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On the clock of the combinatorial clock auction

Maarten Janssen
Department of Economics, University of Vienna, National Research University Higher School of

Economics Moscow, and CEPR

Bernhard Kasberger
The Queen’s College, University of Oxford

The combinatorial clock auction (CCA) has frequently been used in recent spec-
trum auctions. It combines a dynamic clock phase and a one-off supplementary
round. The winning allocation and the corresponding prices are determined by
the Vickrey–Clarke–Groves rules. These rules should encourage truthful bidding,
whereas the clock phase is intended to reveal information. We inquire into the
role of the clock when bidders have lexicographic preferences for raising rivals’
costs. We show that in an efficient equilibrium, the clock cannot fully reveal bid-
ders’ types. In the spirit of the ratchet effect, in the supplementary round com-
petitors extract surplus from strong bidders whose type is revealed. We also show
that if there is substantial room for information revelation, that is, if the uncer-
tainty about the final allocation is large, all equilibria of the CCA are inefficient.
Qualitative features of our equilibria are in line with evidence concerning bidding
behavior in some recent CCAs.
Keywords. Combinatorial auctions, spectrum auctions, spiteful bidding, raising
rival’s cost, ratchet effect.

JEL classification. D44, D47, L96.

1. Introduction

In recent years, many regulators around the world have chosen the combinatorial clock
auction (CCA) to allocate telecommunication spectrum. The CCA has partially replaced
the older simultaneous ascending auction (SAA) for two reasons. First, in the SAA, bid-
ders may strategically reduce demand. If it is relatively clear to the bidders what the
final allocation of an auction is where bidders bid competitively, then they have an in-
centive to reach the same allocation at much lower prices (Grimm et al. 2003). The SAA
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provides bidders with the possibility of reaching such a noncompetitive outcome. The
sophisticated design of the CCA should overcome this issue as it incorporates (i) a gen-
eralized second-price (Vickrey) rule providing bidders with an incentive to bid truthfully
(Cramton 2013) and (ii) a clock phase that should facilitate “price and package discov-
ery” (Ausubel et al. 2006). Second, in contrast to the SAA, bidders can express bids for
packages in the CCA. Package bidding is deemed to be important as current spectrum
auctions allocate multiple units where bidders may value a package of licenses more
than the sum of the individual components. If that is the case, the SAA, but not the CCA,
suffers from the well known exposure problem, i.e., at the end of the auction, bidders
may end up with a few units at a price that is more than their value for these units. The
focus of this paper is the first issue: is it the case that the CCA provides bidders with an
incentive to bid truthfully and that the clock phase facilitates price and package discov-
ery?

The CCA is a dynamic version of the Vickrey–Clarke–Groves (VCG) mechanism and
consists of two integrated phases.1 In the first clock phase, bidders express their demand
on packages at given prices in every round. If, for a certain good, demand is larger than
supply in a given round, then the price for that good is increased in the next round. The
clock phase ends when demand is not larger than supply for all the auctioned goods.
Importantly, no goods are allocated and no prices are determined at the end of the clock
phase. Instead, the clock phase imposes constraints on the bids that are allowed in the
second, supplementary, phase. In that one-off sealed-bid phase, bidders can bid on as
many additional packages as they like and they may raise bids on packages they have bid
on in the clock phase. At the end of the supplementary phase, goods are allocated and
prices are determined. The auctioneer uses all the bids from the clock phase and the
supplementary phase to determine the value-maximizing combination of bids, while
the Vickrey pricing rule determines the prices winners pay.

Without the clock phase, the CCA reduces to the VCG mechanism. As the number
of packages is an exponential function of the number of commodities, bidders in a VCG
auction may need to consider bidding on a vast number of packages. In particular, if
the uncertainty concerning competitors is large, bidders may have a fairly limited idea
about the package they may eventually win and at which price. Through “price and
package discovery,” the clock phase is meant to reveal this kind of information. Bidders
can then focus their bidding in the supplementary round on the packages that may still
be winning.

Under standard preferences, truthful bidding in the clock and supplementary phase
is indeed an equilibrium. If bidders bid truthfully, the outcome is efficient. However,
truthful bidding is not a strict equilibrium, as bidders may be indifferent across many
permissible bids in the supplementary round (Levin and Skrzypacz 2016). To eliminate
the payment relevant indifferences, we consider bidders who ceteris paribus prefer out-
comes where competitors pay more. We model this objective as a secondary dimension
in a lexicographic way.

1In practice, there is a third phase: the assignment phase. In this phase, generic packages are allocated.
We abstract away from this phase since it does not affect our analysis.
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Our first main result is that if bidders have a lexicographic preference for raising ri-
val’s costs, an efficient fully revealing equilibrium does not exist. This result implies that
the CCA exhibits a fundamental trade-off between efficiency and information revela-
tion in the clock phase. The trade-off follows from the fact that if bidders bid truthfully
in the clock phase, the clock fully reveals information about the bidders’ types. Bidders
would like to use this information to maximally raise the rival’s cost by placing bids in
the supplementary phase on large packages that they know cannot be winning. The
stronger their competitor, the more they can raise their price. The rules of the CCA are
such that bidders are only able to raise the rival’s cost if they expand demand in the clock
phase, as this relaxes the constraints on the supplementary phase bids. Predicting that
the clock phase eventually will fully reveal information, bidders can expand demand
in the early phase of the clock without the risk of affecting the final allocation. Knowing
that the competitor is able and inclined to raise their cost if their types are fully revealed,
stronger bidders have an incentive to pool with weaker types in the clock phase.

This result is best understood from the perspective of the ratchet effect known from
the dynamic principal–agent literature (Laffont and Tirole 1988). In that literature, an
agent may have an incentive not to reveal his type to a principal if the principal could
use that information to extract more surplus from the agent in future interactions. In
our case, knowing the competitor is strong, a bidder (by bidding more aggressively in
the supplementary phase) may increase the price the competitor has to pay beyond
what it would be if the competitor’s type were unknown. Rationally anticipating this
exploitation, stronger bidders prefer to pool with weaker types. The intuition for our
first main result differs in two dimensions from the traditional ratchet effect. First, un-
like the principal–agent model, the roles of bidders in an auction are symmetric to one
another so that each bidder is both the object of and the initiator of surplus extraction.
Second, the extent to which bidders can raise the rival’s cost in the supplementary round
is not exogenously given, but endogenously determined by their behavior in the clock
phase. Thus, bidders will only be able to raise the rival’s cost if they expand demand in
the clock phase.

The result that fully revealing efficient equilibria do not exist does not rule out the
existence of efficient equilibria. Even with lexicographic preferences for raising rival’s
cost, efficient equilibria exist. We present examples of efficient equilibria, where to be
able to raise rival’s cost, bidders demand the full supply (even if prices are such that
truthful bidding would tell them to demand less).2 The demand expansion phase ends
with a sudden switch to truthful bidding. In one type of equilibrium, the clock stops
immediately when all bidders drop demand. In such an equilibrium, there is no price or
package discovery whatsoever. This clock phase development allows all bidders to bid
their true marginal values in the supplementary round. As a result, the final allocation is
efficient. We show that any efficient equilibrium of the CCA involves this type of demand
expansion in the clock phase.

2This is in line with, for example, the Austrian 2013 auction, where (as we mention below) bidders were
bidding very aggressively in the clock phase.
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Our second main result is that if the uncertainty concerning the competitor’s type
is sufficiently large, all equilibria of the CCA are inefficient. Efficiency and the high un-
certainty require that weak bidders drop out at relatively high prices. Due to the spite
motive, some strong bidders expand demand prior to these dropout prices. When the
clock does not end, a relatively strong bidder infers from the continuation of the clock
that the competitor is not too weak. This type of learning creates the opportunity for
the strong bidder to make the supplementary round behavior conditional on the price
at which the clock phase stops. Knowing the competitor is not too weak, the strong bid-
der can raise the rival’s cost more without running the risk of winning an inferior share.
Consequently, some types have an incentive to obfuscate their type and do this by re-
ducing demand toward the end of the clock phase. This demand reduction rules out
expressing true marginal values for all shares in the supplementary round, resulting in
an inefficient final allocation. As we also show that the static VCG mechanism always
has efficient equilibria, we claim that it is the clock phase that creates this inefficiency.3

Ausubel (2004, p. 1452) states that “the auctions literature has provided us with two
fundamental prescriptions guiding effective auction design”: first, “the winner’s price
should depend solely on opposing participants’ bids—as in the sealed-bid, second-price
auction—so that each participant has full incentive to reveal truthfully her value for the
good. Second, an auction should be structured in an open fashion that maximizes the
information made available to each participant at the time she places her bids.” Our
results show that following these two prescriptions can be at the expense of generating
efficient outcomes in multi-unit auctions where bidders have a weak incentive to raise
rival’s costs. If efficiency is preserved, then the information that is revealed through the
open format is fairly limited.

The lexicographic modeling of bidders’ preference for raising the rival’s costs implies
that if two bidding strategies yield the same expected surplus to a bidder, the bidder
chooses the strategy where the rival pays more.4 The motivation to raise rival’s costs
may arise from (i) principal–agent issues within a firm (bidder)5 or from (ii) the fact
that (in spectrum auctions) bidders face weaker competitors in the market after an auc-
tion if competitors have paid more for their licenses. If firm A makes firm B pay more
for spectrum, B’s credit rating may fall and its cost of capital may go up, weakening its
strategic position. Milgrom (2004) and Cramton and Ockenfels (2017) mention fairness
as a reason why bidders may want to raise rival’s costs.

3Note that as we do not present an alternative auction model that is clearly better than the CCA (or the
SAA), the CCA cannot be fully discarded on these grounds. Nevertheless, it is important to understand that
the CCA rules can be gamed and this may have consequences.

4The analysis with lexicographic preferences provides a robustness check on the equilibria under stan-
dard preferences: equilibria under our preferences are also equilibria under standard preferences, but the
reverse does not necessarily hold true.

5In spectrum auctions, given the considerable uncertainty concerning future technological develop-
ments and uptake of data services, it is difficult for bidders to evaluate what the spectrum is worth. Val-
uations are highly subjective. Accordingly, if a bidder wants to have a more objective evaluation measure of
his bidding team’s performance, it might be better to evaluate performance relative to other bidders than
relative to his own uncertain and subjective valuation.
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The motivation to raise rival’s costs motive has become a concern in designing auc-
tions.6 After the 2013 auction, the Austrian regulator RTR attributed the high revenue
to overly aggressive behavior by bidders: during the clock phase, bidders were bidding
very aggressively, and the majority of the supplementary bids were on very large pack-
ages that had a low probability of winning but played a crucial role in determining other
bidders’ prices. The fact that payments in the Austrian auction were essentially the same
as the final clock prices is a clear signal of aggressive bidding, as with Vickrey pricing and
“downward sloping demand” one would not expect marginal and average prices to be
identical. The observed behavior, however, is reminiscent of the equilibria we describe.
Moreover, the British regulator Ofcom (2014, p. 38, 6.73–6.77) explicitly mentions the
possibility of price driving by placing “risk-free bids” in the supplementary phase as a
problematic aspect of the CCA. Some of the potential bidders’ responses share this con-
cern (e.g., BT 2015). None of these arguments for raising rival’s costs implies that bidders
should have a lexicographic preference for doing so; lexicographic preferences are, how-
ever, a useful modeling approach to inquire into the robustness of the results of the CCA
to slight changes in assumptions regarding preferences.

This is the first paper that provides a full equilibrium analysis of the CCA when bid-
ders have a lexicographic preference for raising rival’s costs. The most closely related
paper is Levin and Skrzypacz (2016). They put forward a sequence of three related mod-
els in which, as in our study, two players compete for a perfectly divisible good in the
CCA. In some parts of their analysis, they also consider spiteful bidders.

In a first model where bidders have standard preferences, Levin and Skrzypacz
(2016) elegantly uncover the existence of multiple equilibria due to a key indifference
condition. Both bidders use linear proxy clock demand functions so that the clock ends
with market clearing. The activity rules then permit a specific range of supplementary
bids that are all such that the final clock allocation is the final allocation. As the activity
rules fix the allocation, the VCG pricing scheme makes bidders with standard prefer-
ences indifferent across all supplementary bids. How bidders resolve the indifference
impacts optimal clock behavior, leading to a multiplicity of equilibria.

This indifference partly motivates Levin and Skrzypacz (2016) to consider spiteful
lexicographic preferences in their next two models. In their second model, they (exoge-
nously) restrict one bidder to linear proxy strategies. It is, however, not clear why one
of the ex ante symmetric bidders would prefer to restrict himself and take this disad-
vantageous role. In their online Appendix, Levin and Skrzypacz (2016) discuss a third
model with two predatory bidders. This model is closest to the model we analyze in our
paper. In that third model, Levin and Skrzypacz (2016) have bidders using linear proxy
strategies in the clock phase, but weaken the constraints on supplementary bids implied
by this clock behavior and the activity rules. Technically, they achieve this by introduc-
ing an exogenous parameter that measures how much bidders violate the activity rules.
Importantly, such bidding behavior violates the rules of the CCA (see Figure 1 for more
detail).

6See, e.g., (i) Levin and Skrzypacz (2016) on the outcome of the Swiss auction and the discussion on why
Sunrise paid much more for comparable spectrum than other bidders, and (ii) Ofcom (2012, p. 122, point
7.9) in response to an earlier consultation on the U.K. spectrum auction in 2013.
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In contrast, the focus of our paper is on how bidders behave in the clock phase so
that they are able, within the rules of the CCA, to weaken the constraints of the activity
rule and submit spiteful supplementary bids. We show that this is not innocuous, as
our results are qualitatively and quantitatively different from the findings of Levin and
Skrzypacz (2016). First, where Levin and Skrzypacz (2016) conclude that equilibria are
inefficient, we show that efficient equilibria can exist if the uncertainty concerning bid-
ders’ types is not too large. In any efficient equilibrium, bidders endogenously relax the
constraints of the activity rule through demand expansion in the clock phase. In this
way, the clock does not perfectly reveal bidders’ types and may end with excess supply
so that the last clock round does not fix the final allocation. In the supplementary phase,
bidders then have a strong incentive to bid true marginal values on possible final shares.
Second, where we observe inefficient equilibria for large uncertainty, the source of in-
efficiency is very different from that in Levin and Skrzypacz (2016), where the source
of inefficiency is the best response to exogenously distorted marginal prices; the inef-
ficiency in our model derives from the incentives of strong bidders to obfuscate their
types (as in the literature on the ratchet effect in the dynamic principal–agent literature)
to avoid being exploited in the supplementary round.

While we consider the interaction between the clock and the supplementary phase,
Janssen and Karamychev (2016) focus only on the supplementary phase of the CCA. As-
suming a particular clock phase behavior, they show how the supplementary phase can
be solved using iterative elimination of dominated strategies, resulting in bidders raising
rival’s costs without running the risk of winning undesired packages. The current paper
analyzes the equilibrium properties of both stages of the CCA, i.e., the entire game.

A variant of the CCA was first suggested by Ausubel et al. (2006) and further devel-
oped in Cramton (2013). Ausubel and Baranov (2014) discuss the evolution of the CCA.
Gretschko et al. (2017) discuss why bidding can be complicated in a CCA. Bichler et al.
(2013) report experimental evidence on the CCA and present a simple example in which
one bidder submits a spiteful bid.

The rest of this paper is organized as follows. Section 2 describes the auction rules
and the model. Section 3 proves our first main result that there do not exist efficient
equilibria of the CCA where the clock phase fully reveals bidders’ types. Section 4
presents our second main result, namely that if the uncertainty concerning the com-
petitor’s type is large, the CCA does not have efficient equilibria. Both sections present
general propositions and illustrate the main results through examples of equilibria. The
examples also show that the nonexistence of equilibria that satisfy certain properties
is not due to a general nonexistence of equilibria. Section 5 analyzes the VCG mecha-
nism as a benchmark. We show that under standard preferences, iterated elimination
of weakly dominated strategies always results in an efficient outcome, but it leaves the
bids of weak types on large shares undetermined. Lexicographic preferences impose
that these bids are chosen to raise rival’s costs. Section 6 concludes with a discussion
where we also consider the relevance of our paper for interpreting real-world auctions.
Most proofs are provided in the Appendix.
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2. Auction rules and the model

We consider auctions where two bidders compete to get a share xi ∈ [0�1] of a unit of a
divisible good. Throughout the paper, when a bidder has label i = 1�2, the other bidder’s
label is j = 3 − i. As the VCG auction is an important part of the CCA, we first describe
the rules of the VCG auction before we go into the details of the CCA. After presenting
the auction rules, we describe our assumptions regarding each bidder’s preferences.

VCG rules In the VCG auction, all bidders simultaneously submit their bids for all
shares, that is, bidder i submits a bidding function Si : [0�1] → R+. Bidders cannot bid a
positive amount on getting nothing, i.e., Si(0) = 0. Subsequently, the auctioneer chooses
the allocation x = (x1�x2) that maximizes the sum of bids, i.e., x ∈ arg maxx S1(x1) +
S2(x2) such that x1 + x2 ≤ 1 and xi ≥ 0 for i = 1�2. If two or more allocations solve the
maximization problem, the auctioneer implements the allocation that minimizes the
distance to the allocation (1/2�1/2).

Bidder i receives share xi and pays the VCG price maxy Sj(y)− Sj(xj), i.e., the oppor-
tunity cost he (reportedly) imposes on the other bidder. When there is no possibility of
confusion, we sometimes drop subscripts. Hence, with strictly increasing bidding func-
tions, the final allocation is (x�1 − x) and bidder i has to pay Sj(1)− Sj(1 − x). Through-
out the paper, we use the bid on the full supply to raise the rival’s costs.

CCA rules The CCA is an auction with two stages. In the first stage, the clock phase,
the auctioneer successively increases the price of the good and bidders report demands.
The second, supplementary stage is a VCG auction where, in addition to the rules spec-
ified above, the bids are subject to so-called activity rules that are described below. Put
differently, the clock phase elicits a demand function, whereas in the supplementary
phase, bidders submit an inverse demand function. Activity rules aim for the consis-
tency of the two functions. As explained in the Introduction, the rationale of the clock
phase is price and package discovery, while VCG pricing should incentivize truthful bid-
ding (Cramton 2013). The supplementary phase is meant to avoid some units remaining
unsold and to allow bidders to express their preferences better.

At each point of time in the clock phase, the auctioneer announces a price and bid-
ders report the share they demand at current prices. If aggregate demand is larger than
supply, the price is increased. The clock ends as soon as there is no excess demand
so that the clock can end with market clearing or excess supply. Importantly, bidders
are not allowed to increase their demand during the clock phase. We model this in the
following way. The clock phase begins at an initial price p0 = 0. The clock price is in-
creased continuously as long as there is excess demand. Bidder i’s action in the clock
phase is a weakly decreasing demand function xi : R+ → [0�1] that maps prices to de-
mand. The clock phase stops at p̃ if excess demand is smaller than or equal to zero, i.e.,
if x1(p̃)+ x2(p̃)≤ 1.

In the main part of the paper, we analyze a CCA where bidders do not receive any
information concerning aggregate demand in the clock phase.7 Hence, each bidder can

7Real-world CCAs have used different regimes concerning information disclosure in the clock phase. In
one regime, bidders are only informed about the fact that there is still excess demand and that the clock
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only condition his demand on the price, but not on his rival’s previous demand. This
assumption facilitates the formal analysis of the auction. We also comment, however, on
an information policy where the last clock round demands are announced. At the end
of Section 4, we present an example of an inefficient equilibrium under this information
policy.

In the supplementary phase, bidders can submit bids on all possible shares, that
is, they submit bidding functions Si : [0�1] → R+. Given the supplementary bids, the
auctioneer uses the same rules as described above for the VCG mechanism to compute
the final allocation and individual CCA prices.8

Importantly, the CCA has activity rules linking the clock and the supplementary
phase by translating the clock demand behavior into constraints on the supplemental
bids. More specifically, the supplementary bidding function Si must satisfy three types
of constraints. First, clock bids remain valid, i.e., if bidder i demanded x at clock price p,
then it has to be the case that Si(x) ≥ p · x. Unlike for all other bids, there are no further
constraints for the bid on the final clock round demand. Second, the so-called final cap
rule requires that supplementary bids satisfy the axiom of revealed preference with re-
spect to the final clock round demand, i.e., Si(x) ≤ Si(x̃i)+ p̃(x− x̃i), x �= x̃i, where p̃ is
the final clock round price and x̃i is bidder i’s demand in the final clock round. Finally,
the relative cap requires that if in the clock phase bidder i demanded x at a price p, then
for any x′ > x, bidder i cannot express an incremental bid for x′ in the supplementary
round that is larger than p, i.e., Si(x′) ≤ Si(x) + p(x′ − x). A bid on x′ cannot be larger
than the area under the expressed clock demand curve.9

The intuitive rationale behind these three activity rules is as follows. The first rule re-
quiring that clock bids remain valid is a minimal requirement to make clock bids mean-
ingful. The final cap rule guarantees that if the clock ends with market clearing, the final
clock allocation is the final allocation. As bidders do not know in advance when is the
last clock round, this rule encourages bidders to bid truthfully in the clock.10 Finally, the
relative cap rule motivates bidders when choosing between two different packages to
bid according to their relative preference evaluated at the current round prices. Because
of the second price rule, it is considered that bidders have an incentive to bid value on
all possible packages in the supplementary round. The final cap and relative cap are
such that by bidding truthfully in the clock, bidders can bid value in the supplementary
phase.

phase continues. In another regime, bidders are informed about aggregate demand in every clock round.
The first regime was used in the first part of the Austrian auction and seems to be favored if collusion be-
tween bidders might be an issue. In the consultation document on the award of the 2.3 GHz and 3.4 GHz
bands, Ofcom (2014) proposed using either the CCA or the SAA without demand disclosure. In a reaction
for Hutchinson 3G, Power Auctions LLC (2015) claims that a dynamic auction with no demand disclosure
is basically a sealed-bid auction. We show, however, that even without demand disclosure, the equilibrium
outcomes that can be sustained in a CCA differ from the outcomes of the VCG.

8We do not consider the “core-selecting” elements in the pricing rule of real-world CCAs (see, e.g., Day
and Milgrom 2008, Day and Cramton 2012, and Erdil and Klemperer 2010, as well as Goeree and Lien 2016
and Ausubel and Baranov 2019).

9Levin and Skrzypacz (2016) provide a figure that illustrates the activity rules.
10Below, we formally define what it means to bid truthfully in the clock.
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Figure 1. Clock demand and constraints of the activity rules.

Preferences and information The utility a bidder derives from acquiring a share x is
denoted by U(x�θi), where θi is bidder i’s privately known type. A bidder’s type is ran-
domly drawn from an atomless and commonly known distribution with support [θ�θ].
The set of type profiles θ = (θ1� θ2) is denoted by [θ�θ]2. The utility function U(x�θi) is
strictly increasing in θi and x, twice continuously differentiable, and concave in x. The
marginal utility is increasing in θi, i.e., ∂2U(x�θi)/∂θi∂x > 0 for x > 0 and nonnegative
for x = 0. When convenient, we write Ui(x) instead of U(x�θi). We use S(x�θi) to de-
note a bidder’s bid on quantity x when he is of type θi. Throughout the paper, we denote
utility and bidding functions with capital letters and denote the respective derivatives
with small letters. For example, we write Ui for the utility function and ui for marginal
utility. Also, U = U(·� θ) denotes the utility function of the weakest possible bidder.

We can now formally define what truthful bidding in the clock means. A bidder bids
truthfully at clock price p if the demanded share xi(p) is such that ui(xi(p)) = p. We say
that a bidder expands demand in the clock phase if there are clock prices such that the
bidder demands an amount xi with ui(xi) < p. As marginal utilities are decreasing in xi,
it is clear that this inequality can only hold if bidders demand more than their truthful
demand. A bidder reduces demand at clock price p if ui(xi(p)) > p.

Figure 1 illustrates an important aspect of the activity rules. In the left panel, a bidder
has continuously decreased his demand in the clock phase until the clock stops at price
p̃ where he demands x̃. Given this clock behavior, the shaded area under the demand
curve represents the maximal amount bidder i can bid in the supplementary round on
the full supply relative to his supplementary bid on x̃. As we show in more detail in the
next section, this area is essential to understanding the extent to which a bidder can raise
his rival’s costs. Now suppose, as represented in the right panel, that the bidder contin-
ues bidding on the full supply until price p̃ and then drops the demand to x̃. In this case,
the size of the shaded area is larger, namely p̃(1− x̃), so that the bidder potentially is able
to raise his rival’s costs further. As explained in the Introduction, in their third model,
Levin and Skrzypacz (2016) do not take these constraints of the activity rules into ac-
count and assume that bidders use linear bid strategies (as in the left panel), but can
raise their rival’s costs in the supplementary round as if their clock behavior is as in the
right panel.
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Bidders use the information about the clock development to update their beliefs
about the type of the rival bidder. Even though no information about demand is re-
vealed, bidders can infer information about their competitor’s type from the equilib-
rium strategies and the duration of the clock phase. We denote by � the support of
the posterior of the other bidder’s type distribution. In a pooling equilibrium, a bidder
does not learn anything about the other bidder’s type, so � = [θ�θ]. On the contrary, the
equilibrium might be separating so that the final clock price reveals the rival’s type. The
posterior in such an equilibrium is then the singleton � = {θj}. The set �(p) denotes
the support of the posterior if the clock ends at price p.

In addition to the standard preferences, bidders have a spite motive. We model this
spite motive in a lexicographic way. In the first dimension, each bidder maximizes his
surplus from the auction, and in the second dimension, he maximizes the payment of
the other bidder. We sometimes refer to the (standard) expected utility of the first di-
mension as the primary utility. The spite motive is relatively weak since bidders do not
want to harm the other bidder if this implies getting a lower surplus themselves.

For the VCG auction, we define the preference for raising the rival’s costs as follows.
Given the other bidder’s strategy Sj , bidder i strictly prefers strategy Ŝi over strategy Si
if and only if Ŝi yields a strictly higher primary expected utility than Si, or the primary
expected utility is the same and Ŝi leads to a weakly higher VCG price for bidder j for
all θj ∈ [θ�θ] and to a strictly higher VCG price for a least one θj ∈ [θ�θ]. More for-
mally, let x̂(θ) be the allocation implemented by (Ŝi� Sj) and let x(θ) be the allocation
implemented by the strategy profile (Si� Sj). The strategy Ŝi is preferred to Si in the spite
dimension if

max
y

Ŝi(y)− Ŝi
(
x̂i(θ)

) ≥ max
y

Si(y)− Si
(
xi(θ)

)
for all θj ∈ [θ�θ] with a strict inequality for a least one θj ∈ [θ�θ].

For the CCA, the definition of raising the rival’s costs has to be slightly adapted as
follows. First, in the CCA, a strategy consists of a clock demand function xi and a sup-
plementary bidding function S

p
i for every possible final clock price p. Accordingly, the

VCG strategy Si has to be replaced by the CCA strategy (xi� {Spi }p). Second, the dynamic

nature of the CCA needs to be taken into account. A strategy (x̂i� {Ŝpi }p) is then weakly
preferred to another strategy (xi� {Spi }p) if for any history of the clock phase, the contin-
uation strategy is weakly preferred. Conditional on the clock price p̃ being reached, the
difference with the VCG mechanism is that we use the posterior �(p̃) rather than the
prior belief [θ�θ] to evaluate a bidder’s preference. This means that if the clock ended

at price p̃, the supplementary bidding function Ŝ
p̃
i is weakly preferred to S

p̃
i . When the

clock has not ended at price p̃, then the evaluation of whether the continuation strategy
(x̂i|p≥p̃� {Ŝpi }p≥p̃) is weakly preferred to (xi|p≥p̃� {Spi }p≥p̃) again uses the posterior �(p̃)

and not the prior.

Efficiency and equilibrium For every type profile θ, we define the efficient allocation
x∗ = (x∗

1�x
∗
2) as x∗(θ) ∈ arg maxx U(x1� θ1)+U(x2� θ2) such that x1 +x2 ≤ 1 and xi ≥ 0 for

i = 1�2.
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A few results are immediate. Since the utility functions are strictly increasing and
concave, there exists a unique efficient allocation, which may involve one bidder not
getting anything. As the objective function of the constrained maximization problem is
supermodular in (xi� θi), Topkis’s monotonicity theorem implies that bidder i’s efficient
share x∗

i (θi� θj) is nondecreasing in θi and, hence, it is nonincreasing in θj . It follows that
for each type θi, there exists a lowest possible efficient share minθj x

∗
i (θi� θj) = x∗

i (θi� θ) =
xi and a largest possible efficient share maxθj x

∗
i (θi� θj) = x∗

i (θi� θ) = xi. Concavity of U
implies that the allocation (1/2�1/2) is efficient for any symmetric type profile. As a
consequence, for types θ < θi < θ, we have that xi < 1/2 < xi. In any efficient alloca-
tion, the lowest type never wins more than 1/2, while the strongest type θ does not win
less than 1/2. Berge’s maximum theorem implies that x∗(θ) is continuous in θ. Hence,
for any x ∈ [xi�xi], there exists a type θj such that (x�1 − x) = x∗(θ). Finally, we note
that u(x(θi)� θi) is nondecreasing in θi.11 The value function of the maximization prob-
lem defining the efficient allocation is V (θ) = U1(x

∗
1)+U2(x

∗
2). It is nondecreasing in θi

for all i, since by the envelope theorem, ∂V (θ)/∂θi = ∂U(x∗
i � θi)/∂θi ≥ 0. We denote the

minimal value of the efficient allocation when bidder i has type θi by Vi(θ) = V (θi� θ).
We consider weakly clock-monotone equilibria, i.e., equilibria where θi ≥ θj ⇒

xi(p) ≥ xj(p). Our equilibrium concept is a refinement of the ex post equilibrium ap-
plied to the first dimension of the preferences. We consider only ex post equilibria that
are such that given the prior beliefs and the strategies of the others, no bidder prefers to
use a different strategy as defined above, including the preference for raising his rival’s
costs. We cannot use the notion of ex post equilibrium using the full preferences, as in
equilibrium we must allow for the fact that knowing the type of the competitor ex post,
a bidder may want to change the rival’s cost by raising bids.

Quadratic utility model Levin and Skrzypacz (2016) consider a particular instance of
our model, where bidders have a strictly increasing quadratic utility function of the form

U(x�θi) = θix− σ

2
x2�

with θ ≥ σ > 0 and x ∈ [0�1]. The condition θ ≥ σ makes the utility function increasing
in x for all types. Levin and Skrzypacz (2016) adopt the assumption that θ−θ < σ , which
guarantees that the efficient allocation is always in the interior of [0�1] as ui(0) > uj(1),
j �= i. The efficient share of bidder i is then

x∗
i (θi� θj) = θi − θj + σ

2σ
�

We use the quadratic utility function in our examples. Note that in our general setup, we
do not assume that the efficient allocation is always in the interior.

11This can be seen as follows. Let θ′
i > θi , so x′

i ≥ xi . Suppose x′
i = xi = 1. Then clearly u(1� θ′

i) > u(1� θi).
If x′

i = 1, but xi < 1, then u(1� θ′
i) ≥ u(0� θ) ≥ u(1 − xi�θ) = u(xi� θi) by decreasing marginal values and

necessary conditions of efficiency. If 1 > x′
i, then efficiency requires u(xi� θi) = u(1 − xi�θ) and u(x′

i� θ
′
i) =

u(1 − x′
i� θ). Since 1 − xi ≥ 1 − x′

i, decreasing marginal values imply u(1 − xi�θ)≤ u(1 − x′
i� θ).
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3. Efficiency and information revelation

This section presents the fundamental trade-off between efficiency and information
revelation. Figure 1 has shown how bidders can expand demand in the clock phase to
relax the constraints imposed by the activity rule to raise their rival’s cost in the supple-
mentary round. Whether a bidder fully wants to use the potential to raise the bid on
the full supply depends on his knowledge of the competitor’s type. Bidding high on the
full supply can be risky if one does not know how strong the competitor is. Learning the
competitor’s type allows a bidder to increase his rival’s CCA price by allowing the bid-
der to target more precisely the amount by which he can raise the bid on the full supply
without acquiring it.

Knowing how bidders can relax the constraints imposed by the activity rule to be
able to raise their rival’s cost in the supplementary round, we now consider how this abil-
ity eliminates the possibility of fully revealing efficient equilibria, i.e., equilibria where
at the end of the clock phase bidders know the type of their competitor. Full revelation
requires that the clock phase bidding strategies are separating. Truthful bidding is an
example of a separating clock phase bidding strategy.

The impossibility of having fully revealing efficient equilibria can be explained along
the following lines. First, full revelation and efficiency together require that on all pos-
sibly efficient shares [xi�xi], all bidders must bid truthfully in the clock phase and the
clock phase ends with market clearing. Thus, for all prices p ∈ [ui(xi)�ui(xi)] demand
should be such that ui(xi) = p. For any other fully revealing clock bidding strategy, at
least some types cannot express their true marginal utility in the auction. Second, mar-
ket clearing in the final clock round implies that the final clock round demands are equal
to the final allocation. The supplementary round bids then only determine the price the
competitor has to pay. Third, given such a fully revealing strategy of their competitor,
weak types have an incentive to deviate and expand demand at least until the clock price
is in the interior of this interval and then drop demand discontinuously and demand
truthfully from then on. This deviating strategy is illustrated in Figure 2, where, in the
left panel, truthful demand is given by the solid line over the interval p ∈ [ui(xi)�ui(xi)]
and the dashed line indicates that outside this interval demand can be anything as long
as it is weakly decreasing. The middle panel of Figure 2 depicts the deviation strategy
that is considered, where the bidder expands demand for prices p ∈ [ui(xi)�p′) for some
p′ ∈ (ui(xi)�ui(xi)] and bids truthfully for all p ∈ [p′�ui(xi)]. Note that the nondeviating
bidder does not notice the deviation, as p′ is on the equilibrium path so that after the
clock stops at p′, he simply believes that the rival is of a stronger type.

To see that this deviation is beneficial, two cases should be distinguished. First, sup-
pose that the competitor is of a relatively strong type and that under truthful bidding
the clock phase would stop at a price p ∈ [p′�ui(xi)]. In this case, the deviation goes un-
noticed by the competitor, the final clock price would remain unchanged, and the clock
ends with market clearing. However, the deviation weakens the constraints imposed by
the activity rules and allows the deviating bidder to raise his rival’s costs beyond what
would be possible if he had not deviated. Second, suppose that the competitor is of
a relatively weak type and that under truthful bidding the clock phase would stop at a
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Clock Demand for p ∈ [ui(xi)�ui(xi)] (Possible) Clock Dem. for p /∈ [ui(xi)�ui(xi)]
Marginal Supp. Bids for x ∈ [xi(p′)�xi] Relative Cap for x ∈ (xi(p

′)�xi]: si(x) ≤ p′

(a) Truthful bidding
for p ∈ [ui(xi)�ui(xi)]

x

pui(xi) ui(xi)

xi

xi

(b) Demand expansion
for p ∈ [ui(xi)�p′)

x

pui(xi) p′ ui(xi)

xi

xi(p
′)

xi

(c) Marginal supplementary
bids when clock phase ends

at p′ after demand expansion

x

si(x)ui(xi) p′ ui(xi)

xi

xi

xi(p
′)

Figure 2. Profitable demand expansion given truthful bidding

price p ∈ [ui(xi)�p′). In this case, after expanding demand, the clock phase immedi-
ately stops at price p′ with excess supply. The competitor (mistakenly) infers from the
final clock price p′ that the deviating bidder is a stronger type than his true type. The
deviating bidder can correct his deviation in the supplementary round by generating
“missing” truthful bids in the interval (xi(p′)�xi]. This is illustrated in the right panel of
Figure 2, where marginal supplementary bids of the deviating bidder are depicted. The
bidder bids true marginal utilities over the whole interval of possibly efficient shares
(xi(p

′)�xi] (depicted by the dotted–dashed line segment). The dotted line represents
the constraints of the relative cap, which require that the solid line is to the left of the
dotted line. This supplementary demand where bidder j bids true marginal values is
consistent with all activity rules. Hence, the same allocation is implemented as under
truthful bidding and the deviating bidder pays the same price. Thus, the bidder is bet-
ter off against some types and not worse off against other types, making the deviation
beneficial.

The following proposition states the result formally and the proof explains the argu-
ment in more (technical) detail. We use the function τ : [θ�θ]2 → R+ to analyze equi-
librium information revelation. The function assigns, for a given equilibrium, to every
type profile the final equilibrium clock price, i.e., τ(θ) = inf{p : x1(p)+ x2(p) ≤ 1}. If no
information is revealed during the clock phase and the clock ends at the same price for
all type profiles, there exists a price p such that τ(θ)= {p} for all type profiles θ ∈ [θ�θ]2.
We call this a clock-pooling equilibrium. At the other extreme case is a clock-separating
equilibrium, which is defined as an equilibrium where the function τ(θ) is nondecreas-
ing in θi for all i and strictly increasing in θj for all bidders j who win a share xj < 1.12

12The restriction xj < 1 is needed for the following reason. Suppose [θ�θ] is such that a bidder i with type
θ wins 0 in the efficient allocation if bidder j’s type is sufficiently close to θ. In this case, the clock phase
would stop at the same clock price for all bidders j who win the full supply.
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Proposition 1. There does not exist an efficient clock-separating equilibrium in the
CCA.

An immediate implication of the proposition is that truthful bidding is not an equi-
librium. In addition, if one interprets a clock-separating equilibrium as a formal def-
inition of the more informal notion of price and package discovery, mentioned in the
Introduction (e.g., Ausubel et al. 2006), then it follows that under a weak preference for
raising a rival’s costs, the CCA cannot deliver its two main objectives simultaneously:
efficiency and price and package discovery.

The result is akin to the ratchet effect in the dynamic contracting literature (Laffont
and Tirole 1988). In this literature, high types do not want to reveal their type in the first
period, because they would end up with a worse contract in the second period if their
type is revealed. In the CCA, the driving forces are similar. Suppose a low type observes
that the clock has not ended yet, indicating that the other bidder has a high type. A low
type can use this information to raise the high type’s CCA price if the constraints of the
activity rule are not binding, which is the case if the low type has expanded demand for a
sufficiently long period. Higher types will then best respond by pooling with lower types
so as to obfuscate their type.

We now argue that Proposition 1 continues to hold if, in the supplementary phase,
bidders are informed about the final clock round (individual or aggregate) demand. The
proof of Proposition 1 shows that in an efficient and fully revealing equilibrium, bid-
ders must bid according to true marginal values for clock prices p ∈ [ui(xi)�ui(xi)] and
the clock will end with market clearing. This argument is independent of the informa-
tion policy. The difference between whether bidders are informed about the demand
in the final clock round is that without demand disclosure, a deviation to further de-
mand expansion will not be noticed by the nondeviating bidder, whereas with demand
disclosure, the deviation will be detected when the clock ends with excess supply. To un-
derstand that Proposition 1 continues to hold with demand disclosure, it is important
to realize that the nondeviating bidder learns about the deviation only when the clock
phase ends, so his supplementary bids are constrained by the relative cap in the same
way as without demand disclosure. It then suffices to show that there are deviations in
the clock phase such that the nondeviating bidder has to bid true marginal values on
relevant shares in the supplementary round after the clock ends with excess supply. In
this case, the deviating bidder can correct his clock bids in the supplementary phase and
as the nondeviating bidder cannot further raise his rival’s cost given his clock demand,
the deviating bidder is able to implement the same allocation but raise his rival’s cost.

To finish the argument, we now show that there are (out-of-equilibrium) clock phase
endings with excess supply where the nondeviating bidder j must bid true marginal val-
ues in the supplementary phase. Consider the clock ending at p̃ = uj(xj)+ ε with excess
supply and supplementary bids on [xj(p̃)�xj] with xj(p̃) being type j’s truthful demand
at p̃, i.e., p̃ = uj(xj(p̃)). To have a fully revealing, efficient ex post equilibrium, the fol-
lowing strategy for all types θi with 1−xj ≤ x∗(θi� θj) < 1−xj(p̃) must not be a profitable
deviation: in the clock phase, demand 1 for prices less than p̃, and demand x∗(θi� θj) at
p̃ and in the subsequent supplementary phase bid only on the efficient share and the
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full supply. It is clear that after such a deviation, the efficient allocation is implemented.
To make this a nonprofitable deviation, it should be the case that bidder i pays a price
that is not smaller than the price he has to pay after the clock ends with market clear-
ing and truthful bidding. Note, however, that the postdeviation CCA price cannot be
higher, as bidder j already fully raises the CCA price on the equilibrium path. Bidder j
must, therefore, bid true marginal values on [xj(p̃)�xj] when the clock ends with excess
supply at p̃ with demands (x∗

i � x̃j). Consequently, as in the proof of Proposition 1, bid-
der i can demand 1 for prices less than p̃ and demand truthfully at p̃, where truthful
demand is xi(p̃) < x∗(θi� θj), and bid true marginal values in the subsequent supple-
mentary phase. The deviation increases the rival’s cost without affecting the allocation
and his own payment.

The next proposition states a property of any efficient equilibrium, namely that the
clock cannot stop at very low prices and that weak bidders expand demand at some
stage of the clock phase. In combination with the next subsection where we construct an
efficient equilibrium, this proposition is of interest as it shows that, in contrast to Levin
and Skrzypacz (2016), bidders do not necessarily want to reduce demand in the face of
a competitor with a spite motive. The example of an efficient equilibrium also shows
that the fact that efficient clock-separating equilibria do not exist in either information
regime does not mean that efficient equilibria do not exist in general.

Proposition 2. In any efficient equilibrium, a bidder will not demand x̂i ≤ xi at
prices p < min{u(1� θ)�ui(x̂i)}. The smallest final clock price p̃ is strictly larger than
min{u(1� θ)�u(1/2� θ)} and some types expand demand for some prices p< p̃.

The argument is as follows. Suppose to the contrary that in an efficient equilib-
rium, bidder i demands x̂i ≤ xi at clock price p < min{u(1� θ)�ui(x̂i)}. We distinguish
two cases. First, suppose x̂i is possibly an efficient share, i.e., xi ≤ x̂i ≤ xi. Efficiency of
equilibrium requires that bidders bid true marginal values on possible efficient shares.
However, this is not feasible for bidder i, as, independent of whether the clock ends at
p or continues, the relative cap imposes that the supplementary bids for x̂i must satisfy
si(x̂i) ≤ p < ui(x̂i). Hence, in an efficient equilibrium where bidders reduce demand at
these low prices, it must be that x̂i < xi.

Second, we argue that in an ex post equilibrium, the highest types do not want to
implement the efficient allocation if their competitor reduces demand to x̂i < xi. Con-
sider bidder j with type θj = θ. In an efficient ex post equilibrium, in the supplementary
phase in which bidders i and j meet, bidder j must prefer winning the efficient share x∗

j

over 1 − x̂i, i.e.,

Uj(1 − x̂i)− max
y

Si(y)+ Si(x̂i)≤Uj

(
1 − x∗

i

) − max
y

Si(y)+ Si
(
x∗
i

)
�

As x∗
i > x̂i, the relative cap implies that Si(x∗

i ) ≤ Si(x̂i) + p(1 − x∗
j − x̂i) so that the

above inequality implies

Uj(1 − x̂i)−Uj

(
x∗
j

) ≤ p
(
1 − x̂i − x∗

j

)
�
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However, as p ≤ u(1� θ), this inequality cannot hold, i.e., the strongest types of bidder j
strictly prefer winning 1 − x̂i over the efficient share.

Given this argument and the impossibility of fully revealing equilibria, it is clear that
the clock cannot stop at a price p̃ ≤ min{u(1� θ)�u(1/2� θ)}. As at least one bidder must
demand less than 1/2 for the clock to end, it is clear that at these relatively low clock
prices this bidder reduces demand and to a quantity smaller than xi, which we have just
shown is not possible in an efficient equilibrium. It is then also easy to see that some
bidders would want to expand demand at some prices p ≤ p̃. Doing so, while keeping
fixed the rest of the clock phase bidding, allows the bidder to raise the rival’s cost in the
supplementary round in a way that does not risk winning these bids, as explained above.

3.1 Efficient equilibria in the quadratic utility model

Proposition 1 rules out fully revealing efficient equilibria. In this subsection, we present
an example where bidders have quadratic utility functions. The example shows that
(i) equilibria exist, (ii) equilibria can be efficient, and (iii) what equilibria with demand
expansion in the first phase of the clock may look like. Thus, the previous propositions
have economic content and are not due to a lack of equilibrium existence. The example
is also useful to understand the main intuition behind the second main result presented
in the next section.

The equilibrium is clock semi-separating as the bidding in the clock phase might
reveal some information about the rival’s type. Both bidders expand demand by bidding
on the full supply until a threshold clock price p̃ > u(1/2� θ). At prices larger than the
threshold price, bidders bid truthfully. In accordance with the previous propositions, as
p̃ > u(1/2� θ) and bidders bid truthfully for prices p ≥ p̃, there are (at least) some low
types for which there is pooling behavior in the clock phase. The threshold price plays
a crucial role in the equilibrium construction, and we will identify constraints on it for
this type of equilibrium to exist.

Clock behavior As bidders have quadratic utility functions, the above described clock
behavior with extreme demand expansion at prices p< p̃ and bidding according to true
marginal values for p ≥ p̃ gives clock demand

xi(p) =

⎧⎪⎨
⎪⎩

1 if p< p̃

max
{
θi −p

σ
�0

}
if p ≥ p̃�

Figure 3 illustrates the two possible ways in which the clock can end in equilibrium:
the clock ends either (i) with excess supply at p̃ or (ii) with market clearing at p∗ > p̃. The
figure shows bidder 1’s clock demand function (the dashed line) and 1−x2(p), the resid-
ual supply function faced by bidder 1 (the solid line). The dotted shaded (line shaded)
area between the two curves at price p indicates excess demand (supply). In the two
plots, bidder 1’s demand is the same. Bidder 2’s type determines whether the left or the
right figure applies to the clock phase. If bidder 2’s type is sufficiently low, aggregate de-
mand at p̃ is smaller than the available supply (Figure 3(a)). Conversely, when bidder
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Figure 3. Clock behavior in the semi-separating equilibrium.

Figure 4. Information revelation in the semi-separating equilibrium for p̃ = (θ+ θ− σ)/2.

2’s type is high, there may be excess demand at p̃ (Figure 3(b)). Clearly, we must have
p̃ < θ−σ/2 so that the highest types demand more than half of the supply at p̃. At p> p̃,
bidders bid truthfully and the clock eventually ends with market clearing at p∗ > p̃.

Bidders update their prior about the other bidder as the clock proceeds. Figure 4
summarizes the information revelation during the course of the clock phase. The square
depicts all possible type profiles. The clock ends at p̃ for type profiles in the gray area,
i.e., if θi +θj ≤ 2p̃+σ . Hence, bidder i with type θi infers from the clock ending at p̃ that
j’s type is at most 2p̃+ σ − θi, i.e., �(p̃) = [θ�2p̃+ σ − θi]. If the types are such that the
clock does not stop at p̃, the parallel diagonal lines reflect the combination of types for
which the clock ends at p> p̃. For each such p, the clock ends with market clearing for
types (θi� θj) such that (θi −p)/σ + (θj − p)/σ = 1, yielding the lines θj = 2p + σ − θi.
As the clock proceeds, the diagonal line in Figure 4 shifts to the northeast. If the clock
does not stop at p̃, bidder i knows that at any p> p̃, the lowest possible type of the other
bidder is 2p+σ − θi. Observing the final clock price p∗, each type θi correctly infers the
rival’s type �(p∗)= {2p∗ + σ − θi} in the candidate equilibrium.
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Supplementary bids The supplementary bidding functions depend on whether the
clock ends at p̃ or at p∗. If the clock ends at p̃, bidder i bids in the supplementary phase
according to

S
p̃
i (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < x̃i

Ui(x) for x̃i ≤ x < 1

min
{
Ui(xi)+U(1 − xi)�Ui(x̃i)+ p̃(1 − x̃i)

}
for x= 1�

(1)

where x̃i is bidder i’s truthful demand at p̃.13 Each bidder bids true utility on shares that
might be obtained given the clock behavior and submits a spiteful bid on 1, which will
be discussed below. If the clock ends at p∗ > p̃, bidder i uses the bidding function

S
p∗
i (x) =

⎧⎪⎪⎨
⎪⎪⎩
Ui(x) for x≤ x̃i

Ui(x̃i) for x̃i < x < 1

Ui(x̃i)+ p̃(1 − x̃i) for x= 1�

(2)

One difference between the two bidding functions is that bidder i bids true marginal
values on (efficient) shares higher than x̃i after p̃, but not after p∗. We see below that
this difference prevents j from further expanding demand in the clock phase. Another
difference is, as explained below, the bid on the full supply.

It is straightforward to check that the supplementary bidding functions implement
the efficient allocation and that they satisfy the activity rules given the stipulated clock
behavior.

We now argue that these supplementary bidding functions are optimal from the per-
spective of raising the rival’s cost in that bidders want to raise their rival’s cost as much
as possible without running the risk of winning a bid inadvertently. Whatever bidders
bid on their last clock round share in the supplementary round, the relative cap implies
they can maximally bid p̃(1 − x̃i) more on the full supply if the clock ends at p∗ or p̃.
However, when the clock phase ends at p̃ and their bid on the entire supply is more than
Si(xi) − Si(x̃i) + S(1 − xi) higher than their bid on x̃i, they run the risk of winning the
full supply if the rival bidder’s type is low. In the candidate equilibrium, this means that
bidders do not want to bid more than Ui(xi) + U(1 − xi) on the full supply. As a result,
when the clock ends at p̃, bidders bid Si(1) = min{Ui(xi)+U(1 −xi)�Ui(x̃i)+ p̃(1 − x̃i)}.
Now we consider the clock ending at p∗ > p̃. Observing the clock ended at p∗, bidders
update their belief about the rival bidder’s type and believe that the clock ended with
market clearing. Due to the final cap rule, bidders believe that the final clock allocation
is also the final allocation and maximally raise their bid on the full supply, i.e., for x ∈
[xi(p∗)� x̃i] the relative cap si(x) ≤ ui(x) holds with equality and Si(1) = Si(x̃i)+p̃(1− x̃i).

For later reference, it is useful to consider how Ui(xi)+U(1 − xi) and Ui(x̃i)+ p̃(1 −
x̃i) depend on a bidder’s type. Both expressions are represented in Figure 5. It turns out
that there is a cutoff type

θ̂(p̃)= p̃(2 + √
2)− θ(1 + √

2)+ σ

13Bidding 0 on shares x < x̃i simplifies the proof that no bidder has an incentive to deviate.
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θ θ̂(p̃) θ

2U( 1
2)

Ui(xi)+U(1 − xi)

Ui(x̃i)+ p̃(1 − x̃i)

Figure 5. Constraints on the supplementary bid for the full supply.

such that Ui(xi) + U(1 − xi) < Ui(x̃i) + p̃(1 − x̃i) if and only if θi < θ̂(p̃).14 As a result,

(only) bidders with a low type bid S
p̃
i (1) =Ui(xi)+U(1 − xi).

Equilibrium constraints on clock behavior We now determine the restrictions on p̃

such that no bidder has an incentive to deviate in the clock phase. First, bidders should
acquire positive utility from bidding. As the minimal value of the efficient allocation
is attained if both bidders are of the lowest possible type, it is sufficient to require that
U(1/2) ≥ p̃/2, which is equivalent to θ− σ/4 ≥ p̃.

Second, it should not be the case that bidder i wants to reduce his demand in
the clock phase to prevent rival j from raising the price i has to pay if j successively
learns bidder i’s type. To this end, define θ̃(p̃) = 2p̃ + σ − θ to be the highest type
for which the clock always ends at p̃. Suppose now that θ̂(p̃) > max{θ� θ̃(p̃)} so that
there exists a type θj ∈ [θ̃(p̃)� θ̂(p̃)) for which the clock phase does not necessarily stop
at p̃ and the bidders’ bid on the full supply is contingent on the final clock price. If
the clock stops at p̃, they bid Uj(xj) + U(1 − xj) as they do not want to risk winning
the full supply. If the clock ends at a higher price, due to market clearing in the last
clock round, they can safely bid Uj(x̃j) + p̃(1 − x̃j). Thus, for types in the interval
[θ̃(p̃)� θ̂(p̃)), the clock not stopping at p̃ makes their bid on the full supply jump dis-
cretely by Uj(x̃j) + p̃(1 − x̃j) − (Uj(xj) + U(1 − xj)). Knowing this, it is profitable for
some types higher than θ̃(p̃)—for whom the clock does not definitely stop—to reduce
demand at p̃ to be certain to end the clock. Thus, θ̂(p̃) > max{θ� θ̃(p̃)} cannot be part of
an equilibrium. Alternatively, if θ̃(p̃) ≥ θ̂(p̃) or if θ̂(p̃) ≤ θ, then the supplementary bids
of all types θj > θ̃(p̃)—for which the clock phase possibly continues at prices p> p̃—are
independent of the final clock price, so that the bidders cannot raise their supplemen-
tary bids after obtaining information through the final clock price. For this case, we
show that there is no incentive for demand reduction. Suppose type θi > θ̃(p̃) reduces
demand at p̃. Let θj > 2p̃+ σ − θi be such that the clock ends at p̃ under i’s demand re-
duction, although it would continue under truthful bidding. Bidder j bids 0 on x∗

j if the

14Formally, the equation Ui(xi) + U(1 − xi) = Ui(x̃i) + p̃(1 − x̃i) has a second root θ̂2(p̃) = p̃(2 − √
2) +

σ − θ(1 − √
2). As in all equilibria we consider, we have that p̃ ≥ min(θ − σ/2� θ − σ/4), so it is easy to see

that θ̂2(p̃) > θ and that we effectively only have to consider θ̂(p̃).
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clock ends at p̃, as x∗
j < x̃j . As the efficient allocation cannot be implemented, the de-

mand reduction leads to a decrease in bidder i’s primary utility. Therefore, equilibrium
requires that θ̃(p̃) ≥ θ̂(p̃) or θ̂(p̃) ≤ θ.

Third, we should also make sure that bidders do not have an incentive to expand
demand further than is stipulated in the candidate equilibrium strategies by deviating
and demanding more than x̃i(p̃) until p> p̃. To this end, we first argue that for all types
θi < θ, the clock phase must stop at p̃ with positive probability in equilibrium. From the
candidate equilibrium strategies, it is clear that if the clock can end for the highest possi-
ble type θ, it can also end for all other types. The reason the clock must possibly stop for
all types is that if a bidder with type θ knows that the clock will certainly not end under
truthful bidding, then he prefers to continue demanding the full supply. To see this, re-
call that to have a semi-separating equilibrium, it should be the case that x̃(p̃� θ) > 1/2,
which implies that p̃ < θ−σ/2. Given the definition of θ̃(p̃) and the constraints derived
in the previous paragraph, this implies that θ̂(p̃) < θ. Thus, in the candidate equilibrium
strategy, the activity rules restrain bidder θ from fully raising the rival’s cost. Continuing
bidding on the entire supply would allow further raising the rival’s cost without affect-
ing the final allocation (and the price he pays). To make sure that it is possible for the
clock to end along the equilibrium path for all types θi < θ, it should be the case that
p̃ ≥ (θ+ θ− σ)/2 = u(x�θ)= u(x�θ).

Next, we argue that expanding demand at p̃ results in a decrease of expected surplus,
as there is a positive probability that the clock ends by bidding truthfully at p̃ for all
types. To see this, we use the difference between the supplementary bidding strategies

S
p̃
i (x) and S

p∗
i (x) in (1) and (2), respectively. If bidder j were to bid truthfully, the clock

would stop at p̃ for all types θi ≤ 2p̃+ σ − θj . Importantly, the aggregate clock demand
at p̃ is arbitrarily close to 1 if the competitor’s type is just below 2p̃+ σ − θj . If the clock
ends at p̃, we have x∗

j > x̃j , so that the supplementary bidding function (1) guarantees
that bidder j gets the efficient share at a price min{Ui(xi) + U(1 − xi)�Ui(x̃i) + p̃(1 −
x̃i)} −Ui(x

∗
i ). Consider then that bidder j expands demand at p̃. In that case, there exist

some types θi just below 2p̃ + σ − θj for which the clock ends at a higher price than p̃.
Given that the supplementary bid strategy of these types changes from (1) to (2), bidder
j gets at most a utility of Uj(1 − x̃i)−[Ui(x̃i)+ p̃(1 − x̃i)−Ui(x̃i)]. As 1 − x̃i > x∗

j for some
types θi, bidder j is better off not deviating.

All of the above constraints can be jointly satisfied for a variety of final clock prices.
For example, we can set p̃ = (θ+ θ−σ)/2 as we did in Figure 4. At this price, the highest
type for which the clock definitely ends at the threshold price is θ̃(p̃) = θ and equilib-
rium exists whenever θ̂(p̃) ≤ θ, or θ− θ ≤ (

√
2 − 1)σ .

Discussion We conclude that a semi-separating equilibrium as discussed above exists
if the uncertainty concerning the competitor’s type, measured by θ − θ, is not too large.
This equilibrium is efficient, as all bidders bid their true marginal utilities on possibly
efficient shares in the supplementary phase and other bids are such that the winning
bid combination is in this range of possibly efficient shares. Thus, there are efficient
equilibria with some information revelation, where low types pool and high types are
constrained by the activity rule so that they cannot exploit new information to raise their
rival’s cost.



Theoretical Economics 14 (2019) Combinatorial clock auction 1291

The semi-separating equilibrium is noteworthy as it shows that even if bidders know
that the competitor is raising their cost in the supplementary phase, they do not reduce
demand in the clock phase. This is in contrast to Levin and Skrzypacz (2016), who re-
strict bidders to linear proxy strategies and show that bidders will engage in demand
reduction in the clock phase, assuming (against the auction rules) that a demand re-
duction strategy in the clock phase does not affect the ability to raise a rival’s cost. The
example also shows that, in contrast to what some observers of the CCA have argued,
the clock phase may well end up with excess supply, while bidders are still able to raise
their rival’s cost.15

A variant of this equilibrium occurs if the clock stops at p̃ for all type profiles. In such
a clock-pooling equilibrium, the clock does not reveal any information. There are three
constraints on the clock-pooling price p̃. First, the truthful demand at p̃ of the strongest
bidder should be smaller than half the supply for the clock to end. Second, no bidder
should have an incentive to further expand demand because p̃ is such that the final cap
and relative cap do not restrict the spiteful bid. Third, as before, the weakest type should
still derive nonnegative utility. The constraints on p̃ specify a tighter upper bound on
the range θ− θ for such a clock-pooling equilibrium to exist.

4. Nonexistence of efficient equilibria with large uncertainty

So far we have seen that efficient clock-revealing equilibria do not exist, but that efficient
equilibria may nevertheless exist even if bidders are spiteful. The example presented
in the previous section constructs an efficient equilibrium where the uncertainty con-
cerning the final allocations, measured by θ − θ, is relatively small. In this section, we
consider auctions where the ex ante uncertainty concerning the final allocations is rel-
atively large and, consequently, information revelation might be more important. Our
second main result shows, however, that the CCA does not have efficient equilibria when
the uncertainty about the other bidder’s type is sufficiently large. To simplify the proof,
we consider (type-) symmetric equilibria, that is, equilibria where identical types use
identical strategies.16,17

15See, e.g., Levin and Skrzypacz (2016, Remark 2, p. 2542), where they observe that “[i]f we allowed bidder
2 to create excess supply at the end of the clock phase, she could increase bidder 1 payment even more. . . .
Such extreme predatory behavior is even more difficult to execute and even more risky for player 2 than
what we describe. Moreover, analyzing equilibria in this case is difficult, so we maintain the assumption
that player 2 is not allowed to create excess supply in the clock phase.” Similarly, Kroemer et al. (2016, p. 38)
observe that “[i]n recent spectrum auction implementations, the regulator decided not to reveal excess
supply in the last round, in order to make spiteful bidding risky. It depends on the market specifics, if
this risk is high enough to eliminate spiteful bidding.” The British regulator Ofcom (2015, A8.48 p. 16) also
writes in a similar vein when they consider the Austrian 2013 CCA outcome: “We also noted that at the
end of the clock rounds there was an excess supply of 2 × 10 MHz in each of the 900 MHz and 1800 MHz
bands. . . . This further suggests a possible reason why bidders may have considered price driving in the
supplementary bids to be a risky strategy. . . .”

16We believe that asymmetric efficient equilibria do not exist either, but a formal proof would require
checking many different cases.

17The proof of this result can also be used to show that efficient equilibria do not exist if the lowest type
θ does not value the good at all, i.e., u(x�θ) = 0.
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Proposition 3. Let u(1� θ) > u(0� θ). Due to the high ex ante uncertainty about the final
allocation, no symmetric efficient equilibrium exists.

Importantly, if the uncertainty concerning bidders’ types is substantial, all equilibria
of the CCA, which is a dynamic implementation of the VCG auction, are inefficient. The
next section shows that no matter how large this uncertainty is, the VCG auction always
has efficient equilibria. It is, therefore, the information that is transmitted during the
clock phase that may destroy efficiency (even if little information is provided). The result
demonstrates that blending two well meant auction design principles (the second-price
principle and an open format) may have unintended consequences.

The main intuition for this result can be developed by combining different argu-
ments that we have previously developed. From Proposition 2, we know that in any
efficient equilibrium, some types will expand demand. Because of the relative cap and
the large type space, the clock must last long in an efficient equilibrium if one bidder
is sufficiently strong. The long duration gives some relatively strong types the possibil-
ity of weakening the constraints of the activity rules by expanding demand. Because of
the high uncertainty, the highest and the lowest types cannot pool at a threshold price
in an efficient equilibrium. Consequently, the clock not ending when low types drop
out reveals to strong types that their competitor is strong. The spiteful bid of high types
then jumps discretely in any supplementary round that follows a longer duration of the
clock. Other types will reduce their clock phase demand in anticipation of this behavior,
which—given the activity rules—necessarily leads to inefficiencies.

This argument is developed in more detail with the following notation. Note that if
u(0� θ) < u(1� θ), there exists a type θ′ > θ such that u(0� θ′)= u(1� θ) and that the lowest
possible efficient share of all types in [θ�θ′] is 0. Likewise, there is a type θ

′
< θ such that

u(1� θ′
) = u(0� θ), so that the largest possible efficient share of all types in [θ′

� θ] is the full
supply.

We first argue that in any efficient equilibrium, when the lowest type θ meets a type
above θ

′
, the final clock price must be u(0� θ), which is the clock price at which the lowest

type drops out of the auction under truthful bidding. Because of the high uncertainty,
the truthful demand of types above θ

′
is the full supply at this price. If the final clock

price p was smaller for such a type profile, then at least one of the bidders would have
reduced demand, as for these prices u(1� θ′) > u(0� θ) > p for all types θ′ > θ

′
, so that if

none of them would have reduced demand, then aggregate demand would be larger
than supply. Given the restrictions imposed by the relative cap, these bidders could
not bid marginal utilities on all possibly efficient shares in the supplementary round
(Proposition 2). The final clock price for such a type combination cannot be larger than
u(0� θ) either, as this would imply that θ and some marginally larger types have exces-
sively expanded demand. Demand expansion at these high prices and the requirement
that supplementary bids must be at least as high as clock bids lead to the bidder neces-
sarily winning too much or too little. Thus, the clock must end at u(0� θ) for these type
profiles.

Second, we show that in any efficient equilibrium, types marginally larger than θ will
demand truthfully at clock prices slightly larger than u(0� θ). By the same reasoning as in
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the previous paragraph, the clock cannot end later than uj(0) for θj > θ through demand
expansion. Bidders also cannot reduce demand as the relative cap then prevents them
from bidding true marginal values on efficient shares, which is necessary for ex post
efficiency. As a result, they must bid truthfully at these prices.

Given this behavior of types just above θ, we next argue that similar to the reason-
ing in Proposition 1, types just below θ

′
find it optimal to maximally expand demand

in the clock phase for prices p < u(0� θ). The reason is that by maximally expanding
demand, the clock cannot end at prices p< u(0� θ), while they know that in an efficient
equilibrium, the clock will continue for them if the rival is sufficiently strong. Expanding
demand in the clock implies they discretely increase their supplementary bid on the full
supply if the clock stops at a price larger than u(0� θ) compared to the situation where
the clock stops at u(0� θ) and they find it optimal to do so. In anticipation of this behav-
ior, some types in (θ�θ′] will then find it profitable, however, to reduce their demand at
u(0� θ), ending the clock prematurely to prevent the rival from further raising their costs.
Such behavior is inconsistent with efficiency, however, showing that there is no efficient
equilibrium.

4.1 Inefficient equilibria in the quadratic utility model

This subsection uses the quadratic utility model to present an example of an inefficient
equilibrium that illustrates the kind of equilibria that may exist when efficient equilibria
do not exist. Thus, the example underlines that Proposition 3 is not due to a general
nonexistence of equilibrium. In our example, the final allocation is almost surely ineffi-
cient as bidders win either 0, 1/2, or the full supply. For simplicity, we consider a CCA in
which bidders are informed about aggregate demand in the final clock round.

Let σ < θ−θ ≤ 3/2 ·σ . We have three threshold prices p̃1 < p̃2 < p̃3, and partition the
type space into [θ�θ1), [θ1� θ2), and [θ2� θ]. Call θ3 = θ and θ0 = θ. Let I ∈ {1�2�3} be the
index for type θi ∈ [θI−1� θI), where the interval is closed for I = 3. Define J analogously
for a bidder with type θj .

We choose the prices such that

U
(
1/2� θI−1) − p̃I/2 = 0

and choose the cutoff types so that

U
(
1/2� θI

) − p̃I/2 =U
(
1� θI

) − p̃I �

Thus, at price p̃I , type θI−1 is indifferent between dropping demand to 0 and bidding
for half of the supply, while type θI is indifferent between bidding for half of the supply
and the full supply. For θ, the equality can be an inequality so that the left-hand side is
larger than the right-hand side. When bidders have quadratic utility functions, we have
p̃I = θ− σ/4 + (I − 1) · σ/2 and θI = θ+ I · σ/2.
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Strategies In the clock phase, type θi ∈ [θI−1� θI) follows the clock demand function

xi(p) =
{

1 for p< p̃I

0 for p ≥ p̃I �

Hence, the clock ends with both bidders demanding 0 if I = J, and with one demanding
the full supply and the other demanding 0 if I �= J.

The supplementary bids depend on aggregate demand in the final clock round. If
the clock ends with aggregate demand of 0 at the final clock price p̃, then θi bids

S
p̃I

i

(
x|xi(p̃)+ xj(p̃)= 0

) =

⎧⎪⎪⎨
⎪⎪⎩
p̃/2 for x= 1/2

p̃ for x= 1

0 else�

If aggregate demand in the last clock round is positive, then the supplementary bidding
function is given by

S
p̃I

i

(
x|xi(p̃)+ xj(p̃) > 0

) =
{
p̃ for x= 1

0 else�

The supplementary bidding functions clearly satisfy the constraints of the activity rules,
and the final cap and the relative cap are binding for strictly positive bids. The difference
between the two bidding functions is that in the former case, a positive bid on 1/2 is
submitted, whereas in the latter case, no such bid is made.

No incentive to deviate If bidders belong to the same partition group, i.e., I = J, then
both win half of the supply at the CCA price p̃I/2. The construction of p̃I and the cutoff
types make it clear that these bidders prefer this outcome over winning the full supply
at a price of p̃I . Bidders could win x > 1/2 by deviating to demanding x at the final clock
price p̃I (instead of 0). The CCA price for x would then be p̃I . It is clear that this gives
less surplus than the full supply, which in turn is a worse outcome than winning 1/2.
Bidder i could also win a share 0 < x < 1/2 at the CCA price of p̃I/2 by deviating in the
supplementary phase that follows p̃I and zero aggregate demand. Again, this leads to a
lower surplus than winning 1/2.

Next consider the case where θi and θj are such that I < J. The clock ends at p̃I with
market clearing. Bidder j wins the full supply at the CCA price p̃I . The construction
of the prices and cutoff types is such that the stronger bidder prefers winning 1 at CCA
price p̃I over 1/2 at the CCA price p̃I/2. The lowest price at which bidder i could win a
positive amount is p̃J , which is so high that bidder i would incur a loss. Hence, bidders
do not have an incentive to deviate, even if they know the competitor’s type. Hence, the
proposed strategies form an ex post equilibrium. There are also no profitable deviations
in the spite dimension of the preferences. If a bidder demanded x > 0 at p̃I , then he
would lose the possibility of winning 1/2 at a price at which he makes a positive sur-
plus. Hence, a bidder cannot further raise his rival’s costs without decreasing his own
expected surplus.
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Discussion The inefficiency in this equilibrium can be quite substantial. For exam-
ple, if a type marginally below the cutoff meets a type marginally above the cutoff, the
efficient allocation has both bidders approximately winning half the supply. The equi-
librium outcome is, however, one where the slightly stronger type wins the full supply.
For θ1 with σ = θ, this amounts to a welfare loss of 20%.

If the uncertainty is larger (or smaller) than assumed in this subsection, then it is
easy to extend the equilibrium construction to more than three threshold prices.

5. The VCG mechanism

To better understand the implications of having a clock phase for raising the rival’s cost,
we now briefly analyze the VCG mechanism. The purpose of this section is twofold.
First, we want to establish how we see the weak preference for raising the rival’s cost as
an alternative way to select among the many equilibria of the VCG. Second, we want
to show that, independent of the size of the uncertainty, the VCG always has efficient
equilibria when bidders are spiteful. The contrast with the result from the CCA of the
previous section reinforces the point that it is the dynamic element of the CCA, i.e., the
clock phase, that is responsible for the inefficiency result via an effect that is similar to
the ratchet effect.

We first show that under standard preferences, the outcome of applying iterative
elimination of weakly dominated strategies (IEDS) to the VCG mechanism is always ef-
ficient, but that the payments are undetermined and depend on the way IEDS is imple-
mented. Truthful bidding is one of the strategies that survives IEDS, but, depending on
the order of elimination, other strategies may survive IEDS as well. Bidders have to bid
true marginal values on possible efficient shares in the interval [xi�xi] so as to get the ef-
ficient share. Outside the interval [xi�xi], bidders may bid differently as, depending on
the order of elimination, bids on these shares may not be pivotal. As for weaker bidders,
it is always the case that xi < 1, these bidders have a range of shares for which the bid is
undetermined by IEDS, and the choice of these bids determines how much competitors
have to pay. Accordingly, the payments in the VCG mechanism may well differ from the
payments under truthful bidding.

Proposition 4. In the VCG mechanism with standard preferences, any strategy profile
that survives any process of IEDS implements the efficient allocation. The VCG payments
depend, however, on the order in which weakly dominated strategies are eliminated and
on the choice of strategy profile that survives IEDS.

One way to resolve the indeterminacy related to payments is to impose that bid-
ders play their weakly dominant strategy. The lexicographic spiteful preferences may be
viewed as a more plausible alternative.

Under spiteful preferences, truthful bidding is not an equilibrium in the VCG mech-
anism. To see this, suppose other bidders bid truthfully and consider a weak enough
bidder with type θi for whom xi < 1. Without lexicographic preferences, bidder i is in-
different between some bids on (xi�1]. A lexicographic bidder knows, however, that he
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can increase the price other bidders have to pay. The easiest way to do so is to increase
the bid Si(1) on the full supply as much as possible under the constraint that it is not
winning.18 He never wins the full supply in an efficient equilibrium if for all θj ∈ [θ�θ],

Si(1) ≤ Si
(
x∗
i (θi� θj)

) + Sj
(
x∗
j (θj� θi)

)
� (3)

The right-hand side of (3) depends on the type of the other bidder and is minimized
if the other bidder has the lowest possible type θ. Hence, given our formulation of the
spite motive, bidder i wants to set the bid on 1 equal to the minimal value of the efficient
allocation given bidder i’s type. If both bid true utility on [xi�xi], then the optimal bid is
Si(1) = Vi(θ). Thus, both bidders can use their private information and their knowledge
about the lowest possible type of their rival to raise the bid on the full supply. Types that
can win everything in an efficient equilibrium maximize the rival’s payment by bidding
truthfully, in which case Si(1) =Ui(1) = Vi(θ).

The next proposition determines an efficient equilibrium under lexicographic pref-
erences where bidders bid truthfully on all possible shares, apart from 1 if the type is low
enough.19 The equilibrium strategies are increasing in x, but not necessarily continuous
at 1.

Proposition 5. Let bidders have lexicographic spiteful preferences. The strategy profile
in which bidder i = 1�2 with type θi plays

Si(x) =
{
Ui(x) for 0 ≤ x < 1

Vi(θ) for x= 1
(4)

forms an equilibrium of the VCG auction. Under standard preferences, there is a process
of IEDS such that this strategy profile is iteratively undominated.

In strategy profile (4), all bidders bid true utility on all shares smaller than 1. No
bidder can further raise the VCG price without running the risk of winning, as the other
bidder’s type may be such that the value of the efficient allocation is minimal. Hence,
the strategy profile is an equilibrium under lexicographic preferences for raising the ri-
val’s costs. Note that the strategy profile in (4) implements the efficient allocation and
survives the IEDS of the proof of Proposition 4.

It is also important to note that all types θi > θ make positive surplus. This is be-
cause bidders do not want to risk winning the full supply and, therefore, are restricted in
raising their rival’s cost by the lowest possible efficient value Vi(θ). If bidders knew their
rival’s type, they would fully expropriate them in any equilibrium where bidders bid val-
uation on the possibly efficient shares [xi�xi]. Thus, in the VCG mechanism, bidders
benefit from rivals being uncertain about their type.

18He could also increase his bid on other x ∈ (xi�1), but this does not create any benefit.
19This is not the only equilibrium when bidders have lexicographic preferences. It is clear that bidders

never want to bid above value on possible efficient shares. To protect themselves against others raising their
price, bidders may, however, reduce their own bids on the domain of possibly efficient allocations without
affecting their marginal bids.
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6. Discussion and conclusion

This paper provides a full equilibrium analysis of the CCA where the strategic interaction
between the clock phase and the supplementary round is studied in an environment
where bidders not only care about their own payoff but also (lexicographically) about
how much rivals pay. We have two main results. First, there does not exist an efficient
equilibrium of the CCA that fully reveals the type of the competitor in the clock phase.
Our second main result is that the CCA is inefficient if the uncertainty concerning final
allocations is relatively large.

It is difficult to assess whether real-world CCAs have been efficient, as this would
require knowing bidders’ utility functions. However, many of the equilibrium features
of the CCAs we have highlighted show similarities to observed features of CCAs. With-
out pretending that there are no alternative explanations for these phenomena, we pro-
vide the following observations. First, after the 2013 auction, the Austrian regulator RTR
observed that during a large part of the clock phase, bidders’ demanded close to their
full spectrum caps. This is in line with our examples on clock-pooling and clock-semi-
separating equilibria, and is explained by our result on demand expansion in the clock
phase. Second, the Austrian mobile network operator Telekom Austria (2013) indicates
in a press release after the auction that the clock phase ended with excess supply in key
spectrum bands. According to the Austrian regulator RTR, this did not prevent the bid-
ders from bidding aggressively in the supplementary round.20 This is also in line with
our examples on clock-pooling and clock-semi-separating equilibria, where we argue
that bidders create excess supply purposefully to obfuscate their type to prevent rivals
from raising their costs.21

Ausubel and Baranov (2014) suggest alternative activity rules with the purpose of
providing bidders with stricter incentives to bid according to their intrinsic preferences.
They propose replacing the relative cap we use in this paper by GARP (the generalized
axiom of revealed preference). We observe that bidders do not violate GARP in any of
our equilibria. We conclude, therefore, that most of our results continue to hold if we
were to adopt the GARP activity rule.

We end our paper by briefly discussing the robustness of our results to changes in the
model. First, many of our findings hold when there are more than two bidders. Equilib-
ria with more than two bidders feature coordination on how the rivals’ costs are raised.
In equilibrium, this coordination is not an issue, but characterizing the equilibrium is
more difficult. Restricting the analysis to two bidders also has a certain virtue beyond
simplicity, as all relevant information may be revealed in a fully revealing equilibrium.
When two bidders bid truthfully in the clock phase, the final clock price reveals the other
bidder’s type. With more than two bidders, however, one learns at most only the “sum
of types.” The two bidder case, therefore, allows the clearest test of the CCA. Second,
it might be that values are not private, but interdependent. In this case, information
revelation in the clock may improve efficiency. While this may be true, the underlying

20See https://www.rtr.at/en/pr/PI28102013TK.
21The clock phase of the Canadian 700 MHz auction also ended with excess supply even though these

units were allocated in the supplementary round.

https://www.rtr.at/en/pr/PI28102013TK
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economic forces described in this paper still hold. Low types know that they cannot
win the full supply, so they expand demand so as to place high bids on the full supply to
raise rivals’ costs. Bidders are, therefore, still reluctant to reveal their private information
because they know that by doing so they will be exploited. Thus, the trade-off between
information revelation and efficiency we have uncovered in this paper is likely to remain
important in more complicated settings.

Appendix: Omitted proofs

Proposition 1. There does not exist an efficient clock-separating equilibrium in the
CCA.

Proof. Suppose an efficient clock-separating equilibrium exists. Clock separation re-
quires that demand is monotone in type, i.e., θi ≥ θj implies xi(p) ≥ xj(p). Let T be
an open neighborhood of the type profile θ ∈ [θ�θ]2 so that for any θ ∈ T , all bidders
are winners in the efficient allocation. The equilibrium strategy profile must have the
following properties.

First, the clock must end with market clearing almost surely. Suppose there is a pos-
itive probability, i.e., an open set of type profiles T ′ ⊆ T , that the clock ends with excess
supply. The clock ends with excess supply only if a bidder uses a demand function with
discrete downward jumps. Without loss of generality, let bidder 1 make a jump that
ends the clock for type profile θ ∈ T ′ at τ(θ) = p. Consider type θ′

2 being slightly smaller
than θ2. Then the clock must end with excess supply at τ(θ1� θ

′
2) by bidder 2 making

downward jumps, because τ is increasing in θ2. Fix θ′
2 slightly smaller than θ2 such that

τ(θ1� θ
′
2) = p′ < p and bidder 1’s demand with type θ1 has no jumps on [p′�p). Note

that for a given θj , the function τ(θi� θj) is strictly increasing in θi and, therefore, con-
tinuous almost everywhere. Hence, there exists a type θ′

1 slightly larger than θ1 such
that τ(θ′

1� θ
′
2) = p′′ and p′ < p′′ < p. At p′′, it is bidder 1’s discrete decrease that ends

the clock. Since demand functions are monotone in type, it must be that type θ1 drops
demand at p′′, a contradiction.

Second, the relative cap must be binding for relevant shares in (x∗
i �1] in any sup-

plementary phase on the equilibrium path. Since the clock ends with market clearing
almost surely and the equilibrium is efficient, demand in the final clock round must be
the respective efficient shares. This follows from the definition of the final cap rule. In
addition, the clock ending with market clearing and the final cap imply that the sup-
plementary bids determine only the other bidder’s CCA price. If the relative cap was not
binding, then a spiteful bidder could further raise the supplementary bids on shares that
determine other bidders’ CCA prices relative to the efficient share without changing the
final allocation. The proposed equilibrium strategy would then not be a best response
in the spite dimension.

Third, bidders need to demand truthfully for p ∈ [ui(xi)�ui(xi)]. The clock ends with
market clearing and the relative cap is binding. Bidder j wants to win the efficient share
only if uj(x∗)= si(1 − x∗)= ui(1 − x∗). Hence, bidder i must demand truthfully.
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We now show that, given these properties, there is a profitable deviation from the
clock-separating equilibrium strategy. This deviation leads to the same expected util-
ity in the first dimension of the preferences, but to strictly higher CCA prices for some
possible final clock prices. Bidder i deviates by first expanding demand for some prices
strictly above ui(xi), and bids truthfully at some price p> ui(xi) and from then on. If the
clock ends at p, it almost surely ends with excess supply. Other bidders do not see the
deviation and believe that the clock ended with market clearing. They fully raise the sup-
plementary bids to sj(x) = uj(x) for x ∈ [xj(p)�xj]. Hence, a suitable level of Si(xi(p))
and true marginal values si(x) = ui(x) on [xi(p)�xi] implement the efficient allocation.
The CCA price for the deviating bidder is the same as under the initial strategy, since the
CCA price is independent of the final clock price. The CCA price for the other bidder is
not less than the “equilibrium” price if the clock ends at p. If the clock does not end at
p, it will end at a higher clock price with market clearing. The deviation weakened the
constraints of the activity rule; hence, the spiteful bids in (xi�1] are strictly larger than
those of the initial strategy and lead to a higher CCA price for the other bidder.

Proposition 3. Let u(1� θ) > u(0� θ). Due to the high ex ante uncertainty about the final
allocation, no symmetric efficient equilibrium exists.

Proof. The following lemma describes the necessary equilibrium clock behavior. The
remainder of the proof concerns the supplementary bids on the equilibrium path. Let
x̃i denote the truthful demand of θi at p.

Lemma 1. Let u(0� θ) < u(1� θ). In any symmetric efficient equilibrium, there is an ε > 0
such that type θi ∈ [θ′ − ε�θ

′
) expands demand for some prices p<p = u(0� θ). Moreover,

there exists a δ > 0 such that all types in [θ�θ′] ∪ [θ′ − ε�θ] demand truthfully at p ∈ [p�
p+ δ].

Proof. We first prove three auxiliary claims and then the lemma’s claims in the order
that they appear. We begin by showing that whenever a relatively weak type demands
a possibly efficient share in the clock phase on the equilibrium path, this must be the
truthful demand.

Claim 1. Let u(0� θ) < u(1� θ) and θj ∈ [θ�θ′]. In any efficient equilibrium and for all
p ≤ τ(θ�θj), if xj(p) ∈ (0�xj], then uj(xj(p)) = p, and if xj(p) = 0, then uj(0) ≤ p.

Proof. Let u(0� θ) < u(1� θ) and consider any efficient equilibrium. Let θj ∈ [θ�θ′] de-
mand xj(p) ∈ [0�xj]. The proof of Proposition 2 shows that bidder θj cannot reduce de-
mand, as this would prevent him from bidding true marginal values in any subsequent
supplementary phase. Hence, uj(xj(p)) ≤ p.

To prove that there cannot be demand expansion, we first show a property any effi-
cient equilibrium must exhibit. Consider any efficient equilibrium and define the equi-
librium price type θj has to pay when facing θi as

pCCA
i (θj) = max

y
S
τ(θi�θj)

i (y)− S
τ(θi�θj)

i

(
x∗
i (θj)

)
�
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Depict this function as pCCA
i (θj) = ξ(θi� θj)−Ui(x

∗
i (θj)). We first show that ξ is indepen-

dent of θj so that bidder j’s type enters the CCA price only via the efficient share. It is
clear that pCCA

i cannot have any jumps, as this would lead to discretely different prices
for marginally different types. In an efficient ex post equilibrium, we must have

θj ∈ arg max
θ̃j

Uj

(
x∗(θ̃j� θi)

) −pCCA
i (θ̃j)�

i.e., no type has an incentive to pretend to be a different type. Consider the first deriva-
tive of the maximization problem with respect to θ̃j ,

∂x∗
i (θ̃j)

∂θ̃j

[
ui

(
x∗
i (θ̃j)

) − uj
(
1 − x∗

i (θ̃j)
)] − ∂ξ(θi� θ̃j)

∂θ̃j
�

and impose the optimality of truthful reporting, i.e.,

∂x∗
i (θ̃j)

∂θ̃j

[
ui

(
x∗
i (θ̃j)

) − uj
(
1 − x∗

i (θ̃j)
)]∣∣∣∣

θ̃j=θj

− ∂ξ(θi� θ̃j)

∂θ̃j
= 0�

The first term equals 0, as either the efficient share is in the interior so that the marginal
utilities are equal or it is on the boundary so that the efficient share does not depend
locally on θj . Hence, in an efficient equilibrium, ξ cannot depend on θj and we have

pCCA
i (θj)= ξi −Ui

(
x∗
i (θj)

)
� (5)

Coming back to the proof of the claim, suppose that p ≤ τ(θ�θj) and x̂ = xj(p)

with uj(x̂) < p. When the clock ends at τ(θ�θj), type θj ’s highest supplementary bid
is maxy Sj(y) = ξj , as Sj(0) = Uj(x

∗(θj� θ)) = 0. The CCA price for share x̂ when the clock
ends at τ(θ�θj) is, therefore,

ξj − S
τ(θ�θj)

j (x̂) ≤ ξj −px̂ < ξj −Uj(x̂)�

where the first inequality follows from clock bids remaining valid (i.e., the activity rules’
constraint from below), while the second inequality follows from demand expansion.
Note that there is a type θ̂ such that x̂ = x∗(θj� θ̂). This type gets 1 − x̂ at a price that is
smaller than (5). This is a contradiction. �

Claim 2. Let u(0� θ) < u(1� θ). In any symmetric efficient equilibrium, for all θj ∈ [θ�θ′],
we have τ(θ�θj) ≤ uj(0).

Proof. Suppose to the contrary that there is a symmetric and efficient equilibrium and
a type θj ∈ [θ�θ′] such that p̂ = τ(θ�θj) > uj(0). Claim 1 implies that whenever bidder
j demands a possibly efficient share, bidder j must demand truthfully. The clock ends,
however, at uj(0) at the latest under truthful bidding. Hence, τ(θ�θj) > uj(0) can be
true only if bidder j demands xj(p) > xj for p < p̂ and 0 at p̂. In a type-symmetric
equilibrium, the clock necessarily ends for at least all θi ≥ θj at p̂. In the supplementary
phase that follows the clock ending at p̂, efficiency requires θj bidding true marginal
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utility on [0�1/2]. As Sp̂(0) = 0, this implies bidding true utility, i.e., Sp̂j (x) = Uj(x) for
x ∈ [0�1/2].

We now show that the efficient allocation (1/2�1/2) is not implemented if both bid-
ders have type θj . Let δ > 0 be small enough so that p̂−δ > uj(0) and let x = xj(p̂−δ) >

1/2. For the equilibrium to be efficient, we must have

2Sp̂j (1/2) = 2Uj(1/2) ≥ S
p̂
j (x)+ S

p̂
j (1 − x) ≥ (p̂− δ)x+Uj(1 − x)�

where we use truthful bidding on possible efficient shares and the fact that clock bids
remain valid. The inequality simplifies to

Uj(1/2)+
∫ 1/2

1−x
uj(y)dy ≥ (p̂− δ)x

⇒ uj(0)/2 + uj(1 − x)(x− 1/2) > (p̂− δ)(1/2 + x− 1/2)�

The inequality is false, however, as p̂− δ > uj(0) ≥ uj(1 − x). �

Claim 3. Let u(0� θ) < u(1� θ). In any symmetric efficient equilibrium, there is an ε > 0
such that for all θi ∈ [θ′ − ε�θ], we have τ(θi� θ) = p = u(0� θ).

Proof. Suppose to the contrary that there is a symmetric efficient equilibrium such
that for all ε > 0, there is a type θi ∈ [θ′ − ε�θ] with τ(θi� θ) �= u(0� θ). There are three
exhaustive cases to consider. First, Claim 2 shows that τ(θi� θ) > u(0� θ) cannot occur
for any θi in a symmetric efficient equilibrium, because if it happened for θi, it would
also happen for θ in a monotone equilibrium. Second, we show that it is impossible that
τ(θi� θ) < u(0� θ) for any θi ∈ [θ′

� θ]. The third case considers types just below θ
′
.

It is straightforward to see that in any efficient equilibrium it cannot be that for type
θi ∈ [θ′

� θ] we have τ(θi� θ) = p < u(0� θ). Proposition 2 tells us that in an efficient equi-
librium bidders do not reduce demand at this price. If p< u(0� θ) ≤ u(1� θ), the truthful
demand of types just below θ

′
at p equals the full supply, while the truthful demand of

the low type is strictly positive. Hence, the clock cannot end at τ(θi� θ) = p< u(0� θ).
We now turn our attention to types “just below” θ

′
, as it could be that for every ε > 0

there is a type θi ∈ (θ
′ − ε�θ

′
) with τ(θi� θ) < u(0� θ). From the previous case it follows

that τ(θi� θ) must be increasing in θi, because otherwise there would be types just be-
low θ

′
whose truthful demand is the full supply and who reduce demand, contradicting

Proposition 2. We will show that for types just below θ
′
, the clock must end at u(0� θ) if

they meet the lowest type. It cannot end earlier due to an argument that relies on bidders
having spiteful lexicographic preferences and which is akin to the proof of Proposition 1.
For clock prices just below u(0� θ), the truthful demand of types just below θ

′
is almost

the full supply, while low types’ truthful demand is slightly above 0. The function τ(θi� θ)

increases in θi if demand is decreased continuously. Efficiency of equilibrium and the
final cap require bidders to lower demand truthfully. Hence, the lowest type is active for
all p < u(0� θ). The marginal supplementary bids when the clock ends at u(0� θ) must
satisfy the relative cap s(x�θ) ≤ u(x�θ), which follows from truthful bidding at prices
just below clock price u(0� θ). Thus, the lowest type bids true utility on shares (slightly)
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above 0. This follows from the relative cap being necessarily binding in an efficient and
information revealing equilibrium. As a result, types just below θ

′
have no incentive to

lower demand truthfully at prices just below u(0� θ), because they can expand demand
until u(0� θ) and still get the efficient share at the same CCA price if they meet a very low
type. �

The first claim of the lemma follows directly from the previous claim. For types just
below θ

′
, the clock does not end before u(0� θ) in an efficient equilibrium. Thus, these

types will expand demand for clock prices p < u(0� θ) = p in equilibrium. The demand
expansion weakens the (necessarily) binding constraint of the relative cap.

The second claim of the lemma is that there is a δ > 0 such that types in [θ�θ′] ∪
[θ′ − ε�θ] demand truthfully for p ∈ [p�p + δ]. Bidders cannot reduce demand due to
Proposition 2. The proof of Claim 2 rules out θj ∈ [θ�θ′] demanding x > xj for p< uj(0)
and xj(uj(0)) = 0. Claim 1 then shows that θj ∈ [θ�θ′] bids truthfully for clock price

p ∈ [p�p+δ]. Type θi ∈ [θ′ −ε�θ] also has to bid truthfully, as the low types bid truthfully.
Demand expansion of a type whose truthful demand is arbitrarily close to the full supply
at p ∈ [p�p + δ] goes along with the possibility of market clearing. As the equilibrium
is efficient, bidders have to demand truthfully at prices at which the clock can end with
market clearing. �

We prove the proposition by showing that types just below θ
′
can make the CCA price

dependent on the final clock price and this incentivizes some weak bidders to pool with
lower types by reducing demand. Consider type θi just below θ

′
that expands demand

for prices just below p. Claim 3 of the proof of the lemma shows that the lowest equilib-
rium final clock price of θi is p. Let θj denote the highest type for which the clock may
end at p when meeting θi under truthful bidding, that is, ui(x̃i) = uj(x̃j). It is clear that
θj > θ.

When the clock ends at p, efficiency requires the lowest type to bid true utility in a
neighborhood of 0 in the supplementary phase. This follows from Sp(0) = 0, the neces-
sity of bidding true marginal values on possible efficient shares, and the clock ending at
p for all types in (θ

′ − ε�θ]. Hence, when the clock stops at p, bidder i’s supplementary
bid on the full supply must be

S
p
i (1) = min

{
S
p
i (x̃i)+p(1 − x̃i)� S

p
i (xi)+U(1 − xi)

}
�

Note that x̃i = x∗(θi� θj) < xi = x∗(θi� θ) for types just below θ
′
. Since the clock ends at p

when bidder i meets a type below θj , bidder i must bid true marginal values on [x̃i� xi]
in the supplementary phase when the clock ends at p in an efficient equilibrium, i.e.,

S
p
i (xi)= S

p
i (x̃i)+Ui(xi)−Ui(x̃i).

Now we show that the relative cap is slack for θi in the supplementary phase if the
clock ends at p, that is, Spi (1) = S

p
i (xi) + U(1 − xi) < S

p
i (x̃i) + p(1 − x̃i). Suppose the

inequality was false. Inserting the expression for Spi (xi) and simplifying yields

p(1 − x̃i + xi − xi)≤Ui(xi)−Ui(x̃i)+U(1 − xi)

⇒ p(1 − xi)+p(xi − x̃i) < ui(x̃i)(xi − x̃i)+p(1 − xi)�
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The implication uses decreasing marginal values (e.g., u(0� θ) ·x >U(x)) and p = u(0� θ).
Hence, the last inequality is false and the relative cap must be slack in the supplementary
phase that follows p. The presence of types close to θ therefore limits the types just
below θ

′
from fully raising the supplementary bid on the entire supply after the clock

ends at p.
As the clock continues after p, types just below θ

′
learn that the competitor’s type

is at least θj > θ. Let p∗ ∈ (p�p + δ), where the neighborhood is given by Lemma 1.
As demand is lowered truthfully, the clock can end with market clearing at clock price
p∗ > p in equilibrium. In the subsequent supplementary phase, bidder i will raise the
bid on the full supply so that the relative cap is binding. For shares in [xi(p∗)� x̃i], the
relative cap requires si(x) ≤ ui(x) due to truthful bidding in the clock phase. Bidder i

will also take these constraints as binding and will bid Si(x̃i) = Si(x
∗
i )+Ui(x̃i)−Ui(x

∗
i ).

As a result, the CCA price for types around θj jumps from Ui(xi) + U(1 − xi) − Ui(x
∗
i )

to Ui(x̃i)+p(1 − x̃i)−Ui(x
∗
i ). This discrete increase in the CCA price incentivizes types

marginally larger than θj to inefficiently reduce demand at p to avoid the jump in the
CCA price. Thus, there is no efficient equilibrium.

Proposition 4. In the VCG mechanism with standard preferences, any strategy profile
that survives any process of IEDS implements the efficient allocation. The VCG payments
depend, however, on the order in which weakly dominated strategies are eliminated and
on the choice of strategy profile that survives IEDS.

Proof. First we show that with standard preferences, any strategy profile that survives
any process of IEDS implements the efficient allocation. This proof has three parts. First,
we show that bidding truthfully is always an optimal strategy. Therefore, it survives any
process of iteratively eliminating weakly dominated strategies. Second, we argue that
any bidder must be indifferent between any strategy that survived the IEDS and truthful
bidding. In the third and final step, we show that only the efficient allocation can be
implemented by strategies that survive IEDS. We use the following notation. The set Si

is the set of strategies that survived IEDS for a bidder with type θi. The set of iteratively
undominated strategy profiles is denoted as S = S1 × S2.

First, bidding truthfully is always an optimal strategy, i.e., it is a best response against
any strategy profile of the other bidder Sj . To see this, let the other bidder use Sj and let
x̂ denote the allocation implemented by the profile (Ui� Sj), that is, Ui(x̂i) + Sj(x̂j) ≥
Ui(xi) + Sj(xj) for all other feasible allocations x. This inequality also says that the sur-
plus of bidder i is at least as large under the allocation x̂ than under any other allocation,
because one can simply subtract the constant maxy Sj(y) on both sides. Truthful bidding
is always optimal and, therefore, Ui ∈ Si.

Second, bidder i must be indifferent between all Si ∈ Si and Ui. For all Si ∈ Si, it holds
that for all other bidding functions Ti of bidder i and all bidding functions Sj ∈ Sj , the
surplus of Si is at least as large as for Ti or strictly higher than for Ti for at least one Sj .
Recall that the surplus from Ui is at least as large as from Si. As a result, the strategy Si is
iteratively not dominated if and only if for all Sj ∈ Sj , the surplus of Si and Ui is the same
for all Sj ∈ Sj .
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We now prove that any profile S ∈ S strictly implements the efficient allocation, i.e.,∑
Si(x

∗
i ) >

∑
Si(xi) for all feasible allocations x �= x∗. First, note that the only share im-

plemented by (Ui� Sj) is the efficient share, that is,

Ui

(
x∗
i

) + Sj
(
x∗
j

)
>Ui(xi)+ Sj(xj) for all x �= x∗� (6)

To see this, suppose there is an allocation y �= x∗ with Ui(yi)+Sj(yj) ≥Ui(x
∗
i )+Sj(x

∗
j ). As

bidder j is indifferent between Uj and Sj , we have that Uj(yj)+Ui(yi) =Uj(x
∗
j )+Ui(x

∗
i ).

Strict concavity of U implies that there is a unique efficient allocation, implying that y =
x∗, a contradiction. Hence, (Ui� Sj) implements only the efficient share. The next step
uses this property to show that (Si� Sj) also implements the efficient allocation. Again by
contradiction, let x̂ �= x∗ be the allocation implemented by (Si� Sj). Bidder i is indifferent
between Si and Ui, so Ui(x̂i)+ Sj(x̂j) = Ui(x

∗
i )+ Sj(x

∗
j ), contradicting inequality (6). As

a result, (Si� Sj) must implement the efficient allocation.
The proof that the VCG prices depend on the process of IEDS is constructive. We

construct a sequence of eliminations that ends with a set of undominated strategies.
Strategies in the set will have the desired properties. To show that a strategy is domi-
nated, one needs to find an alternative strategy that yields weakly higher utility against
all admissible strategy profiles of the other bidders and a strictly higher utility against
some admissible strategy profiles. Above, we have seen that bidding Ui is always opti-
mal. In the subsequent three steps of iterative elimination, we have to find only a strat-
egy Sj to show that the alternative of truthful bidding is strictly preferred.

Let B be the set of all bidding functions, i.e., the set of all S : [θ�θ]× [0�1] →R+. Note
that the optimality of a function depends on the type θi.

Step 1. Strategies Si for which there exists x̃ < 1 such that Si(x̃) > Ui(x̃) are domi-
nated. Bidder j uses the bidding function

Sj(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
y

Si(y)+ Si(x̃) for x= 1

max
y

Si(y) for x= 1 − x̃

0 else�

The bidding profile S implements the allocation in which bidder i wins x̃ and bidder
j wins 1 − x̃, since ties are broken in favor of interior allocations. Bidder i’s surplus is
Ui(x̃) − Si(x̃) < 0, whereas the surplus from bidding truthfully is nonnegative. Remove
these dominated strategies to obtain S1 ⊂ B.

Step 2. Strategies are dominated that satisfy Si(1) > Vi(θ). Note that for low types,
Vi(θ) > Ui(1). For high types it can be the case that xi = 1, so Ui(1) = Vi(θ). Bidder j bids
Sj(x) = 0 for x < 1 and Sj(1) = Si(1)− ε, with ε ∈ (0� Si(1)− Vi(θ)). Bidder i wins the full
supply at a price higher than utility. Truthful bidding is, therefore, strictly better against
this strategy profile of other bidders. Remove these dominated strategies to get S2 ⊂ S1.

Step 3. Strategies are dominated for which there exists x̃ ∈ [xi�xi] with Ui(x̃i) > Si(x̃).
Let x′ ∈ arg maxy Si(y). Let ε ∈ (0�Ui(x̃) − Si(x̃)). In the case of x̃ < 1, suppose bidder j
uses the bidding function Sj(1) = Si(x

′) + ε, Sj(1 − x̃) = Si(x
′) − Si(x̃), and Si(x) = 0 for

all other x. Under this bidding function, bidder i wins nothing and gets zero surplus. If
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the bid on x̃ is raised to Ui(x̃), then bidder i wins x̃ and gets strictly positive surplus. For
x̃= 1, let Sj(1) = Si(1)+ ε and 0 otherwise. Bidder i wins nothing if the bid is below true
utility level and wins the full supply if the bid equals utility. The set S ⊂ S2 is obtained by
eliminating these dominated strategies.

After the three steps of elimination, all remaining strategies implement the efficient
allocation. To see this, let bidders use the admissible strategy profile S ∈ S . The value
jointly expressed for the efficient allocation is higher than the value jointly expressed for
any other feasible allocation x. Let xi < 1 for all i. Then

Si(xi)+ Sj(xj) ≤Ui(xi)+Uj(xj) ≤Ui

(
x∗
i

) +Uj

(
x∗
j

) = Si
(
x∗
i

) + Sj
(
x∗
j

)
�

where the first inequality follows from Step 1, the second inequality follows from the def-
inition of efficiency, and the last equality follows from Steps 1, 2, and 3. For an allocation
such that there is an i with xi = 1, we have

Si(xi)+ Sj(x) = Si(1) ≤ Vi(θ) ≤Ui

(
x∗
i

) +Uj

(
x∗
j

) = Si
(
x∗
i

) + Sj
(
x∗
j

)
�

where the first equality follows from Step 1, the first inequality follows from Step 2, the
second inequality follows from the definition of efficiency, and the last equality ffollows
rom Steps 1, 2, and 3. All strategy profiles in S implement the efficient allocation. There
are no further dominated strategies, as any strategy that survives IEDS yields the same
expected utility as bidding truthfully.

To see that the VCG prices depend on the chosen strategy profile, consider a bid-
der with θi sufficiently small so that Vi(θ) < Ui(1) and the other player has the low-
est possible type θ. The value of the efficient allocation is V (θi� θ). Suppose bidder
i chooses Si ∈ Si with Si(x) = Ui(x) for x < 1 and Si(1) = Vi(θ), and the other bidder
plays Sj = Uj . Hence, the VCG price for bidder j is Vi(θ) − Ui(x

∗
i ). If the strategy profile

was such that Si = Ui, then the VCG price would be strictly less than that and equal to
Ui(1) − Ui(x

∗
i ). Note that the strict inequality and continuity imply that the difference

in VCG prices holds for an open set of types. Similarly, if Step 1 was such that we also
eliminate Si(1) > Ui(1), then the first VCG price would not be possible.
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