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Supplementary Material

Supplement to “Simple and honest confidence intervals in
nonparametric regression”

(Quantitative Economics, Vol. 11, No. 1, January 2020, 1–39)

Timothy B. Armstrong
Department of Economics, Yale University

Michal Kolesár
Deparrtment of Economics, Princeton University

These supplemental materials contain further appendices and additional tables and
figures. Appendix B verifies our regularity conditions for some examples, and includes
proofs of the results in Section 3.2. Appendix C discusses two additional applications:
estimation of density at a point, and estimating a bidder valuation in first price auctions.
Appendix D contains additional details for the applications in Section 3. Appendix E
presents a formal analysis of the rule-of-thumb choice ofM proposed in Section 3.3.

Appendix B: Verification of regularity conditions

We verify the main condition (4) in some applications. Appendix B.1 gives sufficient con-
ditions for (4) which do not require convergence of moments. Appendix B.2 shows that
(4) holds in the Gaussian white noise model under a mild extension of conditions in
Donoho and Low (1992). Thus, the results apply to estimating, among other things, a
function or one of its derivatives evaluated at a given point, when the function is ob-
served in the white noise model. By equivalence results in Brown and Low (1996) and
Nussbaum (1996), our results also apply when the function of interest is a density or
conditional mean. Appendix B.3 verifies (4) directly for local polynomial estimators in
the nonparametric regression setting, and Appendix B.4 verifies it for in the fuzzy RD
application.

B.1 Sufficient conditions for main regularity condition

This Appendix gives sufficient conditions for the main condition (4). In particular, we
show that a version of (2) stated in terms of convergence in distribution, rather than
convergence of moments, suffices for (4) for the FLCI and OCI criteria, and for a trun-
cated version of the RMSE criterion. Such conditions are appropriate for functionals that
involve smooth nonlinear transformations, which preserve convergence in distribution
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but may not preserve convergence of moments: we show in Appendix B.1.1 that a ver-
sion of the delta method can be used to verify our conditions in such cases.

As in the main text, we consider a general setup where, for each n (which typically de-
notes sample size), data are drawn from some distribution Pf , which also implicitly de-
pends on n, for some f . Let Fn ⊆ F be a sequence of function classes, and let T :F → R.
Let T̂ = T̂ (h;k) be a sequence of estimators indexed implicitly by n, and by a kernel k
and bandwidth h= hn, which also depends on n. The function class Fn is indexed by a
sequence of constantsMn.

To make concise statements about uniform-in-f convergence, we introduce some
additional notation. For a random variable Wn�f indexed by the sample size n and the

distribution f , we use Wn�fn
d→
fn

L to denote that the distribution of Wn�fn converges in

distribution to L under the sequence fn. When this holds for all sequences fn ∈ Fn for

some sequence of sets Fn, we write Wn�f
d→
Fn

L, and we say that Wn�f converges in distri-

bution to L uniformly over Fn. When the limiting law L is a point mass at some constant

a, we writeWn�fn
p→
fn
a and when the convergence holds for all fn ∈ Fn, we writeWn�f

p→
Fn
a

and say thatWn�f converges in probability to a uniformly over Fn.

We make the following assumption on the estimators T̂ (h;k). This assumption is
similar to the condition (2) in the main text, but uses convergence in distribution rather
than convergence of moments.

Assumption B.1. For some sequences of random variables Zn�h�f and bn�h�f , we have

T̂ (h;k)= T(f )+ hγbMnbn�h�f + hγsn−1/2Zn�h�f �

where, for some sequence of constants b∗
n�h�f and some S(k) and B(k), |bn�h�f −b∗

n�h�f |
p→
Fn

0
and

lim
n→∞ sup

f∈Fn
b∗
n�h�f = B(k)� lim

n→∞ inf
f∈Fn

b∗
n�h�f = −B(k)� Zn�h�f

d→
Fn
N
(
0� S(k)2

)
�

We verify our main condition (4) for a class of performance criteria constructed as
follows. Given a loss function � : R → R+, let r̃�(b0� s) = EZ∼N(0�1)�(b0 + sZ) denote the
risk of an estimator that is normally distributed with standard deviation s and bias b0.
Let

ρ̃�(b� s)= sup
b0∈[−b�b]

r̃�(b0� s)� and R̃��α(b� s)= inf
{
χ : ρ̃�

(
bχ−1� sχ−1)≤ α}

denote its worst-case risk over the all biases bounded by b in absolute value, and the
smallest scaling of the worst-case bias and the standard deviation such that its worst-
case risk is bounded by α. Similarly, for an estimator T̂ of T(f ), let

ρ��χ(T̂ ;Fn)= sup
f∈Fn

Ef �
(
χ−1(T̂ − T(f )))� and R��α(T̂ ;Fn)= inf

{
χ : ρ��χ(T̂ ;Fn)≤ α}�
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Note that if we set �FLCI(x)= I{|x|> 1}, then R�FLCI�α and R̃�FLCI�α yield the performance
criteria RFLCI�α and R̃FLCI�α as defined in the main text. Similarly, R�RMSE�1 and R̃�RMSE�1,
where �RMSE(x)= x2, give the performance criteria RRMSE and R̃RMSE given in the main
text.

To cover performance criteria such as OCI which are constructed from requirements
on multiple loss functions, we use the following construction. Let �1� � � � � �m be loss func-
tions and let α1� � � � �αm be given. Let λ : (0�∞)m → (0�∞) be continuous and homoge-
neous of degree one (i.e., it satisfies λ(ax)= aλ(x) for any a > 0). If m= 1, one can take
λ to be the identity function. Let

R
(
T̂ (h;k))= λ(R�1�α1

(
T̂ (h;k))� � � � �R�m�αm(T̂ (h;k)))�

R̃(b� s)= λ(R�1�α1(b� s)� � � � �R�m�αm(b� s)
)
�

Note that since R̃�j�αj (tb� ts) = t inf{t−1χ : ρ̃�j (tbχ−1� tsχ−1) ≤ αj} = tR̃�j�αj (b� s), R̃ sat-
isfies (5). To show how this generalization covers the OCI criterion ROCI�α�β defined in
the main text, define �+(x) = I{x > 1} and �−(x) = I{x < −1}. Then R�+�α(T̂ ;Fn) is the
smallest value of χ+ such that [T̂ − χ+�∞) is a one-sided CI with coverage 1 − α, since
ρ�+�χ+(T̂ ;Fn) = supf∈Fn Pf (χ

−1+ (T̂ − T(f )) > 1) = supf∈Fn Pf (T̂ − χ+ > T(f)) gives the
probability of not covering T(f ). The worst-case β quantile of excess length of this CI
is the smallest value of χ− such that inff∈Fn Pf (T(f ) − T̂ + χ+ ≤ χ−) ≥ β, or equiva-

lently, ρ�−�χ−−χ+(T̂ ;Fn)= supf∈Fn Pf (T(f )−T̂ > χ−−χ+)= supf∈Fn Pf (T(f )−T̂+χ+ >
χ−) ≤ 1 − β. Thus, the worst case β-quantile of excess length of a one-sided CI based
on T̂ is given by R�+�α(T̂ ;Fn) + R�−�1−β(T̂ ;Fn) = ROCI�α�β(T̂ ). Similarly, R̃�+�α(b� s) +
R̃�−�1−β(b� s) gives the criterion R̃OCI�α�β(b� s) as defined in the main text.

We make the following assumption on each of the loss functions �.

Assumption B.2. (i) � : R → [0�∞) is bounded, weakly decreasing on (−∞�0) and
weakly increasing on (0�∞), and continuous almost everywhere, and there does not exist
a constant function that is almost everywhere equal to �.

(ii) b̃ 
→ r̃�(b̃� s) is quasiconvex.

For symmetric loss functions, part (ii) follows from part (i) by Anderson’s lemma.
It is immediate that the loss functions �+, �−, and �FLCI satisfy this assumption. The

loss �RMSE, on the other hand, does not satisfy this assumption because it is unbounded.
However, note that, for any c > 0, Assumption B.2 holds for the loss function �c(x) =
min{x2� c2}. Since limc→∞R�c�1(T̂ �Fn) = R�RMSE�1(T̂ �Fn), and limc→∞ R̃�c�1(b� s) =
R̃�RMSE�1(b� s), we may interpret this criterion as a truncated version of RMSE.

Theorem B.1. Let hn be a sequence with

0< lim inf
n

hn
(
nM2)1/[2(γb−γs)] ≤ lim sup

n
hn
(
nM2)1/[2(γb−γs)] <∞� (S1)

Suppose that T̂ (h;k) satisfies Assumption B.1 for the sequence h= hn. LetR(T̂ (h;k)) and
R̃(b� s) be given above, where �1� � � � � �m are loss functions satisfying Assumption B.2, and
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suppose that R̃�j�αj (b� s) > 0 for all b ≥ 0 and s > 0 for j = 1� � � � �m. Then (4) holds for

R and R̃. Furthermore, if bn�h�f = b∗
n�h�f , EfZn�h�f = 0 and EfZ2

n�h�f → S(k)2 uniformly

over f ∈ Fn, then supf∈F Ef (T̂ (h;k) − T(f )) = − inff∈F Ef (T̂ (h;k)− T(f ))(1 + o(1)) =
hγbB(k)(1 +o(1)), and sdf (T̂ (h;k))= hγsn−1/2S(k)(1 +o(1)) uniformly over f ∈ Fn, and
(4) holds with R and R̃ given by RRMSE and R̃RMSE.

The theorem implies that if Assumption B.1 holds for bandwidth sequences hn satis-
fying equation (S1), minimizing the criterion limc→∞ limn→∞ nr/2Mr−1R�c (T̂ (h;k)) dis-
cussed in footnote 4 in the main text, where �c is the truncated squared error loss defined
above, is equivalent to minimizing the asymptotic RMSE:

lim
c→∞ lim

n→∞n
r/2Mr−1R�c

(
T̂ (h;k))= S(k)rB(k)1−r lim

c→∞ t
r−1R̃�c (t�1)

= S(k)rB(k)1−r tr−1R̃�RMSE�1(t�1)�

Thus, under this criterion, the optimal bandwidth is given by h∗
rmse.

To prove Theorem B.1, we first note some properties of loss and risk functions in
our setup. Note that, under Assumption B.2, E�(Wn)→EW for any sequence of random

variables Wn
d→ W such that W is continuously distributed (this follows from the con-

tinuous mapping theorem and the fact that � is bounded). This also implies that r̃�(b̃� s)

is continuous in b̃ and s (since snZ + b̃n
d→ sZ + b for Z ∼N(0�1) and b̃n → b̃, sn → s).

Also, by part (ii), ρ̃�(χ−1b�χ−1s)= max
b̃∈{−b�b}EZ∼N(0�1)�(χ−1(Zs+ b)), which is contin-

uous in (b� s�χ), and is strictly decreasing in χ (since �(χ−1t) is weakly decreasing in χ
for each t, and, for any 0< χ< χ̃, there is a positive measure set of values of t such that
�(χ−1t) > �(χ̃−1t) for t on this set). This implies that R̃��α(b� s), taken as a function of α, is
the inverse of the strictly increasing function χ 
→ ρ̃�(bχ

−1� sχ−1). Since convergence of
a sequence of strictly increasing functions to a continuous, strictly increasing function
implies convergence of their inverse, this implies that R̃��α(b� s) is continuous in (b� s).

We will use the following lemma.

Lemma B.1. Let b, s be given. Suppose that � satisfies Assumption B.2. Suppose that,
for any sequence fn, there exists b̃ ∈ [−b�b] and a subsequence along which an(T̂ −
T(fn))

d→
fn
N(b̃� s2). Furthermore, suppose that there exists a sequence fn such that

an(T̂ − T(fn)) d→
fn
N(b� s2), and a sequence fn such that an(T̂ − T(fn)) d→

fn
N(−b� s2). Then

limn→∞ ρ��χ/an(T̂ ;Fn)= ρ̃�(χ−1b�χ−1s) and limn→∞ anR��α(T̂ ;Fn)= R̃��α(b� s).

Proof. To show lim supn ρ��χ/an(T̂ ;Fn) ≤ ρ̃�(χ
−1b�χ−1s) it suffices to show that, for

every sequence fn, there is a subsequence along which Efn�(anχ
−1(T̂ − T(fn))) con-

verges to a constant that is no greater than ρ̃�(χ−1b�χ−1s). By assumption, there exists a

b̃ ∈ [−b�b] and a subsequence along which an(T̂ − T(fn)) d→
fn
N(b̃� s2), which, under the

assumptions on the loss function, implies Efn�(anχ
−1(T̂ − T(fn)))→ r̃�(χ

−1b̃�χ−1s) ≤
ρ�(χ

−1b�χ−1s) along this subsequence. To show that this lim sup is a limit and the in-

equality is an equality, note that, letting fn be a sequence such that an(T̂ − T(fn))
d→
fn
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N(b� s2), we have ρ��χ/an(T̂ ;Fn)≥Efn�(χ−1(T̂ −T(fn)))→ r̃�(χ
−1b�χ−1s). Similarly, tak-

ing a sequence for which the limiting distribution isN(−b� s2), we have lim infn ρ��χ/an(T̂ ;
Fn)≥ r̃�(−χ−1b�χ−1s). Noting that, under Assumption B.2, ρ�(χ−1b�χ−1s) is equal to ei-
ther r̃�(χ−1b̃�χ−1s) or r̃�(−bχ−1b̃�χ−1s) (or both), it now follows that lim infn ρ��χ/an(T̂ :
Fn)≥ ρ̃�(χ−1b�χ−1s). Thus, limn→∞ ρ��χ/an(T̂ : Fn)= ρ̃�(χ−1b�χ−1s).

To derive the limit ofR��α(T̂ ;Fn), first note that ρ��χ(T̂ ;Fn) is weakly decreasing in χ
for any χ > 0 for each n, since �(χ−1t) is weakly decreasing in χ for all t under Assump-
tion B.2. Also, ρ̃�(χ−1b�χ−1s) is strictly decreasing in χ. Thus, for χ> R̃��α(b� s), we have
ρ̃�(χ

−1b�χ−1s) < α so that, for large enough n, we have ρ��χ/an(T̂ ;Fn) < α for all χ̃ ≥ χ,
which impliesR��α(T̂ ;Fn)≤ χ/an. Similarly, for χ< R̃��α(b� s), we have ρ̃�(χ−1b�χ−1s) >

α so that, for large enough n, we have ρ��χ/an(T̂ ;Fn) > α for all χ̃ ≤ χ, which implies
R��α(T̂ ;Fn) ≥ χ/an. Thus, for any η > 0, we have, for large enough n, R̃��α(b� s) − η ≤
anR��α(T̂ ;Fn)≤ R̃��α(b� s)+η. It follows that anR��α(T̂ ;Fn)→ R̃��α(b� s).

We are now ready to prove Theorem B.1.

Proof of Theorem B.1. The last statement (regarding convergence of standard devia-
tion and worst-case bias and RMSE) follows immediately from the assumptions. To show
(4) for R and R̃ constructed from loss functions �1� � � � � �m satisfying Assumption B.2, it
suffices to show that, for every subsequence, there exists a further subsequence along
which R(T̂ (h;k)) = R̃(hγbMB(k)�hγsn−1/2S(k))(1 + o(1)). By the conditions on hn, we
can choose this subsequence so that hn(nM2

n)
1/[2(γb−γs)] → h∞ for some h∞ > 0.

Along this subsequence, we have

h
γb
n Mn = hγb∞

(
nM2

n

)−γb/[2(γb−γs)]Mn
(
1 + o(1))= hγb∞M1−r

n n−r/2(1 + o(1))
and

h
γs
n n

−1/2 = hγs∞
(
nM2

n

)−γs/[2(γb−γs)]n−1/2(1 + o(1))= hγs∞n−r/2M1−r
n

(
1 + o(1))�

Thus, on this subsequence, the conditions of Lemma B.1 hold with an =Mr−1
n nr/2, b =

h
γb∞B(k) and s = hγs∞S(k), so that, for each j = 1� � � � �m,

Mr−1
n nr/2R�j�αj

(
T̂ (hn;k);Fn

)→ R̃�j�αj
(
h
γb∞B(k)�hγs∞S(k)

)
�

Also, on this subsequence, using homogeneity and continuity of R̃��α,

Mr−1
n nr/2R̃�j�αj

(
h
γb
n MnB(k)�h

γs
n n

−1/2S(k)
)

= R̃�j�αj
(
Mr−1
n nr/2h

γb
n MnB(k)�M

r−1
n nr/2h

γs
n n

−1/2S(k)
)→ R̃�j�αj

(
h
γb∞B(k)�hγs∞S(k)

)
�

Combining this with the previous display and using homogeneity of the function λ, it
follows that (4) holds along this subsequence, which gives the result.
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B.1.1 Delta method Let Fn ⊆ F be a sequence of function classes, and let L : F →Rm.
We are interested in a parameter T(f ) = φ(L(f )), where φ : Rm → R. To cover cases
where φ may be nonlinear, we assume that Fn is localized around a particular value L∗
in the range of L:

L(fn)→L∗ for all sequences fn ∈ Fn�

This localization of the parameter space plays a similar role to local asymptotic effi-
ciency results in parametric and regular semiparametric settings (see, e.g., Theorem 8.11
in van der Vaart (1998)).

We now show that, if L̂(h;k) satisfies a multivariate version of Assumption B.1 and
φ is smooth, then Assumption B.1 holds for T̂ (h;k) = φ(L̂(h;k)), with B(k) and S(k)
defined below. This is essentially a version of the delta method applied to our setup.

Assumption B.3. The functionφ is continuously differentiable atL∗, with Jacobian ma-
trix φ′(L) and, for some sequences of random vectors Zn�h�f and bn�h�f , we have

L̂(h;k)=L(f)+ hγbMnbn�h�f + hγsn−1/2Zn�h�f �

where, for a uniformly bounded sequence of constant vectors b∗
n�h�f ∈ Rm and some Σ(k)

and B(k), |bn�h�f − b∗
n�h�f |

p→
Fn

0 and

lim
n→∞ sup

f∈Fn
φ′(L∗)b∗

n�h�f = B(k)� lim
n→∞ inf

f∈Fn
φ′(L∗)b∗

n�h�f = −B(k)�

Zn�h�f
d→
Fn
N
(
0�Σ(k)

)
�

Theorem B.2. Suppose that Assumption B.3 holds, and put S(k)2 =φ′(L∗)Σ(k)φ′(L∗)′.
Then, if hγbMn → 0 and hγsn−1/2 → 0, Assumption B.1 holds for T̂ (h;k)=φ(L̂(h;k)).

Proof. First, note that the conditions on the bandwidth imply L̂
p→
Fn
L∗. Then, by a Tay-

lor expansion, for some L̃ = L̃(L̂�L(f )) on the line segment between L̂ and L(f), we
have

φ(L̂)−φ(L(f))=φ′(L̃)
[
L̂−L(f)]

=φ′(L̃)
[
hγbMnbn�h�f + hγsn−1/2Zn�h�f

]
= hγbMnb̃n�h�f + hγsn−1/2Z̃n�h�f �

where Z̃n�h�f = φ′(L̃)Zn�h�f
d→
Fn
N(0� S(k)2) by the continuous mapping theorem and

b̃n�h�f = φ′(L̃)bn�h�f satisfies |b̃n�h�f − b̃∗
n�h�f | = |φ′(L̃)bn�h�f − φ′(L∗)b∗

n�h�f |
p→
Fn

0 where

b̃∗
n�h�f = φ′(L∗)b∗

n�h�f . Thus, Assumption B.1 holds with b̃n�h�f playing the role of bn�h�f ,

and b̃∗
n�h�f playing the role of b∗

n�h�f .
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If the function class Fn places separate restrictions on each mapping x 
→ fj(x) for
j = 1� � � � �m, then the set of limits of the biases b∗

n�h�f will take the form [−B̄1(k)� B̄1(k)]×
· · · × [−B̄m(k)� B̄m(k)]. In this case, the limiting worst-case bias takes the form

B(k)=
m∑
j=1

∣∣φ′
j

(
L∗)B̄j(k)∣∣� (S2)

Note that, while Theorem B.2 shows that Assumption B.1 is preserved under smooth
nonlinear transformations, such a statement does not hold for a version of this assump-
tion stated in terms of moments, rather than weak convergence. For such a result, one
needs to either use truncation or place stronger conditions on the class of estimators.
This is analogous to parametric and regular semiparametric settings such as instrumen-
tal variables, in which the asymptotic variance may only be finite if defined in terms of
convergence in distribution.

B.2 Gaussian white noise model

The approximation (4) holds as an exact equality (i.e., with the o(1) term equal to zero)
for the RMSE, OCI, and FLCI criteria in the Gaussian white noise model whenever the
problem renormalizes in the sense of Donoho and Low (1992). We show this below, using
notation taken mostly from that paper. Consider a Gaussian white noise model

Y(dt)= (Kf)(t)dt + (σ/√n)W (dt)� t ∈ Rd�

We are interested in estimating the linear functional T(f ) where f is known to be in the
class F = {f : J2(f ) ≤ C} where J2(f ) : F → R and C ∈ R are given. Let Ua�b denote the
renormalization operator Ua�bf (t) = af (bt). Suppose that T , J2, and the inner product
are homogeneous: T(Ua�bf )= abs0T(f ), J2(Ua�bf )= abs2J2(f ), and 〈KUa1�bf�KUa2�bg〉 =
a1a2b

2s1〈Kf�Kg〉. These are the same conditions as in Donoho and Low (1992) except
for the last one, which is slightly stronger since it must hold for the inner product rather
than just the norm.

Consider the class of linear estimators based on a given kernel k:

T̂ (h;k)= hsh
∫ (
Kk(·/h))(t)dY(t)= hsh

∫
[KU1�h−1k](t)dY(t)

for some exponent sh to be determined below. The worst-case bias of this estimator is

bias
(
T̂ (h;k))= sup

J2(f )≤C

∣∣T(f )− hsh 〈Kk(·/h)�Kf 〉∣∣�
Note that J2(f ) ≤ C iff. f = Uhs2 �h−1 f̃ for some f̃ with J2(f̃ ) = J2(Uh−s2 �hf ) = J2(f ) ≤ C.
This gives

bias
(
T̂ (h;k))= sup

J2(f )≤C

∣∣T(Uhs2 �h−1f )− hsh 〈Kk(·/h)�KUhs2 �h−1f
〉∣∣

= sup
J2(f )≤C

∣∣hs2−s0T(f )− hsh+s2−2s1
〈
Kk(·)�Kf 〉∣∣�
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If we set sh = −s0 + 2s1 so that s2 − s0 = sh+ s2 − 2s1, the problem will renormalize, giving

bias
(
T̂ (h;k))= hs2−s0 bias

(
T̂ (1;k))�

The variance does not depend on f and is given by

varf
(
T̂ (h;k))= h2sh

(
σ2/n

)〈KU1�h−1k�KU1�h−1k〉 = h2sh−2s1
(
σ2/n

)〈Kk�Kk〉
= h−2s0+2s1

(
σ2/n

)〈Kk�Kk〉�
Thus, equation (2) holds with γb = s2 − s0, γs = s1 − s0,

B(k)= bias
(
T̂ (1;k))= sup

J2(f )≤C

∣∣T(f )− 〈Kk�Kf 〉∣∣�
and S(k) = σ‖Kk‖ and with both o(1) terms equal to zero. This implies that (4) holds
with the o(1) term equal to zero, since the estimator is normally distributed.

B.3 Local polynomial estimators in fixed design regression

This Appendix proves Theorem 3.1 and equation (15) in Section 3.2.1.
We begin by deriving the worst-case bias of a general linear estimator

T̂ =
n∑
i=1

w(xi)yi

under Hölder and Taylor classes. For both FT�p(M) and FHöl�p(M), the worst-case
bias is infinite unless

∑n
i=1w(xi) = 1 and

∑n
i=1w(xi)x

j = 0 for j = 1� � � � �p − 1, so
let us assume that w(·) satisfies these conditions. For f ∈ FT�p(M), we can write
f (x) =∑p−1

j=0 x
jf (j)(0)/j! + r(x) with |r(x)| ≤M|x|p/p!. As noted by Sacks and Ylvisaker

(1978), this gives the bias under f as
∑n
i=1w(xi)r(xi), which is maximized at r(x) =

M sign(w(x))|x|p/p!, giving biasFT�p(T̂ )=M∑n
i=1 |w(xi)x|p/p!.

For f ∈ FHöl�p(M), the (p−1)th derivative is Lipschitz, and hence absolutely contin-
uous. Furthermore, since

∑n
i=1w(xi)= 1 and

∑n
i=1w(xi)x

j = 0, the bias at f is the same

as the bias at x 
→ f (x)−∑p−1
j=0 x

jf (j)(0)/j!, so we can assume without loss of generality

that f (0)= f ′(0)= · · · = f (p−1)(0). This allows us to apply the following lemma.

Lemma B.2. Let ν be a finite measure on R (with the Lebesgue σ-algebra) with finite sup-
port and let w : R → R be a bounded measurable function with finite support. Let f be
p − 1 times differentiable with bounded pth derivative on a set of Lebesgue measure 1
and with f (0)= f ′(0)= f ′′(0)= · · · = f (p−1)(0)= 0. Then∫ ∞

0
w(x)f (x)dν(x)=

∫ ∞

s=0
w̄p�ν(s)f

(p)(s)ds

and ∫ 0

−∞
w(x)f (x)dν(x)=

∫ 0

s=−∞
w̄p�ν(s)f

(p)(s)ds�
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where

w̄p�ν(s)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ ∞

x=s
w(x)(x− s)p−1

(p− 1)! dν(x)� s ≥ 0�∫ s

x=−∞
w(x)(s− x)p−1(−1)p

(p− 1)! dν(x)� s < 0�

Proof. By the fundamental theorem of calculus and the fact that the first p− 1 deriva-
tives at 0 are 0, we have

f (x)=
∫ x

t1=0

∫ t1

t2=0
· · ·
∫ tp−1

tp=0
f (p)(tp)dtp · · · dt2 dt1 =

∫ x

s=0

f (p)(s)(x− s)p−1

(p− 1)! ds�

Thus, by Fubini’s theorem,∫ ∞

x=0
w(x)f (x)dν(x)=

∫ ∞

x=0
w(x)

∫ x

s=0

f (p)(s)(x− s)p−1

(p− 1)! dsdν(x)

=
∫ ∞

s=0
f (p)(s)

∫ ∞

x=s
w(x)(x− s)p−1

(p− 1)! dν(x)ds

which gives the first display in the lemma. The second display in the lemma follows from
applying the first display with f (−x), w(−x) and ν(−x) playing the roles of f (x), w(x)
and ν(x).

Applying Lemma B.2 with ν given by the counting measure that places mass 1
on each of the xi’s (ν(A) = #{i : xi ∈ A}), it follows that the bias under f is given by∫
w(x)f (x)dν = ∫ w̄p�ν(s)f (p)(s)ds. This is maximized over f ∈ FHöl�p(M) by taking

f (p)(s)=M sign(w̄p�ν(s)), which gives biasFHöl�p(M)(T̂ )=M ∫ |w̄p�ν(s)|ds.
We collect these results in the following theorem.

Theorem B.3. For a linear estimator T̂ =∑n
i=1w(xi)yi such that

∑n
i=1w(xi) = 1 and∑n

i=1w(xi)x
j = 0 for j = 1� � � � �p− 1,

biasFT�p(M)(T̂ )=M
n∑
i=1

∣∣w(xi)x∣∣p/p! and biasFHöl�p(M)(T̂ )=M
∫ ∣∣w̄p�ν(s)∣∣ds�

where w̄p�ν(s) is as defined in Lemma B.2 with ν given by the counting measure that places
mass 1 on each of the xi ’s.

Note that, for t > 0 and any q,∫ ∞

s=t
wq�ν(s)ds =

∫ ∞

s=t

∫ ∞

x=s
w(x)(x− s)q−1

(q− 1)! dν(x)ds

=
∫ ∞

x=t

∫ x

s=t
w(x)(x− s)q−1

(q− 1)! dsdν(x)
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=
∫ ∞

x=t
w(x)

[−(x− s)q
q!

]x
s=t

dν(x)

=
∫ ∞

x=t
w(x)(x− t)q

q! dν(x)= w̄q+1�ν(t)� (S3)

Let us define w̄0�ν(x)=w(x), so that this holds for q= 0 as well.
For the boundary case with p= 2, the bias is given by (using the fact that the support

of ν is contained in [0�∞))∫ ∞

0
w(x)f (x)dν(x)=

∫ ∞

0
w̄2�ν(x)f

(2)(x)dx� where w̄2�ν(s)=
∫ ∞

x=s
w(x)(x− s)dν(x)�

For a local linear estimator based on a kernel with nonnegative weights and support
[−A�A], the equivalent kernel w(x) is positive at x = 0 and negative at x = A and
changes signs once. From (S3), it follows that, for some 0 ≤ b≤A, w̄1�ν(x) is negative for
x > b and nonnegative for x < b. Applying (S3) again, this also holds for w̄2�ν(x). Thus,
if w̄2�ν(s̃) were strictly positive for any s̃ > 0, we would have to have w̄2�ν(s) nonnegative
for s ∈ [0� s̃]. Since w̄2�ν(0)=∑n

i=1w(xi)xi = 0, we have

0< w̄2�ν(0)− w̄2�ν(s̃)= −
∫ s̃

x=0
w(x)(x− s̃)dν(x)

which implies that
∫ s
x=s w(x)dν(x) < 0 for some 0 ≤ s < s < s̃. Since w(x) is positive for

small enough x and changes signs only once, this means that, for some s∗ ≤ s̃, we have
w(x)≥ 0 for 0 ≤ x≤ s∗ and

∫ s∗
x=0w(x)dν(x) > 0. But this is a contradiction, since it means

that w̄2�ν(s
∗) = −∫ s∗0 w(x)(x − s∗)dν(x) < 0. Thus, w̄2�ν(s) is weakly negative for all s,

which implies that the bias is maximized at f (x)= −(M/2)x2.
We now provide a proof for Theorem 3.1 by proving the result for a more general

sequence of estimators of the form

T̂ = 1
nh

n∑
i=1

k̃n(xi/h)yi�

where k̃n satisfies 1
nh

∑n
i=1 k̃n(xi/h)= 1 and 1

nh

∑n
i=1 k̃n(xi/h)x

j
i = 0 for j = 1� � � � �p− 1.

We further assume the following.

Assumption B.4. The support and magnitude of k̃n are bounded uniformly over n, and,
for some k̃, supu∈R |k̃n(u)− k̃(u)| → 0.

Theorem B.4. Suppose Assumption 3.1 and Assumption B.4 hold. Then for any
bandwidth sequence hn such that nhn → ∞, lim infn hn(nM2)1/(2p+1) > 0, and
lim supn hn(nM

2)1/(2p+1) <∞,

biasFT�p(M)(T̂ )= Mh
p
n

p! B̃T
p(k̃)

(
1 + o(1))� B̃T

p(k̃)= d
∫
X

∣∣upk̃(u)∣∣du
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and

biasFHöl�p(M)(T̂ )= Mh
p
n

p! B̃Höl
p (k̃)

(
1 + o(1))�

B̃Höl
p (k̃)= dp

∫ ∞

t=0

∣∣∣∣∫
u∈X �|u|≥t

k̃(u)
(|u| − t)p−1

du

∣∣∣∣dt�
If Assumption 3.2 holds as well, then

sd(T̂ )= h−1/2
n n−1/2S(k̃)

(
1 + o(1))�

where S(k̃) = d1/2σ(0)
√∫

X k̃(u)
2 du, and (4) holds for the RMSE, FLCI, and OCI perfor-

mance criteria with γb = p and γs = −1/2.

Proof. LetKs denote the bound on the support of k̃n, andKm denote the bound on the
magnitude of k̃n.

The first result for Taylor classes follows immediately since

biasFT�p(M)(T̂ )= M

p!h
p 1
nh

n∑
i=1

∣∣k̃n(xi/h)∣∣|xi/h|p =
(
M

p!h
pd

∫
X

∣∣k̃(u)∣∣|u|p du
)(

1 + o(1))�
where the first equality follows from Theorem B.3 and the second equality follows from
the fact that for any function g(u) that is bounded over u in compact sets,∣∣∣∣∣ 1

nh

n∑
i=1

k̃n(xi/h)g(xi/h)− d
∫
X
k(u)g(u)du

∣∣∣∣∣
≤
∣∣∣∣∣ 1
nh

n∑
i=1

k̃(xi/h)g(xi/h)− d
∫
X
k(u)g(u)du

∣∣∣∣∣
+ 1
nh

n∑
i=1

∣∣k̃n(xi/h)g(xi/h)− k̃(xi/h)g(xi/h)
∣∣

≤ o(1)+ 1
nh

n∑
i=1

I
{|xi/h| ≤Ks

}
sup

u∈[−Ks�Ks]

∣∣g(u)∣∣ · sup
u∈[−Ks�Ks]

∣∣k̃n(u)− k̃(u)∣∣
= o(1)� (S4)

where the second line follows by triangle inequality, the third line by Assumption 3.1
applied to the first summand (with x 
→ k̃(x)g(x) playing the role of g(·) in Assump-
tion 3.1), and the last equality follows by Assumption 3.1 applied to the first term, and
Assumption B.4 applied to the last term.

For Hölder classes,

biasFHöl�p(M)

(
T̂ (h; k̃n)

)=M ∫ ∣∣w̄p�ν(s)∣∣ds



12 Armstrong and Kolesár Supplementary Material

by Theorem B.3 where w̄p�ν is as defined in that theorem with w(x) = 1
nh k̃n(x/h). We

have, for s > 0,

w̄p�ν(s)=
∫
x≥s

1
nh
k̃n(x/h)(x− s)p−1

(p− 1)! dν(x)= 1
nh

n∑
i=1

k̃n(xi/h)(xi − s)p−1

(p− 1)! I{xi ≥ s}

= hp−1 1
nh

n∑
i=1

k̃n(xi/h)(xi/h− s/h)p−1

(p− 1)! I{xi/h≥ s/h}�

Thus, by equation (S4), for t ≥ 0, h−(p−1)w̄p�ν(t · h)→ d · w̄p(t), where

w̄p(t)=
∫
u≥t

k̃(u)(u− t)p−1

(p− 1)! du

(i.e., w̄p(t) denotes w̄p�ν(t) when w= k̃ and ν is the Lebesgue measure). Furthermore,

∣∣h−(p−1)w̄p�ν(t · h)
∣∣≤ [Km

nh

n∑
i=1

I{0 ≤ xi/h≤Ks}(xi/h)p−1

(p− 1)!

]
· I{t ≤Ks} ≤K1 · I{t ≤Ks}�

where the last inequality holds for someK1 by Assumption 3.1. Thus,

M

∫
s≥0

∣∣w̄p�ν(s)∣∣ds = hpM
∫
t≥0

∣∣h−(p−1)w̄p�ν(t · h)
∣∣dt = hpM[d ∫

t≥0

∣∣w̄p(t)∣∣dt](1 + o(1))
by the dominated convergence theorem. Combining this with a symmetric argument for
t ≤ 0 gives the result.

For the second part of the theorem, the variance of T̂ does not depend on f , and
equals

var(T̂ )= 1

n2h2

n∑
i=1

k̃n(xi/h)
2σ2(xi)= 1

nh
S̃2
n� where S̃2

n = 1
nh

n∑
i=1

k̃n(xi/h)
2σ2(xi)�

By the triangle inequality,∣∣∣∣S̃2
n − dσ2(0)

∫
X
k̃(u)2 du

∣∣∣∣
≤ sup

|x|≤hKs

∣∣k̃n(x/h)2σ2(x)− k̃(x/h)2σ2(0)
∣∣ · 1
nh

n∑
i=1

I
{|xi/h| ≤Ks

}

+ σ2(0)

∣∣∣∣∣ 1
nh

n∑
i=1

k̃(xi/h)
2 − d

∫
X
k̃(u)2 du

∣∣∣∣∣= o(1)�
where the equality follows by Assumption 3.1 applied to the second summand and the
second term of the first summand, and Assumption 3.2 and Assumption B.4 applied to
the first term of the first summand. This gives the second display in the theorem.
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To show the last statement (verification of equation (4)), we note that the above ar-
guments show that Assumption B.1 holds with bn�h�f = b∗

n�h�f equal to the bias of the

estimator and EfZ2
n�h�f → S(k) uniformly over F , so long as we can verify the uniform

central limit theorem for Zn�h�f = (nh)1/2[T̂ − Ef T̂ ] = (nh)−1/2∑n
i=1 k̃n(xi/h)ui. By the

conditions on the errors ui, this follows from the Lindeberg central limit theorem so
long as maxi[(nh)−2kn(xi/u)]2/(nh)−1 = maxi nhkn(xi/u)/(nh)→ 0. By uniform bound-
edness of the kernel kn, this holds so long as nh→ ∞.

The local polynomial estimator takes the form given above with

k̃n(u)= e′1
(

1
nh

n∑
i=1

k(xi/h)mq(xi/h)mq(xi/h)
′
)−1

mq(u)k(u)�

If k is bounded with bounded support, then under Assumption 3.1 this sequence satis-
fies Assumption B.4 with

k̃(u)= e′1
(
d

∫
X
k(u)mq(u)mq(u)

′ du
)−1

mq(u)k(u)= d−1k∗
q(u)�

where k∗
q is the equivalent kernel defined in equation (14). Theorem 3.1 and equation

(15) then follow immediately by applying Theorem B.4 with this choice of k̃n and k̃.

B.4 Fuzzy RD

We consider the sequence of parameter spaces Fn ⊆ F(M1�M2), such that L(fn)→ L∗
for all sequences fn ∈ Fn. Here, L∗ ∈ R2 is a fixed vector such that L∗

2 �= 0. Let M =M1,
and suppose Assumption 3.1 holds (since the ratio M1/M2 is fixed, it suffices to verify
the assumption for M =M1). Assume also that the random variables {ui}ni=1 are inde-
pendent with Eui = 0, var(ui) = Ω(xi), and E(u2

1i + u2
2i)

1+η ≤ 1/η for some η > 0, and
that the covariance function Ω(x) is left and right continuous at x = 0 with Ω+(0) =
limx↓0Ω(x) > 0 and Ω−(0) = limx↑0Ω(x) > 0. It then follows by adapting arguments
in the proof of Theorem 3.1 that for any bandwidth sequence hn with nhn → ∞ and
0< lim infn hn(nM2)1/(2p+1) < lim supn hn(nM

2)1/(2p+1) <∞,

L̂(h;k)=L(f)+ h2

(
M1b

∗
n�h�f�1

M2b
∗
n�h�f�2

)
+ 1√

nh
Zn�h�f �

where Zn�h�f converges in distribution toN(0�Σ(k)) uniformly over Fn with

Σ(k)=
∫ ∞

0
k∗

1(u)
2 du · (Ω+(0)+Ω−(0)

)
/d�

and b∗
n�h�f�j =∑n

i=1(w+(xi)+w−(xi))fj(xi)/Mj for j = 1�2, and the limits of these biases

lie in the set [B̃(k)�−B̃(k)]2, where B̃(k)= ∫∞
0 u2k∗

1(u)du. From (S2), we obtain that As-
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sumption B.3 holds with γb = 2, γs = −1/2, and

B(k)= −(∣∣φ′
1
(
L∗)∣∣+M2/M1

∣∣φ′
2
(
L∗)∣∣) ∫ ∞

0
u2k∗

1(u)du

= −1 +M2/M1
∣∣L∗

1/L
∗
2

∣∣∣∣L∗
2

∣∣
∫ ∞

0
u2k∗

1(u)du�

Thus, by Theorem B.2, condition (4) holds for FLCI, OCI, and truncated RMSE with

S(k)2 =

∫ ∞

0
k∗

1(u)
2 du

d

ς2+
(
0;L∗

1/L
∗
2
)+ ς2+

(
0;L∗

1/L
∗
2
)(

L∗
2
)2 �

where ς2(x;T) = (1�−T)Ω(x)(1�−T)′, ς2+(0;T) = limx↓0 ς
2(x;T), and ς2−(0;T) =

limx↑0 ς
2(x;T).

The expressions for avar(T̂ (h;k)) and abias(T̂ (h;k)) in the main text then follow
by observing that

∑n
i=1 w̃

n(xi;h�k)2φ′(L(f ))Ω(xi)φ′(L(f ))′ = S(k)/nh(1 + o(1)), and
(|φ′

1(L(f ))|M1 + |φ′
2(L(f ))|M2)

∑n
i=1 w̃

n(xi;h�k)/2 =M1h
2B(k)(1 + o(1)).

Appendix C: Additional applications

This Appendix considers additional applications not considered in the main text, us-
ing the sufficient conditions from Appendix B.1. Appendix C.1 verifies our conditions in
the density setting, and Appendix C.2 applies these results to a problem in the auctions
literature.

C.1 Density estimation

Consider estimating a density at a point, which we normalize to 0. We observe {Xi}ni=1
i.i.d. with density f on the intersection of X and some neighborhood of 0, where
either X = R or X = [0�∞). We are interested in T(f ) = f (0). Let T̂ = T̂ (h;k) =
1
nh

∑n
i=1 k(Xi/h) be a kernel estimate where k is a kernel with

∫
X k(u)du = 1 and fi-

nite support. Let F = F(M) denote the Hölder class FHöl�p(M) or Taylor class FT�p(M)

of order p, as defined in the paper. Assume that the kernel k satisfies
∫
X u

jk(u)du = 0
for j = 1� � � � �p−1. Let f ∗ > 0 be given, and let an be a sequence converging to zero more
slowly than any polynomial. Let F(M� [−a�a]) denote the class for which the Hölder or
Taylor condition is imposed only for x ∈ [−a�a] ∩X , and let Fn = F(Mn; [−an�an])∩ {f :
|f (x)− f ∗| ≤ an all x ∈ [−an�an] ∩X � f (x)≥ 0 all x�

∫
f (x)dx= 1}.

We show that (4) holds for the performance criteria considered in the main text by
verifying Assumption B.1. This gives a generalization of the results in Sacks and Ylvisaker
(1981), who consider RMSE optimal kernels in Taylor classes, to performance crite-
ria other than RMSE, and to cover Hölder classes in addition to Taylor classes. Note
that Fn localizes the parameter space around a density with T(f ) = f ∗, similar to Ap-
pendix B.1.1. This differs slightly from Sacks and Ylvisaker (1981), who consider a fixed
parameter space F which only places an upper bound f ∗ on f (0). However, the result
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given below is essentially the same, since the worst-case risk over this class is taken in a
shrinking neighborhood of f ∗ (i.e., the worst-case risk is the same as in our setup). Also,
note that we only impose the Hölder or Taylor condition in the set [−an�an], although
we would obtain the same result if we did not impose this condition so long as Mn in-
creases slowly enough so that the function can be extended to satisfy the smoothness
condition outside of [−an�an].

Theorem C.1. For any bandwidth sequence with hn → 0, hpnMn → 0, nhn → ∞, and

0< lim inf
n

hn
(
nM2)1/(2p−1) ≤ lim sup

n
hn
(
nM2)1/(2p−1)

<∞�

the kernel density estimator satisfies Assumption B.1 with S(k) =
√
f ∗ ∫

X k(u)
2 du, B(k)

given in Theorem 3.1 and with γb = p and γs = −1/2. In particular, (4) holds for the
FLCI and OCI criteria. Furthermore, we can take bn�h�f = b∗

n�h�f to be nonrandom, and

EfZn�h�f = 0 and EfZ2
n�h�f → S(k) uniformly over Fn, so that (4) holds for the RMSE cri-

terion.

Proof. We have

T̂ (h;k)= T(f )+ hpMbn�h�f + (nh)−1/2Zn�h�f � (S5)

where

bn�h�f = h−pM−1[Ef T̂ (h;k)− T(f )]= h−pM−1 1
h

∫
X
k(x/h)

[
f (x)− f (0)]dx

is nonrandom and can be taken to be equal to b∗
n�h�f , and

Zn�h�f = 1√
nh

n∑
i=1

[
k(Xi/h)−Efk(Xi/h)

]
�

Once hn is small enough relative to an and f ∗, the set of possible biases for the class
Fn will be the same as for the Taylor or Hölder class F(M), without the additional local
restriction of f (x) for x near zero, or the restriction that f be a density (note, in particu-
lar, that, letting C be a bound on the support of the kernel k, the bias depends only on
f (x) for x in [−Chn�Chn], and that the first p− 1 derivatives of f at zero can be taken
to be equal to zero without loss of generality, so that, for any function f satisfying the
Hölder or Taylor condition, f (x) is bounded from below by f ∗ − an − C̃Mnh

p
n on this

set for some constant C̃; this function can then be extrapolated so that it is positive on
[−an�an] while maintaining the Hölder or Taylor condition, and then defined outside of
[−an�an] so that it integrates to one), so that

{bn�h�f : f ∈ Fn} =
{
h−pM−1 1

h

∫
X
k(x/h)

[
f (x)− f (0)]dx : f ∈ F(M)

}
�

By the renormalization property of F (f ∈ F(1) iff. x 
→ hpMf(x/h) is in F(M)), the
set in the above display remains the same if h and M are each replaced by 1. Thus, the



16 Armstrong and Kolesár Supplementary Material

expressions for asymptotic bias derived in Theorem 3.1 holds exactly with γb = p and
B(k) given in Theorem 3.1 (with k playing the role of the equivalent kernel, k∗

q). For the
variance, we have

varf (Zn�h�f )= 1
h

∫
X
k(x/h)2f (x)dx− 1

h

[∫
X
k(x/h)f (x)dx

]2
�

The second term converges to 0 uniformly over Fn, and the first term converges to
f ∗ ∫

X k(u)
2 du uniformly over Fn. To verify the Lindeberg condition for asymptotic nor-

mality, note that 1
nh

∑n
i=1EfK(Xi/h)

2 I{K(Xi/h)2 ≥ εnh} → 0 uniformly over f ∈ Fn
since nh→ ∞.

C.2 First price auctions

Our results for density estimation and nonparametric regression can be combined with
the delta method (Theorem B.2) to verify our conditions for nonlinear functions of den-
sities and nonparametric regression functions evaluated at finitely many points. To illus-
trate, we consider a setting from the auctions literature involving a nonlinear function
of a density.

Guerre, Perrigne, and Vuong (2000) consider the problem of recovering valuations
from bids in a first price auction setting. Here, we consider a simple version of their
setting with no covariates, and the same number of bidders in each auction. We observe
n total bids from symmetric independent private value sealed bid auctions with I > 1
bidders each, with independent valuations. The bids {Xi}ni=1 are then i.i.d. and, letting f
denote their density, the valuation for a bidder with bidXi = x is given by

ξ(x; f� I)= x+ 1
I − 1

∫ x

−∞
f (t)dt

f (x)

(equation (3) in Guerre, Perrigne, and Vuong (2000)). Consider the problem of estimating
T(f ) = ξ(x0; f� I) at a particular point x0. Let FGPV�n be defined in the same way as the
class Fn defined in Appendix C.1 with X = R, but with an additional local restriction on
the cumulative distribution function (CDF)

∫ x
−∞ f (t)dt: FGPV�n = Fn ∩ {f : | ∫ x−∞ f (t)dt−

F∗| ≤ an} where F∗ ∈ (0�1) is given.
Let L̂(h;k) = (L̂1(h;k)� L̂2(h�k)) = ( 1

n

∑n
i=1 I{Xi ≤ x0}� 1

nh

∑n
i=1 k((Xi − x0)/h)),

where k is a kernel satisfying the conditions in Appendix C.1 and h satisfies the con-
ditions of Theorem C.1 for some p. Let φ(L) = x0 + 1

I−1
L1
L2

. Then a plug-in estima-

tor of T(f ) is given by T̂ (h;k) = φ(L̂(h;k)). To verify (4), we verify Assumption B.3.
First, note that, by a slight generalization of Theorem C.1, L̂2(h;k) satisfies (S5), where
bn�h�f is nonrandom and, for large enough n, ranges over the set [−B2(k)�B2(k)], with
B2(k) given by B(k) in Theorem 3.1, and with Zn�h�f converging to a N(0� S2(k)) dis-

tribution uniformly over FGPV�n, where S2(k) =
√
f ∗ ∫ k(u)du. (This follows from the

arguments in Theorem C.1 along with the observation that the local restriction on∫ x
−∞ f (t)dt does not restrict the set of possible biases bn�h�f for large enough n.) Also,
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L̂1(h;k) satisfies L̂1(h;k) = L1(f ) + hγbMnbn�h�f�1 + hγsn−1/2Zn�h�f�1 with γs = −1/2,

where bn�h�f�1 = 0 andZn�h�f�1 = n1/2h−γs (L̂1(h;k)−L1(h;k)) converges in probability to
zero uniformly over FGPV�n. Thus, Assumption B.3 holds with bn�h�f ranging over the set

{0}× [−B2(k)�B2(k)] and with Σ(k)= ( 0 0
0 S2(k)

)
andφ′(L∗)= 1

I−1 [ 1
f ∗ �−F∗

f ∗ ]. It follows that

(4) holds for the FLCI and OCI criteria, with γs = −1/2 and γb = p, B(k)= B2(k)
F∗

(I−1)f ∗ ,

and S(k)= S2(k)
F∗2

(I−1)2f ∗2 . Note, however, that, since a density estimator appears in the

denominator of the estimator of T(f ), the RMSE may not even be finite, and so trunca-
tion will be needed to apply our results to the RMSE criterion.

We note that the class FGPV�n places assumptions conditions directly on the bid dis-
tribution, and does not incorporate additional restrictions that may arise from the as-
sumption that f arises from an equilibrium in a first price auction model. We leave for
future research whether such restrictions place sharper bounds on the bias, as well as the
question of deriving primitive conditions on the value distribution for our smoothness
assumptions on the bid distribution. Such questions are addressed by Guerre, Perrigne,
and Vuong (2000), although they focus on a slightly different setting, since they consider
rate optimality in the supremum norm for estimation of the value distribution (rather
than asymptotic constants for estimation of the function ξ(x; f� I) at a given point x0).

Appendix D: Additional details for applications

This Appendix gives additional details for applications in Section 3. Appendix D.1 cal-
culates the efficiency gain from using different bandwidths on either side of the cut-
off in sharp RD. Appendix D.2 gives details of optimal kernel calculations discussed in
Section 3.2.1. Appendix D.3 gives the kernels constants

∫
X k

∗
q(u)

2 du, and Bp�q(k) for se-
lected kernels.

D.1 Regression discontinuity with different bandwidths on either side of the cutoff

We consider a slightly more general setup than that considered in Section 3.2.2. Consider
estimating a parameter T(f ), f ∈ F , using a class of estimators T̂ (h+�h−;k) indexed
by two bandwidths h− and h+. Suppose that the worst-case (over F ) performance of
T̂ (h+�h−;k) according to a given criterion satisfies

R
(
T̂ (h+�h−;k))
= R̃(MB(k)(hγb− + hγb+

)
� n−1/2(S+(k)2h2γs+ + S−(k)2h2γs−

)1/2)(1 + o(1))� (S6)

where R̃(b� s) denotes the value of the criterion when T̂ (h+�h−;k) − T(f ) ∼ N(b� s2),
and S(k) > 0 and B(k) > 0. Assume that R̃ satisfies (5).

In the RD application in Section 3.2.2, if Assumptions 3.1 and 3.2 hold (with the re-
quirement that σ2(x) is continuous 0 replaced by right and left continuity of σ2+(x) and
σ2−(x)), then condition (S6) holds with γs = −1/2, γb = 2, S+(k)= σ2+(0)

∫∞
0 k∗

1(u)
2 du/d,

S−(k)= σ2−(0)
∫∞

0 k∗
1(u)

2 du/d, and B(k)= −∫∞
0 u2k∗

1(u)du/2.
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Let ρ = h+/h− denote the ratio of the bandwidths, and let t denote the ratio of the
leading worst-case bias and standard deviation terms,

t = MB(k)
(
h
γb− + hγb+

)
n−1/2(S+(k)2h2γs+ + S−(k)2h2γs−

)1/2 = hγb−γs−
MB(k)

(
1 + ργb)

n−1/2(S+(k)2ρ2γs + S−(k)2
)1/2 �

Substituting h+ = ρh− and h− = (tn−1/2(S+(k)2ρ2γs + S−(k)2)1/2M−1B(k)−1(1 +
ργb)−1)1/(γb−γs) into (S6) and using linearity of R̃ gives

R
(
T̂ (h+�h−;k))
= R̃(MB(k)hγb−

(
1 + ργb)�hγs− n−1/2(S+(k)2ρ2γs + S−(k)2

)1/2)(1 + o(1))
=M1−rn−r/2(1 + ς(k)2ρ2γs

)r/2(1 + ργb)1−r
S−(k)rB(k)1−rR̃(t�1)

(
1 + o(1))�

where r = γb/(γb − γs) is the rate exponent, and ς(k) = S+(k)/S−(k) is the ratio of the
variance constants. Therefore, the optimal bias-sd ratio is given by t∗R = argmint>0 R̃(t�1),
and depends only on the performance criterion. The optimal bandwidth ratio ρ is given
by

ρ∗ = argmin
ρ

(
1 + ς(k)2ρ2γs

)r/2(1 + ργb)1−r = ς(k)
2

γb−2γs �

and does not depend on the performance criterion.
Consequently, inference that restricts the two bandwidths to be the same (i.e., re-

stricting ρ= 1) has asymptotic efficiency given by

lim
n→∞

min
h+�h−

R
(
T̂ (h+�h−;k))

min
h
R
(
T̂ (h;k)) =

((
1 + ς(k)2ρ2γs∗

)γb/2(1 + ργb∗
)−γs(

1 + ς(k)2)γb/22−γs

) 1
γb−γs

= 2r−1

(
1 + ς(k) 2r

2−r
)1−r/2(

1 + ς(k)2)r/2 �

In the RD application in Section 3.2.2, ς(k) = σ+(0)/σ−(0), and r = 4/5. The display
above implies that the efficiency of restricting the bandwidths to be the same on ei-
ther side of the cutoff is at least 99�0% if 2/3 ≤ σ+/σ− ≤ 3/2, and the efficiency is still
94�5% when the ratio of standard deviations equals 3. There is therefore little gain from
allowing the bandwidths to be different.

D.2 Optimal kernels for inference at a point

The optimal equivalent kernel under the Taylor class FT�p(M) solves equation (17) in
the main text. The solution is given by

kSY�p(u)=
(
b+

p−1∑
j=1

αju
j − |u|p

)
+

−
(
b+

p−1∑
j=1

αju
j + |u|p

)
−
�
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Figure S1. Optimal equivalent kernels for Taylor class FT�p(M) on the interior, and in the
boundary, rescaled to be supported on [0�1] on the boundary and [−1�1] in the interior.

the coefficients b and α solving∫
X
ujkSY�p(u)du= 0� j = 1� � � � �p− 1� and

∫
X
kSY�p(u)du= 1�

For p= 1, the triangular kernel kTri(u)= (1 − |u|)+ is optimal both in the interior and on
the boundary. In the interior for p= 2, α1 = 0 solves the problem, yielding the Epanech-
nikov kernel kEpa(u) = 3

4(1 − u2)+ after rescaling. For other cases, the solution can be
easily found numerically. Figure S1 plots the optimal equivalent kernels for p= 2, 3, and
4, rescaled to be supported on [0�1] and [−1�1] in the boundary and interior case, re-
spectively.
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Figure S2. Optimal equivalent kernels for Hölder class FHöl�2(M) on the interior, and in the
boundary, rescaled to be supported on [0�1] on the boundary and [−1�1] in the interior.

The optimal equivalent kernel under the Hölder class FHöl�2(M) has the form of a
quadratic spline with infinite number of knots on a compact interval. In particular, in
the interior, the optimal kernel is given by f Int

Höl�2(u)/
∫∞
−∞ f

Int
Höl�2(u)du, where

f Int
Höl�2(u)= 1 − 1

2
x2 +

∞∑
j=0

(−1)j
(|x| − kj)2+�

and the knots kj are given by kj = (1+q)1/2
1−q1/2 (2 − qj/2 − q(j+1)/2), where q is a constant q=

(3 + √
33 −

√
26 + 6

√
33)2/16.

At the boundary, the optimal kernel is given by fBd
Höl�2(u)/

∫∞
−∞ f

Bd
Höl�2(u)du, where

fBd
Höl�2(u)= (1 − x0x+ x2/2

)
I{0 ≤ x≤ x0} + (1 − x2

0
)
f Int

Höl�2
(
(x− x0)/

(
x2

0 − 1
))

I{x > x0}�

with x0 ≈ 1�49969, so that for x > x0, the optimal boundary kernel is given by a rescaled
version of the optimal interior kernel. The optimal kernels are plotted in Figure S2.

D.3 Kernel constants

For the uniform, triangular, and Epanechnikov kernels, the kernel constants∫
X k

∗
q(u)

2 du, BT
p�q(k), and BHöl

p�q(k) discussed in Section 3.2.1 involve integrals that can
be computed in closed form. Table S1 gives these constants for the case in which the
point of interest is an interior point, and Table S2 gives them for the boundary case.
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Table S1. Kernel constants for standard deviation and maximum bias of local polynomial re-
gression estimators of order q for selected kernels. Inference at a boundary point.

BT
p�q(k)= ∫ 1

0 |upk∗
q(u)| du BHöl

p�q (k)

Kernel (k(u)) q
∫ 1

0 k
∗
q(u)

2 du p= 1 p= 2 p= 3 p= 1 p= 2 p= 3

Uniform I{|u| ≤ 1} 0 1 1
2

1
2

1 4 16
27

59
162

8
27

1
6

2 9 0�7055 0�4374 0�3294 0�2352 216
3125

1
20

Triangular (1 − |u|)+ 0 4
3

1
3

1
3

1 24
5

3
8

3
16

27
128

1
10

2 72
7 0�4293 0�2147 0�1400 0�1699 32

729
1
35

Epanechnikov 3
4 (1 − u2)+ 0 6

5
3
8

3
8

1 4�498 0�4382 0�2290 0�2369 11
95

2 9�816 0�5079 0�2662 0�1777 0�1913 0�0508 15
448

Appendix E: Data-driven bandwidths

This Appendix considers CIs with the bandwidth chosen based on the data, with the
smoothness constantM treated as unknown. In particular, we formalize the statements
in Section 3.3 regarding honesty and near-optimality of CIs based on the rule-of-thumb
bandwidth suggested in that section, over a regularity class that imposes further restric-
tions.

Consider the regression setting in Section 3.1. Let F(M) denote the Taylor or Hölder
class defined in Section 3.2.1, which places the bound M on the pth derivative of the
regression function. Let F(M;η) denote the class that imposes this bound only over
x ∈ [−η�η]. We note that all of our asymptotic results for F(M) hold for F(M;η) as well.

Table S2. Kernel constants for standard deviation and maximum bias of local polynomial re-
gression estimators of order q for selected kernels. Inference at an interior point.

BT
p�q(k)= ∫ 1

−1 |upk∗
q(u)| du BHöl

p�q (k)

Kernel q
∫ 1
−1 k

∗
q(u)

2 du p= 1 p= 2 p= 3 p= 1 p= 2 p= 3

Uniform I{|u| ≤ 1} 0 1
2

1
2

1
2

1 1
2

1
2

1
3

1
2

1
3

2 9
8 0�4875 0�2789 0�1975 0�2898 0�0859 1

16

Triangular (1 − |u|)+ 0 2
3

1
3

1
3

1 2
3

1
3

1
6

1
3

1
6

2 456
343 0�3116 0�1399 0�0844 0�2103 0�0517 8

245

Epanechnikov 3
4 (1 − u2)+ 0 3

5
3
8

3
8

1 3
5

3
8

1
5

3
8

1
5

2 5
4 0�3603 0�1718 0�1067 0�2347 0�0604 5

128
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Let T̂q(h;k) denote the qth order local polynomial estimator, with q ≥ p − 1. Let hn =
h(M)= (n−1/2S(k)t/(MB(k)))1/(γb−γs) denote a sequence of bandwidths corresponding
to bias-sd ratio t. Here, B(k) and S(k) are given in Theorem 3.1 and γb = p and γs =
−1/2. Let r = 2p/(2p − 1) denote the rate exponent. It follows from the results in the
main text that the CI {T̂q(hn;k)± ŝe(hn;k) · cv1−α(t)} has correct asymptotic coverage,
and it is near-optimal if highly efficient choices for t and k are used.

We consider the CI {T̂q(ĥ;k) ± ŝe(ĥ;k) · cv1−α(t)}, which uses a data-driven band-

width ĥ to estimate the optimal bandwidth hn = h(M), thereby avoiding the require-
ment of prior knowledge of M . As discussed in the main text, results from Low (1997),
Cai and Low (2004), and Armstrong and Kolesár (2018) imply that it is impossible for
such a CI to achieve coverage and near-optimality over F(M;η) when M is unknown.
We therefore consider a class G(M)� F(M;η) that imposes additional conditions that
allow M to be estimated consistently. We allow G(M) to depend directly on the sample
size as well, but we leave this implicit in the notation. Appendix E.1 presents results un-
der high level consistency conditions on ĥ over the class G(M). Appendix E.2 defines a
particular class G(M) that formalizes the notion that local smoothness of f is no smaller
than its smoothness at large scales, and verifies that the rule-of-thumb bandwidth sug-
gested in Section 3.3 leads to honest CIs over this class. Appendix E.3 derives asymptotic
efficiency bounds that show formally that the CI with rule-of-thumb bandwidth consid-
ered in Appendix E.2 is highly efficient over the class G(M). In particular, it is impossible
to substantively improve upon this CI using the additional restrictions in the class G(M).
Appendix E.4 presents auxiliary results and intuition for the efficiency bounds presented
in Appendix E.3.

E.1 General results for estimated h

We maintain Assumptions 3.1 and 3.2. We make the following additional assumptions
on the kernel.

Assumption E.1. The kernel k is bounded and Lipschitz continuous with finite support.

Theorem E.1. Let h(M) = (n−1/2S(k)t/(MB(k)))2/(2p+1) where t > 0. Let ĥ be a band-

width sequence, which may depend on the data, such that ĥ/h(M)
p→ 1 and nh(M)→

∞ uniformly over
⋃
M∈[Mn�Mn] G(M), where G(M) ⊂ F(M;η). Let ŝe(h;k) be a stan-

dard error such that ŝe(ĥ;k)/ sdf (ĥ;k) converges in probability to one uniformly over⋃
M∈[Mn�Mn] G(M). Let Assumption 3.2 and Assumption E.1 hold, and let Assumption 3.1

hold for any sequenceMn ∈ [Mn�Mn]. Then

lim inf
n→∞ inf

f∈⋃M∈[Mn�Mn] G(M)
Pf
(
T(f ) ∈ (T̂q(ĥ;k)± ŝe(ĥ;k) cv1−α(t)

))≥ 1 − α�

The length of the CI satisfies

lim
n→∞ sup

M∈[Mn�Mn]
sup

f∈G(M)
Pf

(∣∣∣∣ 2ŝe(ĥ;k) cv1−α(t)
2n−r/2M1−rS(k)rB(k)1−r tr−1 cv1−α(t)

− 1
∣∣∣∣> δ)→ 0

for any δ > 0.
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To prove this theorem, let Mn ∈ [Mn�Mn] be given, and let fn be a sequence of func-
tions in G(Mn). Let hn = h(Mn). For any sequence cn → 0, the coverage probability under
fn is bounded from below by

Pfn

(∣∣∣∣ T̂q(hn;k)− T(fn)
ŝe(ĥ;k)

∣∣∣∣≤ cv1−α(t)(1 − cn)
)

− Pfn
(∣∣∣∣ T̂q(ĥ;k)− T̂q(hn;k)

ŝe(ĥ;k)

∣∣∣∣> cv1−α(t)cn
)
�

For the first term, we first note that Theorem 2.2 continues to hold with
√

1/r − 1 re-
placed by t and h∗

rmse replaced by hn, with obvious modifications to the proof. The
first term is asymptotically bounded from below by 1 − α by Theorem 3.1 and this
generalization of Theorem 2.2, applied with ŝe(ĥ;k)(1 − cn) playing the role of the
standard error in Theorem 2.2 (note that, by Theorem 3.1 and the assumptions on ĥ,
ŝe(ĥ;k)/[n−1/2h

−1/2
n S(k)] converges in probability to one under fn). The second term

will converge to zero for cn decreasing slowly enough so long as
√
nhn(T̂q(ĥ;k) −

T̂q(hn;k)) converges in probability to zero (again using the fact that ŝe(ĥ;k)/
[n−1/2h

−1/2
n S(k)] converges in probability to one).

Let

an(h)=
(

1
nh

n∑
i=1

k(xi/h)mq(xi/h)mq(xi/h)
′
)−1

e1� bn(xi;h)= 1
nh
mq(xi/h)k(xi/h)

and let wnq(x;h�k)= an(h)′bn(xi;h). We have

√
nhn
[
T̂q(hn;k)− T̂q(ĥ;k)] =√nhn n∑

i=1

[
wnq(xi;hn�k)−wnq(xi; ĥ�k)

]
yi

=
√
nhn

n∑
i=1

[
wnq(xi;hn�k)−wnq(xi; ĥ�k)

]
f (xi)

+
√
nhn

n∑
i=1

[
wnq(xi;hn�k)−wnq(xi; ĥ�k)

]
ui� (S7)

Using a Taylor approximation to f (xi) around x = 0 and the fact that
∑n
i=1w

n
q(xi;h�

k)x
j
i = 0 for j < p, it follows that the first term is bounded by

√
nhnMn

n∑
i=1

∣∣wnq(xi;hn�k)−wnq(xi; ĥ�k)
∣∣ |xi|p
p!

= tS(k)

B(k)p!
n∑
i=1

∣∣wnq(xi;hn�k)−wnq(xi; ĥ�k)
∣∣∣∣∣∣ xihn

∣∣∣∣p�
where we substituteMn = tn−1/2S(k)/(B(k)h

p+1/2
n ). LettingC be a bound on the support

of the kernel k, we have |xi| ≤ Cmax{ĥ�hn} for any xi such that the summand is nonzero.
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Thus, on the event ĥ≤ 2hn, the above display is bounded by (2C)ptS(k)
B(k)p! times

n∑
i=1

∣∣wnq(xi;hn�k)−wnq(xi; ĥ�k)
∣∣�

Using the fact thatwnq(xi;hn�k)−wnq(xi; ĥ�k)= an(hn)′[bn(xi;hn)−bn(xi; ĥ)]+ [an(h)−
an(ĥ)]′bn(xi; ĥ), it follows that the above display is bounded by

∥∥an(hn)∥∥ n∑
i=1

∥∥bn(xi;hn)− bn(xi; ĥ)
∥∥+ ∥∥an(hn)− an(ĥ)

∥∥ n∑
i=1

∥∥bn(xi; ĥ)∥∥�
Similarly, the last term in (S7) is bounded by

∥∥an(hn)∥∥
∥∥∥∥∥√nhn

n∑
i=1

[
bn(xi;hn)− bn(xi; ĥ)

]
ui

∥∥∥∥∥+ ∥∥an(hn)− an(ĥ)
∥∥∥∥∥∥∥√nhn

n∑
i=1

bn(xi; ĥ)ui
∥∥∥∥∥�

Both of these quantities converge in probability to zero by the following lemma.

Lemma E.1. Suppose that Assumption 3.1 and Assumption E.1 hold. Let g̃(x)= k(x)xj or
g̃(x)= |k(x)xj| for some j ≥ 0. Then

lim
δ→0

lim sup
n→∞

sup
s∈[1−δ�1+δ]

1
nhn

n∑
i=1

∣∣g̃(xi/(shn))− g̃(xi/hn)∣∣= 0�

and

lim
δ→0

lim sup
n→∞

sup
s∈[1−δ�1+δ]

∣∣∣∣∣ 1
nshn

n∑
i=1

g̃
(
xi/(shn)

)− d ∫
X
g̃(u)du

∣∣∣∣∣= 0�

If, in addition, Assumption 3.2 holds, then for all ε > 0,

lim
δ→0

lim sup
n→∞

sup
s∈[1−δ�1+δ]

P

(
sup

s∈[1−δ�1+δ]

∣∣∣∣∣ 1√
nhn

n∑
i=1

[
g̃
(
xi/(shn)

)− g̃(xi/hn)]ui
∣∣∣∣∣> ε

)
= 0�

Proof. By Assumption 3.1, the second display in the lemma follows from the first. By
Assumption E.1, for large enough C, |g̃(u)− g̃(u′)| ≤ C|u− u′| I{max{|u|� |u′|} ≤ C}. Thus,
the first display in the lemma is bounded by

lim
δ→0

lim sup
n→∞

sup
s∈[1−δ�1+δ]

1
nhn

n∑
i=1

C · ∣∣s−1 − 1
∣∣ I{|xi/hn| ≤ 2C

}
= lim
δ→0

[
sup

s∈[1−δ�1+δ]

∣∣s−1 − 1
∣∣] lim sup

n→∞
1
nhn

n∑
i=1

C · I
{|xi/hn| ≤ 2C

}
= lim
δ→0

[
sup

s∈[1−δ�1+δ]

∣∣s−1 − 1
∣∣] ∫

X
I{u≤ 2C}du ·C = 0�
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For the second part of the lemma, we have, for s, s̃ in a small enough neighborhood of 1,
letting σ2 denote a bound on σ2(x) in a neighborhood of zero,

E

(
n∑
i=1

[
1√
nhn

g̃
(
xi/(shn)

)− g̃(xi/(s̃hn))]ui
)2

≤ σ2 1
nhn

n∑
i=1

[
g̃
(
xi/(shn)

)− g̃(xi/(s̃hn))]2
≤ σ2 1

nhn

n∑
i=1

C2|xi/hn|2
∣∣s−1 − s̃−1∣∣2 I

{|xi/hn| ≤ 2C
}
�

For large enough n, this is bounded by |s−1 − s̃−1|2 times a constant that does not depend
on n. The result now follows from Example 2.2.12 in van der Vaart and Wellner (1996).

Finally, for the last statement of the theorem, note that the length of the CI is given
by 2ŝe(ĥ;k) cv1−α(t) which, under the sequence fn, is equal to a 1 + oP(1) term times

2n−1/2h
−1/2
n S(k) cv1−α(t)= 2n−r/2M1−r

n S(k)rB(k)1−r tr−1 cv1−α(t)�

E.2 Bounds based on global polynomial approximations

We now verify the conditions of Theorem E.1 in a particular setting. In particular, we
consider classes G that relateM to a global polynomial approximation to the regression
function, along with a plug-in bandwidth ĥ based on this assumption.

Let F(M) be the Taylor or Hölder class of order p, and let F(M;η) denote the class
that imposes this bound only over x ∈ [−η�η]. Let p̃ ≥ p be given. Let Qp̃f denote the
minimum mean squared error p̃th order polynomial predictor for the regression func-
tion f :

Qp̃f = arg min
h

∫ (
f (x)− h(x))2d(x)σ2(x)dx�

where the minimum is taken over polynomials of order p̃. Here, d(x) is such that the
xi’s behave as if drawn from a distribution with density xi, as formalized in the Assump-
tion E.2 below.

Let xmin, xmax be given with −∞< xmin < xmax <∞. Let

J(f )= J(f ; p̃� xmin�xmax)= sup
x∈[xmin�xmax]

∣∣[Qp̃f ](p)(x)∣∣
denote the maximum pth derivative of the minimum mean squared error p̃th order ap-
proximation of f .

Let ε > 0 be given. Let

Q(M� p̃�xmin�xmax� ε)= {f : J(f )= εM}�
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G(M)= G(M; p̃� ε�η�xmin�xmax)

= F(M�η)∩Q(M� p̃�xmin�xmax� ε)∩
{
f : sup

x

∣∣f (x)∣∣≤K}�
whereK is some large constant, and

H(M�M)=
⋃

M∈[M�M]
G(M; p̃� ε�η�xmin�xmax)�

This class formalizes the notion that the pth derivative in a neighborhood of zero is
bounded by ε−1 times the maximum pth derivative of a global p̃th order global poly-
nomial approximation. Setting ε= 1 corresponds to the suggestion in the main text.

Let

Q̂p̃ = arg min
h

n∑
i=1

(
yi − h(xi)

)2
� Ĵ = sup

x∈[xmin�xmax]

∣∣Q̂(p)p̃ (x)
∣∣�

We make the following additional assumption on the xi’s.

Assumption E.2. For some bounded function d(x) and a sequence cn with cn → ∞ and
cn/

√
n→ 0, we have, for each j = 0� � � � � p̃,

cn

∣∣∣∣∣1n
n∑
i=1

x
j
i fn(xi)−

∫
ujfn(u)d(u)du

∣∣∣∣∣→ 0

for any uniformly bounded sequence of functions fn. Furthermore, the p̃ + 1 by p̃ + 1
matrix with (j� �)th element given by

∫
uj+�−2d(u)du is invertible.

Given a sequence cn satisfying the conditions of Assumption E.2, if the xi’s are drawn
i.i.d. from a distribution with density d(x) for which all moments are finite, then As-
sumption E.2 will hold with probability approaching one.

We note the following consistency result for Ĵ.

Lemma E.2. Suppose Assumption 3.2 holds with σ2(x) bounded and that Assumption E.2

holds. Then cn|Ĵ − J(f )| p→ 0 uniformly over {f : supx |f (x)| ≤K}.

Proof. Let A denote the p̃ + 1 by p̃ + 1 matrix with (j� �)th element given by∫
uj+�−2d(u)du, and let Â denote the sample analogue with (j� �)th element given by

1
n

∑n
i=1 x

j+�−2
i . Let bf be the (p̃+ 1)× 1 vector with jth element

∫
ujf (u)d(u)du and b̂ be

the sample analogue with jth element 1
n

∑n
i=1 x

j−1
i yi. Then A−1bf gives the coefficients

of the polynomialQp̃f , and Â−1b̂ gives the coefficients of the polynomial Q̂. Let s(A�b)
denote the function that takes the maximum of the pth derivative of this polynomial
over [xmin�xmax], so that J(f ) = s(A�bf ) and Ĵ = s(Â� b̂). Note that |s(Â� b̂) − s(A�bf )|
is bounded by max{‖Â−A‖�‖b̂− bf ‖} times a constant that does not depend on f , so

it suffices to show that cnmax{‖Â−A‖�‖b̂− bf ‖} converges in probability to zero uni-
formly over bounded f .
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We have cn‖Â−A‖ → 0 by Assumption E.2. The jth element of cn(b̂−bf ) is given by

cn

n

n∑
i=1

uix
j−1
i + cn

(
1
n

n∑
i=1

f (xi)x
j−1
i −

∫
f (u)uj−1d(u)du

)
�

The expectation of the square of the first term converges to zero, since it is bounded by
c2
n/n

2 times a sequence that converges to a constant by Assumption E.2. The last term

converges to zero uniformly over bounded f by Assumption E.2. Thus, cn‖b̂− bf ‖ p→ 0
uniformly over bounded f .

Let Mn and εn be given, and consider honesty over the sequence of classes G(Mn;
p̃� εn�η�xmin�xmax). Let t be given, and let ĥ = (n−1/2Ŝ(k)t/(M̂B̂(k)))2/(2p+1) where
Ŝ(k)/S(k) and B̂(k)/B(k) converge in probability to one uniformly over G(Mn) (as dis-
cussed in Section 3.3, we can also directly minimize the sample analogue of the criterion
such that t is the asymptotically optimal bias-sd ratio). Then ĥ will satisfy the condi-
tions of Theorem E.1 so long as ĥ/h(Mn) converges in probability to one uniformly over
G(Mn), where

h(M)= (n−1/2S(k)t/
(
MB(k)

))2/(2p+1)
�

For this, it suffices that M̂/Mn converges in probability to one uniformly over G(Mn).
According to Lemma E.2, we can use the estimate M̂ = ε−1Ĵ, which gives

M̂

Mn
− 1 = ε−1

n

[
Ĵ − J(f )]
Mn

= oP
(
1/(εnMncn)

)
uniformly over G(M; p̃� εn�η�xmin�xmax). If Assumption E.2 holds for any cn with
cn/

√
n → 0, then this can be made to go to zero so long as εnMn

√
n → ∞. Thus, the

resulting CI is honest over the class H(Mn�Mn) so long as εnMn

√
n→ ∞, and such that

Assumption 3.1 holds for the sequencesMn andMn. Note also that, if one uses M̂ = ε̃−1Ĵ

where ε̃ < ε (thereby choosing ε to be “too small”), then the resulting CI will be wider,
but will still have correct coverage.

While Assumption 3.1 is stated as a high level condition, note that, in order for this
condition to hold with probability approaching one when the xi’s are drawn i.i.d. from
a distribution satisfying appropriate regularity conditions, we will need nhn → ∞ and
hn → 0 for the given sequence hn. This will be ensured for any sequence Mn ∈ [Mn�Mn]
iff. Mn satisfies nM2

n → ∞ and Mn satisfies Mn/n
p → 0 so that n(nM

2
n)

−1/(2p+1) =
n2p/(2p+1)M

−2/(2p+1)
n → ∞. Also, note that we have assumed a uniform bound on the

magnitude of the regression function, which means that εnMn must be bounded uni-
formly over n (although this condition could likely be relaxed).

E.3 Lower bounds

The CI in Theorem E.1 has the property that the ratio of its length to the length of an
“oracle” FLCI that uses the unknown true M converges to one. If the optimal kernel is
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used and the bias-sd ratio is chosen to be optimal for FLCI length, then this CI is effi-
cient among FLCIs over the class F(M;η). Furthermore, it is highly efficient among all
CIs that are honest over the class F(M;η), since one can apply bounds such as Corol-
lary 3.3 in Armstrong and Kolesár (2018). However, these results do not apply to the class
G(M) over which the feasible CI with estimated optimal bandwidth has coverage, since
G(M) � F(M;η): they do not rule out the possibility that this restricted class might al-
low for a more informative CI. To address this, we now derive efficiency bounds for the
class G(M)= G(M; p̃� ε�η�xmin�xmax) used in Appendix E.2.

Theorem E.2. Let M , ε, η and [xmin�xmax] be given. Suppose that Assumptions 3.1 and
3.2 hold with σ(x) bounded from above and below away from zero and ui following a
normal distribution, and that Assumption E.2 holds with d(x) strictly positive on some
open set in R\[−η�η]. Then, if the constant K used to define G(M) is large enough, the
following holds. For any sequence of CIs {T̂ ± χ̂} with asymptotic coverage at least 1 − α

under G(M),

lim
C→∞

lim inf
n

inf
f∈G(M)

Efn min
{
2nr/2χ̂�C

}≥ 2M1−rS
(
k∗)rB(k∗)1−r

rr(1 − r)r−1

∫ z1−α

z=−∞
(z1−α − z)r d�(z)�

where k∗ minimizes S(k∗)rB(k∗)1−r .

If ĥ and ŝe(h;k) satisfy the conditions of Theorem E.1, then, by Theorem E.2, the
relative efficiency of any CI {T̂ ± χ̂} to {T̂q(ĥ;k) ± ŝe(ĥ;k) cv1−α(t)} satisfies the lower
bound

lim
C→∞

lim inf
n

sup
f∈G(M)

Ef min
{
2nr/2χ̂�C

}
Ef min

{
2nr/2ŝe(k̂;k) cv1−α(t)�C

}

≥

∫ z1−α

z=−∞
(z1−α − z)r d�(z)

rr(1 − r)r inf
t̃
t̃ r−1 cv1−α(t̃)

· S
(
k∗)rB(k∗)1−r

S(k)rB(k)1−r ·
inf
t̃

cv1−α(t̃)

tr−1 cv1−α(t)
�

The first term is the lower bound in Theorem E.1 of Armstrong and Kolesár (2018), which
corresponds to the lower bound in Corollary 3.3 of that paper applied to the case where
the modulusω(δ) is proportional to δr (as is the case in the relevant limiting experiment
in the present setting; see Appendix E.4). The second term is the relative efficiency of the
kernel k, and the final term is the efficiency of the bias-sd ratio used in the bandwidth ĥ
relative to the optimal bias-sd ratio for FLCI construction.

We now prove Theorem E.2. We begin by noting some properties of the optimal ker-
nel k∗.

Lemma E.3. Let κ∗ solve

max
κ
κ(0) s.t.

∫
X
κ(u)2 du≤ 1� κ ∈ F(1)
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and let k∗(x) = κ∗(x)/
∫
X κ(u)du. Then k∗ has finite support, and it minimizes

S(k)rB(k)1−r over kernels k. Furthermore, S(k∗) = [σ2(0)/d]1/2rκ∗(0) and B(k∗) = (1 −
r)κ∗(0), so that S(k∗)rB(k∗)1−r = [σ2(0)/d]r/2rr(1 − r)1−rκ∗(0).

Proof. The result follows from Low (1995) and Donoho and Low (1992). See Ap-
pendix E.4.3.

The next lemma uses functions constructed from κ∗ to derive testing bounds.

Lemma E.4. Suppose that the conditions of Theorem E.2 hold. Given c ∈ R, let Kc�n =
{f : f (0)= cn−p/(2p+1)}∩G(M). Then, if the constantK used to define G(M) is larger than
a constant that depends only on ε and M , there exists a sequence of functions κ̃0�n ∈ K0�n

such that the following holds. For any c ∈R and any sequence of tests with asymptotic size
α under Kc�n, the asymptotic power under κ̃0�c is no greater than

�
(∣∣c/κ∗(0)

∣∣(2p+1)/(2p)
M−1/(2p)[d/σ2(0)

]1/2 − z1−α
)
�

Proof. It suffices to prove the result for c > 0. Let A and bf be defined as in the proof
of Lemma E.2, so that the coefficients of the minimum mean squared error p̃th order
polynomial predictor are given byA−1bf . We first note that, under the conditions of the
lemma, there exist bounded functions f1� � � � � fp̃+1 supported on R\[−η�η] such that
the vectors bf1� � � � � bfp̃+1 are linearly independent. Thus, these vectors span Rp̃+1, which
means that there exist functions g1� � � � � gfp̃+1 , which are linear combinations of the fj ’s
(and therefore also bounded and supported on R\[−η�η]) such that bgj = ej for each j,
where ej denotes the jth standard basis vector.

We construct functions in the sets Kc�n as follows. Let g̃ be a bounded function sup-
ported on R\[−η�η] such that J(g̃)= εM . This function can be constructed by finding
a polynomial such that the supremum of the pth derivative over [xmin�xmax] is equal to
εM , and constructing a function with the given polynomial predictor coefficients as a
linear combination of the gjs defined above. Given a function f supported on [−η�η],
the function bf�1g1 + bf�2g2 + · · · + bf�p̃+1gp̃+1 is supported on R\[−η�η] and has the
same polynomial predictor coefficients as f . Thus, the function f − (bf�1g1 + bf�2g2 +
· · · + bf�p̃+1gp̃+1) + g̃ has the same polynomial predictor coefficients as g̃. It therefore
follows that, if f ∈ F(M;η) and K is larger than some constant that depends only on an
upper bound for the elements of bf and the functions g1� � � � � gp̃+1 and g̃, this function
will be in G(M).

Let κ̃c�M�n be defined in this way with the function κc�M�n playing the role of f ,
where κc�M�n(x) = Mh

p
c�nκ

∗(x/hc�n) with hc�n = c̃n−1/(2p+1) where c̃ = |c/[Mκ∗(0)]|1/p.
Note that κc�M�n ∈ F(M) by the renormalization property of Taylor and Hölder classes.
Thus, once n is large enough that the support of κc�M�n is contained in [−η�η], we will
have κ̃c�M�n ∈ Kc�n.

It follows that, for large enough n, the power under κ̃0�M�n of a level αn test of Kc�n is
bounded by the power under κ̃0�M�n of a test with rejection probability no greater than
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αn under κ̃c�M�n. By the Neyman–Pearson lemma and standard calculations, this is no
greater than �(sn − z1−αn) where

s2n =
n∑
i=1

[
κ̃c�M�n(xi)− κ̃0�M�n(xi)

]2
σ−2(xi)

=M2h
2p
c�n

n∑
i=1

κ∗(xi/hc�n)2σ−2(xi)

+
n∑
i=1

[p̃+1∑
j=1

gj(xi)σ
−2(xi)

∫
Mh

p
c�nκ

∗(u/hc�n)uj−1d(u)du

]2

�

Note that h2p
c�n = c̃2pn−2p/(2p+1) = n−1c̃2p+1n1/(2p+1)c̃−1 = (nc̃n−1/(2p+1))−1c̃2p+1. Thus,

the first term equals c̃2p+1M2 1
nhc�n

∑n
i=1 κ

∗(xi/hc�n)2σ2(xi) → σ−2(0)c̃2p+1M2d ×∫
X κ

∗(u)2 du. The last term is bounded from above by a constant times

n

[
h
p
c�n

∫
κ∗(u/hc�n)du

]2
= n

[
h
p+1
c�n

∫
κ∗(v)dv

]

= n1−(2p+2)/(2p+1)c̃(2p+2)/p
[∫

κ∗(u)du
]2

→ 0�

The result then follows by plugging in c̃ and noting
∫
κ∗(u)2 du= 1.

To derive the lower bound on expected length, we argue as in the proof of Theo-
rem C.2 in Armstrong and Kolesár (2019). Consider the set I(m) = {c̃nj/m : j ∈ Z� |j| ≤
m2} where c̃n = κ∗(0)M1/(2p+1)[σ2(0)/d]p/(2p+1)n−p/(2p+1). Let T̂ ± χ̂ be a CI with asymp-
totic coverage at least 1−α over G(M), and let N (n�m) denote the number of elements in
I(m) that are in this confidence interval. Note that min{2χ̂�2c̃nm} ≥ c̃n[N (m�n)− 1]/m.
Let κ0�n and Kc�n be as defined in Lemma E.4. Let ψn�j denote the test that rejects when
the point c̃nj/m ∈ N (n�m) is not in the CI T̂ ± χ̂. Then ψn�j is an asymptotically level α
test of Kc�n, so by Lemma E.4,

Eκ0�nN (m�n)=
m2∑

j=−m2

(1 −Eκ0�nψn�j)≥
m2∑

j=−m2

(
1 −�(|j/m|(2p+1)/2p − z1−α

))+ o(1)�
Thus, for allm ∈N, limC→∞ lim infn Eκ0�n min{2c̃−1

n χ̂�C} is bounded from below by

1
m

m2∑
j=−m2

�
(
z1−α − |j/m|(2p+1)/(2p))

= 1
m

m2∑
j=−m2

∫
I
{|j/m|(2p+1)/(2p) ≤ z1−α − z}d�(z)
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= 1
m

m2∑
j=−m2

∫
I
{|j| ≤ (z1−α − z)2p/(2p+1)m

}
d�(z)

≥
∫ z1−α

z=−∞
1
m

min
{
2
[
(z1−α − z)2p/(2p+1)m− 1

]
�m
}

d�(z)�

This converges to 2
∫ z1−α
z=−∞(z1−α − z)2p/(2p+1) d�(z) by the dominated convergence the-

orem. Thus,

lim
C→∞

lim inf
n

Eκ0�n min
{
2np/(2p+1)χ̂�C

}
≥ 2κ∗(0)M1/(2p+1)[σ2(0)/d

]p/(2p+1)
∫ z1−α

z=−∞
(z1−α − z)2p/(2p+1) d�(z)

= 2κ∗(0)M1−r[σ2(0)/d
]r/2 ∫ z1−α

z=−∞
(z1−α − z)r d�(z)�

Plugging in S(k∗)rB(k∗)1−r = [σ2(0)/d]r/2rr(1 − r)1−rκ∗(0) gives the result.

E.4 Limiting model and optimal kernel

In this Appendix, we derive the properties of the optimal kernel given in Lemma E.3.
To do so, we apply results from Low (1995) and Donoho and Low (1992) to the limiting
model

Y(dt)= f (t)dt + λW (dt)� t ∈ X � (S8)

where X = R in the case where the point of interest is on the interior of the support of xi
and X = [0�∞)when it is on the boundary. We also use this limiting model to give some
intuitive motivation for the efficiency bound in Theorem E.2.

The white noise model (S8) is the same model as in Appendix B.2, with λ playing
the role of σ/

√
n in that Appendix. Brown and Low (1996) establish a formal sense in

which this white noise model, with λ replaced by the function λn(t)= [σ2(t)/(nd(t))]1/2,
is asymptotically equivalent to the fixed design regression model. Since the asymptotic
behavior of our estimators and bounds depends only on xi in a shrinking neighborhood
of zero, we then expect that λn(t) can be replaced by the constant function λn(0). For
technical reasons, however, the proof of Theorem E.2 uses direct arguments, rather than
appealing to the equivalence results of Brown and Low (1996) (in particular, these results
do not apply immediately for Taylor classes, or when smoothness is only assumed in the
neighborhood [−η�η]).

E.4.1 Kernel estimators Let k be a kernel with
∫
X k(u)du= 1 and

∫
X k(u)u

j du= 0 for
j = 1� � � � �p−1. The kernel kwill play the role of the equivalent kernel k∗

q in Section 3.2.1.
A linear estimator in the white noise model takes the form

T̂ (h;k)= h−1
∫
k(t)dY(t)�
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Since this falls into the Donoho and Low (1992) framework given in Appendix B.2, it fol-
lows that equation (2) holds with the o(1) terms equal to zero. Indeed, under f ∈ F(M),
T̂ (h;k) follows a normal distribution with bias

h−1
∫
X
k(t/h)

(
f (t)− f (0))dt =

∫
X
k(u)

(
f (hu)− f (0))du

=Mhp
∫
X
k(u)

(
f̃ (u)− f̃ (0))du�

where f̃ (u)=M−1h−pf (hu) is in F(1) iff f ∈ F(M), by the renormalization property of
the Hölder and Taylor class. The variance is given by

λ2h−2
∫
X
k(t/h)2 dt = λ2h−1

∫
X
k(u)2 du�

Thus, if we take λ = [σ2(0)/(nd)]1/2, equation (2) holds with S(k) = σ(0)d−1/2 ×√∫
X k(u)du, B(k)= sup

f̃∈F(1)
∫
X k(u)(f̃ (u)− f̃ (0))du, γb = p and γs = −1/2. Note that

S(k)matches equation (5) with k playing the role of the equivalent kernel k∗
q in equation

(5). In addition, B(k) matches the expression given in Theorem 3.1 (this can be shown
by deriving B(k) using the arguments in the proof of this theorem).

E.4.2 Modulus of continuity The modulus of continuity for the limiting model, as de-
fined in Donoho (1994), is given by

ω(δ)= 2 sup
f

f (0) s.t.
∫
X
f (x)2 dx≤ δ2/4� f ∈ F(M)�

Let f ∗
δ�M denote the solution to this problem. Note that the function κ∗ defined in

Lemma E.3 is given by f ∗
2�1. By Donoho and Low (1992), we have f ∗

δ�M(x)=Mh̃pδ�Mκ∗(x/
h̃δ�M) where h̃δ�M = (δ/(2M))2/(2p+1), which gives

ω(δ)= 2M
(
δ/(2M)

)2p/(2p+1)
κ∗(0)= (2M)1−rδrκ∗(0)�

where r = 2p/(2p+ 1) is the rate exponent. Note that

ω′(δ)= r(2M)1−rδr−1κ∗(0)= rδ−1ω(δ)�

E.4.3 Optimal kernel By Low (1995), the bias-sd optimizing kernel takes the form t 
→
f ∗
δ�M(t)/

∫
X f

∗
δ�M(u)du for some δ, so this implies that k∗(t) = κ∗(t)/

∫
X κ

∗(u)du is the
optimal kernel. For Taylor classes, the support can be seen to be compact by examining
the formula given in Section 3.2.1. For Hölder classes, this can be shown indirectly (see
Lepski and Tsybakov (2000)). The worst-case bias of the estimate with bandwidth hδ�M
is given by

(1/2)
(
ω(δ)− δω′(δ)

)= (1/2)ω(δ)(1 − r)= (1/2)(1 − r)(2M)1−rδrκ∗(0)

=M(1 − r)κ∗(0)hpδ�M�
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where we substitute δ= 2Mh(2p+1)/2
δ�M in the last step. This gives the formula B(k∗)= (1 −

r)κ∗(0). The standard deviation is given by

λω′(δ)= λr(2M)1−rδr−1κ∗(0)= λrκ∗(0)h−1/2
δ�M = [σ2(0)/d

]1/2
rκ∗(0)n−1/2h

−1/2
δ�M �

which gives S(k∗) = [σ2(0)/d]1/2rκ∗(0). Thus, the leading term in the minimax perfor-
mance is S(k∗)rB(k∗)1−r = [σ2(0)/d]r/2rr(1 − r)1−rκ∗(0).

E.4.4 Optimal FLCI and efficiency bound We now show that the efficiency bound in
Theorem E.2 corresponds to the bound given in Corollary 3.3 in Armstrong and Kolesár
(2018), applied to the class F in the limiting model (S8). Thus, Theorem E.2 can be inter-
preted as showing that this efficiency bound holds in a formal asymptotic sense, with
F(M;η) replaced by the smaller class G(M). We note that, for Taylor classes, such a
bound is given for the class F(M) in Theorem E.1 in Armstrong and Kolesár (2018). The-
orem E.2 shows that this efficiency bound holds for G(M).

First, we derive the length of the optimal FLCI, which is the denominator of the ex-
pression in Corollary 3.3 in Armstrong and Kolesár (2018). The bias-sd ratio is

tδ = (1/2)(1 − r)(2M)1−rδrκ∗(0)
λr(2M)1−rδr−1κ∗(0)

= (1/2)(1/r − 1)δ/λ�

Since optimizing over the bandwidth is equivalent to optimizing over δ, it follows that
the optimal FLCI has length

inf
δ

2 cv1−α(tδ) · λω′(δ)= inf
δ

2 cv1−α(tδ) · λr(2M)1−rδr−1κ∗(0)

= inf
δ

2 cv1−α(tδ) · λr(2M)1−r tr−1
δ λr−1(1/r − 1)1−r2r−1κ∗(0)

= λrM1−rr(1/r − 1)1−rκ∗(0) inf
δ

2 cv1−α(tδ) · tr−1
δ �

Plugging in λ= [σ2(0)/(nd)]1/2 and S(k∗)nB(k∗)1−r = [σ2(0)/d]r/2rr(1 − r)1−rκ∗(0) gives
2n−r/2M1−rS(k∗)rB(k∗)1−r infδ cv1−α(tδ) · tr−1

δ , which is the asymptotic length of the CI
given in Theorem E.1 with k and h chosen optimally.

The lower bound given the numerator of the expression in Corollary 3.3 in Arm-
strong and Kolesár (2018) is∫ z1−α

z=−∞
ω
(
2λ(z1−α − z))dz = (2M)1−rκ∗(0)2rλr

∫ z1−α

z=−∞
(z1−α − z)r dz�

Plugging in λ= [σ2(0)/(nd)]1/2 and S(k∗)rB(k∗)1−r = [σ2(0)/d]r/2rr(1 − r)1−rκ∗(0) gives

2n−r/2M1−r S(k∗)rB(k∗)1−r
rr (1−r)1−r

∫ z1−α
z=−∞(z1−α− z)r dz, which is the asymptotic lower bound given

in Theorem E.2.
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