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Strategic interaction parameters characterize the impact of actions of one eco-

nomic agent on the payoff of another economic agent, and are of great interest

in both theoretical and empirical work. In this paper, by considering econometric

models involving simultaneous discrete systems of equations, we study how the

information available to economic agents regarding other economic agents can

influence whether or not these strategic information parameters can be inferred

from the observed actions. We consider two extreme cases: the complete informa-

tion case where the information sets of participating economic agents coincide

and the incomplete information case where each agent’s payoffs are privately ob-

servable. We find that in models with complete information, the strategic inter-

action parameters are more difficult to recover than they are in incomplete infor-

mation models. We show this by exploring the Fisher information (from standard

statistics literature) for the strategic interaction parameters in each of these mod-

els. Our findings are that in complete information models, the statistical (Fisher)

information for the interaction parameters is zero, implying the difficulty in recov-

ering them from data. In contrast, for incomplete information models, the Fisher

information for the interaction parameters is positive, indicating that not only can

these parameters be relatively easy to recover from data, but standard inference

can be conducted on them. This finding is illustrated in two cases: treatment effect

models (expressed as a triangular system of equations) and static game models.
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1. Introduction

Endogenous regressors are frequently encountered in econometric models, and fail-
ure to correct for endogeneity can result in incorrect inference. However, correcting
for endogeneity can be particularly difficult in nonlinear models. Recent important
work in econometrics has studied the identification and estimation of some nonlin-
ear models with endogenous regressors by adopting what is referred to as a control
function approach. Seminal papers include Newey, Powell, and Vella (1999), Blundell
and Powell (2004), and Imbens and Newey (2009). Their control function approach,
however, requires that the system of equations be “triangular” (thereby restricting the
type of simultaneity allowed for) and the endogenous regressors be continuously dis-
tributed.

In this paper we consider simultaneous discrete response models with discrete en-
dogenous variables.1 This class includes many important special cases that have re-
ceived a great deal of attention in both theoretical and empirical work. Examples in-
clude strategic compliance models, models of social interactions, and the simultaneous
move discrete game model. For this class of models, we are specifically interested in the
identifiability of the coefficients of the discrete endogenous variable(s).

The aim of this paper is to relate the ability to recover the parameters of interest to
the observable information available to the economic agents in the model. We illustrate
this relationship by analyzing four different models, from both a behavioral/economics
perspective and from a statistical perspective. In the economic/behavioral analysis of
the model, we detail who the economics agents are and which of the variables in the
model they observe. In the statistical analysis of the model, we describe what the econo-
metrician observes, what assumptions are made, and what the parameters of interest
are and how well they can be estimated. We are primarily interested in quantifying and
comparing the identifiability of these parameters of interest, by which we mean whether
they can be recovered from the data. Our approach is to do so by analyzing what is re-
ferred to in classical statistics as the Fisher information of these parameters. The Fisher
information can be considered an important indicator of the “strength” of the identifi-
cation, by which we mean how easily the parameters can be recovered from data. The
relationship between the two concepts of identification and information dates back to
the seminal paper in Rothenberg (1971), who considered identification in parametric
models.

We first look at the case of the triangular system of binary equations where the binary
outcome in one equation is an explanatory variable in the other equation. The parame-
ter of interest is the coefficient on that binary endogenous variable and is directly related
to the treatment effect in that literature. In the other class of models we study—a system

1Identification and inference in these models are more complicated than in the continuous endogenous
variable case, as first pointed out in the seminal work in Heckman (1978). More recent examples include
Chesher (2005), who considers partial identification of general classes of nonlinear, nonseparable models
and derives sharp identification regions for parameters of interest. See also Klein, Shan, and Vella (2015) for
estimation in this area.
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of simultaneous discrete equations with feedback effects—each of the two binary out-
comes in the two equations is an explanatory variable in the other equation, such as
those that appear in social interaction and static game models, and the parameter of
interest characterizes the degree of strategic interaction.

For both the triangular system and the simultaneous system, we consider first what
we call a complete information model where the agents have perfect knowledge regard-
ing all the observed variables or, more generally speaking, the information sets of partic-
ipating economic agents coincide. Then we consider an incomplete information model,
where each agent’s own actions are only privately observable.

Our main finding is that incomplete information models have more identifying
power, that is, a greater strength of identification, for the parameters of interest, than
complete information models do. We reach this conclusion by systematically evaluating
the Fisher information for the parameters of interest in each of the four cases, corre-
sponding to each of the two types of information available in each of the two types of
systems of equations.

The rest of the paper is organized as follows. In the following section we introduce
what we call a triangular system of binary equations with complete information. This is a
basic binary choice model with a binary endogenous variable determined by a reduced-
form model. This model has often been seen in the treatment effects literature. We de-
scribe this model first from the behavioral perspective and then from the statistical per-
spective.

In Section 3 we consider the triangular system with incomplete information, where
the agent has uncertainty about the value of the endogenous variable affecting his/her
decision. We first detail the information available to the agents in this model, followed
by a statistical analysis.

In Section 4 we explore models of simultaneous systems without a triangular struc-
ture, first using the example of a two-player simultaneous move game of complete infor-
mation. Here our economic/behavioral model follows the standard assumptions used to
analyze a game theory model, and in the statistical model, the parameters of interest are
the two interaction parameters in this game, whose informational content is determined
by evaluating their Fisher information.

We then consider a game of incomplete information in which each player has un-
certainty about the binary decision of the other player, making this endogenous variable
noisily observed. Our behavioral/economic model again follows the standard assump-
tions in the game theory literature. In the statistical model, of interest here is the iden-
tifying power of the uncertainty on the parameter of interest, which, in this case, is the
coefficient on that incompletely observed endogenous variable.

Finally, Section 5 concludes the paper by summarizing and suggesting areas for fu-
ture research. The Appendix collects the proofs of the main theorems. The Supplemental
Material, available in a supplementary file on the journal website, http://qeconomics.
org/supp/288A/supplement.pdf, provides additional results for the games of complete
and incomplete information as well as expanded proof arguments for the proofs in the
paper.

http://qeconomics.org/supp/288A/supplement.pdf
http://qeconomics.org/supp/288A/supplement.pdf


998 Khan and Nekipelov Quantitative Economics 9 (2018)

2. Triangular discrete response model

In this section we analyze what we refer to as the interaction parameter in a triangular
system of binary equations. The model can be described from two perspectives: one
behavioral or economic and the other statistical. In the former, we describe what the
agent(s) observe, and in the latter, what the econometrician observes from a random
sample of realizations of random variables.

2.1 Economic/behavioral model

Let Y1 denote the binary dependent variable of interest, which is assumed to depend on
a vector of covariates Z1 and a single endogenous binary variable Y2.

We refer to this system as triangular because while the variable Y2 may have a causal
effect on Y1, in this model we assume a priori that Y1 does not have a causal effect on
Y2. A leading example of this system could be a single agent model, where Y2 denotes
whether or not the agent receives some sort of treatment, for example, job training (an
example in labor economics) or some form of medication (an example in medicine). The
variable Y1 is a binary outcome variable possibly effected by Y2, for example employ-
ment status in labor economics or a binary health status indicator, such as reduction in
blood pressure, in the medical example.

In our triangular system of complete information, one can model this with two
economic agents: one who assigns treatment, and the other who is made aware of
treatment assignment and, if assigned treatment, perfectly complies. Here, each agent
perfectly observes Y1 and Y2 as well as other variables Z1 and Z2 that affect each
of them. The binary outcomes Y1 and Y2 are each determined by a deterministic
component—regression and interaction coefficients—and random components, de-
noted by
U and V .

For our binary choice model with a binary endogenous regressor in linear-index
form with an additively separable endogenous variable, the specification of the model is
given by

Y1 = 1
{
Z′

1γ0 + α0Y2 −U > 0
}
� (2.1)

where 1 denotes the indicator function that takes the value 1 if its argument is true and
0 otherwise.

Turning to the model for the endogenous regressor, the binary endogenous variable
Y2 is assumed to be determined by the model

Y2 = 1
{
Z′δ0 − V > 0

}
� (2.2)

where Z ≡ (Z1�Z2) is the vector of “instruments” and (U�V ) is a pair of random shocks.
The subcomponent Z2 provides the exclusion restrictions in the model and is required
to be nondegenerate conditional on Z′

1γ0.
We characterize what we call the economic model by which of the variables in a sys-

tem of equations are observed by each of the two economic agents. In the above system,
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the set of variables is Y1, Y2, Z1, Z2, U , V . In the treatment effect model with complete
information, we assume each agent observes each of these variables. The binary out-
comes Y1 and Y2 correspond directly to the sign of the latent variables Z′

1γ0 + α0Y2 −U
andZ′δ0 −V , respectively. As we see later on, this is in contrast to the model with incom-
plete information, where the agent potentially receiving treatment does not perfectly
observe the variable Y2.

2.2 Econometric model

We characterize the econometric model by the set of variables the econometrician ob-
serves from a random sample of observations. For the triangular system with complete
information, the econometrician observes a random sample of draws from the variables
Y1, Y2, Z1, and Z2, but not U and V . Not observing U and V is precisely what distin-
guished the econometric model from the economic model where we assumed each of
the two agents observed these variables. The aim of the econometrician is to conduct
statistical inference on the parameters δ0, γ0, and α0 based on the sample of observed
variables and a set of assumptions.

For this model, these assumptions are that the unobserved variables U and V are
jointly independent of the observed variables Z1 and Z2. The endogeneity of Y2 in (2.1)
arises when U and V are not independent.

This type of econometric/statistical model fits into the class of models considered
in Chesher (2005), Vytlacil and Yildiz (2007), and Klein, Shan, and Vella (2015). Here
the econometrician is particularly interested in the parameter α0, which is related to
a treatment effect. To simplify exposition, we assume that the parameters δ0 and γ0 are
known. Thus we introduce single indices X1 = Z′

1γ0 and X = Z′δ0.2 The discrete re-
sponse econometric model can then be written as3

Y1 = 1{X1 + α0Y2 −U ≥ 0}�
Y2 = 1{X − V ≥ 0}�

(2.3)

To give a full characterization of the class of distributions of unobservables (to the
econometrician) (U�V ) and observables (X1�X) that we consider, we make the follow-
ing assumption.

Assumption 1. (i) The single indices X1 and X have a joint distribution with full sup-
port on R

2, which is not contained in any proper one-dimensional subspace. The param-
eter of interest is in the interior of a convex compact set A.

2Although additional complications may arise if covariates Z are not truly exogenous, under our as-
sumptions one can regularly identify parameters γ0 and δ0. The issues of inference for these parameters
are discussed, for instance, in Abrevaya, Hausman, and Khan (2010).

3Expressed in this way, we note that the first equation is a binary choice model with one exogenous vari-
able and an endogenous variable. As stated in Assumption 1 below, the exogenous variable is continuously
distributed with support on the real line, resembling the “special regressor” introduced in Lewbel (2000).
Identification of coefficients on endogenous variables such as Y2 was also established in Lewbel (2000), but
for a model where there was no second equation modeling Y2.



1000 Khan and Nekipelov Quantitative Economics 9 (2018)

(ii) The variables (U�V ) are independent of X1 and X , and have an absolutely con-
tinuous density with full support on R

2 with an absolutely integrable envelope and joint
cumulative distribution function (c.d.f.) G(·� ·). The partial derivative ∂G(u�v)

∂u exists and
is strictly positive on R

2.
(iii) For each t ∈R and fixed γ0 and δ0, there exists function q(·� ·)withE[q(X1�X)

2]<
∞ that dominates ∂G(x1+t�x)

∂t .

Here we focus on the information for α0 in the statistical model (see, e.g., Ibragimov
and Has’minskii (1981), Chamberlain (1986), and Newey (1990) for the relevant defini-
tions). We formally state our first result in the following theorem.4

Theorem 2.1. Under Assumption 1, the Fisher information for the parameter α0 in
model (2.3) is zero.

We find that under our conditions the parameter α0 cannot be estimated at the
parametric rate. An analogous “impossibility” result5 for α0 was found in Khan and
Tamer (2010) in a setting where Y2 was not modeled. Thus Theorem 2.1 shows that
the additional structure imposed by modeling Y2 does not suffice to overturn this re-
sult.

The conditions of the theorem imply that for any distribution of errors we can find
a parametric submodel for which the score has an infinite variance. This does not mean
that all parametric submodels have the infinite variance of the score; for instance, if
the class of densities of U and V covers all joint logistic densities, then normal dis-
tributions of covariates can deliver finite scores and, hence, positive information. The
assumption of the theorem rules out the cases when one only considers such distribu-
tions.

Furthermore, it is important to emphasize that the conclusion of the theorem does
not imply that the interaction parameter α0 is not identified. In fact, as shown in
our Technical Report, available in a supplementary file on the journal website, http://
qeconomics.org/supp/288B/supplement.pdf, the parameter is point identified and can
be consistently estimated, just not at the parametric rate. In that sense the interaction
parameter relates to other parameters in the econometrics literature that are “iden-
tified at infinity.” A notable example of such a parameter is the intercept in a sam-
ple selection model; see Andrews and Schafgans (1998) and Heckman (1990). Interest-
ingly, estimating the parameter of interest in this paper—the interaction parameter—
shares many features with estimating the intercept term in the selection model. No-
tably, the rate of convergence depends on relative tail conditions on distributions of
observable and unobservable variables, loosely analogous to results in Andrews and
Schafgans (1998) and Khan and Tamer (2010). For illustrative purposes, the results in
the Technical Report demonstrate this point by considering normal and logistic distri-
butions.

4The proof of this and all subsequent theorems is provided in the Appendix.
5Other impossibility theorems for different models can be found in Chamberlain (1986), Chen and Khan

(2003), Khan (2013), and Chen, Khan, and Tang (2016). In all cases they implied that the parameters of
interest could generally not be estimated at the parametric rate.

http://qeconomics.org/supp/288B/supplement.pdf
http://qeconomics.org/supp/288B/supplement.pdf
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As we see in the next section, this zero information result can be overturned by in-
troducing a treatment effect model with what we refer to as incomplete information on
the part of the economic agent.

3. Triangular model with incomplete information

In the previous section, we considered a classical triangular discrete response model and
demonstrated that, in general, that model has zero Fisher information for the interac-
tion parameter α0. Our results suggested that, as is the case with other statistical models
with zero information, the optimal convergence rate for the estimator of the interaction
parameter is subparametric.

We characterized the model as one of complete information because we assumed
the economic agent observed all the variables in the system and knew the coefficients,
whereas the econometrician did not observe all the variables and did not know the de-
terministic parameters. To describe the model of incomplete information and distin-
guish it from the model of complete information in the previous section, it again proves
helpful to describe both the behavioral and statistical models separately.

3.1 Economic/behavioral model

In this section, we consider a new model that can be arbitrarily “close” to the triangular
model with complete information. We construct this model by adding additional noise
to the second (treatment) equation in the triangular system.

Again, we assume two economic agents: one assigning treatment and the other po-
tentially receiving treatment. Consider the model where the endogenous variable Y2 is
now defined as

Y2 = 1{X − V − ση> 0}�
Now we can characterize the behavioral model with incomplete information as fol-

lows. The second economic agent (the one potentially receiving treatment) observes X
and V as before, and knows the parameter σ . However, this economic agent does not
observe η, and knows only that it is drawn from a known distribution. Thus unlike be-
fore, this agent does not know the value the variableX − V −ση. So now this economic
agent cannot perfectly infer Y2, but can perfectly infer the probability that Y2 = 1. The
first agent (the one assigning treatment) observes all the variables:X1,X , V , U , and η.

Note that this is in contrast to the complete information model where the second
economic agent observed X and V , and could thus perfectly infer the value of Y2. To
complete the description of the behavioral model, the variable Y1 reflects the response
of the second economic agent who does not observe the realization of noise η but ob-
serves V andX , and knows the distribution of η and constants α̃0 and σ . As a result, the
response in the first equation can be determined by the agent as

Y1 = 1
{
X1 + α̃0Eη[Y2|X�V ] −U > 0

}
�

whereEη[Y2|X�V ] denotes the conditional expectation formed by the agent of receiving
treatment Y2 based on the distribution of η.
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3.2 Statistical model

In the statistical model, the econometrician observes the draws of the random variables
Y1, Y2, X1, and X from a random sample, but does not observe U , V , and η. The con-
stant parameters α̃0 and σ are unknown, and the aim here is to conduct inference on
them given a set of assumptions.

In this model we express our assumption regarding the additional noise component
η formally.

Assumption 2. Suppose that η ⊥ (U�V ) and η ⊥ (X1�X). The distribution of η has a
differentiable density with full support on R and a c.d.f. Φ(·) that is known by the eco-
nomic agent and the econometrician.6 In addition, we assume that density φ(·) is strictly
log-concave.

The variable Y1 reflects the response of the second agent who does not observe the
realization of noise η but observes the error term in her own outcome equation V . As a
result, the response in the first equation can be characterized as

Y1 = 1
{
X1 + α̃0Eη[Y2|X�V ] −U > 0

}
�

where the parameter of interest is α̃0 for which we wish to derive the information.7 We
can express the conditional expectation in the above term as

Eη[Y2|x�v] =Φ(
(x− v)/σ)

and note how this differs from the definition in the economic model, where the term
was an indicator function. The constructed discrete response model can then be written
as

Y1 = 1
{
X1 −U + α̃0E[Y2|X�V ]> 0

}
�

Y2 = 1{X − V + ση> 0}�
(3.1)

Incorporating expectations as explanatory models is similar in spirit to work considered
in Ahn and Manski (1993). In doing so, we are able to place the triangular binary model
into the framework of modeling responses of economic agents to their expectations
such as in, for example, Manski (1991).

6We show later in the paper that identification of the interaction parameter does not depend on the
knowledge of this distribution (or a specific assumption regarding its structure other than that it has full
support). However, the identification of the joint distribution of unobservable variables (U�V ) requires
this distribution to be known.

7We note that here α̃0 generally denotes a different treatment parameter than before. Specifically, it now
measures the response to probability of treatment, as opposed to treatment itself. We argue that it is still a
useful parameter to conduct inference on for two reasons: First, as the amount of noise becomes arbitrarily
small, the probability of treatment becomes arbitrarily close to the standard treatment status indicator, and
the new parameter approximates the standard parameter (the remainder of this section elaborates on this
argument with more precision). Second, even if the amount of noise (quantified by σ) is not small, the new
parameter will have the same sign as the old one.
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As we show, this model has features of the continuous treatment model consid-
ered in the literature; examples include Hirano and Imbens (2004), Florens, Heckman,
Meghir, and Vytlacil (2008), and Imbens and Wooldridge (2009). While in these cases the
economic agent responds to an intrinsically continuous quantity (such as dosage), in
our case the continuity of treatment is associated with uncertainty of the agent regard-
ing the treatment. Outside of the treatment effect setting, binary choice models with
a continuous endogenous variable are also studied in Blundell and Powell (2004), who
demonstrate the attainability of positive information for the coefficient on the endoge-
nous variable.

In practice, the model that we analyze is closely related to the setting of what is re-
ferred to as A/B testing, which is used for experimentation by large Internet companies
such as Google or Microsoft on their online advertising platforms. In each experiment
those companies measure the response of advertisers to changes in the advertising plat-
form such as pricing or the rules for allocating online ads. Then the ads of each adver-
tiser with a very small probability (usually below 1–5%) are exposed to the new platform
settings and otherwise are exposed to the status quo setting. Then the platform mea-
sures the advertiser’s response of advertisers in this experiment.

The incomplete information triangular model presented here also places the stan-
dard triangular model considered in the previous section in the context of the mod-
els with strategic compliance of the treated subjects, as in Chassang and Snowberg
(2010). The complete information triangular model characterizes the compliance be-
havior in the local average treatment effect (LATE) model of Angrist and Imbens (1995),
Abadie, Angrist, and Imbens (2002), and Imbens (2009) as a special case: the orthog-
onality assumption of LATE is satisfied if the error terms U and V , in our terminol-
ogy, are independent. The variable Y2 corresponds to the “treatment assignment” (i.e.,
the binary instrument of the LATE model) and the variable Y1 corresponds to the
compliance decision. The complete information model represents the case where the
treated subject knows all of the inputs into the treatment decision. As a result, the
compliance decision will be correlated with the treatment decision unless the unob-
servables in the two decisions are orthogonal. Once the treatment decision contains
noise, which may come from the deliberate treatment randomization (e.g., through a
placebo) or can suffer from measurement error, the treated subject may only react to
the expected treatment. This setting motivates the triangular model with treatment un-
certainty.

We can illustrate the structure of the model using Figure 1. Panel (a) in Figure 1 cor-
responds to the classical binary triangular system and panels (b)–(d) correspond to the
triangular system with incomplete information. The panels show the areas of joint sup-
port of U and V that correspond to the observable outcomes Y1 and Y2. When there is
no noise in the second equation of the triangular system, the error terms U and V com-
pletely determine the outcome. On the other hand, when the noise with unbounded
support is added to the second equation, one can only determine the probability that
the second indicator is equal to 0 or 1. Figure 1(b)–(d) shows the area where, for a given
quantile q, the probability ofY2 equal 0 or 1 exceeds 1−q. The noise in the second equa-
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(a) (b)

(c) (d)

Figure 1. Incomplete information triangular model.

tion decreases from panel (d) to panel (b), which in the limit approaches the figure on

panel (a).

This discrete response model is related to game theory models with random pay-

off perturbations. If we associate the discrete variable Y1 with a discrete response, then

the linear index in the first equation corresponds to the economic agent’s payoff. As a

result, this model is not a payoff perturbation model, but rather a treatment perturba-

tion model. The treatment perturbation can be considered in the experimental settings

where the subjects are exposed to the placebo treatment with some fixed probability but

they do not observe whether or not they get the placebo. In this case, they will respond to

the expected, or probability of treatment. The error terms U and V in this setup can be

interpreted as unobserved heterogeneity in the economic agent’s payoff (determining

Y1) and in the treatment assignment rule (determining Y2).

Given that this is a new statistical model, we need to establish first that the model

is identified from the data. The following theorem considers the identification of the

interaction parameter α̃0.

Theorem 3.1. Under Assumptions 1 and 2, the interaction parameter α̃0 in model (3.1)

is identified.
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The proof of identification for parameter α̃0 is based on the idea of relating the expecta-
tions of Y1 to the expectation of Y2. First of all note that

∫
∂

∂x
E[Y1|X1 = x1�X = x]dx1 = α̃0

∫ ∫
g

(
x1 + α̃0Φ

(
x− v
σ

)
� v

)
1
σ
φ

(
x− v
σ

)
dvdx1

= α̃0

∫
gv(v)

1
σ
φ

(
x− v
σ

)
dv�

Recall that E[Y2|X = x] = ∫
Φ(x−vσ )gv(v)dv, meaning that

α̃0 =
∫ ∂

∂x
E[Y1|X1 = x1�X = x]
∂

∂x
E[Y2|X = x]

dx1�

which identifies the interaction parameter. Then, for sufficiently small variance of the
noise σ2, we note that E[Y1Y2|X1 = x1�X = x] ≈G(x1 + α̃0�x), which allows us to iden-
tify the joint distribution of the error terms (U�V ).

Having established the identification of the parameter of interest, we analyze its
Fisher information. We find that for any finite variance σ2 (which can be arbitrarily
small), the information for α̃0 in the incomplete information triangular model is strictly
positive. Moreover, the Fisher information of the strategic interaction parameter α̃0 ap-
proaches 0 when the variance of noise shrinks to 0. In other words, the smaller is the
informational asymmetry between agents, the smaller is the Fisher information of the in-
teraction parameter α̃0.

We state this in the following theorem.

Theorem 3.2. Suppose that Assumptions 1 and 2 are satisfied.

(i) For any σ > 0, the information for α̃0 in the triangular model of incomplete infor-
mation (3.1) is strictly positive.

(ii) As σ → 0, the information for α̃0 in the triangular model of incomplete information
(3.1) converges to 0.

We note that this theorem also suggests an alternative estimator for the strategic
interaction parameter α0 in the complete information model. One can consider estima-
tion of the complete information model by assuming that it is “sufficiently” close to the
incomplete information model and then, for a fixed distribution of η, choosing a se-
quence of standard deviations σn → 0 as n→ ∞. This approach is essentially a kernel
smoothing-based estimator for the parameter α0.

3.2.1 Convergence rate for the interaction parameter α̃0 The previous subsection
proved that the triangular model with incomplete information has positive Fisher in-
formation for any amount of noise added to the second equation. Our results, therefore,
guarantee that the semiparametric efficiency bound is finite. We note that the analyzed
model has two unknown nonparametric components: the distribution of covariates and
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the distribution of unobserved heterogeneity. Due to the independence of the unob-
served heterogeneity and the observed covariates, and the fact that the distribution of
covariates does not depend on the parameter α̃0, this parameter is fully characterized
by the expectations of and the covariance between the observed binary variables Y1 and
Y2 conditional on covariates. In other words, the parameter of interest is characterized
by a system of conditional moment equations. The efficiency bound for parameterα̃0

is computed explicitly in the Technical Report and our results are its derivation based
on the result for the semiparametric efficiency bound in conditional moment systems
provided in Ai and Chen (2003), which also suggests an efficient method of moments es-
timator. Our efficiency result provides the semiparametric efficiency bound for the new
discrete response model.

As discussed in detail in the Supplemental Material, the optimal rate of convergence
is parametric (

√
n) and the minimum variance of the estimator converging at a paramet-

ric rate corresponds to the semiparametric efficiency bound.

4. Nontriangular systems

In this section, we consider two simultaneous systems of equations without the triangu-
lar structure of the previous sections. Examples of these models are frequently encoun-
tered in game theory as in empirical industrial organization. These models aim to study
games of complete and incomplete information. Since the results here are analogous to
those attained for the models studied in the previous sections, we describe them less
formally and leave many of the technical details of the main results to the Supplemental
Material.

Games of complete information

A leading example of a nontriangular system is a two-player discrete game with com-
plete information (e.g., Bjorn and Vuong (1985) and Tamer (2003)). Following the pat-
tern we used in the previous sections, we distinguish the behavioral models from the
statistical one.

Economic model A binary game of complete information is characterized by the play-
ers’ deterministic payoffs, strategic interaction coefficients, and random payoff compo-
nentsU and V . There are two players i= 1�2 and the action space of each player consists
of two points Ai = {0�1} with the actions denoted Yi ∈Ai. The payoff to player 1 from
choosing action Y1 = 1 can be characterized as a function of observed covariates and
player 2’s action,

Y ∗
1 =Z′

1γ0 + α10Y2 −U�
where Z1 denotes a vector of covariates and the payoff of player 2 from choosing action
Y2 = 1 is characterized as

Y ∗
2 =Z′

2δ0 + α20Y1 − V �
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where Z2 denotes a vector of covariates. The variables (γ0� δ0�α10�α20) denote coeffi-
cients and, analogous to before, the econometrician is primarily interested in the pa-
rameters α10 and α20, which often are referred to as the interaction parameters in the
empirical industrial organization literature. Because of this, for convenience of both no-
tation and analysis, we assume the parameters γ0 and δ0 are known, and we change
change notation to X1 = Z′

1γ0 and X2 = X ′
2δ0. We normalize the payoff from action

Yi = 0 to 0, and we assume that realizations of covariates X1 and X2 are commonly ob-
served by the players along with realizations of the variables U and V .

Here the pure strategy of each player is the mapping from the observable variables
into actions: (U�V �X1�X2) �→ 0�1. A pair of pure strategies constitutes a Nash equilib-
rium if they reflect the best responses to the rival’s equilibrium actions. This is the equi-
librium concept we are assuming players use in our behavioral model.

Statistical model In the statistical model, the econometrician observes a random sam-
ple of equilibrium outcomes and covariates, but not the realizations of the random vari-
ablesU and V . The observed equilibrium actions are described by a pair of binary equa-
tions in the statistical model,

Y1 = 1{X1 + α10Y2 −U > 0}�
Y2 = 1{X2 + α20Y1 − V > 0}�

(4.1)

where the unobserved variables U and V have an unknown joint distribution and the
econometrician is interested in conducting statistical inference on the parameters α10

and α20.
As noted in Tamer (2003), the system of simultaneous discrete response equations

(4.1) has a fundamental problem of indeterminacy. To resolve this, we impose an equi-
librium selection mechanism, based on randomization, similar to that imposed in Bjorn
and Vuong (1985). The specifics of this mechanism are described in detail in the Supple-
mental Material. As explained there, the selection mechanism addresses both the inco-
herency and incompleteness that may arise in these models.8 This mechanism is admit-
tedly a strong condition that we deliberately impose to demonstrate how difficult it is
to identify the interaction parameters in this model. Specifically, while the assumption
eliminates the difficulties that arise from incompleteness and incoherency, we will show
that it does not suffice to attain positive Fisher information for the interaction parame-
ters. Our formal analysis is based on regularity conditions on observed and unobserved
random variables that are standard and yield two main results: (i) point identification for
the interaction parameters and (ii) zero Fisher information for these same parameters.

These main results fully illustrate why the zero Fisher information of the interaction
parameters is not related to the lack of their point identification or the multiplicity of
equilibria that arise in these models. Thus we conclude that the estimation and infer-
ence for the interaction parameters are nonstandard even in a model simplified with a
strong equilibrium selection rule.

8Following the terminology introduced in Tamer (2003), incoherency refers to the nonexistence of an
equilibrium and incompleteness refers to multiplicity of equilibria.
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Games with incomplete information

Here we modify the simultaneous equation model to allow for incomplete information,
first describing both the economic and statistical models.

Economic model This model is based on standard two-player game theory models with
incomplete information. Game theoretical results have demonstrated that the introduc-
tion of what is referred to in that literature as payoff perturbations leads to a reduction
in the number of equilibria.9

In the two-player game with incomplete information, we again interpret the binary
variables Y1 and Y2 as the actions of player 1 and player 2. Each player is characterized
by the deterministic payoff (corresponding to linear indices X1 and X2), an interaction
parameter, unobserved heterogeneity terms U and V , and what we refer to here as pay-
off perturbations, denoted by η1 and η2. The payoff of player 1 from action Y1 = 1 can
be represented as

Y ∗
1 =X1 + α̃10Y2 −U − ση1�

while the payoff from actionY1 = 0 is normalized to 0. We impose the following informa-
tional assumptions, which are similar to those imposed in the incomplete information
triangular system: Specifically, we assume that η1 and η2 are privately observed by the
two players, meaning player 1 observes η1 but not η2, and analogously for player 2. We
assume η1 ⊥ η2 and both satisfy Assumption 2.

Thus in this model, player 1 observes X1, X2, U , V , and η1 but does not observed
η2, and player 2 observes X1, X2, U , V , and η2 but does not observe η1. We note that
the strategy of player i is a mapping from the observable (to the agents) variables into
actions:

(X1�X2�U�V �ηi) �→ {0�1}�
Also, player i forms beliefs regarding the action of the rival. Provided that η1 and η2
are independent, the beliefs will be functions only of U , V , and linear indices. Thus,
if Pi(X1�X2�U�V ) are players’ beliefs regarding actions of opponent players, then the
strategy, for instance, of player 1, can be characterized as a random variable

Y1 = 1
{
E

[
Y ∗

1 |X1�X2�U�V �η1
]
> 0

}
= 1

{
X1 −U + α̃10P2(X1�X2�U�V )− ση1 > 0

}
�

(4.2)

Similarly, the strategy of player 2 can be written as

Y2 = 1
{
X2 − V + α̃20P1(X1�X2�U�V )− ση2 > 0

}
� (4.3)

We note that when σ approaches 0, the payoffs in the incomplete information model
are identical to those in the complete information model and are observable by both
players.

9See the seminal work of Harsanyi (1995). Multiplicity of equilibria can still be an important issue in
games of incomplete information as noted in Sweeting (2009), Aradillas-Lopez (2010), and de Paula and
Tang (2012).
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To characterize the Bayes–Nash equilibrium10 in the simultaneous move game of in-
complete information, we consider a pair of strategies defined by (4.2) and (4.3). More-
over, the beliefs of players are consistent with their action probabilities conditional on
the information set of the rival. Taking into consideration the independence of player
types ηi and the fact that their c.d.f. is known, we can characterize the pair of equilib-
rium beliefs as a solution to a system of nonlinear equations. This is explained in detail
in the Supplemental Material.

This system of nonlinear equations can have multiple solutions.11 To resolve the un-
certainty over equilibria, we again assume an equilibrium selection rule based on ran-
domization as described in the Supplemental Material.

Statistical model Here the econometrician observes a random sample of equilibrium
outcomes and covariates, but does not observe realizations of U , V , η1, and η2, and
knows the distributions of η1 and η2, but not of U , V .

In the Supplemental Material, we provide conditions under which two main results
are established: (i) the parameters α̃10 and α̃20 are each identified, and (ii) each has pos-
itive Fisher information. Regarding the second result, we find that for any finite value
σ , the Fisher information in the model of the incomplete information game is strictly
positive, implying estimability at the parametric rate. As in the incomplete information
triangular model, the Fisher information of the interaction parameters approaches 0
whenever σ does.

5. Conclusions

This paper considers identification and inference in simultaneous equation models with
discrete endogenous variables. We analyzed both triangular systems, where the parame-
ter of interest is the coefficient of a discrete endogenous variable, and nontriangular sys-
tems, focusing on simultaneous discrete games, where we are interested in the strategic
interaction parameters.

Our main findings are that the complete information models have zero Fisher in-
formation under our conditions, whereas the incomplete information models can have
positive information, which facilitates the conducting of inference on these parameters.
In the nontriangular case, our zero Fisher information result implies that the difficulty
in identification of the strategic interaction parameters is not due to multiplicity of equi-
libria, as we obtain this result even after introducing an equilibrium selection rule.

The work here suggests areas for future research. In the incomplete information
game models, it would be useful to consider more general equilibrium selection rules
and still attain positive information. Furthermore, here we restricted our attention to
static games, but it would be useful to explore information levels in dynamic games. We
leave these topics for future research.

10This is the equilibrium concept often used in the incomplete information game literature; see, for ex-
ample, Sweeting (2009), de Paula and Tang (2012), Wan and Xu (2014), and Xu (2014).

11Sweeting (2009) considers a 2×2 game of incomplete information and gives examples of multiple equi-
libria in that game. Bajari, Hong, Krainer, and Nekipelov (2010) develop a class of algorithms for efficient
computation of all equilibria in incomplete information games with logistically distributed noise compo-
nents.
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Appendix: Proofs

A.1 Proof of Theorem 2.1

To simplify our argument, we assume that coefficients β0 and δ0 are known. We thus re-
fer to the indices in each equation asX1 andX , respectively, and denote realized values
by x1 and x, respectively. To derive the information of the model, we follow the approach
in Chamberlain (1986) by demonstrating that for each triangular model generated by a
distribution satisfying the conditions of Theorem 2.1, we can construct a parametric
submodel passing through that model for which the information for the parameter α is
equal to 0. Suppose that  contains all distributions of errors that satisfy the conditions
of Theorem 2.1 along with all distributions of indices x1 = β0z1 and x = δ0z for which
E[q(X1�X)

2] <∞ for q(·� ·) defined in the statement of the theorem such that x1 and
x have a continuous joint distribution with full support on R

2. We first construct the
likelihood function of the model and introduce the notation

P11(t1� t)= Pr(U ≤ t1� V ≤ t)=G(t1� t)�
P01(t1� t)= Pr(U > t1� V ≤ t)�
P10(t1� t)= Pr(U ≤ t1� V > t)�

and

P00(t1� t)= Pr(U > t1� V > t)�

The likelihood function is determined by the density

r(y1� y2�x1�x;α�P)= P11(x1 + α�x)y1y2P01(x1 + α�x)(1−y1)y2

× P10(x1�x)
y1(1−y2)P00(x1�x)

(1−y1)(1−y2)

with respect to the measure μ defined on Ω= {0�1}2 × R
2 such that for any Borel set A

in R
2,

μ
({1�1} ×A) = μ({1�0} ×A) = μ({0�1} ×A) = μ({0�0} ×A) = ν(A)�

where P((X1�X) ∈A)= ∫
A dν. Let h : R2 �→ R be a continuously differentiable function

supported on a given compact set S with its derivative being continuous in the interior
of that compact set such that ∂h(u�v)

∂u ≥ B for some constant B on that compact set. We

define Λ̃ as the collection of paths through the original model that we design as

λ11(t1� t;δ)= P11(t1 + δ(h(t1� t)+ 1
)
� t

)
�

λ01(t1� t;δ)= P01(t1 + δ(h(t1� t)+ 1
)
� t

)
�

λ10(t1� t;δ)= P10(t1� t)�

and

λ00(t1� t;δ)= P00(t1� t)�
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where we note that these paths maintain the properties of the joint probability distribu-
tion (bounded between 0 and 1, sum up to 1) and, in a sufficiently small neighborhood
about the origin containing δ, they also maintain the monotonicity of the c.d.f. (as the
partial derivative of h(·� ·) is bounded from below).

We denote the likelihood function corresponding to the perturbed model as
lλ(y1� y2�x1�x;α�δ). Provided the assumed dominance condition holds, it will be mean-
square differentiable at (α0�0). In other words, we can find functions ψα(x1�x) and
ψδ(x1�x) such that

l
1/2
λ (·;α�δ)=ψα(x1�x)(α− α0)+ψδ(x1�x)δ+Rα�δ

with

E
[
R2
α�δ

]
/
(|α− α0| + |δ|)2 → 0 as α→ α0� δ→ 0�

We can explicitly derive the mean-square derivatives. In particular, the derivative with
respect to the finite-dimensional parameter can be expressed as

ψα(x1�x)= 1
2
{
y1y2P

11(x1 + α0�x)
−1/2 − (1 − y1)y2P

01(x1 + α0�x)
−1/2}∂G(x1 + α0�x)

∂u
�

and the derivative with respect to λ can be expressed as

ψδ(x1�x)= 1
2
{
y1y2P

11(x1 + α0�x)
−1/2 − (1 − y1)y2P

01(x1 + α0�x)
−1/2}

× ∂G(x1 + α0�x)

∂u

(
h(x1 + α0�x)+ 1

)
�

We then can use the fact that the Fisher information can be bounded as

Iλ�α ≤ 4
∫
(ψα −ψλ)2dμ

=
∫

Gv(x)

G(x1 + α0�x)
(
Gv(x)−G(x1 + α0�x)

)

×
(
∂G(x1 + α0�x)

∂u

)2
h2(x1 + α0�x)dν(x1�x)�

We can define the measure on Borel sets in R
2 as

π(A)=
∫
A

Gv(x)

G(x1�x)
(
Gv(x)−G(x1�x)

)
(
∂G(x1�x)

∂u

)2
dν(x1 − α0�x)�

Following Chamberlain (1986), we let L2(π) denote the space of measurable functions
q :Rm →R such

∫
q2 dπ <∞, allowing us to conclude that

Iλ�α ≤ 4‖h‖2
L2(π)

�

Chamberlain (1986) demonstrates that the space of differentiable functions with
compact support is dense in L2(π). Moreover, we require the derivative of h to be con-
tinuous in the interior of its support. Let S be the support of h. We take ε∗ > 0 and



1012 Khan and Nekipelov Quantitative Economics 9 (2018)

construct the set Sε∗ to be a compact subset of S such that the Euclidean distance of
the boundary of S from the boundary of Sε∗ is at least ε∗, where ε∗ is selected such
that π(S \ Sε∗) <

√
ε. Since the set of differentiable functions is dense in L2(π), for any

ε > 0 we can find a ∈ C2
c (R

2) (where C2
c (R

2) denotes the set of real-valued functions on
R2 that have compact support and continuous partial derivatives of order 2) such that
‖a‖L2(π) <

√
ε. The derivative ∂a(u�v)

∂u is continuous in the interior of S. Provided that
Sε∗ ⊂ S, this derivative is continuous on the entire set Sε∗ and, due to its compactness,
it is uniformly continuous there. As a result, there exists M = supSε∗ | ∂a(u�v)∂u |. There also
exists M ′ = supS |a|. Then we pick the direction h∗ as a function with support on S such
that h∗ = B

2 (a/M) in Sε∗ . Then we note that

∥∥h∗∥∥
L2(π)

≤ B

2M
‖a‖L2(π) + BM ′

2M
‖1S\Sε∗ ‖L2(π) <

B
(
M ′ + 1

)
2M

√
ε�

As a result, Iλ�α ≤ B2(M ′+1)2

M2 ε. As the choice of ε was arbitrary, this proves that
inf

λ∈Λ̃ Iλ�α = 0. �

A.2 Proof of Theorem 3.1

Our model is generated by two binary variables, Y1 and Y2. As a result, its parametric
components are fully characterized by conditional probabilities E[Y1|x1�x], E[Y2|x1�x],
and E[Y1Y2|x1�x]. Here we provide a simple argument that demonstrates the identifica-
tion of the parameter α̃0. Take points x > x′ in the support ofX and consider

E[Y2|X1 = x1�X = x] −E[
Y2|X1 = x1�X = x′]

=
∫

1
{
u− α̃0Φ

(
x− v
σ

)
≤ x1 ≤ u− α̃0Φ

(
x′ − v
σ

)}
g(u�v)dudv�

(A.1)

For each fixed pair of x > x′, this function is absolutely integrable inside any interval
[−c� c]. In fact, the set of points (u�v),

Sc =
{
(u�v) : x1 + α̃0Φ

(
x′ − v
σ

)
≤ u≤ x1 + α̃0Φ

(
x− v
σ

)
�−c ≤ x1 ≤ c

}
�

is a closed connected subset of R2 and thus has finite measure with respect to g(·� ·).
Moreover, for any sequence c → ∞, the limit of measures of sets is well defined and is
bounded by 1. Therefore, the improper integral of (A.1) on R over x1 is well defined.
Taking this integral, we note that

∫ ∫
1
{
u− α̃0Φ

(
x− v
σ

)
≤ x1 ≤ u− α̃0Φ

(
x′ − v
σ

)}
g(u�v)dudvdx1

= α̃0

∫ (
Φ

(
x− v
σ

)
−Φ

(
x′ − v
σ

))
g(u�v)dudv�

Recall that

E[Y1|X = x] =
∫
Φ

(
x− v
σ

)
g(u�v)dudv�
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Therefore, we can write the final expression that identifies the parameter α̃0 as

α̃0 =
∫ (
E[Y2|X1 = x1�X = x] −E[

Y2|X1 = x1�X = x′])

/
(
E[Y1|X = x] −E[

Y1|X = x′])dx1�

Therefore, the parameter α̃0 is identified. �

A.3 Proof of Theorem 3.2

A.3.1 Proof of part (i) In the proof of Theorem 3.1, we presented an explicit expression
for the parameter of interest. To compute the information corresponding to the param-
eter of interest, we construct the log-likelihood of the model by explicitly expressing the
probabilities

P11(x1�x; α̃0� g)=
∫

1
{
x1 − u+ α̃0Φ

(
x− v
σ

)
> 0

}
Φ

(
x− v
σ

)
g(u�v)dudv�

P(x1�x; α̃0� g)=
∫
Φ

(
x− v
σ

)
gv(v)dv�

and

Q(x1�x;α�g)=
∫

1
{
x1 − u+ α̃0Φ

(
x− v
σ

)
> 0

}
g(u�v)dudv�

We can then express all probabilities of interest as

P01(x1�x; α̃0� g)= P(x1�x; α̃0� g)− P11(x1�x; α̃0� g)�

P10(x1�x; α̃0� g)=Q(x1�x; α̃0� g)− P11(x1�x; α̃0� g)�

and

P00(x1�x; α̃0� g)= 1 −Q(x1�x; α̃0� g)− P(x1�x; α̃0� g)+ P11(x1�x; α̃0� g)�

and express the derivatives of the probabilities of interest as

∂P11(x1�x;α�g)
∂α

=
∫
Φ

(
x− v
σ

)
g

(
x1 + αΦ

(
x− v
σ

)
� v

)
dv≡D1(x1�x;α�g)�

∂Q(x1�x;α�g)
∂α

=
∫
g

(
x1 + αΦ

(
x− v
σ

)
� v

)
dv≡D2(x1�x;α�g)�

We adopt the notation of the proof of zero information in the complete information
model. We consider the square root of the density generating the model:

r(y1� y2�x1�x; α̃0� g)
1/2 = y1y2P11(x1�x; α̃0� g)

1/2 + y1(1 − y1)P10(x1�x; α̃0� g)
1/2

+ (1 − y1)y2P01(x1�x; α̃0� g)
1/2

+ (1 − y1)(1 − y1)P00(x1�x; α̃0� g)
1/2�



1014 Khan and Nekipelov Quantitative Economics 9 (2018)

We can express the mean-square derivative with respect to α̃0 as

ψα̃(y1� y2�x1�x)

= 1
2
[
y1y2P11(x1�x; α̃0� g)

−1/2 − (1 − y1)y2P01(x1�x; α̃0� g)
−1/2]

×D1(x1�x; α̃0� g)

+ 1
2
[
(1 − y1)(1 − y1)P00(x1�x; α̃0� g)

1/2 − y1(1 − y1)P10(x1�x; α̃0� g)
1/2]

× (
D1(x1�x; α̃0� g)−D2(x1�x; α̃0� g)

)
�

Thus, we can express the information for the parameter α̃0 as

Iα̃0 = 4
∫
(ψα̃0)

2 dμ�

If ν is the measure on R
2 corresponding to the distribution of x1 and x, following the

approach in the derivation of information of the complete information model, we define
the measures on Borel subsets of R2:

π1(A)=
∫
A

P1(x1�x; α̃0� g)

P11(x1�x; α̃0� g)
(
P1(x1�x; α̃0� g)− P11(x1�x; α̃0� g)

)dν(x1�x)

and

π2(A)=
∫
A

1 − P1(x1�x; α̃0� g)

P00(x1�x; α̃0� g)
(
1 − P1(x1�x; α̃0� g)− P00(x1�x; α̃0� g)

)dν(x1�x)�

We can then express the information of the model as

Iα̃ = ∥∥D1(x1�x; α̃0� g)
∥∥2
L2(π1)

+ ∥∥D1(x1�x; α̃0� g)−D2(x1�x; α̃0� g)
∥∥2
L2(π2)

� (A.2)

We construct the measure π∗ that minorizes the Radon–Nikodym density of measures
π1 and π2, meaning that dπ

∗
dν = min{dπ1

dν �
dπ2
dν }. Based on this structure of the measure, we

can write

Iα̃ ≥ ∥∥D1(x1�x; α̃0� g)
∥∥2
L2(π∗) + ∥∥D2(x1�x; α̃0� g)−D1(x1�x; α̃0� g)

∥∥2
L2(π∗)�

Denoting w(t)=Φ(t) and t = (x− v)/σ , we express

D1(x1�x; α̃0� g)= σ
∫
w(t)g

(
x1 + α̃0w(t)�x− σt)dt

and

D2(x1�x; α̃0� g)−D1(x1�x; α̃0� g)= σ
∫ (

1 −w(t))g(x1 + α̃0w(t)�x− σt)dt�
Suppose that S ⊂R

2 is a compact set such thatπ∗(S) > C. Then, given that g(·) is contin-
uous and strictly positive, there existsM(t)= inf(x1�x)∈S |g(x1 + α̃w(t)�x−σt)| that is not
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equal to 0 at least for some t ∈ R. We take
√
ε = supt∈[−B�B] |M(t)|, where B is selected

such that [−B�B] contains at least one point where M(t) �= 0. Suppose that the supre-
mum is attained at point t∗. By continuity, there exists some neighborhood of t∗ where
M(t) >

√
ε/2. Denote the size of this neighborhood by R. Invoking triangle inequality

and bounds provided above results in

Iα̃0 ≥ ∥∥D2(x1�x;α0� g)
∥∥2
L2(π∗) ≥ ∥∥D2(x1�x; α̃0� g)1S

∥∥2
L2(π∗)

≥ Cσ2
∥∥∥∥
∫
R

M(t)dt

∥∥∥∥
2
≥ Cσ

∥∥∥∥
∫ B

−B
M(t)dt

∥∥∥∥
2
≥ 1

2
CR2εσ2 > 0�

Therefore, the information corresponding to the parameter α̃0 is strictly positive when-
ever σ > 0. �
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