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Simple and honest confidence intervals in
nonparametric regression

Timothy B. Armstrong
Department of Economics, Yale University

Michal Kolesár
Department of Economics, Princeton University

We consider the problem of constructing honest confidence intervals (CIs) for a
scalar parameter of interest, such as the regression discontinuity parameter, in
nonparametric regression based on kernel or local polynomial estimators. To en-
sure that our CIs are honest, we use critical values that take into account the pos-
sible bias of the estimator upon which the CIs are based. We show that this ap-
proach leads to CIs that are more efficient than conventional CIs that achieve cov-
erage by undersmoothing or subtracting an estimate of the bias. We give sharp
efficiency bounds of using different kernels, and derive the optimal bandwidth
for constructing honest CIs. We show that using the bandwidth that minimizes
the maximum mean-squared error results in CIs that are nearly efficient and that
in this case, the critical value depends only on the rate of convergence. For the
common case in which the rate of convergence is n−2/5, the appropriate critical
value for 95% CIs is 2�18, rather than the usual 1�96 critical value. We illustrate our
results in a Monte Carlo analysis and an empirical application.

Keywords. Confidence intervals, regression discontinuity, nonparametric regres-
sion.

JEL classification. C14, C21.

1. Introduction

This paper considers the problem of constructing confidence intervals (CIs) for a scalar
parameter T(f ) of a function f , which can be a conditional mean or a density. The scalar
parameter may correspond, for example, to a conditional mean, or its derivatives at a
point, the regression discontinuity or the regression kink parameter, or the value of a
density or its derivatives at a point. A popular approach to estimation of T(f ) is to use
kernel or local polynomial estimators. These estimators are both simple to implement,
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and highly efficient in terms of their mean squared error (MSE) properties (Fan (1993),
Cheng, Fan, and Marron (1997)). CIs are typically formed by undersmoothing (choos-
ing the bandwidth to shrink more quickly than the MSE optimal bandwidth) or bias-
correction (subtracting an estimate of the estimator’s bias).

In this paper, we propose a simple alternative approach to forming CIs based on
these estimators that is more efficient than both undersmoothing and bias-correction
in the sense that it leads to shorter CIs while maintaining coverage over the same pa-
rameter space F for f (which typically places bounds on derivatives of f ). In particular,
one simply adds and subtracts the estimator’s standard error times a critical value that
is larger than the usual normal quantile z1−α/2, and takes into account the possible bias
of the estimator.1 Asymptotically, these CIs correspond to fixed-length CIs as defined in
Donoho (1994), and so we refer to them as fixed-length CIs. We show that the critical
value depends only on (1) the order of the derivative that one bounds to define the pa-
rameter space F ; and (2) the criterion used to choose the bandwidth. In particular, if the
MSE optimal bandwidth is used with a local linear estimator, computing our CI at the
95% coverage level amounts to replacing the usual critical value z0�975 = 1�96 with 2�18.

When the criterion for bandwidth choice is the length of the resulting CI, we show
that the resulting bandwidth is in fact larger than the MSE optimal bandwidth. This con-
trasts with the work of Hall (1992) and Calonico, Cattaneo, and Farrell (2018) on optimal-
ity of undersmoothing. Importantly, these papers restrict attention to CIs that use the
usual critical value z1−α/2. It then becomes necessary to choose a small enough band-
width so that the bias is asymptotically negligible relative to the standard error, since this
is the only way to achieve correct coverage. Our results imply that rather than choosing
a smaller bandwidth, it is better to use a larger critical value that takes into account the
potential bias; this also ensures correct coverage regardless of the bandwidth sequence.
While the fixed-length CIs shrink at the optimal rate, undersmoothed CIs shrink more
slowly. We also show that under smoothness assumptions needed to implement bias-
correction, our CIs shrink at a faster rate than bias-corrected CIs, once the standard error
is adjusted to take into account the variability of the bias estimate (Calonico, Cattaneo,
and Titiunik (2014) show that doing so is important for maintaining coverage). The over-
smoothing relative to the MSE optimal bandwidth is relatively modest: under a range of
conditions most commonly used in practice, a fixed-length CI centered at the MSE opti-
mal bandwidth is 99% efficient relative to using the CI optimal bandwidth. Therefore, a
practically attractive implementation of our CIs is to simply center them around an esti-
mator with MSE optimal bandwidth, rather than reoptimizing the bandwidth for length
and coverage of the CI.

A key requirement that underlies our results is the notion of honesty: as in Li (1989),
we require that the CIs cover the true parameter asymptotically at the nominal level uni-
formly over the parameter space F . Furthermore, we allow this parameter space to grow
with the sample size. The notion of honesty is closely related to the use of the minimax

1An R package implementing our CIs in regression discontinuity designs is available at https://github.
com/kolesarm/RDHonest.

https://github.com/kolesarm/RDHonest
https://github.com/kolesarm/RDHonest
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criterion used to derive the MSE efficiency results: in both cases, one requires good per-
formance uniformly over the parameter space F . The requirement that the CIs be hon-
est is necessary for good finite-sample performance. In contrast, approaches to infer-
ence based on pointwise-in-f asymptotics, such as using bandwidths that optimize the
pointwise-in-f asymptotic MSE can lead to arbitrarily poor finite-sample behavior, as
we discuss further in Section 4.1. To illustrate the practical importance of this point, we
conduct a Monte Carlo study in which we show that commonly used CIs based on plug-
in bandwidths that attempt to estimate this pointwise-in-f optimal bandwidth exhibit
severe undercoverage, even when combined with undersmoothing or bias-correction.

When the parameter space places a bound M on a derivative of f , our CIs require
this bound to be specified explicitly. While this may appear to be a disadvantage of our
particular approach, due to impossibility results of Low (1997), Cai and Low (2004), and
Armstrong and Kolesár (2018a), this cannot be avoided, regardless of how one forms
the CI, without making further restrictions on the function f . In particular, these papers
show that, without additional assumptions on the parameter space, one cannot use a
data-driven method to estimate M and maintain coverage over the whole parameter
space—any other method that appears to avoid making this choice must do so implic-
itly. For example, an apparent advantage of undersmoothing is that it leads to correct
coverage for any fixed smoothness constant M . However, as we discuss in detail in Sec-
tion 4.2, a more accurate description of undersmoothing is that for each sample size
n, it implicitly chooses a constant Mn under which coverage is controlled. Given a se-
quence of undersmoothed bandwidths, we show how Mn can be calculated explicitly.
One can then obtain a shorter CI with the same coverage properties by computing a
fixed-length CI for the corresponding Mn. Regardless of how one chooses M , the fixed-
length CIs we propose are more efficient than undersmoothed or bias-corrected CIs that
use the same (implicit or explicit) choice of M . In fact, it follows from the calculations in
Donoho (1994) and Armstrong and Kolesár (2018a) that our CIs, when constructed us-
ing a length-optimal or MSE-optimal bandwidth, are highly efficient among all honest
CIs: no other approach to inference can substantively improve on their length, while still
maintaining coverage.

As an alternative to choosing M a priori, one can place additional conditions on the
function f that allow for an upper bound on M to be estimated. To maintain efficiency
of the resulting CI, however, care must be taken in doing so: if M is a bound on the pth
derivative, and one imposes a bound M̃ on the (p+ 1)th derivative in order to estimate
M , then the optimal CI will be based on a different estimator and will depend on the new
bound M̃ . To avoid such issues, we propose a regularity class that relates a global poly-
nomial approximation to smoothness of the function f near the point of interest, and
we show formally that, for this class, one can obtain a valid and highly efficient CI using
a global polynomial rule of thumb suggested by Fan and Gijbels (1996). However, given
the additional assumptions required by this (or any) data driven choice of M , we recom-
mend that this approach be used as a starting point for sensitivity analysis allowing for
other choices of M .

Another approach to data-driven choices of M is to use “self-similarity” conditions,
as suggested by Giné and Nickl (2010), which relate the maximum and minimum bias
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at different bandwidths. Bull (2012) and Chernozhukov, Chetverikov, and Kato (2014)
have obtained rate optimal confidence bands under such conditions, which, like the CIs
considered here, use a critical value based on an upper bound on the bias. While these
results for confidence bands could be extended to cover the problem of constructing
CIs for a scalar parameter, obtaining sharp critical values appears to be very difficult.
Indeed, the results of Armstrong (2019) show that the sharp form of such CIs must de-
pend to first order on auxiliary constants used to define self-similarity. Nonetheless, our
approach of bounding local smoothness using a global polynomial approximation is in-
spired by the self-similarity approach taken by this literature, and we see it as being in
the same spirit. Schennach (2015) also used an upper bound on the bias based on an
estimated smoothness constant. While the coverage of the resulting CIs is pointwise-in-
f , it is plausible that the CIs are honest under additional auxiliary conditions, similar in
spirit to self-similarity.

In addition to calculating the relative efficiency of CIs constructed using different
bandwidths, our results allow us to calculate the relative efficiency of CIs constructed
using different kernels. In particular, we show that the relative efficiency of kernels for
the CIs we propose is the same as the relative efficiency of the estimates in terms of MSE.
Thus, relative efficiency calculations for MSE, such as the ones in Fan (1993), Cheng, Fan,
and Marron (1997), and Fan, Gasser, Gijbels, Brockmann, and Engel (1997) for estima-
tion of a nonparametric mean at a point (estimation of f (x0) for some x0) that motivate
much of empirical practice in the applied regression discontinuity literature, translate
directly to CI construction. Despite their importance in motivating empirical practice,
however, such results are subject to a technical critique about how the parameter space
is specified: rather than placing a bound on a derivative of f (a Hölder condition), cur-
rently available relative efficiency results place assumptions directly on the error of a
Taylor approximation at a particular point, so that some “nonsmooth” functions are in
fact not ruled out.2 To address this, we derive the minimax performance of local poly-
nomial estimators under Hölder restrictions on f . These results confirm that the local
polynomial estimators used in empirical practice are also highly efficient under Hölder
restrictions on f . Furthermore, while we focus on asymptotic CIs and relative efficiency,
these results include a derivation of the finite-sample worst-case bias of local polyno-
mial estimators under Hölder restrictions, which was used by Kolesár and Rothe (2018)
to form finite-sample valid CIs in a fixed-design regression setting. These findings may
be of independent interest.

The requirement of honesty is also important to ensure that our concept of optimal-
ity is well-defined and consistent. As discussed above, it allows us to consider bandwidth
or kernel efficiency for constructing CIs. In addition, it also allows us to formally show
that using local polynomial regression of an order that is too high given the amount
of smoothness imposed is suboptimal. In contrast, under pointwise-in-f asymptotics,
high-order local polynomial estimates are superefficient at every point in the parameter
space (see Chapter 1.2.4 in Tsybakov (2009), and Brown, Low, and Zhao (1997)).

2See Imbens and Wager (2019), as well as our discussion in Section 3.2.1 for an elaboration of this cri-
tique.
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To illustrate the implementation of the honest CIs, we reanalyze the data from Lud-
wig and Miller (2007), who, using a regression discontinuity design, find a large and sig-
nificant effect of receiving technical assistance to apply for Head Start funding on child
mortality at a county level. However, this result is based on CIs that ignore the possible
bias of the local linear estimator around which they are built, and an ad hoc bandwidth
choice. We find that, if one bounds the second derivative globally by a constant M using
a Hölder class, the uncertainty associated with the effect size is much larger than origi-
nally reported, unless one is very optimistic about the constant M , allowing f to only be
linear or nearly-linear.

Our results build on the literature on estimation of linear functionals in normal
models with convex parameter spaces, as developed by Donoho (1994), Ibragimov and
Khas’minskii (1985) and many others. As with the results in that literature, our setup
gives asymptotic results for problems that are asymptotically equivalent to the Gaus-
sian white noise model, including nonparametric regression (Brown and Low (1996))
and density estimation (Nussbaum (1996)). Our main results build on the “renormaliza-
tion heuristics” of Donoho and Low (1992), who show that many nonparametric estima-
tion problems have renormalization properties that allow easy computation of minimax
MSE optimal kernels and rates of convergence. Our results hold under essentially the
same conditions, which apply in many classical nonparametric settings.

The CIs we consider in this paper are applications of the fixed-length CIs proposed
in the context of inference on linear functionals T(f ) in Gaussian nonparametric regres-
sion by Donoho (1994), which have also been studied recently in Armstrong and Kolesár
(2018a), and in contemporaneous and subsequent work by Kolesár and Rothe (2018)
and Imbens and Wager (2019). In contrast to the finite-sample approach taken in these
papers, we focus on asymptotic results, and we also allow T(f ) to be nonlinear. Instead
of imposing the nonparametric regression model, we require a renormalization condi-
tion (see equation (4) below) that allows us to apply the “renormalization heuristics” of
Donoho and Low (1992); we are thus able to cover settings such as density estimation
or estimation of a bidder valuation in first-price auctions (see Appendix C in the Online
Supplemental Material). Our asymptotic approach allows for simplifications that deliver
our main relative efficiency results. These efficiency results are different from and com-
plementary to the asymptotic form of the efficiency bounds given in Donoho (1994) and
Armstrong and Kolesár (2018a): whereas we consider relative efficiency of estimators
and fixed-length CIs based on different kernels and bandwidths, Donoho (1994) and
Armstrong and Kolesár (2018a) bound the scope for efficiency gains from CIs that do
not fall into this class. Donoho (1994) and Armstrong and Kolesár (2018a) found that
the scope for further improvement is small, which motivates our focus on this class of
estimators and CIs. See Remark 2.3 for further discussion.

The rest of this paper is organized as follows. Section 2 gives the main results. Sec-
tion 3 applies our results to inference at a point, sharp and fuzzy RD, and it discusses
practical implementation issues, including a rule of thumb for choosing M . Section 4
gives a theoretical comparison of our fixed-length CIs to other approaches, and Sec-
tion 5 compares them in a Monte Carlo study. Finally, Section 6 presents an empirical
application based on Ludwig and Miller (2007). Appendix A gives proofs of the results in
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Section 2. Additional results are collected in the Appendices in the Online Supplemental
Material (Armstrong and Kolesár (2020)).

2. General results

We are interested in a scalar parameter T(f ) of a function f , which is typically a condi-
tional mean or a density. The function f is assumed to lie in a function class F = F(M),
which places “smoothness” conditions on f , where M indexes the level of smoothness.
We focus on classical nonparametric function classes, in which M corresponds to a
bound on a derivative of f of a given order. We allow M = Mn to grow with the sample
size n.

We have available a class of estimators T̂ (h;k), indexed by a bandwidth h = hn > 0
and a kernel k. Let ŝe(h;k) denote the standard error of T̂ (h;k), an estimate of its stan-
dard deviation sdf (T̂ (h;k)). We assume that a central limit theorem applies to T̂ (h;k),

so that in large samples, the t-statistic [T̂ (h;k) − T(f )]/ŝe(h;k) will be approximately
normal with variance 1 and mean given by the ratio of bias to standard deviation,
tf = (Ef [T̂ (h;k) − T(f )])/ sdf (T̂ (h;k)). Since tf depends on the unknown function f ,
this ratio is unknown. Note, however, that we can bound |tf | by the worst-case ratio of

bias to standard deviation (bias-sd ratio), tF = supf∈F |Ef [T̂ (h;k)−T(f )]|/ sdf (T̂ (h;k)).
Therefore, if this bias-sd ratio can be computed up to asymptotically negligible terms,
we can construct an honest CI as

T̂ (h;k)± cv1−α(t) · ŝe(h;k)� (1)

where the approximate bias-sd ratio t satisfies t = tF (1 + o(1)), and cv1−α(t) is the 1 − α

quantile of the folded normal distribution |N(t�1)|, or, equivalently, the square root of
the 1 − α quantile of a χ2 distribution with 1 degree of freedom, and noncentrality pa-
rameter t2, which is readily available in statistical software. For easy reference, we list
these critical values in Table 1 for selected values of t. Because the quantiles of a χ2 dis-
tribution are increasing in its noncentrality parameter, replacing tf with an upper bound

Table 1. Critical values cv1−α(·).

α

r t 0�01 0�05 0�1

0�0 2�576 1�960 1�645
6/7 0�408 2�764 2�113 1�777
4/5 0�5 2�842 2�181 1�839
2/3 0�707 3�037 2�362 2�008
1/2 1�0 3�327 2�646 2�284

1�5 3�826 3�145 2�782
2�0 4�326 3�645 3�282

Note: Critical values cv1−α(t) and cv1−α(
√

1/r − 1), for the FLCIs in (1) and (8),
corresponding to the 1 − α quantiles of the |N(t�1)| and |N(

√
1/r − 1�1)| distribu-

tions, where t is the bias-sd ratio, and r is the rate exponent. For t ≥ 2, cv1−α(t) ≈
t + z1−α/2 up to 3 decimal places for these values of α.
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that is valid for all f ∈ F yields a CI that is honest over F . The CI in (1) is an approximate
version of a fixed-length confidence interval (FLCI) studied in Donoho (1994), who re-
places ŝe(h;k) with sdf (T̂ (h;k)) in the definition of this CI, and assumes sdf (T̂ (h;k)) is
constant over f , in which case its length will be fixed. We thus refer to CIs of this form as
“fixed-length,” even though ŝe(h;k) is random.

To motivate our main regularity condition (4) below that will facilitate studying the
performance of these FLCIs and allow for an easy computation of the bias-sd ratio t,
suppose that the standard deviation and the worst-case bias of the estimator T̂ (h;k),

bias
(
T̂ (h;k)) = sup

f∈F

∣∣Ef T̂ (h;k)− T(f )
∣∣�

scale as powers of h. In particular, suppose that, for some γb > 0, γs < 0, B(k) > 0 and
S(k) > 0,

bias
(
T̂ (h;k)) = hγbMB(k)

(
1 + o(1)

)
� sdf

(
T̂ (h;k)) = hγsn−1/2S(k)

(
1 + o(1)

)
� (2)

where the o(1) term in the second equality is uniform over f ∈ F . We show in Ap-
pendix B in the Online Supplemental Material that this condition will hold whenever
the renormalization heuristics of Donoho and Low (1992) can be formalized. This in-
cludes most classical nonparametric problems, such as estimation of a density or a con-
ditional mean, or its derivative, evaluated at a point (which may be a boundary point).
In Section 3.2.1, we show that (2) holds with γb = p, and γs = −1/2 under mild regular-
ity conditions when T̂ (h;k) is a local polynomial estimator of a conditional mean at a
point, and F(M) consists of functions with pth derivative bounded by M .

Remark 2.1. The second condition in (2) implies that the standard deviation does not
depend on the underlying function f asymptotically. In certain settings, such as density
estimation (see Appendix C.1 in the Online Supplemental Material), this may require
choosing a localized sequence of parameter spaces Fn, similar to local asymptotic min-
imax results in parametric settings (e.g., Section 8.7 in van der Vaart (1998)). While we
allow for such dependence, we keep any dependence of F on n implicit in our notation
in the main text. Similarly, the quantities B(k) and S(k) generally depend on F (which if
the parameter space is localized includes the localization point), as well as on other nui-
sance parameters, such as the variance of the regression errors. To prevent notational
clutter, we keep this dependence implicit.

Under (2), we can use the ratio t = hγb−γsMB(k)/(n−1/2S(k)) of the leading worst-
case bias and standard deviation terms to compute the critical value cv1−α(t) in (1).
Analogously to the two-sided case, honest one-sided 1 − α CIs based on T̂ (h;k) can be
constructed by subtracting the standard error times a 1 − α quantile of the distribution
N (t�1). This is asymptotically equivalent to the CI[

T̂ (h;k)− hγbMB(k)− z1−αh
γsn−1/2S(k)�∞)

� (3)

which subtracts the maximum bias, in addition to subtracting z1−α times the standard
deviation, from T̂ (h;k).
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Remark 2.2. One could also form honest two-sided CIs by simply adding and subtract-
ing the worst case bias, in addition to adding and subtracting the standard error times
z1−α/2 = cv1−α(0), the 1 −α/2 quantile of a standard normal distribution, forming the CI
as T̂ (h;k)± (hγbMB(k)+ z1−α/2 · ŝe(h;k)). However, since the estimator T̂ (h;k) cannot
simultaneously have a large positive and a large negative bias, such CI will be conserva-
tive, and longer than the CI given in equation (1).

To discuss the optimal choice of bandwidth h and compare efficiency of different
kernels k in forming one- and two-sided CIs, and compare the results to the bandwidth
and kernel efficiency results for estimation, it will be useful to introduce notation for a
generic performance criterion. Let R(T̂ ) denote the worst-case (over F ) performance of
T̂ according to a given criterion, and let R̃(b� s) denote the value of this criterion when
T̂ −T(f ) ∼ N(b� s2). For FLCIs, we can take their half-length as the criterion, which leads
to

RFLCI�α
(
T̂ (h;k)) = inf

{
χ : Pf

(∣∣T̂ (h;k)− T(f )
∣∣ ≤ χ

) ≥ 1 − α for all f ∈ F
}
�

R̃FLCI�α(b� s)= inf
{
χ : PZ∼N(0�1)

(|sZ + b| ≤ χ
) ≥ 1 − α

} = s · cv1−α(b/s)�

To evaluate one-sided CIs, one needs a criterion other than length, which is infinite.
A natural criterion is expected excess length, or quantiles of excess length. We focus
here on the quantiles of excess length. For CI of the form (3), its worst-case β quantile of
excess length is given by ROCI�α�β(T̂ (h;k)) = supf∈F qf�β(T(f ) − T̂ (h;k) + hγbMB(k) +
z1−αh

γsn−1/2S(k)), where qf�β(Z) is the β quantile of a random variable Z. The worst-

case β quantile of excess length based on an estimator T̂ when T̂ − T(f ) is normal with
variance s2 and bias ranging between −b and b is R̃OCI�α�β(b� s) = 2b + (z1−α + zβ)s. Fi-
nally, to evaluate T̂ (h;k) as an estimator we use the maximum root mean squared error
(RMSE) under F as the performance criterion:

RRMSE(T̂ )= sup
f∈F

√
Ef

[
T̂ − T(f )

]2
� R̃RMSE(b� s)=

√
b2 + s2�

The key regularity condition that we impose on the class of estimators T̂ (h;k) is
that their performance can be approximated in large samples by the performance of a
normally distributed estimator with bias and standard deviation that scale as powers
of h,

R
(
T̂ (h;k)) = R̃

(
hγbMB(k)�hγsn−1/2S(k)

)(
1 + o(1)

)
� (4)

For the performance criteria above, if the estimator T̂ (h;k) satisfies an appropriate cen-
tral limit theorem, and equation (2) holds, condition (4) will hold so long as the es-
timator is centered, so that, up to asymptotically negligible terms, its maximum and
minimum bias over F sum to zero, supf∈F Ef (T̂ (h;k) − T(f )) = − inff∈F Ef (T̂ (h;k) −
T(f ))(1 + o(1)).3 Heuristically, this follows because if (T̂ (h;k) − Ef T̂ (h;k))/ sdf (T̂ ) is

3This centering condition holds automatically by a symmetry argument for kernel or local polynomial
estimators if f is a conditional mean or a density, T(f ) is its value or its derivative at a point, or a regres-
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asymptotically N(0�1), then under (2), T̂ (h;k) − T(f ) will be in large samples approx-
imately normal, with standard deviation hγsn−1/2S(k), and mean bounded above and
below by hγbMB(k). In Section 3.2.1, we verify (4) for the problem of estimation of a
conditional mean at a point. For estimation of certain smooth nonlinear functionals of
the regression function or nonparametric density, including fuzzy regression disconti-
nuity discussed in Section 3, and estimating a bidder valuation in first price auctions
discussed in Appendix C.2 of the Online Supplemental Material, moments of the esti-
mator may not exist. In these cases, one can use Theorems B.1 and B.2 in Appendix B in
the Online Supplemental Material to verify (4), which only require a weaker version of
(2) stated in terms of convergence in distribution rather than moments, so long as one
truncates unbounded loss functions.4

We also assume that R̃ is homogeneous of degree one,

R̃(tb� ts) = tR̃(b� s) for all t > 0. (5)

This condition holds for all three criteria considered above. This allows us to simplify the
right-hand side of (4). In particular, using the bias-sd ratio t = hγb−γsMB(k)/(n−1/2S(k)),
write the bandwidth as h = (tn−1/2S(k)/(MB(k)))1/(γb−γs). Substituting this expression
in (4) and using (5) gives

R
(
T̂ (h;k)) = R̃

(
trn−r/2M1−rS(k)rB(k)1−r � tr−1n−r/2M1−rS(k)rB(k)1−r

)(
1 + o(1)

)
= n−r/2M1−rS(k)rB(k)1−r tr−1R̃(t�1)

(
1 + o(1)

)
� (6)

where r = γb/(γb − γs). Since the performance criterion converges at the rate nr/2 when
M is fixed, we refer to r as the rate exponent (this matches the definition in, e.g., Donoho
and Low (1992)). We denote the bandwidth choice that minimizes the right-hand side
of (6) for a given performance criterion R by h∗

R = (n−1/2S(k)t∗R/(MB(k)))1/(γb−γs), with
t∗R = argmint t

r−1R̃(t�1), and assume that t∗R is finite and strictly greater than zero, which
is the case for the performance criteria we consider.

The bandwidth choice h∗
R will be asymptotically optimal so long as it is suboptimal

to choose a bandwidth sequence hn such that such that the bias or the variance dom-
inates asymptotically, which is the case in the settings considered here. For our main
results, we assume this directly by assuming that

Mr−1n
r
2 R

(
T̂ (hn;k)

) → ∞

for any hn with hn
(
nM2) 1

2(γb−γs) → ∞ or hn
(
nM2) 1

2(γb−γs) → 0� (7)

sion discontinuity parameter, and F bounds its derivatives. In other cases, equation (4) will hold when the
estimator is recentered by subtracting B = (supf∈F Ef (T̂ (h;k) − T(f )) + inff∈F Ef (T̂ (h;k) − T(f )))/2, or

an estimate B̂ of B that is consistent in the sense that (B̂ − B)/ŝe(h;k) converges in probability to zero,
uniformly over F . Recentering the estimator in this way improves the estimator’s performance under the
criteria that we consider.

4For evaluating estimators in these cases, we focus on minimizing the limit of the scaled truncated RMSE

limc→∞ limn→∞ nr/2Mr−1R�c (T̂ (h;k)), where R�c denotes the worst-case risk under a version of the RMSE
that truncates the squared error loss at c2. This is equivalent to minimizing the (untruncated) asymptotic
RMSE (see Appendix B.1 in the Online Supplemental Material for details). Under this criterion, the RMSE
optimal bandwidth defined below and Theorem 2.2 below are not affected by the truncation.
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Under this condition, we only need (4) to hold for bandwidth sequences that are of the
same order (nM2)−1/[2(γb−γs)] as the optimal bandwidth h∗

R.5 Note that optimal band-
width is of the same order regardless of the performance criterion—the performance
criterion only determines the optimal bandwidth constant through t∗R.

The next theorem collects implications of these derivations for the performance of
different kernels. In particular, we consider minimax performance over bandwidth se-
quences, that is, bandwidth sequences hn that achieve the asymptotically best possi-
ble worst-case performance in large samples in the sense that Mr−1nr/2(R(T̂ (hn;k)) −
infh>0 R(T̂ (h;k))) = o(1).

Theorem 2.1. Let R be a performance criterion with R̃(b� s) > 0 for all (b� s) 
= 0. Suppose
that equation (4) holds for any bandwidth sequence hn with

lim inf
n→∞ hn

(
nM2)1/[2(γb−γs)] > 0

and

lim sup
n→∞

hn
(
nM2)1/[2(γb−γs)] < ∞�

and suppose that equations (5) and (7) hold. Define h∗
R and t∗R as above, and assume that

t∗R > 0 is unique and well-defined. Then:

(i) The asymptotic minimax performance under the kernel k is given by

Mr−1nr/2 inf
h>0

R
(
T̂ (h;k)) =Mr−1nr/2R

(
T̂

(
h∗
R;k)) + o(1)

= S(k)rB(k)1−r
(
t∗R

)r−1
R̃

(
t∗R�1

) + o(1)�

(ii) The asymptotic relative efficiency of two kernels k1 and k2 is given by

lim
n→∞

inf
h>0

R
(
T̂ (h;k1)

)
inf
h>0

R
(
T̂ (h;k2)

) = S(k1)
rB(k1)

1−r

S(k2)
rB(k2)

1−r
�

It depends on the rate r but not on the performance criterion R.

(iii) If we consider two performance criteria R1 and R2 satisfying the conditions above,
then the limit of the ratio of optimal bandwidths for these criteria is

lim
n→∞

h∗
R1

h∗
R2

=
(
t∗R1

t∗R2

)1/(γb−γs)

�

5In typical settings, a necessary condition for equation (4) to hold is that the optimal bandwidth h∗
R

shrinks at a rate such that (h∗
R)

−2γs n → ∞ and h∗
R → 0. If M is fixed, this simply requires that γb − γs > 1/2,

which basically amounts to a requirement that F(M) imposes enough smoothness so that the problem is
not degenerate in large samples. If M = Mn → ∞, then the condition also requires nr/2Mr−1 → ∞, so that
M does not increase too quickly.
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It depends only on γb and γs and the performance criteria. If (2) holds, the asymptotically
optimal bias-sd ratio is given by

lim
n→∞

bias
(
T̂

(
h∗
R;k))

sdf

(
T̂

(
h∗
R;k)) = argmin

t
tr−1R̃(t�1) = t∗R�

It depends only on the performance criterion R and rate exponent r.

Part (i) gives the optimal bandwidth formula for a given performance criterion. The
performance criterion only determines the optimal bandwidth constant (the optimal
bias-sd ratio) t∗R.

Part (ii) shows that relative kernel efficiency results do not depend on the perfor-
mance criterion. In particular, known kernel efficiency results under the RMSE criterion
such as those in Fan (1993), Cheng, Fan, and Marron (1997), and Fan et al. (1997) ap-
ply unchanged to other performance criteria such as length of FLCIs, excess length of
one-sided CIs, or expected absolute error.

Part (iii) shows that the optimal bias-sd ratio for a given performance criterion de-
pends on F only through the rate exponent r, and does not depend on the kernel. The
optimal bias-sd ratio for RMSE, FLCI, and OCI, respectively, are

t∗RMSE = argmin
t>0

tr−1R̃RMSE(t�1)= argmin
t>0

tr−1
√
t2 + 1 = √

1/r − 1�

t∗FLCI = argmin
t>0

tr−1R̃FLCI�α(t�1)= argmin
t>0

tr−1 cv1−α(t)� and

t∗OCI = argmin
t>0

tr−1R̃OCI�α�β(t�1)= argmin
t>0

tr−1[2t + (z1−α + zβ)
] = (1/r − 1)

z1−α + zβ

2
�

Figures 1 and 2 plot these quantities as a function of r. Note that the optimal bias-sd ratio
is larger for FLCIs (at levels α = 0�05 and α = 0�01) than for RMSE. Since h is increasing
in t, it follows that, for FLCI, the optimal bandwidth oversmooths relative to the RMSE
optimal bandwidth.

Remark 2.3. Theorem 2.1 does not address whether further efficiency improvements
are possible by using estimators that do not fall into the class T̂ (h;k), or by using vari-
able length CIs. However, it follows from Donoho (1994) and Armstrong and Kolesár
(2018a) that, in typical settings where our results hold, little further improvement is pos-
sible. In particular, these papers give efficiency bounds that, applied to our setting, yield
asymptotic lower bounds for R(T̂ ∗)/R(T̂ (h∗;k∗)), where T̂ ∗ is the optimal estimator or
CI among all procedures (for CIs, this includes variable length CIs, with performance
measured in terms of expected length), and h∗ and k∗ are the optimal bandwidth and
kernel. These asymptotic lower bounds depend only on the rate exponent r, and so can
be used along with the bounds in Theorem 2.1 to obtain the efficiency of a particular
kernel and bandwidth relative to the fully optimal procedure.

One can also form FLCIs centered at the estimator that is optimal for different per-
formance criterion R as T̂ (h∗

R;k)± ŝe(h∗
R;k) · cv1−α(t

∗
R). The critical value cv1−α(t

∗
R) de-

pends only on the rate exponent r and the performance criterion R. In particular, the
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MSE
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Figure 1. Optimal ratio of the worst-case bias to standard deviation for fixed length CIs (FLCI)
and maximum MSE (MSE) performance criteria.

CI centered at the RMSE optimal estimator takes this form with t∗RMSE = √
1/r − 1, which

yields the CI

T̂
(
h∗

RMSE;k) ± cv1−α(
√

1/r − 1) · ŝe
(
h∗

RMSE;k)
� (8)

OCI, α= 0�05, β = 0�5

MSE

OCI, α= 0�01, β = 0�5
OCI, α= 0�05, β = 0�8

OCI, α= 0�01, β = 0�8

0�0

0�5

1�0

1�5

0�5 0�6 0�7 0�8 0�9 1
r

Figure 2. Optimal ratio of the worst-case bias to standard deviation for one-sided CIs (OCI),
and maximum MSE (MSE) performance criteria.
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Figure 3. Efficiency of fixed-length CIs based on minimax MSE bandwidth relative to
fixed-length CIs based on optimal bandwidth.

Table 1 reports this critical value cv1−α(
√

1/r − 1) for rate exponents r commonly
encountered in practice. By (6), the resulting CI is wider than the one computed using
the FLCI optimal bandwidth by a factor of(

t∗FLCI

)r−1 · cv1−α

(
t∗FLCI

)(
t∗RMSE

)r−1 · cv1−α

(
t∗RMSE

) � (9)

Figure 3 plots this quantity as a function of r. It can be seen from the figure that if r ≥ 4/5,
CIs constructed around the RMSE optimal bandwidth are highly efficient. For example,
if r = 4/5, to construct an honest 95% FLCI based on an estimator with bandwidth cho-
sen to optimize RMSE, one simply adds and subtracts the standard error multiplied by
2�18 (rather than the usual 1�96 critical value), and the corresponding CI is less than 1%
longer than the one with bandwidth chosen to optimize CI length. The next theorem
gives a formal statement.

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold for RRMSE and for
RFLCI�α̃ for all α̃ in a neighborhood of α. Let ŝe(h∗

rmse;k) be such that ŝe(h∗
rmse;k)/

[(h∗
rmse)

γsn−1/2S(k)] converges in probability to 1 uniformly over f ∈ F . Then

lim
n→∞ inf

f∈F
Pf

(
T(f ) ∈ {

T̂
(
h∗

rmse;k
) ± ŝe

(
h∗

rmse;k
) · cv1−α(

√
1/r − 1)

}) = 1 − α�

The asymptotic efficiency of this CI relative to the one centered at the FLCI optimal band-

width, defined as limn→∞
infh>0 RFLCI�α(T̂ (h;k))
RFLCI�α(T̂ (h

∗
rmse;k)) , is given by (9). It depends only on r.



14 Armstrong and Kolesár Quantitative Economics 11 (2020)

3. Applications

In this section, we apply the general results from Section 2 to the problem of inference
about a nonparametric regression function at a point, and to regression discontinuity
(RD). Readers who are interested only in implementing our CIs in these applications
can skip Section 3.2. Appendix C in the Online Supplemental Material discusses two
additional applications: estimation of a density at a point, and estimation of a bidder
valuation in first-price auctions.

3.1 Setup and estimators

Inference at a point We are interested in inference about a nonparametric regression
function f at a point, which we normalize to be zero, so that the parameter of interest is
given by T(f ) = f (0). We write the nonparametric regression model as

yi = f (xi)+ ui� i = 1� � � � � n� Eui = 0� var(ui)= σ(xi)� (10)

where the design points xi are nonrandom. We allow the point of interest 0 to lie on the
boundary of the support of the design points. We focus on estimating f (0) using a local
polynomial estimator of order q with kernel k(·),

T̂q(h;k) =
n∑

i=1

wn
q(xi;h�k)yi�

where the weights wn
q(xi;h�k) are given by

wn
q(x;h�k) = e′

1Q
−1
n mq(x)k(x/h)� Qn =

n∑
i=1

k(xi/h)mq(xi)mq(xi)
′� (11)

Here, mq(t) = (1� t� � � � � tq)′, e1 is a vector of zeros with 1 in the first position, and h is a
bandwidth. Thus, T̂q(h;k) corresponds to the intercept in a weighted least squares re-
gression of yi on (1�xi� � � � � x

q
i ) with weights k(xi/h). Local linear estimators correspond

to q = 1, and Nadaraya–Watson (local constant) estimators to q = 0.

Sharp RD In a sharp RD design, using data from the nonparametric regression model
(10), the goal is to to estimate the jump in the regression function f at a known cutoff,
which we normalize to 0, so that T(f ) = limx↓0 f (x)− limx↑0 f (x). The cutoff determines
participation in a binary treatment: units with xi ≥ 0 are treated; units with xi < 0 are
controls. If the regression functions of potential outcomes are continuous at zero, then
T(f ) measures the average effect of the treatment for units with xi = 0 (Hahn, Todd, and
van der Klaauw (2001)). For brevity, we focus on estimating T(f ) based only on local
linear regressions: the estimator T̂ (h;k) is given by a difference between estimates from
two local linear regressions with bandwidth h and kernel k at a boundary point, one
for units with nonnegative values running variable xi, and one for units with negative
values of the running variable. The estimator can be written as

T̂ (h;k) =
n∑

i=1

(
wn+(x;h�k)−wn−(x;h�k))yi� (12)
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with the weight wn+ given by

wn+(x;h�k) = e′
1Q

−1
n�+m1(x)k+(x/h)� k+(u) = k(u) I{u ≥ 0}�

and Qn�+ = ∑n
i=1 k+(xi/h)m1(xi)m1(xi)

′. The weights wn−, Gram matrix Qn�− and kernel
k− are defined similarly. Let σ2+(x) = σ2(x) I{x≥ 0}, and σ2−(x) = σ2(x) I{x < 0}.

Fuzzy RD In a fuzzy RD design, the treatment di is not entirely determined by whether
the running variable xi exceeds a cutoff. Instead, the cutoff induces a jump in the treat-
ment probability. This fits into our framework if we let f = (f1� f2) comprise two regres-
sion functions, corresponding to the reduced-form regression of the outcome on the
running variable, and the first-stage regression of the treatment on the running variable:

yi = f1(xi)+ ui1�

di = f2(xi)+ ui2�
i = 1� � � � � n� Eui = 0� var(ui)= Ω(xi)� (13)

with ui = (ui1�ui2)
′. The parameter of interest is given by the ratio T(f ) = L1(f )/L2(f ) of

sharp RD parameters Lj(f ) = limx↓0 fj(x)− limx↑0 fj(x) in the reduced-form (j = 1) and
first-stage regression (j = 2). If the regression functions of the potential outcomes and
potential treatments are continuous at zero, and a monotonicity condition holds, then
T(f ) measures the average treatment effect for individuals with xi = 0 who are compliers
(see Hahn, Todd, and van der Klaauw (2001)). We consider estimating T(f ) by its sample
analog, replacing L1 andL2 with sharp RD local linear estimates, which are for simplicity
assumed to be based on the same bandwidth, T̂ (h;k) = L̂1(h;k)/L̂2(h;k), where

L̂(h;k) =
(
L̂1(h;k)
L̂1(h;k)

)
=

∑
i

(
wn+(x;h�k)−wn−(x;h�k))(

yi
di

)
�

with the weights wn+ and wn− defined as in (12).

3.2 Theoretical results

We now discuss the conditions under which the key regularity condition (4) holds in
each application. We also discuss kernel efficiency results, and gains from imposing
global, rather than just local, smoothness on f .

3.2.1 Inference at a point To state the results, it will be convenient to define the equiv-
alent kernel

k∗
q(u) = e′

1

(∫
X
mq(t)mq(t)

′k(t)dt
)−1

mq(u)k(u)� (14)

where the integral is over X =R if 0 is an interior point, and over X = [0�∞) if 0 is a (left)
boundary point.

We assume the following conditions on the design points and regression errors ui.

Assumption 3.1. For some d > 0, the sequence {xi}ni=1 satisfies 1
nhn

∑n
i=1 g(xi/hn) → d ·∫

X g(u)du for any bounded function g with finite support and any sequence hn with 0 <

lim infn hn(nM
2)1/(2p+1) < lim supn hn(nM

2)1/(2p+1) <∞.
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Assumption 3.2. The random variables {ui}ni=1 are independent with Eui = 0, Eu2+η
i ≤

1/η for some η> 0, and var(ui) = σ2(xi) for some variance function σ2(x) that is contin-
uous at x = 0 with σ2(0) > 0.

Assumption 3.1 requires that the empirical distribution of the design points is
smooth around 0. When the support points are treated as random, the constant d typi-
cally corresponds to their density at 0.

Because the estimator is linear in yi, its variance does not depend on f ,

sd
(
T̂q(h;k))2 =

n∑
i=1

wn
q(xi)

2σ2(xi) = S(k)2

nh

(
1 + o(1)

)
�

S(k) =

√√√√√σ2(0)
∫
X
k∗
q(u)

2 du

d
�

(15)

where the second equality holds under Assumptions 3.1 and 3.2, as we show in Ap-
pendix B.3 in the Online Supplemental Material. The condition on the standard devi-
ation in equation (2) thus holds with γs = −1/2, and S(k) given in the preceding display.
Appendix D.3 in the Online Supplemental Material gives the constant

∫
X k∗

q(u)
2 du for

selected kernels.
On the other hand, the worst-case bias will be driven primarily by the function

class F . We consider inference under two popular function classes. First, the Taylor class
of order p,

FT�p(M) =
{
f :

∣∣∣∣∣f (x)−
p−1∑
j=0

f (j)(0)xj/j!
∣∣∣∣∣ ≤M|x|p/p!�x ∈ X

}
�

This class consists of all functions for which the approximation error from a (p − 1)th
order Taylor approximation around 0 can be bounded by 1

p!M|x|p. It formalizes the
idea that the pth derivative of f at zero should be bounded by some constant M . Us-
ing this class of functions to derive optimal estimators goes back at least to Legostaeva
and Shiryaev (1971), and it underlies much of existing minimax theory concerning local
polynomial estimators (see Fan and Gijbels (1996, Chapters 3.4–3.5)).

While analytically convenient, the Taylor class may not be attractive in some em-
pirical settings because it allows f to be nonsmooth and discontinuous away from 0.
We therefore also consider inference under Hölder classes (for simplicity, we focus on
Hölder classes of integer order)

FHöl�p(M) = {
f : ∣∣f (p−1)(x)− f (p−1)(x′)∣∣ ≤M

∣∣x− x′∣∣�x�x′ ∈ X
}
�

This class is the closure of the family of p times differentiable functions with the pth
derivative bounded by M , uniformly over X , not just at 0. It formalizes the intuitive no-
tion that f should be p-times differentiable with a bound on the pth derivative. The case
p = 1 corresponds to the Lipschitz class of functions.
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Theorem 3.1. Suppose that Assumption 3.1 holds and that k(·) is bounded with
bounded support and q ≥ p − 1. Then, for any bandwidth sequence hn with nhn → ∞
and 0 < lim infn hn(nM

2)1/(2p+1) < lim supn hn(nM
2)1/(2p+1) <∞,

biasFT�p(M)

(
T̂q(hn;k)

) = Mh
p
n

p! BT
p�q(k)

(
1 + o(1)

)
� BT

p�q(k) =
∫
X

∣∣upk∗
q(u)

∣∣ du

and

biasFHöl�p(M)

(
T̂q(hn;k)

) = Mh
p
n

p! BHöl
p�q(k)

(
1 + o(1)

)
�

BHöl
p�q(k) = p

∫ ∞

t=0

∣∣∣∣∫
u∈X �|u|≥t

k∗
q(u)

(|u| − t
)p−1

du

∣∣∣∣dt�

Thus, the first part of equation (2) holds with γb = p and B(k) = Bp�q(k)/p!, where
Bp�q(k) = BHöl

p�q(k) for FHöl�p(M), and Bp�q(k) = BT
p�q(k) for FT�p(M).

If, in addition, Assumption 3.2 holds, then equation (4) holds for the RMSE, FLCI,
and OCI performance criteria, with γb and B(k) given above and γs and S(k) given in
equation (15).

The theorem verifies the regularity conditions needed for the results in Section 2,
and implies that r = 2p/(2p + 1) for FT�p(M) and FHöl�p(M). If p = 2, then we ob-
tain r = 4/5. By Theorem 2.1(i), the optimal rate of convergence of a criterion R is
R(T̂ (h∗

R;k)) = O((n/M1/p)−p/(2p+1)). As we will see from the relative efficiency calcu-
lation below, the optimal order of the local polynomial regression is q = p − 1 for the
kernels considered here. The theorem allows q ≥ p − 1, so that we can examine the ef-
ficiency of local polynomial regressions that are of order that is too high relative to the
smoothness class. Allowing for q < p−1 is not meaningful, as in this case, the maximum
bias is infinite.6

Under the Taylor class FT�p(M), the least favorable (bias-maximizing) function is
given by f (x) = M/p! · sign(wn

q(x))|x|p. In particular, if the weights are not all positive, it
will be discontinuous away from the boundary. The first part of Theorem 3.1 then follows
by taking the limit of the bias under this function. Assumption 3.1 ensures that this limit
is well-defined. Under the Hölder class FHöl�p(M), the least favorable function takes the
form of a pth order spline. See Appendix B.3 in the Online Supplemental Material for
details.

These results imply that given a kernel k and order of a local polynomial q, the
RMSE-optimal bandwidth for FT�p(M) and FHöl�p(M) is given by

h∗
rmse =

(
1

2pn
S(k)2

M2B(k)2

) 1
2p+1 =

⎛⎜⎜⎝σ2(0)p!2
2pndM2

∫
X
k∗
q(u)

2 du

Bp�q(k)
2

⎞⎟⎟⎠
1

2p+1

� (16)

6 The smoothness classes FT�p(M) and FHöl�p(M) do not restrict derivatives of order p − 1 and lower,
so that, in order to achieve a finite worst-case bias, the estimator needs to be unbiased for polynomials of
order p− 1, which requires q ≥ p− 1.
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where Bp�q(k) = BHöl
p�q(k) for FHöl�p(M), and Bp�q(k) = BT

p�q(k) for FT�p(M). For kernels
given by polynomial functions over their support, k∗

q also has the form of a polynomial,

and BT
p�q and BHöl

p�q can be computed analytically. Appendix D.3 in the Online Supple-
mental Material gives these constants for selected kernels.

Kernel efficiency It follows from Theorem 2.1(ii) that the optimal equivalent kernel
minimizes S(k)rB(k)1−r , independently of the performance criterion. Under the Taylor
class FT�p(M), this is equivalent to minimizing(∫

X
k∗(u)2 du

)p

·
∫
X

∣∣upk∗(u)
∣∣ du� (17)

The solution to this problem follows from Sacks and Ylvisaker (1978, Theorem 1) (see
also Cheng, Fan, and Marron (1997)). We give details of the solution in Appendix D.2 in
the Online Supplemental Material. Table 2 compares the asymptotic relative efficiency
of local polynomial estimators based on the uniform, triangular, and Epanechnikov ker-
nels to the optimal Sacks–Ylvisaker kernels. Fan et al. (1997) and Cheng, Fan, and Marron
(1997) conjectured that minimizing (17) yields a sharp bound on kernel efficiency. It fol-
lows from Theorem 2.1(ii) that this conjecture is correct, and Table 2 matches the kernel
efficiency bounds in these papers. Table 2 shows that the choice of the kernel does not
matter very much, so long as the local polynomial is of the right order. However, if the
order is too high, q > p − 1, the efficiency can be quite low, even if the bandwidth used
was optimal for the function class or the right order, FT�p(M), especially on the bound-
ary. If the bandwidth picked is optimal for FT�q−1(M), it will shrink at a lower rate than
optimal under FT�p(M), and the resulting rate of convergence will be lower than r. Con-
sequently, the relative asymptotic efficiency will be zero. A similar point in the context
of pointwise asymptotics was made in Sun (2005, Remark 5, p. 8).

The solution to minimizing S(k)rB(k)1−r under FHöl�p(M) is only known in special
cases. When p = 1, the optimal estimator is a local constant estimator based on the tri-
angular kernel. When p = 2, the solution is given in Fuller (1961) and Zhao (1997) for

Table 2. Relative efficiency of local polynomial estimators for the function class FT�p(M).

Boundary Point Interior Point

Kernel Order p= 1 p= 2 p= 3 p= 1 p= 2 p= 3

Uniform I{|u| ≤ 1} 0 0�9615 0�9615
1 0�5724 0�9163 0�9615 0�9712
2 0�4121 0�6387 0�8671 0�7400 0�7277 0�9267

Triangular (1 − |u|)+ 0 1 1
1 0�6274 0�9728 1 0�9943
2 0�4652 0�6981 0�9254 0�8126 0�7814 0�9741

Epanechnikov 3
4 (1 − u2)+ 0 0�9959 0�9959

1 0�6087 0�9593 0�9959 1
2 0�4467 0�6813 0�9124 0�7902 0�7686 0�9672

Note: Efficiency is relative to the optimal equivalent kernel k∗
SY

. The functional T(f ) corresponds to the value of f at a
point.
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Table 3. Relative efficiency of local polynomial estimators for the function class FHöl�p(M).

Boundary Point Interior Point

Kernel Order p= 1 p= 2 p= 3 p= 1 p= 2 p= 3

Uniform I{|u| ≤ 1} 0 0�9615 0�9615
1 0�7211 0�9711 0�9615 0�9662
2 0�5944 0�8372 0�9775 0�8800 0�9162 0�9790

Triangular (1 − |u|)+ 0 1 1
1 0�7600 0�9999 1 0�9892
2 0�6336 0�8691 1 0�9263 0�9487 1

Epanechnikov 3
4 (1 − u2)+ 0 0�9959 0�9959

1 0�7471 0�9966 0�9959 0�9949
2 0�6186 0�8602 0�9974 0�9116 0�9425 1

Note: For p = 1�2, efficiency is relative to the optimal kernel, for p = 3, efficiency is relative to the local quadratic estimator
with triangular kernel. The functional T(f ) corresponds to the value of f at a point.

the interior point problem, and in Gao (2018) for the boundary point problem. See Ap-
pendix D.2 in the Online Supplemental Material for details. When p ≥ 3, the solution
is unknown. Therefore, for p = 3, we compute efficiencies relative to a local quadratic
estimator with a triangular kernel. Table 3 calculates the resulting efficiencies for lo-
cal polynomial estimators based on the uniform, triangular, and Epanechnikov kernels.
Relative to the class FT�p(M), the bias constants are smaller: imposing smoothness away
from the point of interest helps to reduce the worst-case bias. Furthermore, the loss of
efficiency from using a local polynomial estimator of order that is too high is smaller. Fi-
nally, local linear regression with a triangular kernel achieves high asymptotic efficiency
under both FT�2(M) and FHöl�2(M), both at the interior and at a boundary, with effi-
ciency at least 97%, giving a theoretical justification to this popular choice in empirical
work.

Gains from imposing smoothness globally The Taylor class FT�p(M), only restricts the
pth derivative locally to the point of interest, while the Hölder class FHöl�p(M) restricts
the pth derivative globally. How much can one tighten a confidence interval or reduce
the RMSE due to this additional smoothness?

It follows from Theorem 3.1 and from arguments underlying Theorem 2.1 that the
performance of using a local polynomial estimator of order p − 1 with kernel kH and
optimal bandwidth under FHöl�p(M) relative to using a local polynomial estimator of
order p− 1 with kernel kT and optimal bandwidth under FT�p(M) is given by

inf
h>0

RFHöl�p(M)

(
T̂ (h;kH)

)
inf
h>0

RFT�p(M)

(
T̂ (h;kT )

) =

⎛⎜⎜⎝
∫
X
k∗
H�p−1(u)

2 du∫
X
k∗
T�p−1(u)

2 du

⎞⎟⎟⎠
p

2p+1 (BHöl
p�p−1(kH)

BT
p�p−1(kT )

) 1
2p+1 (

1 + o(1)
)
�

(18)
where RF (T̂ ) denotes the worst-case performance of T̂ over F . If the same kernel is
used, the first term equals 1, and the efficiency ratio is determined by the ratio of the
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Table 4. Gains from imposing global smoothness.

Boundary Point Interior Point

Kernel p= 1 p= 2 p= 3 p= 1 p= 2 p= 3

Uniform 1 0�855 0�764 1 1 0�848
Triangular 1 0�882 0�797 1 1 0�873
Epanechnikov 1 0�872 0�788 1 1 0�866
Optimal 1 0�906 1 0�995

Note: The table gives the relative asymptotic risk of local polynomial estimators of order p− 1 and a given kernel under the
class FHöl�p(M) relative to the risk under FT�p(M) given in equation (18). “Optimal” refers to using the optimal kernel under
a given smoothness class.

bias constants Bp�p−1(k). Table 4 computes the resulting efficiency gain for common
kernels. In general, the gains are greater for larger p, and greater at the boundary. For
estimation at a boundary point with p = 2, for example, imposing global smoothness of
f reduces CI length by about 13–15%, depending on the kernel, and about 10% if the
optimal kernel is used.

3.2.2 Sharp regression discontinuity We focus on the most empirically relevant case in
which the regression function f is assumed to lie in the class FHöl�2(M) on either side of
the cutoff:

f ∈ FSRD(M) = {
f+(x) I{x≥ 0} − f−(x) I{x < 0} : f+� f− ∈ FHöl�2(M)

}
�

Inference on T(f ) is then equivalent to inference on the difference between two regres-
sion functions evaluated at boundary points, and the results follow by a slight extension
of the results for estimation at a boundary point in Section 3.2.1.

It follows from the results in Section 3.2.1 that if Assumptions 3.1 and 3.2 hold (with
the requirement that σ2(x) is continuous 0 replaced by right- and left-continuity of
σ2+(x) and σ2−(x)), then the variance of the estimator does not depend on f and satisfies

sd
(
T̂ (h;k))2 =

n∑
i=1

w̃n(xi)
2σ2(xi)= S(k)2

nh

(
1 + o(1)

)
�

S(k)2 =

∫ ∞

0
k∗

1(u)
2 du

(
σ2+(0)+ σ2−(0)

)
d

�

with d defined in Assumption 3.1, and w̃n(xi) = wn+(xi) + wn−(xi). Theorem 3.1 and ar-
guments in Appendix B.3 in the Online Supplemental Material imply that the bias of
T̂ (h;k) is maximized at f (x) = −Mx2/2 · (I{x ≥ 0} − I{x < 0}), so long as the kernel k(·)
takes on nonnegative values. The worst-case bias therefore satisfies

bias
(
T̂ (h;k)) = −M

2

n∑
i=1

w̃n(xi)x
2
i =Mh2B(k)

(
1 + o(1)

)
� B(k) = −

∫ ∞

0
u2k∗

1(u)du�
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It follows that for the RMSE, FLCI, and OCI criteria, equation (4) holds with γb = 2,
γs = −1/2, and B(k) and S(k) given in the displays above. Thus, the RMSE-optimal
bandwidth is given by

h∗
rmse =

⎛⎜⎜⎜⎝
∫ ∞

0
k∗

1(u)
2 du(∫ ∞

0
u2k∗

1(u)du
)2 · σ

2+(0)+ σ2−(0)
4dnM2

⎞⎟⎟⎟⎠
1/5

� (19)

The kernel efficiency results are analogous to those in Section 3.2.1.
In principle, one could allow the bandwidths on either side of the cutoff to be dif-

ferent. We show in Appendix D.1 in the Online Supplemental Material, however, that
the loss in efficiency resulting from constraining the bandwidths to be the same is quite
small unless the ratio of variances on either side of the cutoff, σ2+(0)/σ2−(0), is quite large.

3.2.3 Fuzzy regression discontinuity We assume that f = (f1� f2) lies in the class
FFRD(M1�M2) = FSRD(M1) × FSRD(M2), so that both the reduced-form and the first-
stage regression functions are assumed to have a bounded second derivative on either
side of the cutoff.7

Since the estimator is nonlinear, to ensure that (4) holds, it will be necessary to
consider a sequence of parameter spaces FFRD�n(M1�M2) localized around a particu-
lar value L∗ of L(f) = (L1(f )�L2(f ))

′ with a nonzero jump in the first-stage regression
L∗

2 
= 0. This allows us to apply a version of the delta method to L̂(h;k). We defer de-
tails to Appendix B.4 in the Online Supplemental Material, where we show that under
Assumption 3.1 and a version of Assumption 3.2, the distribution of T̂ (h;k)− T(f ) can
in large samples be approximated by a normal distribution with variance

avar
(
T̂ (h;k)) = S(k)2

nh
=

n∑
i=1

ς2(xi;T(f ))
L2(f )

2 w̃n(xi;h�k)2(1 + o(1)
)
�

and mean bounded by

abias
(
T̂ (h;k)) =M1h

2B(k) = −M1 + ∣∣T(f )∣∣M2

2
∣∣L2(f )

∣∣ n∑
i=1

w̃n(xi;h�k)x2
i

(
1 + o(1)

)
�

where w̃n(xi;h�k) = wn+(xi)+wn−(xi), ς2(xi;T) = (1�−T)Ω(xi)(1�−T)′,

B(k) = −

∫ ∞

0
u2k∗

1(u)du
(
1 + ∣∣T(f )∣∣M2/M1

)
∣∣L2(f )

∣∣ �

S(k)2 =

∫ ∞

0
k∗

1(u)
2 du

d

ς2+
(
0;T(f )) + ς2−

(
0;T(f ))

L2(f )
2 �

7While we allow the bounds M1 and M2 to change with sample size, we assume that their ratio M1/M2 is
fixed for simplicity.



22 Armstrong and Kolesár Quantitative Economics 11 (2020)

ς2+(0;T) = limx↓0 ς
2(x;T), and ς2−(0;T) = limx↑0 ς

2(x;T).
It then follows that for the FLCI, OCI, and a truncated version of the RMSE crite-

rion, equation (4) holds with M = M1, γb = 2, γs = −1/2, and B(k) and S(k) given in the
preceding display. The RMSE-optimal bandwidth is therefore given by

h∗
rmse =

⎛⎜⎜⎜⎝
∫ ∞

0
k∗

1(u)
2 du(∫ ∞

0
u2k∗

1(u)du
)2 · ς2(T(f ))

4dn
(
M1 + ∣∣T(f )∣∣M2

)
⎞⎟⎟⎟⎠

1/5

� (20)

Since S(k) and B(k) depend on the kernel k through the same quantities as for inference
at a boundary point, the kernel efficiency results are analogous to those in Section 3.2.1.

Because the optimal bandwidth depends on T(f ), implementing a feasible version
of it requires replacing it with an initial estimate. An alternative approach to the con-
struction of two-sided CIs for T(f ) that does not require localization or the use of ini-
tial estimates is an Anderson and Rubin (1949) style construction studied by Noack and
Rothe (2019). In particular, Noack and Rothe (2019) proposed constructing, for each T0,
an auxiliary CI for the jump in the mean of yi − diT0 at the cutoff, using an approach
similar to that we use for inference in sharp RD. The CI for T(f ) is then constructed by
collecting all T0’s for which the auxiliary CI contains zero. This approach also has the
additional advantage that it can allow for weak identification while it yields asymptoti-
cally equivalent CIs under strong identification.8 See Noack and Rothe (2019) for a more
detailed discussion.

3.3 Practical implementation

We now discuss some practical issues that arise when implementing our CIs for infer-
ence at a point, and in sharp and fuzzy RD studied in the previous subsections. To focus
the discussion, we consider smoothness classes FHöl�2(M), FSRD(M), and FFRD(M1�M2)

that constrain the second derivative globally, so that, in the discussion below, p = 2. In
other words, for inference at a point, we assume that the conditional mean f equation
(10) is (almost everywhere) twice differentiable with the second derivative bounded by
M ; for sharp RD, we assume that that f is twice differentiable on either side of the cutoff,
with the second derivative bounded by M ; and for fuzzy RD, we assume that f1 and f2

in in equation (13) are twice differentiable on either side of the cutoff, with the second
derivative bounded by M1 and M2, respectively. These assumptions imply optimality of
the estimators defined in Section 3.1 based on local linear regression (q = 1), which is
the most popular method in practice; they also imply that both the Epanechnikov and
the triangular kernel are nearly optimal.

8Because we require that the sequence of parameter spaces FFRD�n(M1�M2) be localized around a value
of L∗ with L∗

2 
= 0, we rule out sequences in which the jump in the first-stage regression is arbitrarily close
to zero (the term “weak identification” refers to such sequences). As a result, the CI we propose, unlike the
CI proposed by Noack and Rothe (2019), is not honest over the original parameter space FFRD(M1�M2).
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3.3.1 Choice of M Appropriate choice of the smoothness constant is key to implement-
ing our method. Since the smoothness classes we consider are convex, the results of Low
(1997), Cai and Low (2004) and Armstrong and Kolesár (2018a) imply that, to maintain
honesty over the whole function class, a researcher must choose M a priori, rather than
attempting to use a data-driven method.9 We therefore recommend that, whenever pos-
sible, problem-specific knowledge be used to decide what choice of M is reasonable a
priori, and that one consider a range of plausible values by way of sensitivity analysis.10

If one imposes additional restrictions on f that make the parameter space for f non-
convex, a data-driven method for choosing M may be feasible.11 In Apprendix E in the
Online Supplemental Material, we consider a restriction which relates M to a global
polynomial approximation to the regression function. In particular, the restriction for-
malizes the notion that the second derivative in a neighborhood of zero is bounded
by the maximum second derivative of a p̃th order global polynomial approximation.
Heuristically, such restriction will hold if the local smoothness of f is no smaller than its
smoothness at large scales.

This restriction allows us to calibrate M based on the following rule of thumb. For in-
ference at a point, let f̆ (x) be an estimate of f based on a global polynomial regression of
order p̃, and let [xmin�xmax] denote the support of xi. Put M̂rot = supx∈[xmin�xmax] |f̆ (p)(x)|.
This rule of thumb is similar to the suggestion of Fan and Gijbels (1996, Chapter 4.2),
with the important distinction that their rule of thumb was designed to estimate the
pointwise-in-f optimal bandwidth. We discuss the difference between this bandwidth
and h∗

rmse in Section 4. In sharp RD, the rule of thumb is analogous, except we define
f̆ (p)(x) to be the global polynomial estimate of order p̃ in which the intercept and all
coefficients are allowed to be different on either side of the discontinuity (i.e., as regres-

sors, we use 1�xi� � � � � x
p̃
i , and their interactions with the indicator I{xi ≥ 0}). For fuzzy

RD, we use an analogous approach to separately calibrate the reduced-form and first-
stage smoothness parameters M1 and M2 based on the reduced-form and first-stage
regressions.

As a default choice, we set p̃ = p+ 2 = 4. In Appendix E in the Online Supplemental
Material, we give a formal analysis of this rule, showing that the resulting CIs are hon-
est and nearly optimal (over a regularity class that imposes the additional restriction f

discussed above). In contrast, we expect that calibrating M based on local smoothness
estimates may be difficult to justify, since estimating a local derivative of f is a harder
problem than the initial problem of estimating its value at a point. We investigate the

9These negative results contrast with more positive results for estimation. See, for example, Lepski (1990)
who, in the context of estimating the value of the regression function at a point, proposes a data-driven
method that automates the choice of both p and M .

10As is well known, if the final bandwidth choice is influenced by such sensitivity analysis, the resulting
CI may undercover, even if the estimator is unbiased. In this case, one can combine our method with the
bandwidth snooping adjustment of Armstrong and Kolesár (2018b).

11An alternative to restricting the parameter space is to change the notion of coverage. For example,
in the context of constructing confidence bands for a regression function f (x), Hall and Horowitz (2013)
proposed bands that have an average coverage property in that the bands achieve coverage of f (x) for a
random subset of values of x. This subset may vary with the unknown regression function and the realized
sample.



24 Armstrong and Kolesár Quantitative Economics 11 (2020)

finite-sample performance of FLCIs based on M̂rot in a Monte Carlo exercise in Sec-
tion 5.

3.3.2 Computation of RMSE-optimal bandwidth Given a choice of M , one can com-
pute a feasible version ĥ∗

rmse of the RMSE-optimal bandwidth by plugging this choice
into the expressions (16), (19), and (20), along with consistent estimates of d, and of the
variance at 0 (for fuzzy RD, one also needs a preliminary estimate of T(f )). In the sim-
ulation exercise and empirical application below, we use an alternative approach based
on directly minimizing the finite-sample RMSE over the bandwidth h. To describe it, let
w̃n(xi;h�k) denote the weights wn

1(xi;h�k) given in (11) if the parameter of interest is
the conditional mean at a point, and let w̃n(xi;h�k) = wn+(xi)+wn−(xi) if the parameter
of interest is the sharp or fuzzy RD parameter.

For inference at a point, or for sharp RD, the finite-sample RMSE takes the form

RMSE(h;M)2 = M2

4

(
n∑

i=1

w̃n(xi;h�k)x2
i

)2

+
n∑

i=1

w̃n(xi;h�k)σ2(xi)� (21)

Since σ2(xi) is typically unknown, one needs to replace it by an estimate. For infer-
ence at a point, the simplest choice is to use some estimate σ̂2(xi) = σ̂2 that assumes
homoskedasticity of the variance function. For sharp RD, one can use the estimate
σ̂2(xi) = σ̂2+(0) I{x ≥ 0} + σ̂2−(0) I{x < 0}, where σ̂2+(0) and σ̂2−(0) are some preliminary
variance estimates based on observations above and below the cutoff. We use the band-
width ĥ∗

rmse�M̃
that minimizes equation (21) for M = M̃ , the chosen smoothness con-

stant. This method was considered previously in Armstrong and Kolesár (2018a).
Since the estimate in fuzzy RD is nonlinear, its moments, and hence the finite-

sample RMSE do not exist. However, one can still employ an analogous approach min-
imizing the finite-sample analog of the asymptotic RMSE. As the asymptotic bias and
the asymptotic standard deviation both scale with the jump in the first-stage regression
at the cutoff, L2(f ), this scaling does not affect the optimum, we can equivalently mini-
mize the asymptotic RMSE times L2(f ),

ARMSE(h;M1�M2)
2 =

(
M1 + ∣∣T(f )∣∣M2

)2

4

(
n∑

i=1

w̃n(xi;h�k)x2
i

)2

+
n∑

i=1

wn
q(xi;h;k)2ς2(xi;T(f ))�

with ς2(x;T) = (1�−T)Ω(x)(1�−T)′. Since Ω(xi) is unknown, one can again replace it
with Ω̂2(xi) = Ω̂2+(0) I{x ≥ 0} + Ω̂2−(0) I{x < 0}, where Ω̂2+(0) and Ω̂2−(0) are some prelim-
inary variance estimates for observations above and below the cutoff. As a preliminary
estimate of T(f ), one can take the estimate T̂ (ĥ0;k), where ĥ0 minimizes the above ex-
pression at T(f ) = 0. One can also use ĥ0 directly as a simple bandwidth selector, which,
while not RMSE optimal, has the advantage that it does not depend on the choice of M2.
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3.3.3 Construction of FLCIs Given an estimate ĥ∗
rmse of h∗

rmse, such as the estimate
ĥ∗

rmse�M̃
discussed above, an honest FLCI can be constructed as

T̂
(
ĥ∗

rmse;k
) ± cv1−α(t) · ŝe

(
ĥ∗

rmse;k
)
� (22)

where t is an estimate of the bias-sd ratio, and ŝe(ĥ∗
rmse;k) is an estimate of the standard

error. For the standard error, many choices are available in the literature. For inference
at a point and sharp RD, the estimator T̂ (ĥ∗

rmse;k) is a weighted least squares estima-
tor, and one can directly estimate its finite-sample conditional variance by the nearest
neighbor variance estimator considered in Abadie and Imbens (2006) and Abadie, Im-
bens, and Zheng (2014). Given a bandwidth h, the estimator takes the form

ŝe(h�k)2 =
n∑

i=1

w̃n(xi;h�k)2σ̂2(xi)� σ̂2(xi)= J

J + 1

(
yi − 1

J

J∑
j=1

yj(i)

)2

� (23)

for some fixed (small) J ≥ 1, where j(i) denotes the jth closest observation to i (for
sharp RD j(i) is only taken among units with the same sign of the running vari-
able.). In contrast, the usual Eicker–Huber–White estimator sets σ̂2(xi) = û2

i , where
ûi is the regression residual, and it can be shown that this estimator will gener-
ally overestimate the conditional variance. For t, one can either use the asymp-
totic bias-sd ratio t = 1/2, or else an estimate of the finite-sample bias-sd ratio t =
−M

∑n
i=1 w̃

n(xi; ĥ∗
rmse�k)x

2
i /2ŝe(ĥ∗

rmse�k). We use the latter approach in the Monte
Carlo and empirical application below. While both approaches are asymptotically equiv-
alent when xi is continuous, the latter approach has the advantage that it remains valid
even when the covariates are discrete.12

For fuzzy RD, one can use an analogous approach to estimate the standard error as

ŝe(h�k)2 = 1

L̂2(h;k)2

n∑
i=1

w̃n(xi;h�k)2ς̂2(xi� T̂ (h;k))�
where ς̂2(xi;T) = J

J+1(1�−T)(zi − 1
J

∑J
j=1 zj(i))(zi − 1

J

∑J
j=1 zj(i))

′(1�−T)′, zi = (yi� di)
′,

and j(i) denotes that jth closest observation with the same sign of the running variable.
For t, one can use t = 1/2, or else the finite-sample analog of the asymptotic bias-sd

ratio,13 t = −(M̃1 + |T̂ |M̃2) · ∑n
i=1 w̃

n(xi; ĥ∗
rmse�k)x

2
i /2

√∑n
i=1 ς̂

2(xi; T̂ )w̃n(xi; ĥ∗
rmse�k)2.

4. Comparison with other approaches

In this section, we compare our approach to inference about the parameter T(f ) to three
other approaches to inference. To make the comparison concrete, we make the compar-
ison in the context of inference about a nonparametric regression function at a point,

12See Armstrong and Kolesár (2018a), Kolesár and Rothe (2018), and Imbens and Wager (2019) for a more
thorough discussion of the case with discrete covariates.

13For inference based on T̂ (ĥ0;k), it is necessary to use the finite-sample analog of the bias-sd ratio,

since the bandwidth ĥ0 is not RMSE optimal.
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discussed in Section 3. The first approach, which we term “conventional,” ignores the
potential bias of the estimator and constructs the CI as T̂q(h�k) ± z1−α/2ŝe(h;k). The
bandwidth h is typically chosen to minimize the asymptotic mean squared error (MSE)
of T̂q(h;k) under pointwise-in-f (or “pointwise,” for short) asymptotics. We refer to this
bandwidth as h∗

pt. We discuss the distinction between h∗
pt and the bandwidth h∗

rmse in
Section 4.1. Under the second approach, undersmoothing, one chooses a sequence of
smaller bandwidths, so that in large samples, the bias of the estimator is dominated by
its standard error. Finally, in bias correction, one re-centers the conventional CI by sub-
tracting an estimate of the leading bias term from T̂q(h;k). In Section 4.2, we compare
the coverage and length properties of these CIs to the fixed-length CI (FLCI) based on
T̂q(h

∗
rmse;k).

Implementing any of these CIs in practice requires feasible bandwidth and tuning
parameter choices. This may require auxiliary assumptions (such as assumptions relat-
ing local and global smoothness of f if one picks M using the rule of thumb discussed in
Section 3.3.1), which may differ across the methods. For clarity of comparison, we keep
implementation issues separate, and focus in this section on a theoretical comparison,
assuming any tuning parameters (including the smoothness parameter M) are known.
The Monte Carlo exercise in Section 5 below considers their finite-sample performance
when the tuning parameters need to be chosen.

4.1 RMSE and pointwise optimal bandwidth

The RMSE optimal bandwidth given in equation (16) seeks to minimize the asymp-
totic approximation to the maximum RMSE (or, equivalently, MSE) over f ∈ FT�p(M)

or f ∈ FHöl�p(M). In contrast, the bandwidth h∗
pt is intended to optimize the MSE at the

function f itself. In particular, it minimizes the sum of the leading squared bias and vari-
ance terms under pointwise asymptotics for the case q = p − 1. It is given by (see, e.g.,
Fan and Gijbels (1996, equation (3.20)))

h∗
pt =

⎛⎜⎜⎜⎝ σ2(0)p!2
2pndf (p)(0)2

∫
X
k∗
q(u)

2 du(∫
X
tpk∗

q(t)dt
)2

⎞⎟⎟⎟⎠
1

2p+1

� (24)

Comparing this expression with that for h∗
rmse in equation (16), we see that the pointwise

optimal bandwidth replaces M with the pth derivative at zero, f (p)(0), and it replaces
Bp�q(k) with

∫
X tpk∗

q(t)dt. Note that Bp�q(k) ≥ | ∫X tpk∗
q(t)dt| (this can be seen by noting

that the right-hand side corresponds to the bias at the function f (x) = ±xp/p!, while the
left-hand side is the supremum of the bias over functions with pth derivative bounded
by (1). Thus, assuming that f (p)(0) ≤ M (this holds by definition for any f ∈ F when

F = FHöl�p(M)), we will have h∗
pt/h

∗
rmse ≥ (M/|f (p)(0)|) 2

2p+1 ≥ 1.
Even though the bandwidth h∗

pt is intended to optimize the RMSE at the function
f itself, its performance may be arbitrarily bad relative to h∗

rmse at functions for which
f (p)(0) is close to zero. For example, consider the function f (x) = xp+1 if p is odd, or
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f (x) = xp+2 if p is even. This is a smooth function with all derivatives bounded on the
support of xi. Since f (p)(0) = 0, h∗

pt is infinite, and the resulting estimator is a global pth
order polynomial least squares estimator. Its RMSE will be poor, since the estimator is
not even consistent.14

To address this problem, plug-in bandwidths that estimate h∗
pt include tuning pa-

rameters to prevent them from approaching infinity. The RMSE of the resulting estima-
tor at such functions is then determined almost entirely by these tuning parameters.
Furthermore, if one uses such a bandwidth as an input to an undersmoothed or bias-
corrected CI, the coverage will be determined by these tuning parameters, and can be
arbitrarily bad if the tuning parameters allow the bandwidth to be large. Indeed, we find
in our Monte Carlo analysis in Section 5 that plug-in estimates of h∗

pt used in practice
can lead to very poor coverage even when used as a starting point for a bias-corrected
or undersmoothed estimator.

4.2 Efficiency and coverage comparison

Let us now consider the efficiency and coverage properties of conventional, under-
smoothed, and bias-corrected CIs relative to the FLCI based on T̂p−1(h

∗
rmse�k). To keep

the comparison meaningful, and avoid the issues discussed in the previous subsection,
we assume these CIs are also based on h∗

rmse, rather than h∗
pt (in case of undersmooth-

ing, we assume that the bandwidth is undersmoothed relative to h∗
rmse). Suppose that

the smoothness class is either FT�p(M) or FHöl�p(M) and denote it by Fp(M). For con-
creteness, let p = 2, and q = 1.

Consider first conventional CIs, given by T̂1(h;k) ± z1−α/2ŝe(h;k). If the band-
width h equals h∗

rmse, then these CIs are shorter than the 95% FLCIs by a factor of
z0�975/ cv0�95(1/2) = 0�90. Consequently, their coverage is 92�1% rather than the nominal
95% coverage. At the RMSE-optimal bandwidth, the bias-sd ratio equals 1/2, so disre-
garding the bias does not result in severe undercoverage. If one uses a larger bandwidth,
however, the bias-sd ratio will be larger, and the undercoverage problem more severe:
for example, if the bandwidth is 50% larger than h∗

rmse, so that the bias-sd ratio equals
1/2 · (1�5)(5/2), the coverage is only 71�9%.

Second, consider undersmoothing. This amounts to choosing a bandwidth se-
quence hn such that hn/h

∗
rmse → 0, so that for any fixed M , the bias-sd ratio tn =

h
γb−γs
n MB(k)/(n−1/2S(k)) approaches zero, and the CI T̂ (hn;k) ± cv1−α(0)ŝe(hn;k) =

T̂ (hn;k) ± z1−α/2ŝe(hn;k) will consequently have proper coverage in large samples.
However, the CIs shrink at a slower rate than nr/2 = n4/5, and thus the asymptotic effi-
ciency of the undersmoothed CI relative to the optimal FLCI is zero.

On the other hand, an apparent advantage of the undersmoothed CI is that it ap-
pears to avoid specifying the smoothness constant M . However, a more accurate de-
scription of undersmoothing is that the bandwidth sequence hn implicitly chooses a

14To ensure consistency and finiteness of h∗
pt , it is standard to assume that f (p) 
= 0. However, the RMSE

can still be arbitrarily poor whenever the pth derivative is locally small, but nonzero, and large globally,
such as when f (x) = xp+1 + ηxp for p odd and f (x) = xp+2 + ηxp if p is even, provided η is sufficiently
small.
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sequence of smoothness constants Mn → ∞ such that coverage is controlled under the
sequence of parameter spaces Fp(Mn). We can improve on the coverage and length of
the resulting CI by making this sequence explicit and computing an optimal (or near-
optimal) FLCI for Fp(Mn).

To this end, given a sequence hn, a better approximation to the finite-sample cover-
age of the CI T̂ (hn;k)±z1−α/2ŝe(hn;k) over the parameter space Fp(M) isPZ∼N(0�1)(|Z+
tn(M)| ≥ z1−α/2) where tn(M) = h

γb−γs
n MB(k)/(n−1/2S(k)) is the bias-sd ratio for the

given choice of M . This approximation is exact in idealized settings, such as the white
noise model discussed in Appendix B in the Online Supplemental Material. For a given
level of undercoverage η= ηn, one can then compute Mn as the greatest value of M such
that this approximation to the coverage is at least 1 − α−η. In order to trust the under-
smoothed CI, one must be convinced of the plausibility of the assumption f ∈ Fp(Mn):
otherwise, the coverage will be worse than 1 −α−η. This suggests that, in the interest of
transparency, one should make this smoothness constant explicit by reporting Mn along
with the undersmoothed CI. However, once the sequence Mn is made explicit, a more
efficient approach is to simply report an optimal or near-optimal CI for this sequence,
either at the coverage level 1 − α − η (in which case the CI will be strictly smaller than
the undersmoothed CI while maintaining the same coverage) or at level 1 − α (in which
case the CI will have better finite-sample coverage and may also be shorter than the
undersmoothed CI).

Finally, let us consider bias correction. It is known that recentering conventional CIs
by an estimate of the leading bias term often leads to poor coverage (Hall (1992)). In an
important paper, Calonico, Cattaneo, and Titiunik (2014, CCT hereafter) show that the
coverage properties of this bias-corrected CI are much better if one adjusts the standard
error estimate to account for the variability of the bias estimate, which they call robust
bias correction (RBC). For simplicity, consider the case in which the main bandwidth
and the pilot bandwidth (used to estimate the bias) are the same, and that the main
bandwidth is chosen optimally in that it equals h∗

rmse. In this case, the bias-corrected
local linear estimator coincides with a local quadratic estimator. As a result, the RBC
procedure in this case amounts to using a local quadratic estimator, but with a band-
width h∗

rmse, optimal for a local linear estimator. The resulting CI obtains by adding and
subtracting z1−α/2 times the standard deviation of the estimator.

To ensure that the bias is estimable, the theory of bias correction requires that the
conditional mean function is sufficiently smooth, which requires q < p − 1 (thus, as-
suming that f is sufficiently smooth to ensure that the bias of T̂1(h;k) can be estimated
implies that the polynomial order q = 1 of the original estimator is not optimal). Sup-
pose, therefore, that the smoothness class is given by F3(M) (with q = 1, and h = h∗

rmse

still chosen to be MSE optimal for F2(M)). In this case, the RBC interval can be con-
sidered an undersmoothed CI based on a second-order local polynomial estimator. Fol-
lowing the discussion of undersmoothed CIs above, the limiting coverage is 1 − α when
M is fixed (this matches the pointwise-in-f coverage statements in CCT, which assume
the existence of a continuous third derivative in the present context). Due to this under-
smoothing, however, the RBC CI shrinks at a slower rate than the optimal CI.
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It is also interesting to consider the case when the order q = 1 of the local polyno-
mial of the estimator T̂1(h

∗
rmse;k) is optimal under the maintained smoothness assump-

tion, so that the smoothness class is given by F2(M). In this case, the smoothness of the
conditional mean function is too low for the bias to be estimable: the bias of the bias-
corrected estimator will be of the same order as the bias of the original estimator. Conse-
quently, the estimator will remain asymptotically biased, even after the bias correction.
In particular, bias-sd ratio of the estimator is given by

tRBC = (
h∗

rmse

)5/2 MB2�2(k)/2

σ(0)
(∫

k∗
2(u)

2 du/dn
)1/2 = 1

2
B2�2(k)

B2�1(k)

⎛⎜⎜⎝
∫
X
k∗

1(u)
2 du∫

X
k∗

2(u)
2 du

⎞⎟⎟⎠
1/2

� (25)

The resulting coverage is given by (tRBC + z1−α/2)−(tRBC − z1−α/2). The RBC interval
length relative to the 1−α FLCI around a local linear estimator with the same kernel and
minimax MSE bandwidth is the same under both FT�p(M), and FHöl�p(M), and given by

z1−α/2

(∫
X
k∗

2(u)
2 du

)1/2

cv1−α(1/2)
(∫

X
k∗

1(u)
2 du

)1/2

(
1 + o(1)

)
� (26)

The resulting coverage and relative length is given in Table 5. One can see that al-
though the undercoverage is very mild, (since tRBC is quite low in all cases), the intervals
are about 30% longer than the FLCIs around the RMSE bandwidth.

Under the class FHöl�2(M), the RBC intervals are also reasonably robust to using a
larger bandwidth: if the bandwidth used is 50% larger than h∗

rmse, so that the bias-sd
ratio in equation (25) is larger by a factor of (1�5)5/2, the resulting coverage is still at least
93�0% for the kernels considered in Table 5. Under FT�2(M), using a bandwidth 50%

Table 5. Performance of RBC CIs based on h∗
rmse bandwidth for local linear regression under

FT�2 and FHöl�2.

FT�2 FHöl�2

Kernel Length Coverage tRBC Length Coverage tRBC

Boundary
Uniform 1�35 0�931 0�400 1�35 0�948 0�138
Triangular 1�32 0�932 0�391 1�32 0�947 0�150
Epanechnikov 1�33 0�932 0�393 1�33 0�947 0�148

Interior
Uniform 1�35 0�941 0�279 1�35 0�949 0�086
Triangular 1�27 0�940 0�297 1�27 0�949 0�110
Epanechnikov 1�30 0�940 0�298 1�30 0�949 0�105

Note: Length—CI length relative to 95% FLCI based on a local linear estimator and the same kernel and bandwidth h∗
rmse ;

tRBC—ratio of the worst-case bias to standard deviation.
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larger than h∗
rmse yields coverage of about 80% on the boundary and 87% in the interior.

Thus, depending on the smoothness class, the 95% RBC CI has close to 95% coverage
and efficiency loss of about 30%, or exactly 95% coverage at the cost of shrinking at a
slower than optimal rate.

Our asymptotic efficiency comparisons focus on minimizing length among CIs with
coverage at least 1 − α for all f ∈ F , which follows the usual definition of coverage. One
may also consider a criterion that also penalizes CIs that cover “too much,” by placing
an upper bound 1 − α on coverage. For the CIs considered in this paper, the maximum
coverage occurs when the bias is zero, and is given by PZ∼N(0�1)(|Z| ≤ cv1−α(t)) = 1 −
2(− cv1−α(t)) where t is the asymptotic bias-sd ratio. In particular, when F = FT�2(M)

or F = FHöl�2(M) and the RMSE optimal bandwidth is used, the maximum coverage of a
FLCI with 95% (minimum) coverage is 1−2(−2�18) = 0�971. If one wants the maximum
coverage to be smaller, then undersmoothing (or subtracting an estimate of the bias)
will be necessary, and Edgeworth expansions may be needed to deal with higher order
approximation terms if one wants α − α → 0 quickly enough with the sample size (see
Calonico, Cattaneo, and Farrell (2019)). Because, as we discuss above, undersmoothing
or bias correction yields longer CIs than the ones we propose, the resulting CIs will be
longer than the CIs we propose, which do not penalize “overcoverage.”

5. Monte Carlo

To study the finite-sample performance of the FLCI that we propose, and compare its
performance to other approaches, this section conducts a Monte Carlo analysis of the
conditional mean estimation problem considered in Section 3.

We consider Monte Carlo designs with conditional mean functions

f1(x) = M

2
(
x2 − 2s

(|x| − 0�25
))
�

f2(x) = M

2
(
x2 − 2s

(|x| − 0�2
)2 + 2s

(|x| − 0�5
) − 2s

(|x| − 0�65
))
�

f3(x) = M

2
(
(x+ 1)2 − 2s(x+ 0�2)+ 2s(x− 0�2)− 2s(x− 0�4)+ 2s(x− 0�7)− 0�92

)
�

where s(x) = (x)2+ = max{x�0}2 is the square of the plus function, and M ∈ {2�6}, giving
a total of 6 designs. In all cases, xi is drawn from a uniform distribution with support
[−1�1] (so that the design is random), ui ∼ N(0�1/4), and the sample size is n = 500. Fig-
ure 4 plots these designs. The regression function for each design lies in FHöl�2(M) for
the corresponding M . To ensure that our results, discussed below, are not sensitive to
the choice of the error distribution or the distribution for the running variable, in Ap-
pendix F in the Online Supplemental Material, we also consider designs with xi drawn
from a beta distribution, designs with log-normal and heteroskedastic errors, and de-
signs with different error variance. Finally, we also show in the Appendix that the results
remain effectively the same when the function s(·) is replaced by a smooth approximat-
ing function.15

15The RBC method considered below assumes that the conditional mean function be at least three times
continuously differentiable in the neighborhood of 0. Since the functions f1, f2, and f3 are not globally
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Figure 4. Monte Carlo simulation designs 1–3 and M = 2.

For each design, we implement the optimal FLCI centered at a local linear estimate
with a triangular kernel and MSE optimal bandwidth, as described in Section 3.3, for
each choice of M ∈ {2�6}, and with M calibrated using the rule-of-thumb (ROT) de-
scribed in Section 3.3. The implementations with M ∈ {2�6} allow us to gauge the effect
of using an appropriately calibrated M , compared to a choice of M that is either too con-
servative or too liberal by a factor of 3. The ROT calibration chooses M automatically, but
requires additional conditions in order to have correct coverage (see Section 3.3).

In addition to these FLCIs, we consider seven other CIs (Appendix F in the Online
Supplemental Material considers one more method). The first five are different imple-
mentations of the robust bias-corrected (RBC) CIs proposed by CCT (discussed in Sec-
tion 4). Implementing these CIs requires two bandwidth choices: a bandwidth for the
local linear estimator, and a pilot bandwidth that is used to construct an estimate of its
bias. The first two CIs use bandwidth choices justified by pointwise-in-f asymptotics.
The first CI uses a plug-in estimate of h∗

pt defined in (24), as implemented by Calonico,
Cattaneo, and Farrell (2018), and an analogous estimate for the pilot bandwidth. The
second CI, also implemented by Calonico, Cattaneo, and Farrell (2018), uses bandwidth
estimates for both bandwidths that optimize the pointwise asymptotic coverage error
(CE) among CIs that use usual z1−α/2 critical value. This CI can be considered a partic-
ular form of undersmoothing. The third CI sets both the pilot bandwidth and the main

three times continuously differentiable, depending on the neighborhood definition, this assumption is ar-
guably violated. The results in the Appendix are nearly identical to those reported here, implying that the
performance of the RBC method is not driven by this lack of smoothness.
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bandwidth to the plug-in estimate of h∗
pt. For the next three CIs, we consider bandwidths

justified by uniform-in-f asymptotics. For the fourth and fifth CIs, we set both the main
and the pilot bandwidth to h∗

rmse with M = 2, and M = 6, respectively. For the sixth CI,
we set both bandwidths to ĥ∗

rmse�M̂rot
. Finally, we consider a conventional CI centered

at a plug-in bandwidth estimate of h∗
pt, using the rule-of-thumb estimator of Fan and

Gijbels (1996, Chapter 4.2). All CIs are computed at the nominal 95% coverage level.
Table 6 reports the results. The FLCIs perform well when the correct M is used. As

expected, they suffer from undercoverage if M is chosen too small, or suboptimal length
when M is chosen too large. The ROT choice of M appears to do a reasonable job of hav-
ing good coverage and length in these designs without requiring knowledge of the true
smoothness constant. However, as discussed in Section 3.3, this ROT choice imposes
additional restrictions on the parameter space, so one must take care in extrapolating
these results to other designs.

As predicted by the theory in Section 4, the RBC CIs also have good coverage when
implemented using the h∗

rmse bandwidth, and they are less sensitive to the choice of M
than the corresponding FLCIs, at the expense of being on average about 25% longer.
RBC CIs with bandwidth given by ĥ∗

rmse�M̂rot
also achieve good coverage, but they are

again about 25% longer than the corresponding FLCIs.
The CIs based on bandwidths justified by pointwise-in-f asymptotics (rows 1, 2, 3,

and 7 for each design in the table) all have very poor coverage for at least one of the de-
signs. Our analysis in Section 4 suggests that this is due to the tuning parameter choices
required by these bandwidths. Indeed, looking at the average of the bandwidth over the
Monte Carlo draws (also reported in Table 6), it can be seen that the bandwidths tend
to be much larger than those that estimate h∗

rmse. This is even the case for the CE band-
width, which is intended to minimize coverage errors.

Overall, the Monte Carlo analysis suggests that default approaches to nonparamet-
ric CI construction (bias-correction or undersmoothing relative to plug-in bandwidths)
can lead to severe undercoverage when implemented using bandwidths justified by
pointwise-in-f asymptotics. Bias-corrected CIs such as the one proposed by CCT can
have good coverage if one starts from the minimax RMSE bandwidth, although they will
be wider than FLCIs proposed in this paper.

6. Empirical illustration

To illustrate the implementation of feasible versions of the CIs (22), we use a subset of
the dataset from Ludwig and Miller (2007).

In 1965, when the Head Start federal program launched, the Office of Economic Op-
portunity provided technical assistance to the 300 poorest counties in the United States
to develop Head Start funding proposals. Ludwig and Miller (2007) used this cutoff in
technical assistance to look at intent-to-treat effects of the Head Start program on a va-
riety of outcomes using as a running variable the county’s poverty rate relative to the
poverty rate of the 300th poorest county (which had poverty rate equal to approximately
59�2%). We focus here on their main finding, the effect on child mortality due to causes
addressed as part of Head Start’s health services. See Ludwig and Miller (2007) for a
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Table 6. Monte Carlo simulation: inference at a point.

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1
RBC h= ĥ∗

pt, b = b̂∗
pt 0�063 0�035 0�75 55�6 0�73 0�157 0�036 0�62 0�1 0�61

RBC h= ĥce, b= b̂ce 0�030 0�041 0�45 85�8 0�85 0�059 0�045 0�34 72�4 0�76
RBC h= b = ĥ∗

pt 0�025 0�042 0�75 93�1 0�88 0�042 0�047 0�62 89�1 0�78
RBC h= b = ĥ∗

rmse�2 0�001 0�061 0�36 94�5 1�27 0�002 0�061 0�36 94�5 1�01
RBC h= b = ĥ∗

rmse�6 0�000 0�076 0�23 94�2 1�58 0�000 0�075 0�23 94�2 1�26
RBC h= b = ĥ∗

rmse�M̂rot
0�000 0�078 0�22 93�9 1�64 0�000 0�097 0�14 93�4 1�63

Conventional ĥ∗
pt,rot 0�032 0�036 0�56 76�6 0�76 0�049 0�046 0�31 77�4 0�77

FLCI, M = 2 ĥ∗
rmse�2 0�021 0�043 0�36 94�9 1�00 0�065 0�043 0�36 75�2 0�80

FLCI, M = 6 ĥ∗
rmse�6 0�009 0�054 0�23 96�6 1�25 0�028 0�053 0�23 94�7 1�00

FLCI, M = M̂rot ĥ∗
rmse�M̂rot

0�008 0�056 0�22 95�6 1�29 0�010 0�069 0�14 96�3 1�30

Design 2
RBC h= ĥ∗

pt, b = b̂∗
pt 0�043 0�035 0�77 75�9 0�72 0�129 0�035 0�77 4�6 0�58

RBC h= ĥce, b= b̂ce 0�028 0�040 0�49 87�4 0�83 0�074 0�041 0�44 54�1 0�69
RBC h= b = ĥ∗

pt 0�026 0�041 0�77 90�9 0�87 0�077 0�042 0�77 53�0 0�70
RBC h= b = ĥ∗

rmse�2 0�002 0�061 0�36 94�5 1�27 0�006 0�061 0�36 94�4 1�01
RBC h= b = ĥ∗

rmse�6 0�000 0�076 0�23 94�2 1�58 0�000 0�075 0�23 94�2 1�26
RBC h= b = ĥ∗

rmse�M̂rot
0�001 0�068 0�30 94�0 1�43 0�000 0�083 0�20 93�8 1�38

Conventional ĥ∗
pt,rot 0�032 0�032 0�78 74�4 0�67 0�073 0�040 0�44 53�0 0�66

FLCI, M = 2 ĥ∗
rmse�2 0�020 0�043 0�36 95�1 1�00 0�061 0�043 0�36 78�1 0�80

FLCI, M = 6 ĥ∗
rmse�6 0�009 0�054 0�23 96�6 1�25 0�028 0�053 0�23 94�7 1�00

FLCI, M = M̂rot ĥ∗
rmse�M̂rot

0�013 0�048 0�30 94�3 1�13 0�020 0�059 0�20 94�3 1�10

Design 3
RBC h= ĥ∗

pt, b = b̂∗
pt −0�043 0�035 0�77 75�7 0�72 −0�123 0�035 0�74 9�9 0�59

RBC h= ĥce, b= b̂ce −0�026 0�040 0�49 88�1 0�83 −0�063 0�043 0�43 64�2 0�71
RBC h= b = ĥ∗

pt −0�024 0�042 0�77 90�8 0�87 −0�066 0�043 0�74 60�3 0�71
RBC h= b = ĥ∗

rmse�2 −0�002 0�061 0�36 94�5 1�27 −0�007 0�061 0�36 94�4 1�01
RBC h= b = ĥ∗

rmse�6 0�000 0�076 0�23 94�2 1�58 0�000 0�075 0�23 94�2 1�26
RBC h= b = ĥ∗

rmse�M̂rot
0�000 0�074 0�25 94�2 1�54 0�000 0�092 0�16 93�6 1�54

Conventional ĥ∗
pt,rot −0�032 0�033 0�72 74�7 0�69 −0�065 0�042 0�39 62�0 0�70

FLCI, M = 2 ĥ∗
rmse�2 −0�020 0�043 0�36 95�0 1�00 −0�060 0�043 0�36 78�1 0�80

FLCI, M = 6 ĥ∗
rmse�6 −0�009 0�054 0�23 96�5 1�25 −0�027 0�053 0�23 94�7 1�00

FLCI, M = M̂rot ĥ∗
rmse�M̂rot

−0�010 0�052 0�25 95�6 1�22 −0�013 0�065 0�16 96�1 1�22

Note: Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of CIs (in

%); RL—relative (to optimal FLCI) length. Bandwidth descriptions: ĥ∗
pt —plugin estimate of pointwise MSE optimal bandwidth

(bw); b̂∗
pt —analog for estimate of the bias; ĥce —plugin estimate of coverage error optimal bw; b̂ce —analog for estimate of the

bias; The implementation of Calonico, Cattaneo, and Farrell (2018) is used for all four bws. ĥ∗
rmse�2 , ĥ∗

rmse�6—RMSE optimal

bw, assuming M = 2, and M = 6, respectively. ĥ∗
pt,rot —Fan and Gijbels (1996) rule of thumb; ĥ∗

rmse�M̂rot
—RMSE optimal bw,

using rule-of-thumb for M . 50,000 Monte Carlo draws.
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Figure 5. Average county mortality rate per 100,000 for children aged 5–9 over 1973–83 due to
causes addressed as part of Head Start’s health services (labeled “Mortality rate”) plotted against
poverty rate in 1960 relative to the 300th poorest county. Each point corresponds to an average
for 25 counties. Data are from Ludwig and Miller (2007).

detailed description of this variable. Relative to the dataset used in Ludwig and Miller
(2007), we remove one duplicate entry and one outlier, which after discarding counties
with partially missing data leaves us with 3103 observations, with 294 of them above the
poverty cutoff.

Figure 5 plots the data (to reduce the noise in the outcome variable, we plot bin av-
erages of size 25). To estimate the discontinuity in mortality rates, Ludwig and Miller
(2007) used a uniform kernel16 and consider bandwidths equal to 9, 18, and 36. This
yields point estimates equal to −1�90, −1�20, and −1�11, respectively, which are large ef-
fects given that the average mortality rate for counties not receiving technical assistance
was 2�15 per 100,000. The p-values reported in the paper, based on bootstrapping the
t-statistic (which ignores any potential bias in the estimates), are 0�036, 0�081, and 0�027.
The standard errors for these estimates, obtained using the nearest neighbor method
(with J = 3) are 1�04, 0�70, and 0�52.

These bandwidth choices are optimal in the sense that they minimize the RMSE ex-
pression (21) if M = 0�040, 0�0074, and 0�0014, respectively. Thus, for these bandwidths to
be optimal, one has to be very optimistic about the smoothness of the regression func-
tion. In comparison, the rule of thumb method for estimating M discussed in Section 3.3
yields M̂rot = 0�299, implying h∗

rmse estimate 4�0, and the point estimate −3�17. For these
smoothness parameters, the critical values based on the finite-sample bias-sd ratio are

16Ludwig and Miller (2007) stated that the estimates were obtained using a triangular kernel. However,
due to a bug in the code, the results reported in the paper were actually obtained using a uniform kernel.
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given by 2�165, 2�187, 2�107, and 2�202, respectively, which is very close to the asymptotic
value cv0�95(1/2) = 2�181. The resulting 95% confidence intervals are given by

(−4�143�0�353)� (−2�720�0�323)� (−2�215�−0�013)� and (−6�352�0�010)�

respectively. The p-values based on these estimates are given by 0�100, 0�125, 0�047, and
0�051. These p-values are larger than those reported in the paper, as they take into ac-
count the potential bias of the estimates.

Using a triangular kernel helps to tighten the confidence intervals by a few percent-
age points in length, as predicted by the relative asymptotic efficiency results from Ta-
ble 3, yielding

(−4�138�0�187)� (−2�927�0�052)� (−2�268�−0�095)� and (−5�980�−0�322)�

The underlying optimal bandwidths are given by 11�6, 23�1, 45�8, and 4�9, respectively.
The p-values associated with these estimates are 0�074, 0�059, 0�033, and 0�028, tighten-
ing the p-values based on the uniform kernel.

These results indicate that unless one is very optimistic about the smoothness of the
regression function, the uncertainty associated with the magnitude of the effect of Head
Start assistance on child mortality is much higher than originally reported. This is due
mainly to the relatively large bandwidths used by Ludwig and Miller (2007), which imply
an optimistic bound on the smoothness of the regression function if we assume that
such bandwidths are close to optimal for MSE. Interestingly, while the more conservative
smoothness bound in our benchmark specification leads to much wider CIs, the point
estimate is larger in magnitude, so that one still finds a statistically significant effect at a
5 or 10% level, depending on the kernel.

Appendix A: Proofs of theorems in Section 2

A.1 Proof of Theorem 2.1

Parts (ii) and (iii) follow from part (i) and simple calculations. To prove part (i), note that,
if it did not hold, there would be a bandwidth sequence hn such that

lim inf
n→∞ Mr−1nr/2R

(
T̂ (hn;k)

)
< S(k)rB(k)1−r inf

t
tr−1R̃(t�1)�

By equation (7), the bandwidth sequencehn must satisfy lim infn→∞ hn(nM
2)1/[2(γb−γs)] >

0 and lim supn→∞ hn(nM
2)1/[2(γb−γs)] <∞. Thus, by equation (6),

Mr−1nr/2R
(
T̂ (hn;k)

) = S(k)rB(k)1−r tr−1
n R̃(tn�1)+ o(1)�

where tn = h
γb−γs
n B(k)/(n−1/2S(k)). This contradicts the display above.

A.2 Proof of Theorem 2.2

The second statement (relative efficiency) is immediate from (6). For the first statement

(coverage), fix ε > 0 and let sdn = n−1/2(h∗
rmse)

γsS(k) so that sdn /ŝe(h∗
rmse;k)

p→ 1 uni-
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formly over f ∈ F . Note that, by Theorem 2.1 and the fact that t∗RMSE = √
1/r − 1,

R̃FLCI�α+ε

(
T̂

(
h∗

rmse;k
)) = sdn · cv1−α−ε(

√
1/r − 1)

(
1 + o(1)

)
�

and similarly for R̃FLCI�α−ε(T̂ (h
∗
rmse;k)). Since cv1−α(

√
1/r − 1) is strictly decreasing in

α, it follows that there exists η > 0 such that, with probability approaching 1 uniformly
over f ∈ F ,

RFLCI�α+ε

(
T̂

(
h∗

rmse;k
))

< ŝe
(
T̂

(
h∗

rmse;k
)) · cv1−α(

√
1/r − 1)

< (1 −η)RFLCI�α−ε

(
T̂

(
h∗

rmse;k
))
�

Thus,

lim inf
n

inf
f∈F

P
(
T(f ) ∈ {

T̂
(
h∗

rmse;k
) ± ŝe

(
T̂

(
h∗

rmse;k
)) · cv1−α(

√
1/r − 1)

})
≥ lim inf

n
inf
f∈F

P
(
T(f ) ∈ {

T̂
(
h∗

rmse;k
) ±RFLCI�α+ε

(
T̂

(
h∗

rmse;k
))}) ≥ 1 − α− ε�

and

lim sup
n

inf
f∈F

P
(
T(f ) ∈ {

T̂
(
h∗

rmse;k
) ± ŝe

(
T̂

(
h∗

rmse;k
)) · cv1−α(

√
1/r − 1)

})
≤ lim sup

n
inf
f∈F

P
(
T(f ) ∈ {

T̂
(
h∗

rmse;k
) ±RFLCI�α−ε

(
T̂

(
h∗

rmse;k
))
(1 −η)

}) ≤ 1 − α+ ε�

where the last inequality follows by definition of RFLCI�α−ε(T̂ (h
∗
rmse;k)). Taking ε → 0

gives the result.
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