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Dynamic selection and distributional bounds on search costs in
dynamic unit-demand models

Jason R. Blevins
Department of Economics, Ohio State University

Garrett T. Senney
Office of the Comptroller of the Currency

This paper develops a dynamic model of consumer search that, despite placing
very little structure on the dynamic problem faced by consumers, allows us to
exploit intertemporal variation in price distributions to estimate the distribution
from which consumer search costs are initially drawn. We show that static ap-
proaches to estimating this distribution may suffer from dynamic sample selec-
tion bias. This can happen if consumers are forward-looking and delay their pur-
chases in a way that systematically depends on their individual search costs. We
consider identification of the population search cost distribution using only price
data and develop estimable nonparametric upper and lower bounds on the dis-
tribution function, as well as a nonlinear least squares estimator for parametric
models. We also consider the additional identifying power of weak, theoretical as-
sumptions such as monotonicity of purchase probabilities in search costs. We ap-
ply our estimators to analyze the online market for two widely used econometrics
textbooks. Our results suggest that static estimates of the search cost distribution
are biased upwards, in a distributional sense, relative to the true population dis-
tribution. We illustrate this and other forms of bias in a small-scale simulation
study.

Keywords. Nonsequential search, consumer search, dynamic selection, non-
parametric bounds.

JEL classification. C14, C57, D43, D83.

1. Introduction

As Benham (1972) articulated so clearly, “the full cost of the purchase of a good
. . . includes not only the cost of the item itself, but also the cost of knowledge, time, and
transportation.” This costly information acquisition generates situations of incomplete
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information, which disrupts the law of one price, even in seemingly competitive mar-
kets for homogeneous products. In a seminal paper, Stigler (1961) remarked that “price
dispersion is a manifestation . . . of ignorance in the market” caused by a lack of infor-
mation. Since his call for further work on this issue, countless studies have recognized
consumer search costs as a significant factor in explaining price dispersion.1

In this paper, we propose a dynamic model with forward-looking consumers to es-
timate the population consumer search cost distribution. Like many other recent stud-
ies, such as Hong and Shum (2006), Moraga-González and Wildenbeest (2008) (hence-
forth MGW), Wildenbeest (2011), Moraga-González, Sandor, and Wildenbeest (2013),
and Sanches, Silva Junior, and Srisuma (2018), we focus on the case where only the dis-
tribution of prices in each period is observed, but no individual-level data on consumers
is available. We show that if consumers have the option to delay purchase until a later
period, a dynamic selection problem exists that will cause estimates obtained from a
static model to be biased. We illustrate this through an application focusing on online
textbook markets in Section 6 as well as a small-scale simulation study in Section 4.

Early work in the consumer search literature focused on developing models that rec-
onciled theory with the observation that price dispersion is a stable equilibrium out-
come.2  Varian (1980), Salop and Stiglitz (1982), and Burdett and Judd (1983) all derived
price dispersion as a consequence of having strictly positive proportions of informed
and uninformed consumers in the same market. Even for homogeneous products, firms
will possess some market power and price dispersion will arise if there is at least some
consumer heterogeneity.3 Furthermore, Burdett and Judd (1983) showed that only ex
post heterogeneity is required for price dispersion. This theoretical development allows
for informational asymmetry to arise endogenously; for example, consumers may ra-
tionally collect different amounts of information about the market in accordance with
an optimal search rule. In more recent work, Janssen and Moraga-González (2004) and
Moraga-González, Sandor, and Wildenbeest (2017) illustrated how profoundly the shape
of the search cost distribution can affect search behavior, prices, and consumer welfare,
sometimes even nonlinearly.

Although several papers in the literature have data on individual-level search inten-
sities (De los Santos, Hortaçsu, and Wildenbeest (2012), Honka (2014), Gautier, Moraga-
Gonzalez, and Wolthoff (2016)), in many cases researchers only have access to price data
and have no information about search costs or search behavior, which are inherently
difficult to measure. For example, in our application we can easily observe posted prices
but it would be prohibitively expensive to obtain daily data on quantities of textbooks
sold by the nearly two hundred sellers in our dataset or daily information about the
characteristics or habits of individual consumers in the market. As a result of such data

1Refer to Pratt, Wise, and Zeckhauser (1979), Dahlby and West (1986), Clay, Krishnan, and Wolff (2001),
Johnson (2002), Hortaçsu and Syverson (2004), Hong and Shum (2006), and Moraga-González, Sandor, and
Wildenbeest (2012) for previous empirical studies.

2See McMillan and Rothschild (1994) and Baye, Morgan, and Scholten (2006) for surveys of the consumer
search literature.

3Diamond (1971) showed that if all consumers have the same positive search cost, then all firms will
charge the monopoly price, thus there will be no price dispersion.
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limitations, many empirical studies on consumer search have focused on simply docu-
menting the incidence and magnitude of price dispersion, or using indirect approaches
to estimation which do not require observing search costs. Sorensen (2000), for example,
made theoretical arguments that allow one to identify markets with lower and higher av-
erage search costs, which in turn lead to measurably different levels of price dispersion.

More recent papers have developed methodologies to estimate the static search cost
distribution for a single period using only the observed price distribution.4  Hong and
Shum (2006) and Moraga-González and Wildenbeest (2008) used the equilibrium condi-
tions on supply and demand to consistently estimate the search cost distribution within
one period at a finite number of points. Moraga-González, Sandor, and Wildenbeest
(2013) estimated the search distribution more completely on an interval by pooling mul-
tiple markets with the same search technology and exploiting the variation in valua-
tions and marginal costs across markets. Sanches, Silva Junior, and Srisuma (2018) used
a minimum distance approach, modifying Hong and Shum (2006) to create a consistent
and asymptotically normal estimator. Wildenbeest (2011) tackled the problem when ho-
mogeneous products are sold by vertically differentiated sellers, while De los Santos,
Hortaçsu, and Wildenbeest (2017) estimated search costs for a differentiated product in
a model with learning.

Another part of the literature, including Gowrisankaran and Rysman (2012) and Mel-
nikov (2013), is concerned with dynamic models of demand for differentiated durable
goods where consumers are forward-looking and expect quality to improve over time,
but there are no search frictions. Product quality is not changing in our model, but rather
the composition of consumers in the market and the prices charged by firms are chang-
ing over time. Our model also accounts for consumer dynamics, but the model is for
homogeneous goods where firms set prices in the presence of search frictions.

However, a limitation of most current empirical consumer search models is that the
search process is static: consumers and firms are both myopic and play a one-shot game.
In reality, if consumers remain in the market for multiple periods before purchasing,
then using a static model will only yield estimates of the distribution of search costs
for active consumers in a particular period. To a researcher, the population distribution
from which the search costs of new consumers are drawn may be of interest instead
of or in addition to the cross-sectional distribution in a given period. Consumers’ deci-
sions to purchase each period may be functions of their search costs; for example, con-
sumers who do not purchase may have systematically higher or lower search costs. In
such cases, static estimation techniques will suffer from dynamic selection bias. The re-
sult is that the estimated per-period search cost distributions will be biased with respect
to the time invariant population distribution.

In this paper, we introduce a model with forward-looking consumers where the pe-
riod search cost distribution evolves over time as new consumers, with costs drawn from
a time-invariant population distribution, mix with existing consumers in the market
who have not yet purchased. As in previous models, firms choose prices to maximize
per-period profits taking as given the current distribution of consumer search costs in

4See Moraga-González (2006) for a survey of the emerging structural consumer search literature.
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the market.5 We can allow for firm heterogeneity in our model along the lines of Wilden-
beest (2011). This dynamic model allows us to track and model how the distribution of
search costs of consumers in the market evolves over time. Simulations discussed in Sec-
tion 4 suggest that when consumers’ purchase probabilities are increasing or decreasing
in search cost, selection effects will cause the within period search cost distribution to
be biased downwards or upwards, respectively, relative to the population distribution.
We propose a procedure to estimate nonparametric bounds on the population search
cost distribution. Our method can be easily be extended to the parametric cases where
the population distribution is thought to belong to a parametric family.

We apply the proposed procedures to analyze the online markets for new hardcover
copies of two popular econometrics textbooks using a dataset of daily prices collected
from a large cross-section of online retailers. We find that the median of the distribu-
tion of search costs for consumers in the market for these books is much lower than
the estimates from a static analysis would suggest. Our estimates are also significantly
lower than similar search cost estimates reported previously in the literature. Relative to
our estimated bounds on the population distributions for the two books we consider,
the medians of the static search cost distributions are 34–98% and 72–301% higher, re-
spectively. In light of these findings, we conclude that accounting for dynamic selection
effects is important for estimating consumer search costs.

2. The theoretical model

We consider a model where prices for a homogeneous, durable good are chosen by J
firms in an oligopoly market, and where price acquisition is costly to a measure of con-
sumers, each with unit demand for the product. Each period in our model consists of
a firm pricing phase, followed by a consumer search and purchase phase. At the begin-
ning of each period t, firms observe the current distribution of consumer search costs
Gt , which has support on the nonnegative real line. Firms then choose prices accord-
ing to a unique, symmetric mixed pricing strategy Ft with support [p

t
�pt]. Given the

distribution of prices Ft , consumers then decide how intensely to search for prices and
whether or not to purchase now or wait for the next period. We will describe the con-
sumer problem first, taking the price distribution Ft as given, and then return to the
firm problem.

2.1 Consumer search problem

In each period t, there is a unit measure of consumers with unit demand for the product
and a common within-period reservation value vt > 0. Each consumer is endowed with
a time-invariant, per-firm search cost c which is an i.i.d. draw from a continuous pop-
ulation distribution H which has full support on the nonnegative real line. Consumers

5Allowing agents on both sides of the market to be forward-looking would require us to impose substan-
tially more structure and may still yet be intractable. However, investigating modeling and computational
strategies for dynamic pricing with forward-looking consumers in the presence of informational frictions
is an interesting direction for future work.
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who purchase exit the market permanently, so the distribution of search costs of active
consumers in period t, denotedGt , may vary over time.

The ex ante identical consumers in our model are heterogeneous in the sense that
obtaining individual prices may be more or less costly. With only data on prices but
not on individual consumers, a necessary limitation of our model, and others in the
literature on which we build, is that consumer heterogeneity is one-dimensional. Im-
portantly, as Hong and Shum (2006), Moraga-González and Wildenbeest (2008), and
Moraga-González, Sandor, and Wildenbeest (2013) have shown, even with only the price
distribution at hand, identifying features of the search cost distribution is still feasi-
ble. This heterogeneity leads consumers to search different numbers of firms to obtain
prices, which in turn supports the mixed strategy pricing equilibrium among firms.

Consumers observe the equilibrium price distribution Ft and search simultaneously
in period t, receiving a chosen number of price draws from Ft . Let K denote the maxi-
mum number of firms a consumer can search and let kt ≤K denote the optimal choice
of the number of firms to search in period t (i.e., the number of firms in a consumer’s
consideration set).

The early literature refers to this technology as fixed sample size search since con-
sumers commit to sample from a predetermined number of firms before purchasing.
Although Morgan and Manning (1985) proved that the optimal search strategy is gener-
ally a hybrid of both simultaneous and sequential search, Manning and Morgan (1982)
demonstrated that if there exist meaningful economies of scale to sampling or a signifi-
cant time lag in information procurement, then sampling once from a large number of
firms is the optimal search strategy. Importantly, Hong and Shum (2006) showed that
the simultaneous search model can be estimated without either observing search costs
or making parametric assumptions about the search cost distribution. Additionally, De
los Santos, Hortaçsu, and Wildenbeest (2012) and Honka and Chintagunta (2017) found
that observed online search behavior is consistent with simultaneous search. Our dy-
namic model builds on these insights: we do not need to impose a parametric assump-
tion and the search process resembles the optimal search rule of Morgan and Manning
(1985) in the sense that consumers search simultaneously within a period while retain-
ing the option to continue searching in the next period (i.e., sequential search across
periods and simultaneous search within periods).

Again following the literature, we assume consumers receive one free price quote
from a random firm.6 We assume that there is no recall across periods, so prices this pe-
riod are not valid next period and may not be representative of next period’s price distri-
bution. For each additional firm searched beyond the first, consumers incur their indi-
vidual search cost c. Hence, the total cost for becoming fully informed about allK prices
is c(K − 1). Moraga-González, Sandor, and Wildenbeest (2017, Proposition 3) showed
that the optimal consumer search response to any atomless price distribution Ft leads
to a unique grouping of consumers based on how many prices each consumer will opti-
mally obtain. The ex post information asymmetry among consumers is an equilibrium
outcome of optimal behavior.

6Moraga-González, Sandor, and Wildenbeest (2013) showed that in a setting with search cost hetero-
geneity, this assumption does not qualitatively affect the results. A costly first search will weakly decrease
market size as some consumers’ costs might be large enough to prohibit participation in the market.
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At the start of each period, a consumer decides on the number of firms to search,
prior to observing prices. The first price is obtained for free and a cost of c is incurred for
each additional firm sampled. Consumers are attempting to minimize the expected to-
tal cost of purchase this period (search costs incurred and the expected minimum price
from the sampled firms). A consumer decides to purchase or not, denotedDt ∈ {0�1}, by
evaluating whether the value of continuing to search is less than the best terminal util-
ity currently available. A consumer who purchases (Dt = 1) does so from the firm with
the lowest price of the kt firms sampled. Since the product is durable and consumers
have unit demand, a consumer who purchases in the current period exits the market
permanently. At the end of each period, consumers who purchase are replaced by con-
sumers with i.i.d. search costs drawn anew from the population distribution H.7 Con-
sumers who do not purchase remain in the market and retain their idiosyncratic search
costs.

Before actually searching, a rational consumer calculates the optimal number of
firms to search by minimizing her expected total expenditure:

kt(c)= arg min
k≤K

[
c(k− 1)+

∫ pt

p
t

pk
(
1 − Ft(p)

)k−1
ft(p)dp

]
� (1)

The first term in the minimand is the total cost of searching and the second term is the
expected minimum price paid after sampling k firms conditional on purchasing this
period. For notational convenience, we rewrite the expected value of the minimum of
k sampled prices in period t (the first order statistic) as E[p(1)t�k]. The tension in the con-
sumer’s intertemporal problem is that searching additional firms lowers the expected
price paid, but increases the search cost incurred. The total expenditure function is in-
creasing in c and convex in k; therefore, given a search cost c, there is a unique solution
for k.

Given that k is required to be a positive integer less than or equal to K, consumers
are partitioned by their search intensity. The cost that makes a consumer indifferent
between searching k and k + 1 firms equals the marginal benefit of searching the
(k+ 1)th firm;

ct�k = E
[
p(1)t�k

] − E
[
p(1)t�k+1

]
� (2)

The marginal benefit of search is nonincreasing in k, so the sequence of cutoff search
costs is decreasing in k: ct�K < ct�K−1 < · · · < ct�2 < ct�1. Let μt�k be the measure of con-
sumers who search exactly k firms; these are the consumers who possess search costs
in the interval (ct�k+1� ct�k]. Combining the adding-up restriction

∑K
1 μt�k = 1 with the

ordering of the indifference costs allows the proportion of consumers searching k firms

7The measure of consumers is therefore fixed over time. However, one could also consider expansion
and contraction of the market size over time if an observable measure of market size is available. This would
change the relative proportion of consumers entering the market from the population distribution H and
would dampen or amplify the dynamic selection bias effects as the case may be.
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to be written as a function of the period search cost CDF:

μt�k =

⎧⎪⎪⎨
⎪⎪⎩

1 −Gt(ct�1) k= 1�

Gt(ct�k−1)−Gt(ct�k) 2 ≤ k≤K − 1�

Gt(ct�K−1) k=K�
(3)

Notice that this condition involves only a finite number of values of Gt and so price
data from a single market will be insufficient to identify the entire distribution. It is par-
ticularly difficult to identify the upper quantiles of the search cost distribution. For very
high costs, we can only identify the smallest cost that makes a consumer want to only
search one firm. The behavior of a consumer with search cost of ct�1 and one with any
cost larger than ct�1 are observationally equivalent: they both only search one firm.

2.2 Consumer purchase decision: A model-free approach

We consider the possibility that forward-looking consumers may choose to continue
searching beyond the current period if they expect searching will strictly improve their
expected utility. Let σt(c) ≡ Pr(Dt = 1 | C = c�It ) denote the purchase probability (i.e.,
the policy function) of a consumer with search cost c in period t, where Dt is a pur-
chase indicator and It represents the public information available in period t. In other
words,σt(c) is the conditional probability of purchasing and exiting the market in period
t given search cost c and information It . Similarly, 1−σt(c) is the conditional probability
of remaining in the market (not purchasing). While static models are based on the as-
sumption that all consumers search for only one period, uniformly, our model permits
heterogeneity in search durations allowing σt to depend on c and other factors.

In determining this period’s purchase policy function σt , consumers may incorpo-
rate expectations about next period’s equilibrium price distribution, Ft+1. Prices next
period are determined by next period’s realized search cost distribution Gt+1, which is
in turn determined by this period’s search cost distribution Gt , the time invariant pop-
ulation search cost distribution H, and the policy function σt of interest. There are a
myriad of rational ways in which consumers could solve this problem. For example, one
approach would be to assume that the equilibrium policy σt is determined in a ratio-
nal expectations equilibrium. Another option would be to use an adaptive expectations
equilibrium.8 Specifying such explicit models quickly becomes analytically intractable,
even with specific functional form assumptions.9 Instead, we take a largely model-free
approach which does not require us to specify exactly how the policies σt are deter-
mined. However, since σt can depend on beliefs about Ft+1, our procedure follows the
spirit of the optimal search rule of Morgan and Manning (1985).

8Chow (2011) demonstrated that adaptive expectations would be better suited for consumers in our set-
ting, since past period prices become increasingly less relevant over time in forming expectations about
future prices.

9To illustrate the difficulty in fully specifying, solving, and estimating a dynamic representative consumer
model here, letWt(p | c) denote the value function of a consumer with search cost c given an initial observed
price p. The value that a consumer receives from searching and purchasing in period t is v − E[p(1)t�k(c)] −
[k(c)− 1]c, which is the expected value of buying after searching k(c) stores. On the other hand, the option
value of waiting and not purchasing isβE[Wt+1(p

′ | c) | p�c]. The Bellman equation describing this situation
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We consider a general model in which we assume only that consumers follow a se-
quence of unspecified policy functions σt : [0�∞)→ [0�1] for t = 1�2� � � � �T . These poli-
cies may depend on the search cost c in an arbitrary way. Any particular dynamic model
one might specify for consumers will yield such a sequence of policy rules, but as we
show below our approach yields easily interpretable results while being robust to mis-
specification of σt . Since σt is indexed by t, the purchase probabilities may depend on
the search cost and price distributions Gt and Pt in the current, previous, or future pe-
riods as well as the population distribution H. This allows for the possibility of nonsta-
tionary, time- or duration-dependent purchase behavior.10 We also note that the static
case where consumers always purchase is nested in our framework since one possible
policy sequence is σt(c)= 1 for all c and t.

Although economic theory may not guide us in selecting a particular parametric
family forσt , it may inform us about its shape. For example, since consumers with higher
search costs search fewer stores, their ex ante probability of finding a sufficiently low
price may be lower and they may be more likely to delay purchase until next period.
In other words, σt may be monotonic. We show how to incorporate such a theoretical
restriction in the course of discussing our identification and estimation results below.

Consider a single consumer making a decision about whether to purchase this pe-
riod or remain in the market until the next period. If the consumer does not purchase
(D= 0), then she remains in the market and retains her search cost next period (C ′ = c).
However, if the consumer does purchase (D= 1), she leaves the market and is replaced
by a consumer with a search cost drawn from the population distribution (C ′ ∼H(·)).
Therefore, the conditional search cost distribution next period is

Pr
(
C ′ ≤ c′ | C = c�D= d) =

{
1
{
c ≤ c′} if d = 0�

H
(
c′

)
if d = 1�

(4)

If the consumer does not purchase, then her search cost stays the same and so there is
a mass point at c. When the consumer does purchase, the search cost of the consumer
who replaces her is drawn anew from H and is therefore independent of the previous
cost c.

The object of interest in this model is the unconditional population search cost dis-
tributionH. To find this distribution, we can first integrate (4) with respect to c and d to

is

Wt(p | c)= max
Dt∈{0�1}

{(
v− E

(
p(1)t�k(c)

) − (
k(c)− 1

)
c
)
Dt +βE

[
Wt+1

(
p′ | c) | p]

(1 −Dt)
}
�

where D represents the purchase decision. To complete the model, one specify consumer beliefs about
future price and search cost distributions, which are in turn determined in part by the purchase policy
function, which might be determined in an equilibrium. Therefore, this is closer to a dynamic game than
single agent model, and so straightforward “full solution” techniques are likely impractical here. However,
we have been able to find equilibria numerically in a simple two-period instance of this model where policy
functions are assumed to have a threshold or indicator function form. These results are available from the
authors upon request.

10We note that the procedure is robust to seasonality in prices (e.g., changes in the mean of the distribu-
tion over time), since the within-period decision in (2) depends only on differences.
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obtain the unconditional distribution of search costs in period t + 1:

Gt+1
(
c′

) =
∫ c′

0

(
1 − σt(c)

)
gt(c)dc +H(

c′
) ∫ ∞

0
σt(c)gt(c)dc� (5)

Hence, the next period’s search cost distribution is a mixture of the current search cost
distribution and the population distribution where the weights are determined by the
purchase policy function. Consider the two extreme cases. If all the consumers purchase,
regardless of their search costs, then next period’s distribution is simply the time invari-
ant population distribution H. On the other hand, if no consumers purchase then the
next period’s search cost distribution is the same as this period’s, Gt .

2.3 Firm pricing

Following the previous literature, we assume that prices are determined by a collec-
tion of J oligopolistic, static profit maximizing firms that each produce a homogeneous,
durable good at a constant within-period marginal cost rt > 0. Firms do not take into
account that their consumers are forward-looking. This is a limitation of our model, but
it yields a computationally tractable model and allows us to leverage existing results on
identification and estimation of within-period search cost distributions by Hong and
Shum (2006), Moraga-González and Wildenbeest (2008), Moraga-González, Sandor, and
Wildenbeest (2013), and others. For now, we assume these firms are identical, but we will
show below that we can also allow for vertical differentiation in the sense of Wildenbeest
(2011).

Following Burdett and Judd (1983), to ensure that a market exists we assume that no
firm will price below marginal cost, which implies a lower bound p

t
≥ rt , and that no

firm will price above the valuation, implying an upper bound pt ≤ vt . In equilibrium,
firms set prices according to a symmetric mixed strategy represented by a cumulative
distribution function Ft . This distribution is absolutely continuous and assigns posi-
tive density everywhere on [p

t
�pt]. Moraga-González, Sandor, and Wildenbeest (2017)

proved that under mild conditions an equilibrium exists for any number of firms. They
also show that for a given consumer search behavior there is a unique symmetric equi-
librium and the equilibrium price distribution must be atomless.11 Furthermore, simu-
lations by Moraga-González, Sandor, and Wildenbeest (2017) suggest that uniqueness is
a more general result.

Firms choose prices simultaneously at the beginning of each period according to Ft .
Given the consumer search behavior derived above, the optimal pricing strategy is a
symmetric mixed strategy represented by a CDF Ft on [p

t
�pt]. For firms to be willing to

mix in any one period, all prices in the support must yield the same profit:

Πt = (p− rt)
[
K∑
k=1

kμt�k
K

(
1 − Ft(p)

)k−1
]

for all p ∈ [p
t
�pt]� (6)

11Baye, Kovenock, and De Vries (1992) examined asymmetric equilibria in Varian’s model and concluded
that only the symmetric equilibrium survives meaningful equilibrium refinement.
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Firms charging the highest price will only sell to consumers who search exactly once.

This condition defines the constant profit level: Πt = μt�1(pt−rt )
K . Ft(p) is then implicitly

defined by (6) and the density of the price distribution can be determined by solving the
first-order condition of the profit equation for ft(p):

ft(p)=

K∑
k=1

kμt�k
(
1 − Ft(p)

)k−1

(p− rt)
K∑
k=2

k(k− 1)μt�k
(
1 − Ft(p)

)k−2

� (7)

Given these density values, one can consistently estimate μt = (μt�1� � � � �μt�K) in each
period using maximum likelihood as in MGW. By evaluating (6) at p= p

t
, this condition

can be rearranged and solved to obtain the per unit marginal cost:

rt =
p
t
·
(
K∑
k=1

k ·μk
)

−μ1pt

K∑
k=2

k ·μk
(8)

2.4 Pricing with vertically differentiated firms

So far, we assumed firms were identical and equally likely to be sampled by a consumer.
Here, we consider vertically differentiated firms following the approach of Wildenbeest
(2011). Firms still sell a homogeneous product, but they can differentiate themselves by
offering different levels of in-store services (quality). Suppose that all consumers have
the same preference for quality through an additively separable utility function of the
form ujt = vjt − pjt , where vjt and pjt are the consumer’s valuation and the price of the
product at firm j in period t, respectively. Consumers know their firm-specific valua-
tions, but the prices are unknown until the consumer searches. Consumers purchase
the product from the firm providing them the highest utility level.

The consumer’s firm-specific valuation is made up of two components: a common
value that is derived from consumption of the homogeneous good and a firm-specific
value coming from level of service quality. As in Armstrong (2008), firms compete di-
rectly in utility space by offering consumers a quality-price pair. We assume that firm
quality is fixed in the short term. In addition, there are constant returns to firm quality
and markets for quality input factors are perfectly competitive. Under this assumption,
as shown by Wildenbeest (2011), the consumer valuation for firm j’s product is addi-
tively separable as vjt = xt + qj , where xt is the common utility level from the actual
consumption of good in period t and qj is firm j’s quality.

Each firm j will choose qj to maximize the valuation-cost margin, vjt − r(qj), where
r(qj) denotes firm j’s cost of production given the quality level qj . Assuming perfect
competition in input markets and constant returns to scale in production, Euler’s the-
orem implies that r(qj) = qj . The valuation-cost markup is constant and independent
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of quality and, therefore, the profit margins of all the firms are independent of the qual-
ity choice. Although firms might offer different prices due to their quality choices, the
quality-adjusted price is the same for everyone. Firms are symmetric along the utility
dimension, allowing for the development of a symmetric mixing equilibrium over utili-
ties.

2.5 Extensions for cases with more observable information

If both prices and quantities are observed in every period, the sharpness of our bounds
can be improved in a way similar to Hortaçsu and Syverson (2004). With market shares
and prices in hand, the within period equilibrium market clearing, with some mild nor-
malization conditions, nonparametrically identifies Gt—the search cost CDF—at the
critical cutoff costs. If we also know marginal cost, then gt—the search cost PDF—can be
derived directly from the competition assumption. Otherwise, it can be estimated from
the price and market share data. The advantage that this additional information pro-
vides is that we are derivingGt , gt , and ck from the model, rather than estimating them.
Therefore, in this setting our method becomes a one-step estimator, rather than a two-
step estimator where the first stage quantities are used as inputs in the second stage.
Thus, if one observes prices and quantities this can yield sharper and more precisely
estimated bounds forH.

Additionally, if individual data on search behavior is observed our model can be ex-
tended to allow for firm prominence along the lines of Armstrong, Vickers, and Zhou
(2009). For example, De los Santos (2018) observed individual consumer characteristics
and search behavior and estimates a model of search for New York Times Best Sellers
with firm prominence and consumer heterogeneity in search intensities. In our setting,
suppose that prominent firms have a higher probability of being sampled than other
firms.12 This situation could be captured in our model with the addition of firm-specific
consideration probabilities ψi where i= 1 for prominent firms and i= 0 for other firms.
This implies that the expected period profit in (6) would be different for prominent and
nonprominent firms. While this would increase the computational burden of estimating
the model, the MLE problem is essentially solved in the same fashion as before, based
on profit indifference conditions that implicitly define Ft�i each period which in turn de-
termine ft�i. Additional information such as this would improve the quality of estimated
bounds by controlling for variation in prices arising from search order effects.

3. Identification

Our identification strategy is constructive, and can be summarized briefly as follows. We
consider identification of the population search cost distributionH given a sequence of
observable per-period price distributions Ft for t = 1� � � � �T . First, in each period t the
price distribution Ft identifies the per-period distribution functionGt at a finite number

12One technical caveat is that the prominent firm cannot be sampled first by all consumers. Armstrong,
Vickers, and Zhou (2009) showed that firms will use a pure strategy and the price disparity is more limited
and arises directly from search order effects.
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of points {ct�k : k= 1� � � � �K} by Proposition 1 of Moraga-González, Sandor, and Wilden-
beest (2013). Then we compare the identified values of Gt and Gt+1 in adjacent peri-
ods. Since Gt+1 is a σt-weighted mixture of Gt and H, letting σt vary over the space of
probability-valued policies yields upper and lower bounds on H at fixed points. These
bounds can be improved by exploiting variation in the price distributions across many
periods. Hence, the asymptotic framework we consider for estimation is one where there
areNt observations drawn from Ft in each period t = 1� � � � �T with 2 ≤ T <∞. Therefore,
with only price data and no additional assumptions on the structure of the model, we
can identify informative bounds on H. Finally, in an extension we show that theoreti-
cal restrictions, such as monotonicity of purchase probabilities in search costs, could be
used to further refine the bounds.

3.1 Bounds with unrestricted policies

Using the observed per-period price distributions and Proposition 1 of Moraga-
González, Sandor, and Wildenbeest (2013), we take it as given that the values ct�k and
G(ct�k) are identified for all t = 1� � � � �T and k = 1� � � � �K. Let Σ be the set of all func-
tions mapping [0�∞) to [0�1]. Using the weak restriction that σt ∈ Σ for all t will provide
information aboutH. For a given cost value c′, we will boundH(c′) by finding two func-
tions in Σ that maximize and minimizeGt+1(c

′), as defined in (5). For a given cost c′, let
σL
t (·; c′) denote the function for whichGt+1(c

′) reaches the lower bound and let σU
t (·; c′)

denote the function which achieves the upper bound. The purchase probabilities that
generate the lower and upper bounds on Gt+1(c

′), and the implied bounds are given by
the following proposition. Proofs of this result and others can be found in the Appendix.

Proposition 1. When σt is unrestricted in Σ, the conditional, purchase probabilities
that generate the lower and upper and bounds onGt+1 for a given cost c′ are

σL
t

(
c; c′) =

{
1 if c ≤ c′�
0 if c > c′�

and σU
t

(
c; c′) =

{
0 if c ≤ c′�
1 if c > c′�

The implied bounds onGt+1(c
′) are

GL
t+1

(
c′

) ≡Gt
(
c′

)
H

(
c′

) ≤Gt+1
(
c′

) ≤Gt
(
c′

) + [
1 −Gt

(
c′

)]
H

(
c′

) ≡GU
t+1

(
c′

)
�

Next, we use this information to learn about the population distribution H. For a
cost c at which Gt(c) and Gt+1(c) are both identified and Gt(c) ∈ (0�1), the bounds
above can be rearranged to find bounds onH(c):

HL
t+1(c)≡ max

{
Gt+1(c)−Gt(c)

1 −Gt(c) �0
}

≤H(c)≤ min
{
Gt+1(c)

Gt(c)
�1

}
≡HU

t+1(c)� (9)

These bounds only depend on the estimable period search cost distributions. The fol-
lowing proposition establishes that except in singular cases, the bounds are different
from the trivial bounds [0�1], and are therefore informative. It also shows that the
bounding interval is in fact sharp, meaning that it is as small as possible with the given
information.
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Proposition 2. Let c ∈ [0�∞) be such thatGt(c) ∈ (0�1).

a. If Gt(c) 
= Gt+1(c), then either HL
t+1(c) > 0 or HU

t+1(c) < 1. In other words, at least
one of the bounds will be “informative” in the sense of being different from the trivial
bounds [0�1].

b. If Gt(c) =Gt+1(c), then HL
t+1(c) = 0 and HU

t+1(c) = 1. In other words, both bounds
are trivial.

c. Let Gt(·), Gt+1(·), and h ∈ [HL
t+1(c)�H

U
t+1(c)] be given. Then there exists a policy σt

that would rationalizeH(c)= h. In other words, the bounding interval is sharp.

Recall that the time subscripts for the bounds above indicate the within-period dis-
tributions used to obtain the bounds: the bounds HL

t+1 and HU
t+1 are constructed using

only Gt and Gt+1. However, thus far we have only used information in adjacent periods
t and t+1. Since theH distribution is time invariant, we can also aggregate the informa-
tion in these bounds across periods. The most informative bounds are the least upper
bound and the greatest lower bound on H(c) at a given cost value c for any given ad-
jacent periods. Aggregating across periods yields what we will refer to as the envelope
bounds:

HL(c)≡ max
t∈{1�����T−1}

HL
t+1(c) and HU(c)≡ min

t∈{1�����T−1}
HU
t+1(c)�

These are the bounds that we estimate and report in the application described in Sec-
tion 6.

We note that because we aggregate information across periods, the envelope bounds
ĤL and ĤU may meet or even cross. In other words,H may be nonparametrically overi-
dentified if there is sufficient variation in Gt across periods. Indeed, in our application
the estimated bounds cross for some lower quantiles (where there is typically more in-
formation about search costs). As in generalized method of moments (GMM) estimation
of finite-dimensional parameters (Hansen (1982)), this suggests that we should choose
our estimate of H to minimize a loss function. For given bounds HL and HU, the aver-
age of the two bounds will minimize the directional L2 loss function.13 Therefore, we
also report estimates of the average of the bounds:

H = HL +HU

2
�

We conclude with a brief discussion of related results in the search literature. In a
static model, Moraga-González, Sandor, and Wildenbeest (2013, Proposition 2) showed
that if price distributions are observed across many markets with the same search cost
distribution, but with variation in valuations or marginal costs, then the full search cost
distribution is nonparametrically identified. However, in our dynamic model the period-
market-specific search cost distributions will be different across markets, due to the

13Given the two inequality constraints HL(c)≤H(c)≤HU(c), we consider the directional L2 loss func-
tion L(H;HL�HU) = ∫ ∞

0 [|HL(c) − H(c)|2+ + |HU(c) − H(c)|2−]dc, where for any z ∈ R we define |z|− =
|z|1{z < 0} and |z|+ = |z|1{z > 0}.
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stochastic nature of individual consumer purchase decisions. There is also a single on-
line market for textbooks in our application, so in the remainder, we focus on the case
where data are sampled from only one market but where, unfortunately, the identifica-
tion problem is more difficult.

There is also a related literature on models of labor search, where generally the full
wage distribution can be identified, even below the reservation wage where no offers are
accepted, by assuming a functional form that is recoverable from the observed, trun-
cated distribution or observing a random sample of wages offers spanning the full dis-
tribution.14 Unlike our model, sequential search is the standard technology for labor
models where workers receive one wage offer at a time. These techniques are not di-
rectly applicable to our model where consumers and firms are facing distinct price and
search costs distributions, respectively, every period.

3.2 Improved bounds with monotonic policies

Finally, we consider whether we can strengthen the bounds by imposing weak mono-
tonicity of the policy functions σt . Note that without this assumption, as established in
Proposition 1 above, the minimizing policy function inΣ is weakly increasing in cmean-
ing that consumers with higher search costs are more likely to purchase than those with
lower search costs. Suppose instead that we restrict our analysis to the set of weakly de-
creasing functions ΣM ⊂ Σ.

Proposition 3. When σt ∈ ΣM, the conditional purchase probabilities that generate the
upper bound onGt+1 for a given cost c′ are

σU
t

(
c; c′) =

{
0� Gt

(
c′

)
>H

(
c′

)
�

1� Gt
(
c′

) ≤H(
c′

)
�

The implied lower bound onH is

HL
t+1(c)≡

⎧⎨
⎩
Gt(c) ifGt(c) <Gt+1(c)�
Gt+1(c)−Gt(c)

1 −Gt(c) otherwise�

The upper bound given in (9) still applies.

4. Dynamic selection effects: Simulation evidence and theoretical results

Here, we investigate the effects of dynamic selection on the period search cost distri-
bution via a small-scale simulation study. We also discuss some additional theoretical
results which characterize the extent to which dynamic selection causes problems with
static estimation. In particular, we focus on the characteristics of the consumers’ pur-
chase policy function that are related to the dynamic selection bias. We define this bias

14See Mortensen (1986) and Eckstein and van den Berg (2007) for surveys of this literature.
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to be the difference between the per-period search cost distributions obtained by a static
analysis,Gt , and the population search cost distribution,H.

For each simulation, we choose: (1) a starting period search cost distribution, G0,
(2) a population distribution, H, and (3) a time-invariant purchase probability policy
function σ(·). Each simulation begins with 1000 initial consumers with costs drawn ran-
domly from G0. We then apply the policy function σ to determine which consumers
purchase and which remain in the market. Those who stay in the market retain their
search costs, while those who purchase are replaced with consumers drawn from the
population distributionH. We repeat this process for 10,000 periods.

To analyze the effects of the functional form of σ on the evolution of the search
cost distribution, we use an assortment of functions that are monotonically increasing,
monotonically decreasing, nonmonotonic, or independent of search cost. We consid-
ered all combinations of four initial distributions, three population distributions, and 20
policy functions for a total of 240 specifications.15

When consumers’ purchase probabilities are monotonically decreasing in cost, se-
lection effects cause the quantiles of the period search cost distributions to be biased
upwards when compared to the population distribution, regardless of the starting or
population distribution used. In this scenario, as search cost increases, consumers be-
come less likely to purchase relative to their lower search cost counterparts. Intuitively,
this implies that over time the fraction of consumers with high search costs grows. At
the same time, low search cost consumers are purchasing and exiting the market; thus,
the per period distribution is becoming more concentrated with higher search cost con-
sumers. This result suggests that if the probability of purchasing is decreasing in search
cost, then markets for durable goods should experience weakly more price dispersion
over time as the remaining consumers will tend to search less intensely before purchas-
ing.

The opposite outcome occurs in the situation where the purchase probability is
monotonically increasing in search cost. Regardless of the starting or population search
cost distributions used, selection effects result in a downward distributional bias. This
result arises from the same forces as above: consumers with higher search costs are pur-
chasing at relatively higher rates, so the market becomes more concentrated with lower
cost consumers over time.

When the probability of purchase is nonmonotonic, there can be both positive and
negative bias at various quantiles. The direction of bias depends on the nature of the
non-monotonicity of the purchase probability. The bias is primarily driven by the pur-
chase decisions of consumers who possess more extreme search cost realizations. In this
case, consumers in both tails of the distribution have very low purchase probabilities.
The result is that the search cost distribution spreads out over time, resulting in both
types of bias. The direction of the bias at specific quantiles is determined by which tail
of the purchase probability function has relatively more weight. In this case, we eventu-
ally see positive bias at the median because it is the lower-cost consumers who tend to
purchase more frequently.

15See Appendix A for details on the collection of distributions and policy functions used along with fig-
ures showing the primitives chosen for four representative specifications (Figure 6) and the resulting bias
in the deciles of the search cost distributions (Figure 7).
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Finally, if the purchase probability is a constant, say σ(·)= p, then there is a closed-
form solution for period t’s search cost distribution:

Gt(c)= (1 −p)Gt−1(c)+pH(c)�

Extending back to the initial period reveals that period t’s search cost distribution is a
simple weighted average of the initial distribution and the population distribution:

Gt(c)= (1 −p)tG0(c)+pH(c)
t∑
s=1

(1 −p)s−1�

Taking the limit reveals that the period search cost distributions converge toward the
population distribution, so there is no persistent bias: limt→∞Gt(c)=H(c) for all c. The
rate of convergence depends on the consumers’ purchase probability, with faster con-
vergence as p increases.

We conclude this section with Proposition 4, which characterizes the nature of the
bias over time in terms of the unconditional purchase probability Rt(σt) ≡∫ ∞

0 σt(c)gt(c)dc. The first part establishes that ifGt is biased in the current period, then
Gt+1 will be biased in the next period unless the nonpurchase probability is sufficiently
large. The second part states that when the within-period search cost distribution has
reached an unbiased steady state, then it must be the case that the purchase policy func-
tion is constant (and therefore trivially equal to the unconditional purchase probability).

Proposition 4. a. If Gt 
= H, then Gt+1 
= H for any policy function σt such that 1 −
Rt(σt) < infc′

gt(c
′)

h(c′) .

b. IfGt =Gt+1 =H, then σt must be constant.

5. Estimation

In this section, we propose a method to estimate the model described above using only
pooled cross-sectional data on prices over time. In particular, suppose we observe Nt
prices in periods t = 1� � � � �T and without loss of generality suppose that the prices are
ordered from smallest to largest in each period (i.e., pt�1 ≤ · · · ≤ pt�Nt for all t). The es-
timation method consists of two or three stages: (1) nonparametric estimation of the
within-period search cost distributionsGt usingNt prices in each period t, (2) nonpara-
metric estimation of bounds on the entry distribution H using variation in Gt across
periods t, and (3) optionally, using the nonparametric bounds to estimate a parametric
entry distribution.

First, we follow the MGW approach to estimate the within-period search cost dis-
tributions at the cutoff points using nonparametric maximum likelihood. We use the
minimum and maximum observed prices each period as estimates of the support of
the price distribution, pt�1 = p

t
and pt�Nt = pt .

16 The maximum observed price, pt , is

16Refer to Kiefer and Neumann (1993) and Donald and Paarsch (1993) regarding the use of order statistics
to estimate bounds.



Quantitative Economics 10 (2019) Dynamic selection and distributional bounds 907

also a superconsistent estimate of the consumer valuation, vt (Hong and Shum (2006),
Moraga-González and Wildenbeest (2008)).

Recall that μt�k is the measure of consumers who search exactly k firms in period t.
The maximum likelihood estimation problem for μt = (μt�1� � � � �μt�K) in each period t is

max
μt

Nt−1∑
i=2

log ft(pt�i;μt)

subject to (p− r)
K∑
k=1

kμt�k
K

(
1 − Ft(p)

)k−1 = μt�1(pt − r)
K

for all p ∈ [p
t
�pt]

where ft(p;μt) is defined in (7).
Each search cost cutoff ct�k for k = 1� � � � �K − 1 can be found by evaluating the fol-

lowing integral:17

ct�k =
∫ p

p
F−1
t (z)

(
(k+ 1)z− 1

)
(1 − z)k−1 dz�

Recall that the price distribution is strictly monotonically increasing, so the inverse of
Ft exists. Given estimates of μt�k and ct�k for each k, we use (3) to estimate the values of
the search cost CDFGt(ct�k) at each of cutoff search cost values. These are the estimates
one would obtain when carrying out a static analysis. If we have Nt observations in pe-
riod t, then as established by Moraga-González and Wildenbeest (2008), the maximum
likelihood estimates {(ĉt�k� Ĝt(ct�k)}Kk=1 are consistent asNt → ∞.

Next, we estimate the nonparametric upper and lower bounds on the population
distribution H using the estimated cutoffs ct�k and CDF values Gt(ct�k) as described in
Section 3. Specifically, we define the estimates of the bounds as follows:

ĤL
t+1(c)≡ max

{
Ĝt+1(c)− Ĝt(c)

1 − Ĝt(c)
�0

}
�

ĤU
t+1(c)≡ min

{
Ĝt+1(c)

Ĝt(c)
�1

}
�

Provided that the sample sizes Nt and Nt+1 in adjacent periods tend to infinity, we can
obtain consistent estimates of the CDF values Ĝt(c) and Ĝt+1(c). The following propo-
sition establishes that the endpoint estimates are consistent and, therefore, we have
a consistent interval estimate for the population identified interval [HU(c)�HL(c)] �
H(c).

Proposition 5. Let σt ∈ Σ and c ∈ {ct�k}Kk=1 ∩{ct+1�k}Kk=1. IfNt → ∞ andNt+1 → ∞, then

ĤL
t+1(c)

p→ HL
t+1(c), Ĥ

U
t+1(c)

p→ HU
t+1(c) and, therefore, dH([ĤL

t+1(c)� Ĥ
U
t+1(c)]� [HL

t+1(c)�

HU
t+1(c)])

p→ 0 where dH(A�B) denotes the Hausdorff distance between setsA and B.

17Moraga-González, Sandor, and Wildenbeest (2017, Proposition 5) proved that in a symmetric equilib-
rium, the series of critical cutoff costs is the solution to a system of equations that, for a fixed vt , rt , and
Gt(c), are guaranteed to be numerically solvable.
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To allow for vertical differentiation as described in Section 2.4, we need to transform
prices into utilities before estimating the model. As noted by Wildenbeest (2011), con-
sumer valuations for each firm can be estimated via a fixed effects regression of prices on
firm dummies: pjt = α+δ1 +· · ·+δN +εjt . The intercept, α, is the common component
across stores and the fixed effects δj represent firm-specific services and in-store experi-
ences (qualities). Stated another way, we can simply demean the prices to obtain utility
values. Pooling prices by firm and noting that pjt = vj − ujt , we can estimate the firm-
specific quality vj using the mean price of firm j over time and the firm-time-specific
utility values ujt using the negative demeaned prices vj − pjt . Again, as in Wildenbeest
(2011), estimation of the period-specific search cost distributions proceeds using the
same likelihood function as above, but with the negative utility values used instead of
the observed prices.

Finally, if the population distribution is a member of a parametric family, H(·) =
H(·;θ), then one can use the nonparametric bounds to estimate the finite-dimensional
parameters of the distribution using nonlinear least squares (NLS). We can construct
an NLS criterion function based on squared directional violations of the nonparametric
bounds that arise for a given value of θ:

QT(θ)=
T−1∑
t=1

K∑
k=1

∣∣ĤL
t (ct�k)−H(ct�k;θ)

∣∣2
+ + ∣∣ĤU

t (ct�k)−H(ct�k;θ)
∣∣2
− (10)

In words, for a given value of c if H(c;θ) falls within the bounds, then the bounds are
satisfied and the contribution to the criterion function QT is zero. On the other hand,
for values of c for which H(c;θ) violates one or both of the bounds, then the squared of
the distances by which each bound is violated are added.

6. Application: Online market for econometrics textbooks

In this section, we apply our dynamic estimation procedure to data collected from the
online markets for two widely-used graduate econometrics textbooks.18 The online mar-
ket for textbooks is a mature and stable part of the overall publishing industry. A recent
study found that the book industry had the second highest penetration rate among do-
mestic internet users (De los Santos (2018)).19 Furthermore, the 2013 publishing indus-
try’s annual review found that 44% of American expenditures on books went to online
retailers (Bowker and Weekly (2013)). Many studies—Bailey (1998), for instance—find
that price dispersion is a persistent feature for this market. Scholten and Smith (2002)
and Pan, Ratchford, and Shankar (2003a,b) found that price dispersion is generally larger
for books sold online than in traditional brick and mortar stores.

Previous research on consumer search in both physical and electronic markets has
reached the consensus that price search is particularly limited. Typical results from the
preinternet literature find that as many as 40–60% of consumers visit only one firm prior
to purchasing.20 More recently, De los Santos (2018) used detailed individual level online

18The data and Matlab code used to produce the results reported in this section is available in the online
supplemental material (Blevins and Senney (2019)).

19Refer to Clay, Krishnan, and Wolff (2001) for a review of the online book industry.
20Refer to Newman (1977) for a extensive review of the literature for search in offline markets.
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browsing and purchasing behavior data and found that in a quarter of all transactions
the consumer only searches one firm, while the average consumer searches only 1�29
firms. Using similar data, Johnson, Moe, Fader, Bellman, and Lohse (2004) also found
that the average online book shopper only searched 1�2 firms before purchasing. Fur-
thermore, De los Santos, Hortaçsu, and Wildenbeest (2012) and Honka and Chintagunta
(2017) both found strong evidence that a simultaneous search strategy can explain ob-
served online search patterns better than sequential search.

6.1 Data

Our dataset contains daily price observations collected over 236 days from nine on-
line retail outlets21 from March to November 2006 for new hardcover editions of Ad-
vanced Econometrics by Amemiya (1985) and Microeconometrics by Cameron and
Trivedi (2005). We abstract away from differences between sites and the individual “mar-
ketplace” sellers present on some sites, although we do allow for observable seller het-
erogeneity by type as we describe below. By incorporating all posted prices on all sites,
the implicit assumption we make is that these prices are representative draws from the
overall distribution of prices among the relevant set of online retailers that consumers
search. An alternative would be to sequentially model the decisions of consumers first
among sites (e.g., Amazon vs. Barnes & Noble) and then among specific sellers on the
site (e.g., Amazon.com or an individual marketplace seller), but such a model is beyond
the scope of this paper.

For the purposes for this analysis, we classified sellers as “verified” retailers if we
could match the seller ID of the listing to either a physical or online firm. The first col-
umn of Table 1 contains overall summary statistics on prices across all periods for both
books. The remaining columns list the same statistics but by seller type—for nonveri-
fied, verified (but nonmajor), and major retailers. The Amemiya sample contains prices
for 79 unique sellers for a total of 11,475 observations. 74�9% of those listings are from
verified retailers and 9�3% are from major retailers.22 The Cameron and Trivedi sample
has 110 unique sellers and a total of 15,791 observations, with 62�8% of those listings be-
ing from verified retailers and 7�9% from major retailers. There is less variation in prices
offered by major retailers than those for the other sellers. Nonverified retailers generally
offer both the highest price and nearly the lowest price in every period. As a group, they
generate most of the observed price dispersion.

For both books, a sizable proportion of the listings are from what we refer to as “un-
verified” sellers. These are sellers that appear to be individual, noncommercial entities
who generally are simply selling a single book. These sellers may have little experience
in selling textbooks online. In this environment, we think that our model, in which firms
are myopic, is a reasonable modeling compromise.

21The online retailers are Abebooks, Alibris, Amazon, Barnes & Noble, Half.com, Overstock, Powell’s, Su-
per Book Deals, and Walmart.

22Powell’s, Super Book Deals, Walmart, Barnes & Noble, Amazon, and Overstock are considered major
retailers for this application.

http://Amazon.com
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Table 1. Price summary statistics.

All Retailers Nonverified Retailers Verified Retailers Major Retailers

Amemiya (1985)
Maximum 179�21 179�21 166�88 79�00
Mean 84�00 93�17 82�56 68�84
Median 83�50 84�62 83�98 71�23
Minimum 34�99 35�00 34�99 52�50
St. dev. 19�96 30�41 13�47 6�60
Observations 11,457 2874 7565 1018

Cameron and Trivedi (2005)
Maximum 193�15 193�15 160�26 82�25
Mean 86�26 91�65 84�71 70�17
Median 82�00 81�95 84�93 71�25
Minimum 53�01 53�00 56�25 56�25
St. dev. 22�72 30�91 15�00 4�46
Observations 15,791 5950 8678 1163

Quantiles and extrema of the daily price distributions for both books are plotted in
Figure 1. The markets for both books are characterized by persistent and significant
price dispersion, but also persistence in prices at the retailer level. For Amemiya, the
minimum price is offered by a verified retailer in 95% of periods but the maximum price
is posted by a verified retailer only once in the sample. For Cameron and Trivedi, the
minimum per-period price is offered by a verified retailer in 69% of periods but the max-
imum price is only offered by a verified retailer on 7% of the days in our sample.

Figure 1. The evolution of price distributions.
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As can be seen in Table 1, the different types of sellers offer rather different prices,
so the assumption of identical firms does not seem appropriate in this context. There-
fore, we use the aforementioned approach of Wildenbeest (2011) to account for vertical
differentiation among seller groups in this application. After transforming prices to ob-
tain type-specific qualities and utilities, we carry out Kolmogorov–Smirnov (K–S) tests
for distributional equality of the utility values in each of the 236 periods in our sample.
There are three seller types and, therefore, we carry out tests for all three pairwise com-
parisons for each period. To summarize the results, we report the fraction of periods
where we fail to reject the null hypothesis of distributional equality for all pairings. At
the 5% level, we fail to reject distributional equality in 84% of periods for Amemiya and
67% of periods for Cameron and Trivedi. At the 1% level, we fail to reject distributional
equality in all pairwise tests in 98% and 99% of periods, respectively.23

6.2 Results

The first stage of our procedure involves estimating the period search cost distributions
Gt for each period t at the search cost cutoffs {ct�k}Kk=1. We set the maximum number
of firms that a consumer can search at K = 15. To motivate this choice, we note that
over our sample the online marketplaces average around 12 listings per day. Becoming a
fully informed consumer withK = 15 (searching allK firms) then amounts to searching
a marketplace site plus most of the major retailers. This choice of K is also consistent
with Johnson et al. (2004) and De los Santos (2018), who find that the average online
book shopper only searches, respectively, 1�2 or 1�29 online retailers. Additionally, Hong
and Shum (2006) and Moraga-González and Wildenbeest (2008) both showed that to
consistently estimate the period search cost distributions requires at least as many mo-
ment conditions—generated by observed prices—as the number of firms consumers
can search. For some periods in the Amemiya sample, we only have 19 observations,
which restricts our choice to K ≤ 19. Furthermore, Moraga-González and Wildenbeest
(2008) performed simulations and found that misspecifying the number of firms in the
market by less than 20% only has minor effects and does not qualitatively affect the
shape of the search cost distribution. The estimation was also carried out using K = 10
and K = 19 and the results were qualitatively similar to the results presented here with
K = 15.

We allow marginal costs in the model to vary over time. Over all periods, the aver-
age estimated marginal cost for Amemiya was $36�67, or about 44% of the overall aver-
age purchase price. For Cameron and Trivedi, the average estimated marginal cost was
$53�16, or about 62% of the average price. These results are broadly in line with typi-
cal marginal costs for retail bookstores, which are around 40–50% of the purchase price
(Ashford (2009), National Association of College Stores (2009), Risk Management Asso-
ciation (2016)).

23Additionally, pairwise Mann–Whitney rank-sum tests lead us to a similar conclusion. At the 5% level,
we cannot reject the null hypothesis of distributional equality for 93% and 99% of periods for Amemiya and
Cameron and Trivedi, respectively.
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Traditionally, the theoretical literature on search distinguishes between two types
of consumers: fully informed and fully uninformed consumers (see, e.g., Widle and
Schwartz (1979), Varian (1980), Stahl (1989)). Empirically, Hong and Shum (2006) and
Moraga-González and Wildenbeest (2008) found that a sizable proportion of consumers
fall into the two polarized type of consumers. Additionally, Wildenbeest (2011) found
that basically no consumers are in the partially informed groups. In the notation above,
the proportion of uninformed consumers in period t is μt�1 and the proportion of fully
informed consumers is μt�15. Hence, the proportion of partially informed consumers is∑14
k=2μt�k.

Figure 2 shows the proportions of fully informed, partially informed, and fully un-
informed consumers for both books. For Amemiya, around one quarter of consumers
become fully informed in most periods. Similarly, in most periods the fraction of fully
uninformed consumers is around 25–30%. For Cameron and Trivedi, in most periods
about 15–20% of consumers are fully informed and 20% are fully uninformed. Periods
that are characterized by a lower degree of price dispersion lead to a higher fraction of
informed consumers. Still, the sizable fraction of uninformed consumers—those who
do not search—implies that we cannot identify the upper tail of the search cost distri-
bution. In other words, the estimated within-period search cost CDFs will not reach 1.

From the first stage, the full estimated per-period search cost distributions are also
of interest. Table 2 summarizes the estimated quantiles of these distributions over our
sample. For each of the 236 days, we estimate the within-period distribution of search
costs the 25th, 50th, and 75th percentiles of the distribution. We report the mean and
median values of each quantile across periods. For Amemiya, we see that the median

Figure 2. Proportions of fully informed, partially informed, and uninformed consumers.
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Table 2. Estimated search cost quantiles, static utility model.

Amemiya Cameron and Trivedi

Specification 0�25 0�50 0�75 0�25 0�50 0�75

Mean across periods 3�82 11�10 13�56 4�55 8�67 12�47
(0�23) (0�27) (0�48) (0�14) (0�13) (0�17)

Median across periods 0�48 10�99 14�44 5�43 8�58 12�11
(1�73) (0�19) (0�28) (0�11) (0�12) (0�15)

Note: Bootstrap standard errors based on 1000 replications are reported in parentheses.

search cost is about $10�99 on average. For Cameron and Trivedi, it is about $8�58 on av-
erage. However, these estimates do not account for entry and exit of consumers from the
population of consumers who are active in the market. The estimated bounds provide
evidence that these selection effects may cause the period distribution to systematically
shift away from the population distribution. This can also be seen in our simulation
study in Section 4.

The second stage of the estimation procedure uses the period search cost distribu-
tions to calculate the bounds on H at the estimated search cost cutoffs. Figure 3 shows
the estimated bounds on the population distribution for Amemiya (1985) and Cameron

Figure 3. Estimated bounds forH with 95% confidence bands.
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and Trivedi (2005), respectively, along with pointwise 95% confidence intervals for the
functional values. Displayed for each book are the estimated bounds ĤL and ĤU for the
case where σt is unrestricted and the case where it is assumed to be monotonic. The
figures graphically illustrate the uncertainty about the estimated bounds on the popu-
lation distribution at the higher quantiles. As discussed in Section 3, in the lower panels
we also plot and report the average bound Ĥ as a nonparametric “point” estimate of the
functionH, which minimizes the directional L2 loss function.

The nonparametric estimates ĤL, ĤU, and Ĥ can be used to directly compare
bounds on quantiles of the population distribution with quantiles estimated using a
static approach. For both books, the estimated medians of the per-period distributions
are in the $8�50–11�00 range. The first two rows of Table 3 contain estimates of three
quantiles, including the median, from the nonparametric upper and lower bounds for
each book. The third row corresponds to the average of the bounds. Based on these
bounds, the medians of the population distributions, using both the nonparametric av-
erage and the parametric approaching, are smaller than for the per-period distributions
for both books. In the lower panel of Table 3, we report estimates of ĤL, ĤU, and Ĥ
which exploit monotonicity of σt . After imposing monotonicity, the estimated popula-
tion CDFH places more weight on lower search cost values.

Table 3. Estimated search cost quantiles.

Amemiya Cameron and Trivedi

Specification 0�25 0�50 0�75 0�25 0�50 0�75

Unrestricted σ
NonparametricH, lower 0�23 5�62 11�36 0�07 2�16 10�01

(0�01) (0�02) (0�28) (0�03) (0�03) (1�83)
NonparametricH, upper 5�85 8�26 9�61 4�20 5�05 6�78

(0�55) (0�55) (0�93) (0�37) (0�49) (1�06)
NonparametricH, average 4�26 8�57 12�35 1�10 5�06 9�83

(0�02) (1�45) (0�88) (0�03) (1�19) (0�87)
ParametricH, exponential 1�84 4�44 8�87 1�81 4�37 8�75

(0�17) (0�40) (0�81) (0�11) (0�26) (0�52)
ParametricH, mixture 0�85 6�42 15�94 1�05 4�48 10�35

(0�08) (0�72) (1�17) (0�16) (0�29) (0�38)

Monotonic σ
NonparametricH, lower 0�12 0�23 11�29 0�07 1�34 9�92

(0�01) (0�02) (0�02) (0�03) (0�03) (1�83)
NonparametricH, upper 5�85 8�26 9�61 4�20 5�05 6�78

(0�55) (0�55) (0�93) (0�37) (0�49) (1�06)
NonparametricH, average 0�22 8�20 12�30 1�11 4�78 9�83

(0�02) (1�45) (0�88) (0�03) (1�19) (0�87)
ParametricH, exponential 0�70 1�68 3�36 0�75 1�80 3�61

(0�12) (0�29) (0�58) (0�08) (0�19) (0�39)
ParametricH, mixture 0�00 4�46 15�38 0�12 3�74 9�93

(0�04) (0�68) (1�03) (0�14) (0�27) (0�32)

Note: Bootstrap standard errors are reported in parentheses using 1000 replications.
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Table 4. Parametric estimates.

Amemiya Cameron and Trivedi

Specification Param. Estimate S.E. Estimate S.E.

Unrestricted σ
Exponential θ 6�402 (0�583) 6�309 (0�372)
Mixture θ1 0�010 (0�001) 0�001 (0�004)

θ2 13�721 (1�811) 8�460 (0�569)
α 0�202 (0�034) 0�151 (0�027)

Monotonic σ
Exponential θ 2�427 (0�417) 2�603 (0�279)
Mixture θ1 0�003 (0�001) 0�003 (0�004)

θ2 15�750 (1�648) 8�927 (0�502)
α 0�336 (0�032) 0�240 (0�026)

We also compare the quantiles obtained by estimating two parametric models of the
formH(·)=H(·;θ), where θ is estimated using the NLS approach outlined in Section 5.
We consider models where H is the CDF of the exponential distribution, mean θ and
variance θ2 and where H is the CDF of a two-exponential mixture with mean parame-
ters θ1 and θ2, respectively. The estimates are reported in Table 4 along with bootstrap
standard errors in parentheses, based on the same 1000 replication samples used before.

Figure 4 plots the estimated CDFs for both books and for both parametric models,
with and without imposing monotonicity. For the exponential model with σt being un-
restricted, we estimate the mean search cost for Amemiya to be $6�40 (0�58), with a me-
dian of $4�44 (0�40). For Cameron and Trivedi, we estimate that the mean search cost
is $6�31 (0�37) and median is $4�37 (0�26). When imposing monotonicity of σt , the esti-

Figure 4. Parametric estimates of population CDF (H).
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mated means are much lower, at $2�43 (0�42) and $2�60 (0�28), respectively. The same is
true for the medians, at $1�68 (0�29) and $1�80 (0�29).

Given the apparent bimodality observed in the nonparametric estimates, we also es-
timated a model based on a mixture of two exponential distributions. Let θ1 and θ2 de-
note the two mean parameters and let α and 1 − α be the relative mixing weights. With
a monotonic σt , we estimate the two means to be $0�003 (0�001) and $15�75 (1�65) for
Amemiya, with α̂ = 0�34(0�03). For Cameron and Trivedi, the means are $0�003 (0�004)
and $8�93 (0�50), with α̂ = 0�24(0�03). The results are qualitatively similar for the unre-
stricted σt case, as reported in the lower panel of Table 4.

As shown in the final rows of each panel in Table 3, these estimated parameters yield
median population search costs of between $4�44–$6�42 for Amemiya $1�80–$4�48 for
Cameron and Trivedi, depending on which specification and assumptions are consid-
ered. In both cases, these are significantly lower than the typical within-period median
search cost, which are $11�10 and $8�58 for the two books, respectively.

Both the nonparametric and parametric results suggest that in this market, it is im-
portant to account for dynamic selection effects. That is, we should distinguish between
the within-period distribution of search costs of the current consumers over time and
the population distribution of search costs. Otherwise, the magnitude of search costs
can be dramatically overstated. The distributions of search costs of consumers who are
active in the market do indeed appear to differ substantively from the population distri-
bution of search costs of newly entering consumers.

Based on our simulation results in Section 4, we can infer some of the character-
istics of the consumers’ purchase policy function, σt . The purchase probabilities are
likely not monotonically increasing in cost as this would cause the period medians to
be biased downwards (as opposed to the observed upward bias) relative to the popula-
tion median. It also does not appear that the purchase policy is constant (independent
of c), since in this case we would expect to see the period quantiles converging to the
quantiles of the population distribution. Hence, there is evidence that purchase proba-
bilities in these markets are larger for smaller search costs, which leads consumers with
high search costs to stay in the market relatively longer. This leads to dynamic selection
which in turn leads to the observed persistent upward bias in the within-period search
cost distributions relative to the population distribution. As a result, the monotonicity
restriction seems largely valid and the qualitative findings are similar to the unrestricted
results for both books.

7. Counterfactuals

This section reports the results of a series of counterfactual simulations. Using the re-
sults from our empirical application in Section 6 as a benchmark, we designed three
counterfactual scenarios to study different components of the market. We first examine
the influence of the search cost distributionGt on the price distribution Ft within a sin-
gle period. Next, we consider the interplay between market structure and the population
search cost distribution H. Finally, we look at the long-run effects of changing the pop-
ulation search cost distributionH on the sequence of within-period distributions Gt .
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Figure 5. Effects of within-period search costs on prices.

7.1 Within-period search costs (Gt ) and prices (Ft )

Firms optimize prices in each period in response to the within-period search cost distri-
bution,Gt , that they face in that particular period. Therefore, the current within-period
search cost distribution,Gt , will influence the within-period price distribution, Ft . To il-
lustrate the effect that changes inGt have on Ft , we designed a counterfactual where the
search cost distribution of a randomly selected period of our data (t = 36) is uniformly
increased and decreased. Specifically, we scale search costs up or down by 10%.

As shown by Moraga-González, Sandor, and Wildenbeest (2017), the price effects of
search cost changes are nonlinear and depend on the shape of the distribution. Figure 5
displays the observed price distribution (Benchmark) along with the resulting price dis-
tributions following an increase or decrease. When search costs decrease by 10%, they
become relatively more concentrated around lower values, meaning that consumers will
search more intensely and firms will lower prices. In this simulation, the price distri-
bution arising from reduced search costs is first-order stochastically dominated by the
benchmark distribution. The median and mean prices fall by $2�62 and $1�93, respec-
tively.

Interestingly, the price effects are asymmetric when search costs are increased by
10%. In this case, the search cost distribution becomes more dispersed as probability
mass moves out to the tail. This causes low prices to occur with higher probability, but
also leads to the average and median prices increasing by $1�11 and $2�74, respectively.

The observed nonlinearity arises because of an interplay between the Diamond
paradox and the Varian effect. As the heterogeneity of search costs in the right tail de-
creases, more consumers stay uninformed and, therefore, the average price increases,
as this leads firms to gather around the monopoly price (Diamond paradox). However,
as competition for fully informed consumers lessens, it becomes more likely that a low
priced firm will capture all the informed consumers (Varian effect). This incentive leads
to the increase in the probability of firms drawing a low price from the equilibrium price
distribution.

7.2 Market structure the population search cost distributionH

As demonstrated in the previous section, the within-period search cost distribution
determines how firms price each period; however, the within-period distributions are
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strongly influenced by the underlying population search cost distribution. Therefore, in
this counterfactual we investigate what the population distribution needs to be to be
able to support different the price distributions over time. To change the price distribu-
tion, we alter the composition of firms (major, verified, nonverified) in a systematic way,
and then rerun our procedure to estimate H. These changes will have nonlinear effects
and depend on the structure of search costs due to the tension between the Diamond
paradox effect and the Varian effect.

We consider six scenarios in which we exogenously introduce additional firms of a
certain type with a certain pricing rule. In each scenario, we add either major retail-
ers (high quality) or nonverified firms (low quality) who set prices similar to either the
highest (Max), average (Avg), or lowest (Min) price firms in their respective group.24 We
refer to these scenarios by their quality-pricing parameters, for example “High-Max” or
“Low-Avg.”

When adding a firm, it is important how the mean and variance of the price distri-
bution changes as a result, since different search cost structures are required to support
different price distributions. The six scenarios we consider cover all four combinations
of an increase/decrease in the mean price interacted with an increase/decrease in the
variance of prices. Table 5 displays the percentage change in the mean, median, and
variance of H relative to the distribution estimated in the application in Section 6, with
the exponential mixture specification.

By changing the composition of firms, the price dispersion and average price
change. When price dispersion decreases, we find that population search costs would
need to become more homogeneous to support that. Additionally, increases in average
price generally would require an increase in search cost dispersion. However, variance
seems to be the dominant force in determining the within-period price distribution.
This can be seen by examining the results for our six scenarios grouped by the implied
mean/variance changes, which are shown in columns three and four of Table 5.

The results are unambiguous when the average and variance of price move in the
same direction. When more high-price, low-quality firms are added to the market (Low-
Max), the mean price and variance both increase. To support this larger and more dis-
persed price distribution, the market needs to have not only more consumers with larger

Table 5. Percent change in the parameters of H.

Scenario Prices AmemiyaH Cameron and TrivediH

Type Price Mean Var Mean Median Var Mean Median Var

High Max – + 0�51 4�98 1�06 0�92 4�46 1�56
High Avg – – −3�97 −2�49 −7�76 −8�43 −0�89 −2�95
High Min – + 7�03 5�76 14�59 11�70 2�01 7�24
Low Max + + 20�86 17�76 46�10 24�14 16�07 4�92
Low Avg + – −3�93 −1�25 −7�70 −4�87 −0�45 −17�15
Low Min – – −40�87 −80�06 −66�28 −10�71 −56�47 −20�29

24The prices set by the new firms are equal to quality-specific moments of the original price distribution
in each period with the addition of a random U(−2�2) perturbation.
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search costs, but also must have more dispersion in search costs across consumers.
Therefore, the mean and variance ofH needs to be larger. However, when more average-
price, high-quality firms or low-price, low-quality firms enter the market (High-Avg or
Low-Min), the mean and variance of prices both decrease, since the price distribution
becomes more concentrated around lower prices. To support this smaller and more
compressed price distribution, the market needs less dispersion in search costs with
consumers concentrated around smaller search costs. Therefore, the mean and vari-
ance ofH need to be smaller. The addition of more low-price, low-quality firms causes a
larger decrease in the average and variance of within-period prices, so the reduction in
the distribution ofH for the scenario by necessity is larger.

On the other hand, when the mean and variance of prices move in opposite direc-
tions, the component effects of each factor can be examined. When more average-price,
low-quality firms enter the market (Low-Avg), the variance of the price distribution de-
creases while the mean increases. To support this, the market needs a large increase in
the number of consumers with both low and high search costs; however, the distribu-
tion will be positively skewed with more mass concentrated around smaller search costs
values. Conversely, when more high- or low-price, high-quality firms are added to the
marketplace, the variance of the price distribution increases while the mean decreases.
In other words, there will be more mass around lower prices, but the spread will in-
crease. In this case, the market needs more consumers with larger search costs because
of the increased price dispersion, but the difference in prices is smaller so the distribu-
tion needs less spread in the left tail to support the increased dispersion at low prices
relative to when the average price also increases.

7.3 The influence ofH on the evolution ofGt

Our model implies that the current, within-period search cost distribution is a weighted
mixture of last period’s distribution and the population distribution. Therefore, we can
measure how changes in the population distributionH influence the evolution of the se-
quence of period search cost distributions {Gt}. To investigate this, we consider a coun-
terfactual where we adjust the population distribution H and measure how the within
period distributions Gt change over time. We assume that H and Gt are exponential
distributions using the parameter values estimated in Section 6.25 Due to analytical and
computational considerations, the purchase policy function σt here is assumed to be
constant, σt = σ for all t, and have an exponential functional form. In this case, we can
easily determine the parameter of σ by solving our structural model using two adjacent,
randomly selected periods from our data.

To analyze the effect of changes in the population distributionH, we perturb the es-
timated parameter and simulate the model for T = 10,000 periods. The results are shown
in Table 6. The first column lists the perturbation amount δ, in dollars. Recall that the pa-
rameter θ is the mean of the distribution and θ2 is the variance. The remaining columns
show the percentage changes in the long-term period search cost distribution G under

25Gamma and Log Normal distributions were also tested and found to yield qualitatively similar results.



920 Blevins and Senney Quantitative Economics 10 (2019)

Table 6. Percentage change in long-termG relative toH.

θ+ δ θ− δ
δ Mean Median Mean Median

Amemiya
0.00 1�68 3�30 1�68 3�30
0.50 9�62 11�37 −6�26 −4�76
1.00 17�56 19�44 −14�20 −12�83
2.00 33�45 35�58 −30�08 −28�97
3.00 49�33 51�71 −45�97 −45�10

Cameron and Trivedi
0.00 1�81 3�43 1�81 3�43
0.50 10�89 11�84 −7�18 −7�47
1.00 17�06 20�31 −14�69 −15�34
2.00 34�65 33�40 −31�22 −31�30
3.00 50�28 51�23 −46�92 −44�78

the perturbed population distribution H (with parameter θ̂± δ), relative to H. The first
row gives the baseline case, with no perturbation (i.e., δ = 0). For example, the bench-
mark mean of the long run G distribution for Amemiya is 1�68% higher than the mean
of H. After decreasing θ by one dollar (a 15�2% decrease), the mean of G falls to 14�20%
below the mean of H. Given the results above regarding the effects of Gt on Ft , we can
infer that, decreasing population search costs will lead to lower prices, even after ac-
counting for the upward bias from dynamic selection effects.

8. Conclusion

Thus far, the previous literature on structural estimation of consumer search costs has
relied primarily on static models, particularly in models which are estimated using only
price data. However, when consumers shop for a durable good over multiple periods
and search is costly, selection effects may cause the distribution estimated using a static
model to be biased relative to the actual population search cost distribution. This paper
extends existing methods to estimate search cost distributions in a setting with forward-
looking consumers, taking dynamic selection effects into account. As our application to
online textbook markets and our simulation studies demonstrate, it is important to dis-
tinguish between the within-period and population distributions of search costs. Both
may be of interest, and the methods we describe yield estimates of both without the
need to fully specify the exact dynamic decision making process of consumers.

Appendix A: Simulation details and figures

The starting period distributions (G0) that were used in the simulation study were:
Gamma(25�0�2), Lognormal(1�5�1), U(0�25), and an Empirical CDF estimated from
last period of the Amemiya (1985) data. The entry distributions (H) used were
Exponential(4�12676), Gamma(25�0�2), and Lognormal(1�5�1).
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Initial Distribution (G0) Population Distribution (H) Purchase Prob. (σ)

Specification 1: Positive bias

Specification 2: Negative bias

Specification 3: Both positive and negative bias

Specification 4: No bias

Figure 6. Representative simulation specifications.

The purchase policy functions (σ) used were σ(c) ∈ {0�25�0�5�0�75}, the CDF of
U(0�25), one minus the CDF of U(0�25), the CDF of Lognormal(2�5�1), one minus the
CDF of Lognormal(2�5�1), the CDF of (10�0�5), one minus the CDF of (10�0�5), one
minus the absolute value of sin(c), one minus the absolute value of cos(c), an increas-
ing step function σ(c)= 0�0�5�1, respectively, when c ≤ 5, 5< c < 20, 20 ≤ c, a decreas-
ing step function σ(c) = 1�0�5�0 when c ≤ 5, 5 < c < 20, 20 ≤ c, one minus the PDF
of (20�0�25), one minus the triangular distribution, where σ(c) = 1 − c/β for c ≤ β
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Figure 7. Decile bias of period search cost distributions (Gt ).

and σ(c) = c/β− 1 for c > β, and one minus the double triangular distribution, where
σ(c)= c/β for c ≤ β and σ(c)= 2 − c/β for c > β, for each β ∈ {5�9�12�5}.

Additionally, we examined cases where the initial distribution is very similar to the
population distribution. For these simulations, the starting period distributions (G0)
were: Gamma(25�0�2), Lognormal(1�5�1), Exponential(4�1). The entry distributions (H)
used were Gamma(25�0�2), Gamma(23�0�1), Exponential(4�12676), Exponential(4�25),
Lognormal(1�5�1), and Lognormal(2�1). The same nonpurchase policy functions (σ)
from above were used to maintain internal comparability.

Appendix B: Proofs

Proof of Proposition 1. First, note that (5) is an integral equation of the form
Gt+1(c

′)= ∫ ∞
0 Lt(c�σt(c)�σ

′
t (c); c′)dc where

Lt
(
c�σt(c)�σ

′
t (c); c′

) = [(
1 − σt(c)

)
1
{
c ≤ c′} + σt(c)H

(
c′

)]
gt(c)�

We can apply techniques from the calculus of variations to find policy functions σt that
maximize and minimize Gt+1(c

′) at each c′. Let Lt�j(c�σt(c)�σ ′
t (c)) denote the partial

derivative of Lt with respect to the jth argument. Then the Euler–Lagrange equation is

Lt�2
(
c�σt(c)�σ

′
t (c); c′

) − d

dc
Lt�3

(
c�σt(c)�σ

′
t (c); c′

) = 0
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and in this case we have Lt�3(c�σt(c)�σ ′
t (c); c′)= 0 and

Lt�2
(
c�σt(c)�σ

′
t (c); c′

) =
{[
H

(
c′

) − 1
]
gt(c)� c ≤ c′�

H
(
c′

)
gt(c)� c > c′�

For all c′ > 0, we haveH(c′) > 0>H(c′)− 1 and so we can see immediately that of func-
tions in the set Σ, σU

t (c; c′)= 1{c > c′} will maximize Gt+1(c
′) while σL

t (c; c′)= 1{c ≤ c′}
will minimizeGt+1(c

′).
Given these bounding policy functions, we can simplify (5) and evaluate the implied

bounds on Gt+1(c
′) for each c′. For the lower bound, the first term in the integral van-

ishes since σL
t (c; c′) = 1 when c < c′. The second term becomes the integral of this pe-

riod’s search cost density up to c′ multiplied by the entry distribution evaluated at c′.
For the upper bound, the fact that σU

t (c; c′) = 0 when c > c′ effectively only limits the
domain of integration for the second term.

Proof of Proposition 2. To establish the first two parts of the proposition, we will say
that the bounds are informative when either HL

t+1(c) > 0 or HU
t+1(c) < 1 (or both). The

lower bound, [Gt+1(c) −Gt(c)]/[1 −Gt(c)], is informative when Gt(c) < Gt+1(c). The
upper bound,Gt+1(c)/Gt(c), is informative whenGt+1(c) <Gt(c). These conditions are
mutually exclusive, therefore, there will always be one informative bound forH(c).

To establish sharpness of the bounds for the value of H(·) evaluated a given search
cost c, we consider a parametric purchase policy σ(·; c�α) with α ∈ [0�1] and

σ(c̃; c�α)=
{

1 − α if c̃ ≤ c�
α if c̃ > c�

For a given value of α, and hence for a given policy rule σ(·; c�α), the implied value of
H(c) is defined by (5). Solving for the value of H(c), which we will denote h(c�α), we
find

h(c�α)= Gt+1(c)− αGt(c)
Gt(c)− 2αGt(c)+ α�

To restrict our consideration to proper probability values between 0 and 1, define
h(c�α)≡ min{max{h(c�α)�0}�1}. Note that for extreme values of α, the upper and lower
bounds onH(c), respectively, from Proposition 1 are achieved:

h(c�0)= min
{
Gt+1(c)

Gt(c)
�1

}
and h(c�1)= max

{
Gt+1(c)−Gt(c)

1 −Gt(c) �0
}
�

We now have that h(c� ·) is a continuous mapping from a connected interval [0�1] to a
connected interval [HL

t+1(c)�H
U
t+1(c)] and, therefore, the mapping is surjective. In other

words, for all possible valuesH(c) ∈ [HL
t+1(c)�H

U
t+1(c)] within the bounds, there is a pol-

icy rule σt(·; c�α), for some α ∈ [0�1], which rationalizes H(c). Since all values in the
interval are possible for some σt , the bounds are therefore sharp.
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Proof of Proposition 3. If a weakly decreasing policy function σt places nonzero
probability on values of c with c < c′, values for which Lt�2 is positive (where Lt�j is de-
fined in the proof of Proposition 1), then it necessarily places nonzero probability (at
least as large) on values of c with c ≤ c′. Since Lt�2 is negative for c ≤ c′, this strictly de-
creasesGt+1(c

′) relative to an increasing policy placing zero probability on values c ≤ c′.
Hence, requiring monotonicity introduces a trade-off across values of c.

For maximizing Gt+1(c
′), assigning nonzero probability on c > c′ (corresponding to

the positive part of the functional derivative) must counterbalance the negative effects
of necessarily assigning nonzero probability on c ≤ c′ (corresponding to the negative
part of the functional derivative). Otherwise, it would be optimal to choose σt = 0. It
is never optimal to increase the probability on the region c ≤ c′, so any maximizing
function must be constant on c ≤ c′ and equal to the value at c′. Let α ≥ 0 denote the
constant value on [0� c′]. Now, of policies that assign probability α≥ 0 at c′, those yield-
ing the highest values of Gt+1(c

′) are also constant and equal to α on (c′�∞). Hence,
the maximizing policy σt must be constant on [0�∞). Finally, the constant value of
the maximizing function α must be either 0 or 1 depending on whether the integral of
σt(c)Lt�2(c�σt(c)�σ

′
t (c)) is negative or positive, respectively. For σt = 0,Gt+1(c

′)=Gt(c′)
and for σt = 1, Gt+1(c

′)=H(c′). Hence, the maximizing weakly decreasing policy func-
tion is

σU
t

(
c; c′) =

{
0� Gt

(
c′

)
>H

(
c′

)
�

1� Gt
(
c′

) ≤H(
c′

)
�

This yields the following upper bound onGt+1(c
′):

Gt+1
(
c′

) ≤GU
t+1

(
c′

) ≡ max
{
Gt

(
c′

)
�H

(
c′

)}
�

In other words, if Gt(c′) ≤ H(c′) then Gt+1(c
′) ≤ H(c′), and if Gt(c′) ≥ H(c′) then

Gt+1(c) ≤Gt(c′). We can obtain a conditional lower bound on H(c) by taking the con-
trapositive of the second statement for c′ = c: ifGt(c) <Gt+1(c) thenGt(c) <H(c).

Proof of Proposition 4. Suppose to the contrary that there exists a policy σt such
that 1 −Rt(σt) > infc′

gt(c
′)

h(c′) for which there is no bias,Gt+1 =H. From (5), for all c′

H
(
c′

)∫ ∞

0

(
1 − σt(c)

)
gt(c)dc−

∫ c′

0

(
1 − σt(c)

)
gt(c)dc = 0�

Differentiating with respect to c′ and rearranging yields a contradiction:

1 −Rt(σt)= (
1 − σt

(
c′

))gt(c′)
h
(
c′

) ≤ gt
(
c′

)
h
(
c′

) � (11)

The second result follows by noting that ifGt =Gt+1 =H, then gt = gt+1 = h and by (11)
it must be the case that σt is constant.

Proof of Proposition 5. Let kt and kt+1 be the period-specific indices such that
ct�kt = ct�kt+1 = c. By Moraga-González and Wildenbeest (2008), the maximum likelihood
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estimates of the within-period search cost cutoffs and CDF values {(ĉt�k� Ĝt(ct�k)}Kk=1 are
consistent for both periods t and t + 1, provided thatNt andNt+1 both tend to infinity.

We consider the upper bound first:

ĤU
t+1(c)≡ min

{
Ĝt+1(c)

Ĝt(c)
�1

}
�

For the CDF values of interest, by consistency of the per-period estimates we have

Ĝt(ct�kt )
p→ Gt(c) and Ĝt+1(ct+1�kt+1)

p→ Gt+1(c). By Slutsky’s theorem, it follows that

Ĝt+1(ct+1�kt+1)/Ĝt(ct�kt )
p→Gt+1(c)/Gt(c). Then since min{x/y�1} is continuous in x and

y, the continuous mapping theorem yields consistency of the upper bound for H(c):

ĤU
t+1(c)

p→HU
t+1(c).

Consistency of the lower bound follows in a similar way, recalling that

ĤL
t+1(c)≡ max

{
Ĝt+1(c)− Ĝt(c)

1 − Ĝt(c)
�0

}
�

The numerator and denominator, respectively, converge in probability to Gt+1(c) −
Gt(c) and 1 −Gt(c). By continuity of max{·�0}, it follows that ĤL

t+1(c)
p→HL

t+1(c).
Finally, convergence of the Hausdorff distance follows from consistency of the

endpoints. In general, for two sets A and B, dH(A�B) = max{supθ′∈B infθ∈A d(θ�θ′)�
supθ′∈A infθ∈B d(θ′� θ)}.

dH
([
ĤL
t+1(c)� Ĥ

U
t+1(c)

]
�
[
HL
t+1(c)�H

U
t+1(c)

])
= max

{∣∣ĤL
t+1(c)−HL

t+1(c)
∣∣� ∣∣ĤU

t+1(c)−HU
t+1(c)

∣∣} p→ 0�
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