,GSi (zi) <G

B
i (zi) for all zi ∈ [z� z],GSi (z)= 0, andGBi (z)= 1.

Consider agent i and a vector of ironing parameters z. Let the set of agents other than
i that have an ironing parameter less than zi be denoted by Li(z) := {j : j �= i and zj < zi}.
Similarly, let the sets of agents with ironing parameter equal to and greater than zi be
denoted by Ei(z) := {j : j �= i and zj = zi} and Gi(z) := {j : j �= i and zj > zi}, respectively. If
Ei(z) �= ∅ for some i, ties in terms of ironed virtual type have strictly positive probability.

Suppose ties are broken hierarchically according to h. For each agent i, let E i(z�h) :=
{j ∈ Ei(z) : h(j) < h(i)} and E i(z�h) := {j ∈ Ei(z) : h(j) > h(i)} denote the set of other
agents with the same ironing parameter against whom agent i wins and loses ties, re-
spectively. Hence, under hierarchy h, the expected share of critical typeωα�i(zi) of agent
i is

Si
(
ωα�i(zi)

)= pi(z�h) :=
∏

j∈Li(z)∪E i(z�h)
GBj (zi)

∏
k∈Gi(z)∪E i(z�h)

GSk(zi)�

Let p(z�h) := (p1(z�h)� � � � �pn(z�h)). The outcome (Sz�a
1 (ωα�1(z1))� � � � � S

z�a
n (ωα�n(zn)))

of every split hierarchical tie-breaking rule a is equal to a convex combination of p(z�h)
for different hierarchies h ∈ H. Consequently, the set of all possible expected shares
given z is equal to the convex hull of the expected shares under fixed hierarchies, i.e.,

�n(z)= Conv
({

p(z�h) : h ∈H})�
Note that, depending on z, we may have p(z�h1) = p(z�h2) for some h1 �= h2. In

particular, if all n elements of z are distinct, i.e., Ei(z) = ∅ for all i, then tie-breaking
has no bite and all p(z�h) coincide. In this case, �n(z) is a singleton. By contrast, if z
is such that zi = z for all i, i.e., Li(z) = Gi(z) = ∅, then all n! points p(z�h) are distinct
extreme points of the convex hull �n(z). In general, if z is such that its elements take
k≤ n distinct values z1� � � � � zk, then �n(z) is equal to the convex hull of

∏k
l=1ml! distinct

extreme points, whereml denotes the number of agents i with zi = zl.
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Lemma 2. The correspondence �n has the following properties:

(i) For all z ∈ [z� z]n, �n(z) is nonempty and convex.

(ii) The correspondence �n is upper hemicontinuous.

Proof. Part (i) immediately follows from the discussion above. For part (ii), we have
to show that for any two sequences zq → z and yq → y such that yq ∈ �n(zq), we have
y ∈ �n(z). Note that if z is such that all its components are distinct, �n(z) is a singleton
that is continuous at z. Moreover, if the sequence zq → z is such that the sets of agents
for which ironing parameters coincide stay the same over the whole sequence, �n(zq)
and �n(z) are all equal to the convex hull of the same number of extreme points. Since
these extreme points are continuous in zq, yq ∈ �n(zq) and yq → y imply y ∈ �n(z) in this
case. Finally, suppose there are some i, j for which zqi > z

q
j but zi = zj . Then, if yq → y

such that yq ∈ �n(zq), there exists a hierarchical tie-breaking rule for z where h(i) > h(j)
for all i, j with zqi > z

q
j and zi = zj that induces y. Hence, y ∈ �n(z).

Partitioning the domain of �n So as to study properties of the image of �n, it proves
useful to consider the following partition of the domain [z� z]n. Define

ξn(z) := {z ∈ [z� z]n : zi = z for at least one i ∈ N
}
�

Note that ξn(z) ∩ ξn(z′) = ∅ for all z �= z′. Moreover,
⋃
z∈[z�z] ξn(z) = [z� z]n. Conse-

quently, ξn represents a partition of the domain of �n. In addition, define

On(z) := �n
(
ξn(z)

)
�

Hence, the image of �n can be written as �n([z� z]n) =⋃
z∈[z�z]On(z). Below, we deter-

mine properties of On(z) and their implications for �n([z� z]n).

A.2 Proof of Properties 1 and 2 for n= 2

Suppose n = 2. There are only two possible hierarchies between two agents, i.e., H =
{h1�h2}. Let h1 (h2) be the hierarchy where agent 1 (2) wins ties. Define ζ1(z) :=
(GB2 (z)�G

S
1(z)) and ζ2(z) := (GS2(z)�GB1 (z)). Hence, p(z� z�hk)= ζk(z) for k= 1�2. The

general description of �n in the preceding subsection implies

�2(z1� z2)=

⎧⎪⎪⎨⎪⎪⎩
(
GB2 (z1)�G

S
1(z2)

)
if z1 > z2

Conv
({
ζ1(z)�ζ2(z)

})
if z1 = z2 = z(

GS2(z1)�G
B
1 (z2)

)
if z1 < z2�

Suppose z1 = z2 = z. Geometrically, �2(z� z) is equal to all the points on the line
segment from ζ1(z) to ζ2(z), i.e., all points in {aζ1(z)+ (1 − a)ζ2(z) : a ∈ [0�1]}, where a
is the share allocated to agent 1 in case of a tie (i.e., according to hierarchy h1).

Now consider O2(z)= �2(ξ2(z)) for some z ∈ (z� z). In Figure 8, O2(z) is represented
by a polygonal chain. Geometrically, O2(z) consists of the line segment from ζ2(z) to
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Figure 8. The image of �2 and its componentsO2(z),O2(z),O2(z
′), andO2(z) for z < z < z′ < z.

ζ1(z) that represents �2(z� z)with two line segments attached to its endpoints: a vertical
line segment from ζ2(z) to (GS2(z)�1) that represents �2(z� z2) for all z2 ∈ (z� z] and a hor-
izontal line segment from ζ1(z) to (1�GS1(z)) that represents �2(z1� z) for all z1 ∈ (z� z].

Observe that both coordinates of the vertices ζ1(z) and ζ2(z) are continuous and
strictly increasing in z. Hence, for z′ > z, O2(z

′) ∩O2(z) = ∅ and O2(z
′) is further away

from the origin than O2(z) (cf. Figure 8). Put differently, O2 has the following mono-
tonicity property: If z′ > z, then for all y′ ∈ O2(z

′) and y ∈ O2(z), we have y ′
i > yi for at

least one i.
Hence, for every y ∈ �2([z� z]2), there is a unique z such that y ∈ O2(z). More-

over, note that for each y ∈ O2(z), there is a unique point (z1� z2) ∈ ξ2(z) such that
y ∈ �2(z1� z2). Consequently, for every y ∈ �2([z� z]2), there is a unique z ∈ [z� z]2 such
that y ∈ �2(z), i.e., Property 1 holds for n= 2.

Consider O2(z) and note that ζ1(z)= (GB2 (z)�0) and ζ2(z)= (0�GB1 (z)). Hence, the
points y ∈ �2(z� z) all lie below the simplex �1, which is represented by the black line
segment from (0�1) to (1�0) in Figure 8. Moreover, the vertical and horizontal parts
of O2(z) intersect with the simplex exactly at its boundary since (GS2(z)�1)= (0�1) and
(1�GS1(z))= (1�0), respectively.

Let us increase z. For z small enough, the line segment �2(z� z) still lies below the
simplex such that the vertical and horizontal parts of O2(z) intersect with the simplex
since the endpoints (GS2(z)�1) and (1�GS1(z)) of O2(z) are above and to the left of the
simplex for all z > z. As z increases, the two intersection points move inward on the
simplex. As z becomes large enough, one of the two vertices ζ1 and ζ2 crosses the sim-
plex such that one intersection point lies in �2(z� z). The two intersection points ap-
proach each other until they coincide when the second vertex also crosses the simplex.
Finally, for z sufficiently close to z, both ζ1(z) and ζ2(z), and therefore the entire polyg-
onal chain O2(z), lie above the simplex. To see this, note that ζ1(z) = (1�GS1(z)) and
ζ2(z)= (GS2(z)�1).
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We have just shown that for every y ∈ �1, there is a z such that y ∈ O2(z). Conse-
quently, �1 ⊂ �2([z� z]2) = ⋃

z∈[z�z]O2(z), i.e., Property 2 holds for n = 2. In Figure 8,

�2([z� z]2) is the shaded area between O2(z) and O2(z), representing a hexagon.

A.3 Proof of Properties 1 and 2 for n > 2

We now extend the approach of the previous subsection to n > 2. Characterizing On and
�n turns out to be significantly more complex in this case. To handle this complexity,
we first uncover the underlying recursive structure of �n: one can construct �n using
modified versions of �m for m < n. Exploiting this recursive structure, we show that
Property 1 and Property 2 hold for n if they hold for all m < n. Using n = 2 as the base
case, the two properties then hold by induction for all n.

Suppose z1 = z2 = · · · = zn = z and consider �n(z� � � � � z) = Conv({p(z� � � � � z�h) : h ∈
H}). For each of the n! different hierarchies h ∈H,

p(z� � � � � z�h)=
( =p1(z�����z�h)︷ ︸︸ ︷∏
j∈E1(h)

GBj (z)
∏

k∈E1(h)

GSk(z)� � � � �

=pn(z�����z�h)︷ ︸︸ ︷∏
j∈En(h)

GBj (z)
∏

k∈En(h)
GSk(z)

)
�

where we have simplified the notation by writing E i(h) instead of E i(z� � � � � z�h). Note
that if z > z, each h ∈H yields a distinct p(z� � � � � z�h). It can be shown that all points
p(z� � � � � z�h) lie in the same (n− 1)-dimensional hyperplane: For all h ∈H,

p(z� � � � � z�h) ∈
{

y ∈R
n :
∑
i∈N

(
GBi (z)−GSi (z)

)
yi =

∏
j∈N

GBj (z)−
∏
j∈N

GSj (z)

}
�

Consequently, �n(z� � � � � z) is an (n−1)-dimensional convex polytope (in the hyperplane
defined above) with vertices {p(z� � � � � z�h) : h ∈ H}. Each vertex is connected to n − 1
other vertices through an edge.

Now consider a nonempty subset of agents K ⊂ N and denote its complement by
K′ := N \ K. Define the set of hierarchies HK ⊂ H such that for all h ∈ HK, we have
h(i) > h(j) for all i ∈ K and j ∈ K′. If ties are broken based only on hierarchies in HK,
agents in K always win ties against agents in K′. The (n − 2)-dimensional polytope
Conv({p(z� � � � � z�h) : h ∈HK}) is a facet (i.e., an (n− 2)-face) of the (n− 1)-dimensional
polytope �n(z� � � � � z). The boundary of �n(z� � � � � z) consists of 2n − 2 such facets, one
for each possible nonempty K ⊂ N .27

Example with three agents In Appendix A.2, we have seen that �2(z� z) is a line seg-
ment. Assuming n = 3, there are six possible hierarchies, i.e., H = {h1� � � � �h6}. Hence,
�3(z� z� z) is a hexagon (with opposite sides parallel). Let ζ l := p(z� z� z�hl) and suppose
the hierarchies are enumerated in such a way that

ζ1 = (GB2 (z)GB3 (z)�GS1(z)GB3 (z)�GS1(z)GS2(z))�
ζ2 = (GB2 (z)GB3 (z)�GS1(z)GS3(z)�GS1(z)GB2 (z))�

27There are
(n
k

)
facets where |K| = k, each having k!(n− k)! vertices.
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Figure 9. The polytopal complex O3(z) and its components.

ζ3 = (GS2(z)GB3 (z)�GB1 (z)GB3 (z)�GS1(z)GS2(z))�
ζ4 = (GS2(z)GS3(z)�GB1 (z)GB3 (z)�GB1 (z)GS2(z))�
ζ5 = (GB2 (z)GS3(z)�GS1(z)GS3(z)�GB1 (z)GB2 (z))�
ζ6 = (GS2(z)GS3(z)�GB1 (z)GS3(z)�GB1 (z)GB2 (z))�

For example, h1(1) > h1(2) > h1(3) and h2(1) > h2(3) > h2(2). As shown in Figure 9,
ζ1� � � � �ζ6 are the vertices of the hexagon �3(z� z� z). The six edges ζ1ζ3, ζ3ζ4, ζ4ζ6, ζ6ζ5,
ζ5ζ2, and ζ2ζ1 correspond to tie-breaking usingH{1�2},H{2},H{2�3},H{3},H{1�3}, andH{1},
respectively.28

Modified �n correspondences and auxiliary definitions Below, we use the following two
modified versions of �n. Let M = {j1� j2� � � � � jm} ⊆ N be a subset of m ≥ 2 agents. First,
we denote by �̂M:N

m the correspondence �m for a partnership among them agents in M
with modified virtual type distributions

ĜJi (z) :=GJi (z)
( ∏
k∈N \M

GBk(z)

) 1
m−1

for i ∈ M and J = S�B�

Note that all the properties of virtual type distributions GJi carry over to modified vir-

tual type distributions ĜJi . In particular, ĜBi (z) > Ĝ
S
i (z) for all z ∈ [z� z], ĜBi (z)= 1, and

ĜSi (z)= 0. Hence all results for �m extend to �̂M:N
m .

28For n= 4, �4(z� z� z� z) is a truncated octahedron. In general, �n(z� � � � � z) is reminiscent of a permuta-
hedron (see, e.g., Ziegler 1995), but its facets exhibit less symmetry (unless Fi = F for all i).
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Second, we denote by �̌M:N
m the correspondence �m for a partnership among the m

agents in M with modified virtual type distributions

ǦJi (z) :=GJi (z)
( ∏
k∈N \M

GSk(z)

) 1
m−1

for i ∈ M and J = S�B�

Most properties ofGJi carry over to their modified versions ǦJi , including ǦBi (z) > Ǧ
S
i (z)

for all z ∈ (z� z] and ǦSi (z)= 0. The only differences are ǦBi (z) < 1 and ǦBi (z)= 0. Again,

all results for �m extend to �̌M:N
m , except for those relying on ǦBi (z)= 1 or ǦBi (z) > 0. In

particular, note that �̌M:N
m (z� � � � � z) is equivalent to �m(z� � � � � z)multiplied by the scalar∏

k∈N \MGSk(z) (except for them agents potentially being labeled differently).
We also make use of the following auxiliary definitions for one-agent partnerships

where M is a singleton: �̂{j}:N
1 (z) :=∏

i∈N \j GBi (z) and �̌{j}:N
1 (z) :=∏

i∈N \j GSi (z) for all
z ∈ [z� z].
Recursive structure of On Let us now study On(z)= �n(ξn(z)). Define

ξKn (z) := {z ∈ [z� z]n : zi > z for i ∈ K and zj = z for j ∈ K′} for all K ⊂ N �

yielding a partition of ξn(z) into 2n − 1 sets. Hence, On(z)=⋃K⊂N �n(ξ
K
n (z)).

Consider a specific K ⊂ N and suppose zi > z for i ∈ K and zj = z for j ∈ K′. Then
we can treat agents in K separately from agents in K′. For the former, their critical type’s
expected share is as in a partnership among k := |K| agents with modified virtual type
distributions ĜJi as defined above. For the latter, expected shares are as in �n−k(z� � � � � z)
but multiplied by the scalar

∏
i∈KGSi (z), i.e., as in a partnership with n− k agents and

modified virtual type distributions ǦJi . Given y ∈ [0�1]n, define yK := (yi1� yi2� � � � � yik)

for K = {i1� i2� � � � � ik} and yK′ := (yj1� yj2� � � � � yjn−k) for K′ = {j1� j2� � � � � jn−k}. Hence, the
closure of �n(ξKn (z)) is

oKn (z) := {y ∈ [0�1]n : yK ∈ �̂K:N
k

([z� z]k) and yK′ ∈ �̌K′:N
n−k (z� � � � � z)

}
�

Note that �n−k(z� � � � � z) is an (n− k− 1)-dimensional convex polytope. If, in addition,
�m([z� z]m) is anm-dimensional convex polytope for allm< n (as we already showed for
m= 2 above), then oKn (z) is an (n− 1)-dimensional convex polytope for all K.

With the definition above, On(z) = ⋃
K⊂N o

K
n (z). Note that o∅n (z) = �n(z� � � � � z).

Consequently, On(z) is a polytopal complex that consists of 2n − 1 polytopes of dimen-
sion (n− 1): �n(z� � � � � z)with a polytope oKn (z)with nonempty K attached to each of its
2n − 2 facets.

Example with three agents (continued) The polytopal complex O3(z) consists of the
hexagon �3(z� z� z) with one polygon attached to each of its six edges, as shown in Fig-
ure 9. Those six polygons can be divided into two groups: o{1}

3 (z), o{2}
3 (z), and o{3}

3 (z) are

convex quadrilaterals and o{1�2}
3 (z), o{1�3}

3 (z), and o{2�3}
3 (z) are hexagons. For example,

o
{1}
3 (z)= {y ∈ [0�1]3 : y1 ∈ �̂{1}:N

1

([z� z]) and (y2� y3) ∈ �̌{2�3}:N
2 (z� z)

}
�
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Since both �̂{1}:N
1 ([z� z]) and �̌{2�3}:N

2 (z� z) are line segments, o{1}
3 (z) is a convex quadri-

lateral, sharing the edge ζ2ζ1 with the hexagon �3(z� z� z). Moreover,

o
{1�2}
3 (z)= {y ∈ [0�1]3 : (y1� y2) ∈ �̂{1�2}:N

2

([z� z]2) and y3 = �̌{3}:N
1 (z)

}
�

Note that y3 is constant, whereas �̂{1�2}:N
2 ([z� z]2) is a hexagon, which follows from Ap-

pendix A.2 (cf. Figure 8). Hence, o{1�2}
3 (z) is also a hexagon, sharing the edge ζ1ζ3 with

the hexagon �3(z� z� z).

Monotonicity of On Observe that all coordinates of each p(z� � � � � z�h) are continu-
ous and strictly increasing in z. Hence, if ẑ > z, then for all ŷ ∈ �n(ẑ� � � � � ẑ) and
y ∈ �n(z� � � � � z), we have ŷi > yi for at least one i. The following lemma shows that the
monotonicity property of �n(z� � � � � z) extends to On(z).

Lemma 3. If ẑ > z, then for all ŷ ∈On(ẑ) and y ∈On(z), ŷi > yi for at least one i.

Proof. We show that ŷi > yi for at least one i for all K�M ⊂ N and ŷ ∈ oMn (ẑ), y ∈ oKn (z).
Note that each ŷ ∈ oMn (ẑ) corresponds to a ẑ ∈ [ẑ� z]n and a tie-breaking rule. Now,

consider the ỹK′ ∈ �̌K′:N
n−k (ẑ� � � � � ẑ) that is obtained when breaking ties among agents

in K′ in such a way that the same rule as for ŷ is applied for all j� l ∈ K′ where ẑj = ẑl,
whereas j wins against l for all j� l ∈ K′ where ẑj > ẑl. This tie-breaking implies ŷj > ỹj
for all j ∈ K′ ∩ M since pj(ẑ�h) > pj(ẑ� � � � � ẑ�h) for all relevant hierarchies h. More-
over ŷl ≥ ỹl for all l ∈ K′ ∩ M′. Hence, we conclude that for all ŷ ∈ oMn (ẑ), there is a
ỹK′ ∈ �̌K′:N

n−k (ẑ� � � � � ẑ) such that ŷi ≥ ỹi for all i ∈ K′.
Since ẑ > z, there is for all ỹK′ ∈ �̌K′:N

n−k (ẑ� � � � � ẑ) and yK′ ∈ �̌K′:N
n−k (z� � � � � z) at least

one i ∈ K′ such that ỹi > yi. Combining this with the conclusion of the preceding para-
graph implies that for all ŷ ∈ oMn (ẑ) and y ∈ oKn (z), there is at least one i ∈ K′ such that
ŷi ≥ ỹi > yi.

For the three-agent example displayed in Figure 9, Lemma 3 implies that O3(z)

moves toward the observer as we increase z. See also Figure 10 that depicts O3(z) for
four different values for z.

Induction step for Property 1 Monotonicity of On implies that for each y ∈ �n([z� z]n)=⋃
z∈[z�z]On(z), there is a unique z such that y ∈On(z).

Lemma 4. If Property 1 holds for all �m withm< n, then Property 1 holds for �n.

Proof. Lemma 3 implies that for every y ∈ �n([z� z]n), there is a unique z such that
y ∈On(z).

We next show that for every y ∈ On(z), there is a unique K ⊂ N such that y ∈
�n(ξ

K
n (z)). Consider K�M ⊂ N such that K �= M. Without loss of generality, sup-

pose K ∩ M′ �= ∅. Then, for all y ∈ �n(ξKn (z)) and ỹ ∈ �n(ξMn (z)), yi > ỹi for at least
one i ∈ K ∩ M′. To see this, consider the corresponding z ∈ ξKn (z) and z̃ ∈ ξMn (z). For
i ∈ K∩M′ and j ∈ K′, we have zi > zj = z but z̃i = z ≤ z̃j . Hence, in the first case, the crit-
ical type of agent i has a strictly higher winning probability against agents in K′ than in
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the second case. The same is true for j ∈ K∩M, since zi > z whereas z̃i = z < z̃j . Finally,
the winning probability of agent i’s critical type against other agents in K∩M′ cannot be
lower for all i ∈ K ∩ M′ when considering z ∈ ξKn (z) than when considering z̃ ∈ ξMn (z).
Consequently, yi > ỹi for at least one i.

So far we have shown that for every y ∈ �n([z� z]n), there are unique z, K such that
y ∈ �n(ξKn (z)). This already partially pins down z: for all i ∈ K′, we have zi = z. Moreover,
y ∈ �n(ξKn (z)) implies y ∈ oKn (z) and, therefore, yK ∈ �̂K:N

k ([z� z]k). If Property 1 holds for

k< n, there is a unique zK such that yK ∈ �̂K:N
k (zK). This pins down zi also for i ∈ K.

Convexity of �n([z� z]n) Suppose �m([z� z]m) is a convex polytope for all m< n. As ob-
served above, this implies that On(z) is a polytopal complex consisting of 2n − 1 convex
polytopes oKn of dimension n − 1, one for each K ⊂ N . If K ∩ M �= ∅, then the two
polytopes oKn and oMn are adjacent, i.e., they share a facet (of dimension n− 2). Let the
boundary of the polytopal complexOn(z) be defined as all the facets of each polytope oKn
that are not shared with some other polytope oMn , where K �= M. Each point y ∈ �n(z)
on the boundary of On(z) corresponds to a z where, for some K ⊂ N , zi = z for i ∈ K,
whereas zj = z for j ∈ K′.

In a manner similar to the construction of On above, define

Qn(z) := �n
({

z ∈ [z� z]n : zi = z for at least one i ∈ N
})=

⋃
K⊂N

qKn (z)�

where

qKn (z) := {y ∈ [0�1]n : yK ∈ �̂K:N
k (z� � � � � z) and yK′ ∈ �̌K′:N

n−k
([z� z]n−k)}�

The termQn(z) represents the image under �n of the set of all z where zi ≥ z for all i and
zi = z for at least one i. Observe thatQn(z) contains all the boundary points of On(z̃) for
each z̃ ∈ [z� z]. Moreover,Qn(z)=On(z).

Lemma 5. The image �n([z� z]n) is an n-dimensional convex polytope for all z < z. The
boundary of this polytope is On(z)∪Qn(z).

Proof. From Appendix A.2 we know that �2([z� z]2) is a hexagon. We now show that
if �m([z� z]m) is a convex polytope for all m < n, then �n([z� z]n) is a convex polytope.
Consequently, the first statement in the lemma follows by induction.

Suppose �m([z� z]m) is a convex polytope for all m < n and recall that �n([z� z]n) =⋃
z̃∈[z�z]On(z̃). As derived above, On(z) is a polytopal complex. As all coordinates of the

extreme points of �n(z� � � � � z) are continuous and strictly increasing in z, Lemma 3 im-
plies that On(z) continuously moves further away from the origin as z increases. Hence,
On(z) is part of the boundary of �n([z� z]n).

In addition to On(z), all boundary points of On(z̃) for each z̃ ∈ (z� z) are also part
of the boundary of �n([z� z]n), whereas all interior points of On(z̃) are in the inte-
rior of �n([z� z]n). Last, note that On(z) consists of only one convex polytope (namely
�n(z� � � � � z)) and that all its points are part of the boundary of �n([z� z]n).
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The termQn(z) represents all points on the boundary of �n([z� z]n) described in the
preceding paragraph, i.e., boundary points that are not in On(z). Consequently, On(z)∪
Qn(z) represents the entire boundary of �n([z� z]n). Like On(z),Qn(z) is also a polytopal
complex that consists of 2n − 1 convex polytopes of dimension n − 1. The boundary
of �n([z� z]n) therefore consists of 2n+1 − 2 convex polytopes (oKn (z) and qKn (z) for all
K ⊂ N ), making �n([z� z]n) an n-dimensional polytope with 2n+1 − 2 facets.

Recall that for all z < z, On(z) consists of �n(z� � � � � z)with an oKn (z) attached to each
facet. The points in each oKn (z) are further away from the origin than the points on
the corresponding facet of �n(z� � � � � z). Because of the monotonicity and continuity
properties of On(z), for all y ∈ Conv(On(z)) such that y /∈On(z), there is a z̃ ∈ (z� z] such
that y ∈On(z̃). Hence, the polytope �n([z� z]n)=⋃z̃∈[z�z]On(z̃) is convex.

Induction step for Property 2 Consider On(z). This represents a special case since
�n(z� � � � � z) is a general (n − 1)-simplex with only n vertices rather than a polytope
with n! vertices. In particular, note that for each vertex p(z� � � � � z�h) = (p1� � � � �pn),
pi ∈ (0�1) for one i, whereas pj = 0 for all j �= i, resulting in only n distinct vertices. Since∑n
i=1pi < 1, the general simplex �n(z� � � � � z) does not intersect with standard simplex

�n−1: the former lies closer to the origin than the latter.29

It follows thatOn(z) consists of only n+1 polytopes of dimension (n−1): the general
simplex �n(z� � � � � z)with a polytope oin attached to each of its n facets (each correspond-
ing to a general (n− 2)-simplex), where, for each i ∈ N ,

oin := {y ∈ [0�1]n : yN \i ∈ �̂N \i:N
n−1

([z� z]n−1) and yi = 0
}
�

Lemma 6. If Property 2 holds for all �m withm< n, thenOn(z) contains the entire bound-
ary (all n facets) of �n−1.

Proof. Recall that On(z) is the union of �n(z� � � � � z) and n polytopes oin as defined
above. Property 2 for m< n implies, in particular, �n−2 ⊂ �n−1([z� z]n−1) and, therefore,
�n−2 ⊂ �̂N \i:N

n−1 ([z� z]n−1). Moreover, the n facets of�n−1 all correspond to one coordinate
being set to zero, i.e., yN \i ∈ �n−2 and yi = 0.

Panel (a) of Figure 10 illustrates Lemma 6 in the three-agent example. It shows how
O3(z) intersects with the boundary of the semitransparent black triangle that represents
the simplex �2. Figure 10 also conveys that as we increase z, the intersection of O3(z)

with �2 moves inward (panels (b) and (c)) until the entire simplex has been covered and
for all higher z, O3(z) does not intersect with �2 (panel (d)).30 Hence, Property 2 holds
for �3.

Using the convexity of �n([z� z]n), it is now straightforward to obtain the following
lemma.

29In the three-agent example above, we obtain, for z = z, ζ1 = ζ2 = (GB2 (z)G
B
3 (z)�0�0), ζ3 = ζ4 =

(0�GB1 (z)G
B
3 (z)�0), and ζ5 = ζ6 = (0�0�GB1 (z)G

B
2 (z)).

30Let ẑ be the smallest z such that
∑
i∈N pi(z� � � � � z�h)≥ 1 for all h ∈H. Similarly, let ž be the greatest z

such that
∑
i∈N pi(z� � � � � z�h)≤ 1 for all h ∈H. Observe that z < ž ≤ ẑ < z (with ž = ẑ if Fi = F for all i). The

polytopal complex On(z) intersects with �n−1 if and only if z ≤ ẑ, whereas �n(z� � � � � z) intersects with �n−1

if and only if z ∈ [ž� ẑ]. Panels (b), (c), and (d) of Figure 10 correspond to z < ž < z′ < ẑ < z′′.
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Figure 10. Increasing z in the three-agent example: O3 for some z < z < z′ < z′′ < z and the
simplex �2 (semitransparent black triangle).

Lemma 7. If Property 2 holds for all �m withm< n, then Property 2 holds for �n.

Proof. If Property 2 holds for all �m with m < n, then, according to Lemma 6, On(z)
contains the entire boundary of �n−1. By Lemma 5, �n([z� z]n) is convex and On(z) is
part of the boundary of �n([z� z]n). Consequently, the boundary of�n−1 being contained
in the boundary of �n([z� z]n) implies Property 2 for �n.

Final step As shown in Appendix A.2, Property 1 and Property 2 hold for n = 2. By
induction, using Lemmata 4 and 7, Property 1 and Property 2 hold for all n.

Appendix B: Other proofs

B.1 Proof of Lemma 1

The definition of Ui implies

Wα(s� t)=
∑
i∈N

E
[
vi(X)

(
si(X)− ri

)]− α∑
i∈N

E
[
Ui(Xi)

]+ (1 − α)
∑
i∈N

E
[
vi(X)ri

]
� (22)

Using the fact that
∑
i∈N (si(X)− ri)= 0, we get

∑
i∈N

E
[
vi(X)

(
si(X)− ri

)]=
∑
i∈N

E

[(
Xi −η(Xi)+

∑
j∈N

η(Xj)

)(
si(X)− ri

)]

=
∑
i∈N

E
[(
Xi −η(Xi)

)(
Si(Xi)− ri

)]
� (23)

Integrating (IC2) by parts, we obtain, for all x̂i ∈ [0�1],

E
[
Ui(Xi)

] = Ui(x̂i)+
∫ 1

0

∫ xi

x̂i

(
Si(y)− ri

)
dyfi(xi)dxi

= Ui(x̂i)−
∫ x̂i

0
Fi(y)

(
Si(y)− ri

)
dy +

∫ 1

x̂i

(
1 − Fi(y)

)(
Si(y)− ri

)
dy� (24)
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Substituting (23) and (24) into (22) yields

Wα(s� t) =
∑
i∈N

(∫ x̂i

0
ψSα�i(y)

(
Si(y)− ri

)
fi(y)dy +

∫ 1

x̂i

ψBα�i(y)
(
Si(y)− ri

)
fi(y)dy

)
− α

∑
i∈N

Ui(x̂i)+ (1 − α)
∑
i∈N

E
[
vi(X)ri

]
�

which, by the definitions of ψα�i(xi� x̂i) and W̃α(s� x̂), is equivalent to (3).
Consider x̂�ω ∈ [0�1]n. From (3), we obtain

W̃α(s� x̂)− W̃α(s�ω)= α
∑
i∈N

(
Ui(x̂i)−Ui(ωi)

)
�

For all ω ∈ �(s) and x̂ /∈ �(s), we have Ui(x̂i) ≥ Ui(ωi) for all i, where the inequality
is strict for at least one i, and, therefore, W̃α(s� x̂) > W̃α(s�ω). Consequently, �(s) =
arg minx̂ W̃α(s� x̂).

B.2 Proof of Proposition 1

Suppose agent 2 plays the candidate equilibrium strategy given in the proposition. We
show that it is a best response for agent 1 to also play this strategy.

First, consider the continuation game after both agents have chosen buy. Agent 1
infers that x2 > ω and has to choose his strategy in the open ascending forward auc-
tion. Given that agent 2 follows the strategy to stay in the auction until the price reaches
v2(x2�x2), agent 1’s payoff from winning the auction is v1(x1�x2)− v2(x2�x2), which is
positive for x2 ≤ x1. Hence, it is optimal for agent 1 to drop out at price v1(x1�x1). (If
x1 <ω, which is off the equilibrium path, agent 1 drops out immediately.) Essentially the
same argument applies to the continuation game after both agents have chosen sell:
agent 1 chooses to drop out at price v1(x1�x1) in the open descending reverse auction.

Now consider the first stage where agent 1 chooses between buy, hold, and sell:

• Conditional onX2 <ω, i.e., agent 2 choosing sell, agent 1’s expected payoff is

1
2
(
E
[
v1(x1�X2)|X2 <ω

]−pB)+E[max
{
v2(X2�X2)− v1(x1�X2)�0

}|X2 <ω
]

if he chooses sell and 1
2(E[v1(x1�X2)|X2 <ω] −pB) if he chooses hold or buy.

• Conditional on X2 ∈ [ω�ω], i.e., agent 2 choosing hold, agent 1’s expected payoff
is 1

2(p̂
S −E[v1(x1�X2)|ω≤X2 ≤ω]) if he chooses sell, 0 if he chooses hold, and

1
2(E[v1(x1�X2)|ω≤X2 ≤ω] − p̂B) if he chooses buy.

• Conditional on X2 > ω, i.e., agent 2 choosing buy, agent 1’s expected payoff is
1
2(p

S −E[v1(x1�X2)|X2 >ω]) if he chooses sell or hold and

1
2
(
pS −E[v1(x1�X2)|X2 >ω

])+E[max
{
v1(x1�X2)− v2(X2�X2)�0

}|X2 >ω
]

if he chooses buy.
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Consequently, in all three cases, agent 1 finds it optimal to choose sell if x1 <ω, hold

if ω≤ x1 ≤ω, and buy otherwise.
Note that the allocation induced in this equilibrium is equal to the optimal allocation

of Theorem 1. Hence, by incentive compatibility, the induced payments are also pinned
down up to a constant. Now note that according to Theorem 1, the interim payment of
types x1 ∈ [ω�ω] in an optimal dissolution mechanism is

T1(x1) = E

[
v1(x1�X2)

(
s1(x1�X2)− 1

2

)]
= F(ω)E

[
v1(x1�X2)

(
1 − 1

2

)∣∣X2 <ω

]
+ (1 − F(ω))E[v1(x1�X2)

(
−1

2

)∣∣X2 >ω

]
= F(ω)

1
2
pB − (1 − F(ω))1

2
pS�

which coincides with the expected payment of those types in the indirect mechanism.

B.3 Proof of Theorem 2

Part (i) was shown in the main text. Concavity of the objective implies that the set R∗(α)
of maximizers is convex. To complete the proof of part (ii), we show that at most one
of the two ownership structures r′ = (1�0� � � � �0) and r′′ = (0�1�0 � � � �0) can be optimal,
implying that R∗(α) is a strict subset of �n−1. The ironing parameters of optimal dis-
solution mechanisms for r′ and r′′ satisfy z′

1 = z, z′
2 = z and z′′

1 = z, z′′
2 = z, respectively

(cf. the proof of Theorem 1 in Appendix A). For both r′ and r′′ to be optimal, condi-
tion (15) in part (iii) would require that E[v1(ωα�1(z)�X−1)] ≤ E[v2(ωα�2(z)�X−2)] and
E[v1(ωα�1(z)�X−1)] ≥ E[v2(ωα�2(z)�X−2)]. But these inequalities cannot hold simulta-
neously because each ωα�i(zi) is strictly increasing in zi.

It remains to prove part (iii). First, note that

E
[
ψα�i(Xi� x̂i)

]= (1 − α)E[vi(X)]+ αE[vi(x̂i�X−i)
]− ∑

j∈N
E
[
η(Xj)

]
�

Combining this with (13) and (14), we obtain

Wα
(
sr
α� tr

α

) = min
x̂∈[0�1]n

{
−α

∑
i∈N

riE
[
vi(x̂i�X−i)

]
+
∑
i∈N

E
[
η(Xi)

]+ max
s∈S

E

[∑
i∈N

si(X)ψα�i(Xi� x̂i)
]}
� (25)

For the remainder of this proof, it is more convenient to represent the standard sim-
plex by �̂n−1 := {r ∈ [0�1]n−1 :∑n−1

i=1 ri ≤ 1}. Note that using this definition, (r1� � � � � rn−1) ∈
�̂n−1 is equivalent to (r1� � � � � rn−1�1 − ∑n−1

i=1 ri) ∈ �n−1. Define the value function
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Vα : �̂n−1 → R such that Vα(r̂1� � � � � r̂n−1) = Wα(sr
α� tr

α) for r = (r̂1� � � � � r̂n−1�1 −∑n−1
i=1 r̂i).

Hence, (25) yields, for each r ∈ �̂n−1,

Vα(r)= min
x̂∈[0�1]n

{
α

n−1∑
i=1

ri
(
E
[
vn(x̂n�X−n)

]−E[vi(x̂i�X−i)
])− αE[vn(x̂n�X−n)

]

+
∑
i∈N

E
[
η(Xi)

]+ max
s∈S

E

[∑
i∈N

si(X)ψα�i(Xi� x̂i)
]}
�

Because Vα(r)—like Wα(sr
α� tr

α)—is the minimum of a family of affine functions of r, it is
concave and differentiable almost everywhere. By the envelope theorem,

∂Vα(r)
∂ri

= α(E[vn(ω∗
n�X−n

)]−E[vi(ω∗
i �X−i

)])
� (26)

whereω∗
i =ωα�i(z∗

i ) for i ∈ N and z∗ = �−1
n (r�1 −∑n−1

i=1 ri). Note that since eachωα�i and
�−1
n is a continuous function, these partial derivatives are continuous. Therefore, Vα is

differentiable on �̂n−1.
Consider the problem of maximizing Vα(r1� � � � � rn−1) subject to (r1� � � � � rn−1) ∈ �̂n−1.

As we maximize a concave and differentiable function over a convex set, a solution ex-
ists and can be identified using Kuhn–Tucker conditions. We represent the requirement
(r1� � � � � rn−1) ∈ �̂n−1 by the following n inequality constraints: For all i ∈ {1� � � � � n− 1}, let
λi denote the Lagrange multiplier on the constraint ri ≥ 0 and let λn denote the Lagrange
multiplier on the constraint 1− rn =∑n−1

i=1 ri ≤ 1. Any solution corresponds to shares and
nonnegative multipliers that satisfy

∂Vα(r)
∂ri

+ λi − λn = 0 and λiri = 0 for all i ∈ {1� � � � � n− 1}

as well as (
∑n−1
i=1 ri − 1)λn = 0. Using (26), this implies that an ownership structure r is

optimal if and only if it satisfies (15) in part (iii) of the theorem.

B.4 Proof of Corollary 2

Using the definition of vi, and setting ωα�i(z∗
i )=ω0�i and Ŷ = Y −∑i∈N E[η(Xi)], con-

dition (15) can be written as

ω0�i = Ŷ +E[η(Xi)] if ri > 0 and 0 =ω0�i ≥ Ŷ +E[η(Xi)] if ri = 0�

Because ri =∏j �=i Fj(ω0�i), the equality and the inequality are both equivalent to

ri =
∏
j �=i
Fj(ω0�i)=

∏
j �=i
Fj
(
Ŷ +E[η(Xi)])�

which yields (16), and Ŷ is pinned down by the requirement that
∑
i∈N ri = 1.

Moreover, by (16), r0
i > 0 if and only if Ŷ + E[η(Xi)] > 0. Hence, r0

i > 0 and
E[η(Xj)] ≥E[η(Xi)] implies r0

j > 0.
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B.5 Proof of Proposition 2

Suppose Fi(x)= 1 − (1 − x)b and Fj(x)= xb for all j �= i, where b > 1. We show that (19)
holds if b is large enough. Inequality (19) is equivalent to

E

[
min

{
Fi(Xi)

fi(Xi)
�
z−Xi +η(Xi)

α

}
+ min

{
1 − Fj(Xj)
fj(Xj)

�
Xj −η(Xj)− z

α

}]
≤E[vj(X)− vi(X)

]
(27)

for all j �= i. Define θ := maxx∈[0�1]η′(x) and θ := minx∈[0�1]η′(x). Noting that Fi(x) ≥
Fj(x) for all x and using integration by parts, we then have

E
[
η(Xj)−η(Xi)

] =
∫ 1

0
η′(y)

(
Fi(y)− Fj(y)

)
dy

≤ θ

∫ 1

0

(
Fi(y)− Fj(y)

)
dy = θE[Xj −Xi]�

Accordingly, we obtain a lower bound for the right-hand side of (27):

E
[
vj(X)− vi(X)

]=E[Xj +η(Xi)−Xi −η(Xj)
]≥ (1 − θ)E[Xj −Xi]�

Moreover, we obtain upper bounds for the following two terms on the left-hand side of
(27):

z−Xi +η(Xi)= 1 −Xi −
∫ 1

Xi

η′(y)dy ≤ (1 − θ)(1 −Xi)�

Xj −η(Xj)− z =Xj −
∫ Xj

0
η′(y)dy ≤ (1 − θ)Xj�

Taken together, (27) hence holds if

E

[
min

{
Fi(Xi)

fi(Xi)
�
(1 − θ)(1 −Xi)

α

}
+ min

{
1 − Fj(Xj)
fj(Xj)

�
(1 − θ)Xj

α

}]
≤ (1 − θ)E[Xj −Xi]� (28)

Using the explicit assumptions on Fi and Fj , (28) simplifies to

2
∫ 1

0
min

{
1 − xb� (1 − θ)b

α
xb
}
dx≤ (1 − θ)b− 1

b+ 1
� (29)

With x̃ := (α/((1 − θ)b+ α))1/b, carrying out the integral gives∫ 1

0
min

{
1 − xb� (1 − θ)b

α
xb
}
dx=

∫ x̃

0

(1 − θ)b
α

xb dx+
∫ 1

x̃
1 − xb dx= b

b+ 1
(1 − x̃)�

Hence, (29) is equivalent to

1 − (1 − θ)(b− 1)
2b

≤
(

α

(1 − θ)b+ α
) 1
b

� (30)
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Because θ < 1, the left-hand side of (30) is strictly less than 1 for all b > 1. By contrast,

lim
b→∞

(
α

(1 − θ)b+ α
) 1
b = lim

b→∞
exp
(

ln(α)
b

− ln
(
(1 − θ)b+ α)

b

)
= 1�

Consequently, (30), and therefore (27), holds for b sufficiently large, which establishes
the first part of the proposition.

Now consider a partnership where for a nonempty set of agents I , Fi(x)= 1−(1−x)b
for all i ∈ I and Fj(x)= xb for all j /∈ I . Let b > 1 be such that (27) holds. Hence,

E
[
vi
(
ωα�i(z)�X−i

)]≤E[vj(ωα�j(z)�X−j
)]

for all i ∈ I and j /∈ I�

Sinceωα�i(z∗
i ) is increasing in z∗

i , all ownership structures that satisfy the optimality con-
dition (15) of Theorem 2 assign rj = 0 to each j /∈ I and sufficiently equal nonzero shares
to i ∈ I such that z∗

i = z∗ > z = z∗
j for all i ∈ I and j /∈ I for the associated optimal disso-

lution mechanisms. This establishes the second part of the proposition.

B.6 Proof of Proposition 3

Both sides of (19) are continuous in α. Moreover, the left-hand side of (19) is strictly
decreasing and the right-hand side of (19) is strictly increasing in α. This immediately
implies (i).

Taking the limit as α→ 0, (19) becomes

E

[
vi(X)+ Fi(Xi)

fi(Xi)

]
≤E

[
vj(X)− 1 − Fj(Xj)

fj(Xj)

]
�

This is equivalent to E[η(Xi)−η(Xj)] ≥ 1. However, if η′(x) ∈ [−1�1), then

E
[
η(Xi)−η(Xj)

]=
∫ 1

0
η′(y)

(
Fj(y)− Fi(y)

)
dy < 1�

which means that (19) is violated for α→ 0. Hence, either there exists a revenue weight
α̂ > 0 such that (19) holds with equality or (19) is violated for all α. In both cases, (ii) is
true. Conversely, if E[η(Xi)−η(Xj)] ≥ 1 for all j �= i, which requires η′(x) <−1 for some
x, then (19) holds for α= 0. By (i), (19) then holds for all α, resulting in (iii).

B.7 Proof of Proposition 4

Note that η′(x)≥ 0 and Fi(x) < Fj(x) for all x ∈ (0�1) impliesE[η(Xi)] ≥E[η(Xj)]. First,
suppose r0

i > 0. With Fi(x) < Fj(x) and E[η(Xi)] ≥E[η(Xj)], (16) in Corollary 2 yields

r0
i =

∏
k�=i
Fk
(
Ŷ +E[η(Xi)])>∏

k�=j
Fk
(
Ŷ +E[η(Xj)])= r0

j �

Now, suppose r0
i = 0. In this case, r0

j = 0 is immediate from the last statement in Corol-
lary 2.
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