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Supplementary Material

Supplement to “Inference on breakdown frontiers”
(Quantitative Economics, Vol. 11, No. 1, January 2020, 41–111)

Matthew A. Masten
Department of Economics, Duke University

Alexandre Poirier
Department of Economics, Georgetown University

This supplemental Appendix provides an extended comparison of our results
with the sensitivity analysis inference literature, a discussion of higher dimen-
sional breakdown frontiers, Monte Carlo simulations for our proposed estimation
and inference procedures, an alternative inference approach based on population
smoothing, and additional empirical analyses.

Appendix D: Inference in sensitivity analyses

In this section, we provide additional details explaining how our results compare to sev-
eral approaches in the literature. We focus on the different inference methods used in
sensitivity analyses. Most methods can be grouped by whether the population level sen-
sitivity analysis is a parametric path or nonparametric neighborhood approach. In Mas-
ten and Poirier (2016), we compared and contrasted these population level approaches
in more detail. The parametric path approach has two key features: (1) a specific para-
metric deviation r from a baseline assumption of r = 0 and (2) a parameter θ(r) that is
point identified given that deviation. The nonparametric neighborhood approach spec-
ifies increasing nested neighborhoods around a baseline assumption of r = 0 such that
Θ(r) is the identified set for the parameter given a specific neighborhood r. Typically
Θ(r)= [ΘL(r)�ΘU(r)] for point identified lower and upper bound functionsΘL andΘU .

Parametric paths

The most common approach for a parametric path analysis is to report the estimated
function θ̂(r) along with pointwise confidence bands. For example, see Figure 1 of Rot-
nitzky, Robins, and Scharfstein (1998), Figure 1 of Robins (1999), and Figure 1 of Vanstee-
landt, Goetghebeur, Kenward, and Molenberghs (2006). Uniform confidence bands can
be used instead, as in Figure 3 of Todem, Fine, and Peng (2010). Those authors use their
uniform confidence bands to test hypotheses about θ(r) uniformly over r. They also
suggest projecting these bands onto their domain to obtain confidence sets for the set
{r : |θ(r)|> 0}, although they do not discuss this in detail (see the last few sentences of p.
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562). They emphasize that using uniform confidence bands is important since the func-
tions θ(r) are often nonmonotonic, as we discussed in Appendix A with respect to Im-
bens (2003). A similar method is proposed by Rotnitzky, Robins, and Scharfstein (1998).
They study a model with two scalar sensitivity parameters r = (r1� r2) and two parame-
ters θ1(r) and θ2(r). They construct a standard test statistic T(r) for testing the null that
θ1(r)= θ2(r). They then plot the contours{

r ∈R
2 : T(r)= −1�96

}
and

{
r ∈R

2 : T(r)= 1�96
}
�

See their Figure 2. Unlike Todem, Fine, and Peng (2010), they do not account for multiple
testing concerns. Also see Figures 2–4 of Rotnitzky, Scharfstein, Su, and Robins (2001).
Several papers also suggest picking a set R to form an identified set {θ(r) : r ∈ R} and
then doing inference on this identified set. For example, see Vansteelandt et al. (2006).
Escanciano and Zhu (2013) considered the diameter of such identified sets,

d = sup
r�r′∈R

‖θ(r)− θ(r′)‖�

and study estimation and inference on d.
Finally, Rosenbaum (1995, 2002) proposed a sensitivity analysis within the context of

finite sample randomization inference for testing the sharp null hypotheses of no unit
level treatment effects for the units in our dataset. This is a very different approach to
the approaches discussed above and what we do in the present paper.

Nonparametric neighborhoods

Our population level sensitivity analysis uses nonparametric neighborhoods, not para-
metric paths. Thus for each r we obtain an identified set Θ(r). There is a large litera-
ture on how to do inference on a single identified set; see Canay and Shaikh (2017) for
an overview. Few papers discuss inference on a continuous sequence of identified sets
Θ(r), however. The simplest approach arises when the identified set is characterized
by point identified upper and lower bounds:Θ(r)= [ΘL(r)�ΘU(r)]. In this case, one can
plot estimated bound functions Θ̂L and Θ̂U along with outer confidence bands for these
functions. For example, see Figure 2 of Richardson, Hudgens, Gilbert, and Fine (2014).
They informally discuss how to use these bands to check robustness of the claim that
the true parameter is nonzero, but they do not formally discuss breakdown points or
inference on them.

Kline and Santos (2013) similarly began by constructing pointwise confidence bands
for the bound functions. They then use level sets of these bands to construct their confi-
dence intervals for a breakdown point (see equation (41) on p. 249). In their Remark 4.4
on page 250 they mention the approach we take—doing inference based directly on the
asymptotic distribution of breakdown point estimators. In order to compare these two
approaches, we discuss the approach of projecting confidence bands for lower bound
functions in more detail here.

Let the sensitivity parameter r be in [0�1]dr for some integer dr ≥ 1. Let ΘL(r) de-
note the lower bound function for a scalar parameter θ. By construction,ΘL(·) is weakly
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decreasing in its components. Suppose it is also continuous. Suppose we are interested
in the conclusion that θtrue ≥ θ. Suppose for simplicity that it is known that ΘL(0) ≥ θ.
This allows us to ignore the upper bound function and its confidence band. Define the
breakdown frontier for the claim that θtrue ≥ θ by

BF = {
r ∈ [0�1]dr :ΘL(r)= θ}�

Let

RR = {
r ∈ [0�1]dr :ΘL(r)≥ θ}

denote the robust region, the set of sensitivity parameters that lie on or below the break-
down frontier. The following proposition shows that, in general, projections of uniform
lower confidence bands for ΘL produce valid uniform lower confidence bands for the
breakdown frontier.

Proposition S.1. Let LB(·) be an asymptotically exact uniform lower (1−α)-confidence
band forΘL(·). That is,

lim
N→∞

P
(
LB(r)≤ΘL(r) for all r ∈ [0�1]dr ) = 1 − α�

(We call LB(·) a “band” even though it is really a hypersurface.) Define the projections

BFL = {
r ∈ [0�1]dr : LB(r)= θ}

and

RRL = {
r ∈ [0�1]dr : LB(r)≥ θ}�

Then

lim
N→∞

P(RRL ⊆ RR)≥ 1 − α�

Proof of Proposition S.1. We have

P(RRL ⊆ RR)= P
(
For all r ∈ [0�1]dr s.t. LB(r)≥ θ, we haveΘL(r)≥ θ)

≥ P
(
LB(r)≤ΘL(r) for all r ∈ [0�1]dr )�

Now take limits on both sides as N → ∞. The inequality arises essentially because the
functional inequality LB(·)≤ΘL(·) is a sufficient, but not necessary, condition for RRL ⊆
RR.

Proposition S.1 shows that projecting a uniform band always yields a confidence
band for the breakdown frontier which has size at least 1 − α. Notice that although we
did not use monotonicity of ΘL(·) here, this monotonicity implies that we can always
take LB(·) to be weakly decreasing without loss of generality. This follows since mono-
tonicity of ΘL(·) allows us to convert any non-monotonic lower confidence band into a
monotonic one without any loss of coverage.

There are two downsides to this projection approach, compared to our direct ap-
proach:
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1. In general, this projection approach may be conservative.

2. Relatedly, one must choose the lower confidence bandΘL(·). There are many such
choices. The standard ones, such as equal width or inversion of a sup t-statistic (e.g., see
Freyberger and Rai (2018)), will likely yield conservative projection bands, since they are
not chosen with the goal of doing inference on the breakdown frontier in mind.

Kline and Santos (2013) do not propose projections of uniform confidence bands.
They propose projections of pointwise confidence bands. As we discuss next, projec-
tion of pointwise bands produces valid confidence intervals for breakdown points. But
it does not generally produce valid confidence bands for breakdown frontiers. Hence
in the multidimensional r case, one either must use our direct approach, or appeal to
Proposition S.1 above.

To see that pointwise band projections are valid in the scalar r case, we expand on
Kline and Santos’ (2013) analysis. Define the population breakdown point by

r∗ = inf
{
r ∈ [0�1] :ΘL(r)≤ θ}�

Let c1−α(r) be the 1 − α quantile of the asymptotic distribution of
√
N

[
Θ̂L(r)−ΘL(r)

]
�

Define the pointwise one-sided lower confidence band forΘL(·) by

LB(r)= Θ̂L(r)− c1−α(r)√
N

�

Let

rL = inf
{
r ∈ [0�1] : LB(r)≤ θ}

be the projection of this confidence band. The following result is a minor generalization
of example 2.1 in Kline and Santos (2013).

Proposition S.2. Assume that the cdf of the asymptotic distribution of
√
N[Θ̂L(r∗) −

ΘL(r
∗)] is continuous and strictly increasing at its 1 − α quantile. Then

lim
N→∞

P
(
rL ≤ r∗) ≥ 1 − α�

If LB(·) is weakly decreasing with probability one then this inequality holds with equality.

Proof of Proposition S.2. We have

P
(
rL ≤ r∗) = P

(
r∗ ≥ inf

{
r ∈ [0�1] : LB(r)≤ θ})

≥ P
(
LB(r∗)≤ θ)

= P

(
Θ̂L(r

∗)− c1−α(r∗)√
N

≤ θ
)

= P
(√
N

(
Θ̂L(r

∗)− θ) ≤ c1−α(r∗)
)

= P
(√
N

(
Θ̂L(r

∗)−ΘL(r∗)
) ≤ c1−α(r∗)

)
�
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The first line follows by definition of rL. For the second line, notice that LB(r∗) ≤ θ im-
plies that r∗ ∈ {r ∈ [0�1] : LB(r)≤ θ}. Hence r∗ ≥ inf{r ∈ [0�1] : LB(r)≤ θ} by the definition
of the infimum. This gives us

P
(
LB(r∗)≤ θ) ≤ P

(
r∗ ≥ inf

{
r ∈ [0�1] : LB(r)≤ θ})�

If LB(·) is weakly decreasing with probability one, then the reverse inequality holds, and
hence we have an equality in the second line. To see this, suppose r∗ ≥ rL holds. Then
LB(r∗)≤ LB(rL) since LB(·) is weakly decreasing. But now notice that LB(rL)≤ θ by def-
inition of rL. Hence LB(r∗)≤ θ.

The third line follows by definition of LB. The fifth line by definition of the popu-
lation breakdown point, as the solution to ΘL(r) = θ. The result now follows by taking
limits as N → ∞ on both sides, and by definition of c1−α(r∗) and the invertibility of the
limiting cdf at its 1 − α quantile.

Proposition S.2 shows that, for doing inference on scalar breakdown points, pro-
jections of monotonic lower pointwise confidence bands for the lower bound func-
tion yields a one-sided confidence interval [rL�1] for the breakdown point r∗ which has
asymptotically exact size. If the lower band function is not always monotonic, however,
this projection can be conservative. Moreover, since we’re constructing one-sided point-
wise confidence bands, we do not have any flexibility to choose the shape of this con-
fidence band. Hence whether it is monotonic or not will be determined by the distri-
bution of the data. Furthermore, it does not appear that this proof strategy extends to
multidimensional r. Hence projections of pointwise bands are unlikely to yield uniform
confidence bands for the breakdown frontier.

Overall, our analysis above shows that the projection of confidence bands approach
to doing inference on breakdown points and frontiers will likely yield conservative in-
ference. This is not surprising since, unlike our approach, these bands are not designed
specifically for doing inference on the breakdown frontier. Finally, we note that if one
nonetheless wants to use a projection approach, our asymptotic results in Section 3 can
be used to do so.

A testing interpretation of lower confidence bands for breakdown frontiers

Consider the scalar r case, as above. Suppose we want to test

H0 :ΘL(r)≤ θ versus H1 :ΘL(r) > θ

for a fixed r ∈ [0�1]. By definition of the breakdown point, H0 is true if and only if r ≥ r∗.
Let [rL�1] denote a one-sided lower confidence interval for the breakdown point r∗; that
is, P([rL�1] � r∗)= 1 − α. Define the test

φ=
{

ChooseH0 if rL < r�

ChooseH1 if r ≤ rL�



6 Masten and Poirier Supplementary Material

Then

P(ChooseH1 |H0 true)= P(r ≤ rL)
≤ P

(
r∗ ≤ rL

)
= α�

The second line follows since r ≥ r∗. The last line follows by construction of rL. Hence φ
has size at most α. This result holds for any r ∈ [0�1]. Thus we can interpret the robust
region inner confidence set [0� rL] as the set of sensitivity parameters r such that we
reject the null that the true parameter might be below θ. That is, for r ∈ [0� rL], our test
concludes that θ > θ. For r outside the robust region inner confidence set, we do not
reject the null that θ might be at or below θ.

Here we considered the scalar r case for simplicity, but this argument extends to
the general case of interpreting lower confidence bands for an arbitrary dimensional
breakdown frontier.

Local analyses

Since Pitman (1949), local asymptotics are sometimes used to study the behavior of a
given estimator under small deviations from model assumptions. Several papers use
this approach to study deviations from exogeneity-type assumptions. In a missing data
model, Copas and Eguchi (2001) considered local-to-full-independence asymptotic dis-
tributions of MLEs. Conley, Hansen, and Rossi (2012) derived the asymptotic bias of the
2SLS estimator in an IV model along sequences where violations of the exclusion restric-
tion converge to zero. The asymptotic bias depends on a local parameter. By placing a
prior on this local parameter, they do Bayesian inference on the coefficient of interest.
Andrews, Gentzkow, and Shapiro (2017) generalized this local-to-zero asymptotic result
to the GMM estimator for a given system of moment equalities. Unlike this literature,
our approach is global: Breakdown frontier analysis focuses on the largest relaxations of
an assumption under which one’s conclusions still hold.

Bayesian inference and breakdown frontiers

Although we focus on frequentist inference, here we briefly discuss Bayesian ap-
proaches. In Section 11 of Robins, Rotnitzky, and Scharfstein (2000), Robins studied
Bayesian inference in a parametric path approach to sensitivity analysis. Let r denote the
sensitivity parameter and θ(r) the parameter of interest, which is point identified given
r. Holding r fixed, one can do standard Bayesian inference on θ(r). Thus Robins simply
suggests placing a prior on r and averaging posteriors conditional on r over this prior.
Indeed, this approach is essentially just Bayesian model averaging, where r indexes the
class of models under consideration. See Hoeting, Madigan, Raftery, and Volinsky (1999)
for a survey of Bayesian model averaging, and Leamer (1978) for important early work.
Among other approaches, Conley, Hansen, and Rossi (2012) applied these ideas to do a
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sensitivity analysis in an IV model. See DiTraglia and García-Jimeno (2016) for a gener-
alization and a detailed analysis of priors in that IV setting.

Next consider the nonparametric neighborhood approach. Here the parameter of
interest is only partially identified for a fixed r, and thus even holding r fixed leads
to nonstandard Bayesian analysis. Giacomini, Kitagawa, and Volpicella (2016) studied
Bayesian model averaging where one of the models is partially identified. They study
averaging of a finite number of models. If their results can be extended to a continuum
of models, then this method could be applied to the model and assumptions we con-
sider in this paper.

A subtlety arises in both Robins, Rotnitzky, and Scharfstein (2000) and Giacomini,
Kitagawa, and Volpicella (2016): Depending on how one specifies the joint prior for the
sensitivity parameters and the remaining parameters, it may be possible to obtain some
updating of the prior for the sensitivity parameters (a point mentioned more generally
by Lindley (1972) in his footnote 34 on page 46; also see Koop and Poirier (1997)). As Gi-
acomini, Kitagawa, and Volpicella (2016) discuss, however, the model posterior will not
converge to the truth unless the model is refutable. None of the assumptions (c� t) in the
model we study are refutable. Hence the prior over (c� t) generally matters even asymp-
totically. That said, the breakdown frontier determines exactly how much the model pri-
ors matter for a specific claim. For instance, suppose the model prior places all of its
mass below the breakdown frontier for a specific claim. Then we conjecture that the
Bayesian model averaged posterior probability that the claim is true will converge to one
as N → ∞, regardless of the specific choice of prior. Kline and Tamer (2016) provided
results like this in the single model case. More generally, we conjecture that the propor-
tion of model prior mass that falls below the breakdown frontier partially determines the
tightness of the corresponding asymptotic posterior probability of the conclusion being
true: The more mass outside the breakdown frontier, the more the model priors mat-
ter. Consequently, a sample analog estimate and perhaps even frequentist inference on
the breakdown frontier can be useful even in a Bayesian analysis, to help determine the
importance of one’s model priors. This is similar to Moon and Schorfheide’s (2012) rec-
ommendation that one report estimated identified sets along with Bayesian posteriors.
Here we have just sketched the relationship between Bayesian analysis and breakdown
frontiers. We leave a complete analysis of these issues to future work.

Appendix E: Higher dimensional breakdown frontiers

In this paper we focus on breakdown frontiers where the assumption space—the do-
main of the sensitivity parameters that index relaxations—is two dimensional. In two di-
mensions, the breakdown frontier can be viewed as a function on a one-dimensional do-
main. Hence presenting estimated breakdown frontiers and corresponding confidence
bands is conceptually straightforward. As in other settings, however, summarizing non-
parametric functions of two or more parameters is difficult. In this section, we briefly
discuss four ways to summarize higher dimensional breakdown frontiers.

1. Compute the size of the robust region. We call the area under the breakdown fron-
tier the robust region. The area of this region provides a quantitative measure of the
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robustness of the conclusion of interest. This area is a scalar statistic that can be com-
puted regardless of the dimension of the space of assumptions. Although this statistic
does not capture the trade-off between assumptions’ identifying power, it can be used
to compare the overall robustness of conclusions across different studies.

2. Compute directional breakdown points. Let the sensitivity parameter r be in
[0�1]dim(r) for some integer dim(r)≥ 2. One can focus on values r =m · d where m ∈ R+
is a scalar and d ∈ R

dim(r)
+ is a known vector. Given the direction d, the largest possible

value ofm such thatm · d ∈ [0�1]dim(r) is

m= sup
{
m ∈R+ :m · d� ≤ 1 for all �= 1� � � � �dim(r)

}
�

Suppose we are interested in the conclusion that θ ∈ C for some pre-specified set C ⊆Θ.
Then the breakdown point in the direction d is

m∗ = sup
{
m ∈ [0�m] :ΘI(m · d)⊆ C

}
�

This is the largest we can relax the assumptions in the direction d while still being able
to conclude that θ ∈ C. The point r∗ =m∗ ·d is on the breakdown frontier for this conclu-
sion.

3. Use parametric shapes to construct confidence sets. Characterizing the breakdown
frontier is equivalent to characterizing the robust region. In this paper, we study a set-
ting where we construct inner confidence sets for the robust region. We presented these
inner confidence sets graphically. It is well known, however, that summarizing higher
dimensional confidence sets is difficult. A common solution is to use rectangular con-
fidence regions. These regions can then be summarized by a set of intervals. Here we
could similarly construct rectangular inner confidence sets for the robust region. One
downside of using rectangles is that they may not well approximate any curvature in
the shape of the breakdown frontier. To capture such curvature, while retaining the abil-
ity to summarize a higher dimensional set, we could instead construct ellipsoidal inner
confidence sets.

4. Compute average derivatives. Suppose the space of assumptions is three dimen-
sional. Let r = (r1� r2� r3) denote the sensitivity parameters. Suppose we are interested in
the trade off between r1 and r2. Fix the value of r3 and compute the breakdown frontier
for the conclusion that θ ∈ C as

BF(r2 | r3)= sup
{
r1 ∈ [0�1] :ΘI(r1� r2� r3)⊆ C

}
�

Holding r3 fixed, this is a function from [0�1] to [0�1]. Suppose that for each r3 ∈ [0�1], it
is differentiable almost everywhere with respect to the Lebesgue measure. Then we can
compute its average derivative ∫ 1

0
BF′(r2 | r3)ω2(r2)dr2�

where ω2(·) is some fixed weight function. We could present this average derivative as a
function of r3, or we could also average over r3. This approach allows us to summarize
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the average rate of substitution between the first two assumptions. If the function BF(· |
r3) is not differentiable, we could instead use secant functions to summarize the trade-
offs.

Here we have just briefly discussed each method. We leave a full analysis and implemen-
tation of these to future work.

Appendix F: Monte Carlo simulations

In this section we study the finite sample performance of our estimation and inference
procedures proposed in Section 3. We consider the following dgp. For x ∈ {0�1}, Y |X =
x has a truncated normal distribution, with density

fY |X(y | x)= 1
γx+ 1

φ[−4�4]
(
y −πx
γx+ 1

)
�

where φ[−4�4] is the truncated standard normal density. We let γ = 0�1 and π = 1. We
set P(X = 1)= 0�5. This dgp implies a joint distribution of (Y�X), from which we draw
independently.

We consider two sample sizes, N = 500 and N = 2000. For each sample size we gen-
erate S = 500 simulated datasets. In each dataset we compute the estimated breakdown
frontier and a 95% lower bootstrap uniform confidence band, as discussed in Section 3.
We use B = 1000 bootstrap draws. We consider the same five values of p used in the
Introduction: 0�1, 0�25, 0�5, 0�75, and 0�9.

First we consider the performance of our point estimator of the breakdown fron-
tier. Figure S.1 shows the sampling distribution of our breakdown frontier estimator. We
show only p= 0�25, but the other values of p yield similar figures. For this p, we gather
all point estimates of the breakdown frontier in the same plot. These plots show several
features. First, as predicted by consistency, the sampling distribution becomes tighter

Figure S.1. Left: N = 500. Right: N = 2000. These plots show the sampling distribution of our
breakdown frontier estimator by gathering the point estimates of the breakdown frontier across
all Monte Carlo simulations into one plot. The true breakdown frontier is shown on top in white.
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Figure S.2. Rows are sample sizes (top isN = 500, bottom isN = 2000). Columns are five values
of p (from left to right: p = 0�1, 0�25, 0�5, 0�75, and 0�9). Dotted lines are the true breakdown
frontiers. The solid lines are the Monte Carlo estimates of E[B̂F(c)]. This plot shows the finite
sample bias of our breakdown frontier estimator.

around the truth as sample size increases. Second, the sampling distribution is not sym-
metric around the true frontier—it generally appears biased downwards. This is con-
firmed in Figure S.2 which plots the estimated finite sample mean function, Ê[B̂F(c)].
This mean is estimated as the sample mean across all of our Monte Carlo datasets; that
is, across all estimates shown in Figure S.1. The figure also shows the true breakdown
frontier as a dotted line. In general, the truth lies above the mean function. Again by
consistency, this finite sample bias converges to zero as sample size increases, which we
see when comparing the top row to the bottom row.

Next we consider the performance of our confidence bands. Figure S.3 shows an
example band along with the estimated frontier and the true frontier. To evaluate the
performance of bands like this, we compute uniform coverage probabilities. We use 50
grid points for computing and evaluating uniform coverage of the confidence band. Ta-
ble S.1 shows the results. Here we present a range of choices for εN . Since εnaive

N = 1/
√
N

yields the naive bootstrap, we use this choice as our baseline. We then consider seven

Figure S.3. N = 500. Example 95% lower uniform confidence band (dotted line), estimated
breakdown frontier (solid line), true breakdown frontier (dashed line).
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Table S.1. Coverage probabilities.

p

N εN εN/ε
naive
N 0�10 0�25 0�50 0�75 0�90

500 0�0224 0�50 1�000 1�000 0�998 0�966 0�898
0�0447 1�00 0�986 0�992 0�990 0�928 0�892
0�0671 1�50 0�970 0�990 0�988 0�922 0�884
0�0894 2�00 0�956 0�990 0�990 0�936 0�884
0�1789 4�00 0�974 0�994 0�994 0�980 0�956
0�2683 6�00 0�998 1�000 1�000 1�000 1�000
0�3578 8�00 1�000 1�000 1�000 1�000 1�000
0�4472 10�00 1�000 1�000 1�000 1�000 1�000

2000 0�0112 0�50 0�994 1�000 0�992 0�934 0�934
0�0224 1�00 0�986 0�992 0�990 0�934 0�918
0�0335 1�50 0�980 0�988 0�986 0�932 0�900
0�0447 2�00 0�980 0�976 0�982 0�930 0�882
0�0894 4�00 0�952 0�970 0�984 0�926 0�870
0�1342 6�00 0�960 0�982 0�986 0�942 0�906
0�1789 8�00 0�980 0�996 1�000 0�990 0�978
0�2236 10�00 0�994 1�000 1�000 1�000 1�000

Note: Nominal coverage is 1 − α= 0�95. As discussed in the body text, the choice εnaive
N = 1/

√
N yields the naive bootstrap.

Cell values show uniform-over-c coverage probabilities of one-sided lower confidence bands, computed to maximize total area
under the band.

other choices by rescaling the naive εN . Specifically, we consider εN = Kεnaive
N for K ∈

{0�5�1�5�2�4�6�8�10}. Recall that Hong and Li (2018) imposed the rate constraints that
εN → 0 and

√
NεN → ∞. Hence asymptotically the ratio εN/εnaive

N must diverge.
First, considerN = 500. Forp= 0�1, 0�25, and 0�75, the choice of εN which yields cov-

erage probabilities closest to the nominal coverage of 0�95 is twice the naive choice. This
is also approximately true for p = 0�5. For p = 0�9, the next largest εN has the coverage
probability closest to the nominal coverage. Focusing on these choices of εN , the cov-
erage probabilities are relatively close to the nominal for the “outside” columns p= 0�1,
0�25, and 0�9. For the “inside” columns p = 0�25 and p = 0�5, we have substantial over-
coverage. Indeed, for p = 0�1, 0�25, and 0�5, all choices of εN ’s considered lead to over-
coverage. For the two larger values of p, some values of εN lead to undercoverage. Fi-
nally, with εN ’s large enough, we obtain 100% coverage for all p’s.

Next consider N = 2000. Here we obtain similar results. For p = 0�1 and 0�25, the
choice of εN which yields coverage probabilities closest to the nominal coverage of 0�95
is four times the naive choice. This is also approximately true for p = 0�5. For p = 0�75,
the next largest εN is the best (six times the naive choice). For p= 0�9, an even larger εN
is the best (eight times the naive, with the optimal scaling probably around seven). And
for εN ’s large enough, we obtain essentially 100% coverage for all p’s.

Before we interpret these results, we discuss one more table, Table S.2. While Ta-
ble S.1 showed coverage probabilities, Table S.2 gives us an idea of the power of our
confidence bands. For each simulation, we compute the ratio of the area under the
confidence band to the area under the estimated breakdown frontier. By definition, our
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Table S.2. Proportional area under the confidence bands.

p

N εN εN/ε
naive
N 0�10 0�25 0�50 0�75 0�90

500 0�0224 0�50 0�644 0�643 0�637 0�672 0�734
0�0447 1�00 0�759 0�716 0�705 0�740 0�774
0�0671 1�50 0�780 0�734 0�722 0�751 0�776
0�0894 2�00 0�779 0�730 0�722 0�746 0�763
0�1789 4�00 0�604 0�552 0�541 0�529 0�468
0�2683 6�00 0�252 0�174 0�117 0�069 0�024
0�3578 8�00 0�022 0�007 0�001 0�000 0�000
0�4472 10�00 0�000 0�000 0�000 0�000 0�000

2000 0�0112 0�50 0�869 0�832 0�808 0�834 0�884
0�0224 1�00 0�894 0�865 0�841 0�862 0�896
0�0335 1�50 0�901 0�876 0�853 0�873 0�901
0�0447 2�00 0�904 0�882 0�859 0�879 0�902
0�0894 4�00 0�906 0�879 0�862 0�877 0�890
0�1342 6�00 0�875 0�840 0�829 0�837 0�833
0�1789 8�00 0�814 0�755 0�732 0�717 0�665
0�2236 10�00 0�704 0�615 0�563 0�499 0�387

Note: Nominal coverage is 1 − α= 0�95. As discussed in the body text, the choice εnaive
N = 1/

√
N yields the naive bootstrap.

Cell values show the average (across simulations) ratio of the area under the confidence band to the area under the estimated
breakdown frontier.

confidence bands are all below the estimated breakdown frontier. Hence this ratio can
never be larger than one. Although we do not perform a formal analysis of power, this
ratio gives us an idea of the main trade-off in obtaining our confidence bands: We want
them to be as large as possible subject to the constraint that they have correct cover-
age. This is how we defined our band in Section 3, for a fixed εN . Here we compare the
properties of these bands across different εN ’s. First considerN = 500 and p= 0�1. From
Table S.1, twice the naive choice of εN yields the closest to nominal coverage. All other
choices gave overcoverage. We see this in Table S.2 since twice the naive choice gives
essentially the largest area—all but one other choice have smaller area. Similarly, for
p = 0�9, the best choice based on Table S.1 is four times the naive choice, which gives
an area under the confidence band of 47% that of the area under the estimated break-
down frontier. Smaller εN ’s give larger areas, but undercover. Larger εN ’s give smaller
areas, but overcover. For large enough εN , the confidence bands get close to zero every-
where, and hence have very small area and 100% coverage. The results for N = 2000 are
similar.

In Table S.1, we saw that most combinations of p and εN led to overcoverage. This
is caused by a downward bias in our estimated breakdown frontiers, as shown in Fig-
ure S.2. Since we are constructing lower confidence bands, this downward bias causes
our confidence bands to over-cover. Although this finite-sample bias disappears asymp-
totically, one may wish to do a finite-sample bias correction to obtain higher-order re-
finements. Fan and Park (2009) previously studied this specific bias problem, in the case
with random assignment (our c = 0) and no assumptions on rank invariance (our t = 1).
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They propose analytical and bootstrap bias corrected estimators of the bounds. Cher-
nozhukov, Lee, and Rosen (2013) studied a related problem. Constructing such bias cor-
rected estimators of nondifferentiable functionals, however, is delicate due to the results
of Doss and Sethuraman (1989, Theorem 1) and Hirano and Porter (2012, Theorem 2(a)).
They show that achieving asymptotic unbiasedness for estimators of nondifferentiable
functionals generally requires the variance to diverge. This result motivates considera-
tion of alternative criteria, like the half-median unbiasedness property used by Cher-
nozhukov, Lee, and Rosen (2013). We leave a full analysis of such corrections to future
work.

Appendix G: Inference via population smoothing

In this section we develop an alternative approach to constructing lower uniform con-
fidence bands for the breakdown frontier. For simplicity, we omit covariates. As dis-
cussed in Section 3, the population breakdown frontier BF(·�p) evaluated on a finite
grid of c’s is a Hadamard directionally differentiable functional of the underlying pa-
rameters θ0 = (FY |X(· | ·)�p(·)), but it is not necessarily ordinary Hadamard differen-
tiable. We therefore applied the work of Dümbgen (1993), Hong and Li (2018), and
Fang and Santos (2019) to do inference. In this section, we instead replace BF(·�p) by a
smoother lower envelope function. We then construct uniform lower confidence bands
for this smoothed breakdown frontier, which are asymptotically valid—but potentially
conservative—for the original breakdown frontier. We compare and contrast these two
approaches to inference at the end of this section. For simplicity, we omit covariates
throughout this section.

Specifically, recall from Section 2 that

BF(c�p)= min
{
max

{
bf(c�p)�0

}
�1

}
�

where

bf(c�p)=
1 −p− P

(
Qc
Y1
(U)−QcY0

(U)≤ 0
)

1 + min
{

inf
y∈Y0

(
F
c
Y1
(y)− FcY0

(y − 0)
)
�0

}
− P

(
Qc
Y1
(U)−QcY0

(U)≤ 0
) � (10)

For simplicity, we fix p ∈ [0�1] throughout this section. We use κ throughout to denote
a scalar or vector of smoothing parameters. We replace BF(·�p) by a smooth lower ap-
proximation SBFκ(·�p), defined as follows.

Definition S.1. Let (Θ�‖ · ‖Θ) and (G �‖ · ‖G ) be Banach spaces. Let ≤ be a partial order
on G . Let f :Θ→ G be a function. Consider a function fκ :Θ→ G , where κ ∈ R

dim(κ)
+ is

a vector of bandwidths. We say fκ is a smooth lower approximation of f if it satisfies the
following:

1. (Lower envelope) fκ(θ)≤ f (θ) for all θ ∈Θ and κ ∈R
dim(κ)
+ .

2. (Approximation) For each θ ∈Θ, fκ(θ)→ f (θ) as all components of κ converge to
infinity. Here we take → to mean pointwise convergence.
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3. (Smoothness) fκ is Hadamard differentiable, possibly only tangentially to a speci-
fied set.

Define smooth upper approximations analogously.

Throughout this section we let ≤ denote the component-wise order when applied
to functions with Euclidean codomain. Recall our notation θ0 = (FY |X(· | ·)�p(·)), θ̂ =
(F̂Y |X(· | ·)� p̂(·)), and Z1 as the limiting distribution of

√
N(θ̂− θ0). Below we show how

to construct a functionalψ : �∞(R×{0�1})× �∞({0�1})→ �∞([0�C])which maps θ0 into
SBFκ(·�p) such that this functional is a smooth lower approximation of the functional
mapping θ0 to BF(·�p). Given such a functional, we estimate the smoothed breakdown
frontier by sample analog:

ŜBFκ(c�p)= [
ψ(θ̂)

]
(c)�

We then construct uniform confidence bands for the breakdown frontier as follows. As
in Section 3, consider bands of the form

L̂B(c)= ŜBFκ(c�p)− k̂(c)

for some function k̂(·)≥ 0. We specifically focus on k̂(c)= ẑ1−ασ(c) for a scalar ẑ1−α and
a known function σ , for simplicity. We now immediately obtain the following result.

Proposition S.3. Suppose Assumptions A1, A3, and A5 hold. Letψ denote the functional
described above, a smooth lower approximation to the breakdown frontier functional. Let
θ̂∗ denote a draw from the nonparametric bootstrap distribution of θ̂. Then

√
N

(
ψ(θ̂∗)−ψ(θ̂)) P�ψ′

θ0
(Z1)� (S.1)

whereψ′
θ0

denotes the Hadamard derivative ofψ at θ0. For a given function σ(·) such that
infc∈[0�C]σ(c) > 0, define

ẑ1−α = inf
{
z ∈ R : P

(
sup
c∈[0�C]

√
N

([
ψ(θ̂∗)

]
(c)− [

ψ(θ̂)
]
(c)

)
σ(c)

≤ z |ZN
)

≥ 1 − α
}
� (S.2)

Finally, suppose also that the cdf of

sup
c∈[0�C]

[
ψ′
θ0
(Z1)

]
(c)

σ(c)

is continuous and strictly increasing at its 1 − α quantile, denoted z1−α. Then ẑ1−α =
z1−α + op(1).

Corollary 1. Suppose the assumptions of Proposition S.3 hold. Let k̂(c) = ẑ1−ασ(c),
where ẑ1−α is defined in equation (S.2). Then

lim
N→∞

P
(
ŜBFκ(c�p)− k̂(c)≤ BF(c�p) for all c ∈ [0�C]) ≥ 1 − α�
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Importantly, the level of smoothing κ is fixed asymptotically. This is analogous to
the requirement that the grid of c’s must be fixed asymptotically in the approach dis-
cussed in Section 3. It is also similar to a proposal by Chernozhukov, Fernández-Val, and
Galichon (2010) in their Corollary 4. They suggested replacing the nonsmooth function
with a smoothed version and doing inference on the smoothed version. Their approach
delivers valid inference on the smoothed function, but not the original function. This
follows since their smoothed function does not satisfy an envelope property. Our modi-
fication of their suggestion, however, delivers valid inference on both the smoothed and
original functions.

All that remains is to construct such a function SBFκ(c�p). We consider each piece

composing the function BF(c�p) in turn. First consider F
c
Y1
(y). This bound is a mini-

mum of two terms (see equation (4)). In general, consider the minimum of a finite num-
ber of terms x1� � � � � xn. There are many smooth approximations of this function. Here
we just consider one:

smκ{x1� � � � � xn} =
n∑
i=1

xi
exp(κxi)
n∑
j=1

exp(κxj)

for κ < 0. This same function approximates max{x1� � � � � xn} for κ > 0. Let D be a subset of
a Euclidean space. Let D1 denote the set of functions in �∞(D)n with range contained in
some compact set Y ⊆ R

n. In our application, we are interested in using the functional
ψ1�κ : D1 → �∞(D) defined by[

ψ1�κ(f1� � � � � fn)
]
(y)= smκ

{
f1(y)� � � � � fn(y)

}
to approximate the functionals ψ1�max :D1 → �∞(D) defined by[

ψ1�max(f1� � � � � fn)
]
(y)= max

{
f1(y)� � � � � fn(y)

}
and ψ1�min :D1 → �∞(D) defined by[

ψ1�min(f1� � � � � fn)
]
(y)= min

{
f1(y)� � � � � fn(y)

}
�

Lemma S.1. Let κ ∈R+.

1. ψ1�κ is a smooth lower approximation of ψ1�max.

2. ψ1�−κ is a smooth upper approximation of ψ1�min.

Since F
c
Y1
(y) enters the denominator of equation (10), and since smκ for κ < 0 is an

upper envelope for the minimum, replacing the minimum in the definition of F
c
Y1
(y)

with smκ for κ < 0 decreases the value of equation (10). Similarly, replacing the max-
imum in the definition of FcY0

(y) by smκ for some κ > 0 decreases the value of equa-
tion (10).
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Next consider the P(Qc
Y1
(U)−QcY0

(U)≤ 0) term. As discussed in Section 3, this term

is the pre-rearrangement operator pr : �∞((0�1)× C)→ �∞(C) defined by

[
pr(f )

]
(c)=

∫ 1

0
1
[
f (u� c)≤ 0

]
du

evaluated at the difference of the quantile bounds, where C ⊆ [0�1]. Define the smoothed
pre-rearrangement operator sprκ : �∞((0�1)× C)→ �∞(C) by

[
sprκ(f )

]
(c)= 1 −

∫ 1

0
ssκ

(
f (u� c)

)
du�

where ssκ is a smooth (upper or lower) approximation to the step function 1(x≥ 0).

Lemma S.2. Let ssκ : R → R be a smooth upper (lower) approximation to the step func-
tion. Suppose further that ssκ approximates the step function in the L1-norm and ssκ’s
derivative is uniformly continuous on its domain. Then sprκ is a smooth lower (upper)
approximation to pr.

As with the maximum and minimum, there are many ways to construct smooth ap-
proximations to the step function 1(x≥ 0). Here we mention just one:

ss+
κ (x)= S1(κx− 1) and ss−

κ (x)= S1(κx)� (3)

where

S1(x)=

⎧⎪⎪⎨⎪⎪⎩
0 if x≤ 0�

3x2 − 2x3 if x ∈ (0�1)�

1 if x≥ 1�

Lemma S.3. Let κ ∈R+. Consider ss+
κ and ss−

κ defined in equation (3).

1. ss+
κ :R →R is a smooth upper approximation of 1(x≥ 0).

2. ss−
κ :R →R is a smooth lower approximation of 1(x≥ 0).

Moreover, both ss−
κ and ss+

κ approximate the step function in the L1-norm and have uni-
formly continuous derivative on R.

We can now replace the pre-rearrangement operator in the numerator of equation
(10) by sprκ(f ) where the step function is approximated by ss−

κ . Likewise we replace the
pre-rearrangement operator in the denominator by sprκ(f ) where the step function is
approximated by ss+

κ . Both of these changes decrease the value of equation (10).
Next consider the infimum piece in the denominator of equation (10). First notice

that

inf
y∈Y0

(
F
c
Y1
(y)− FcY0

(y − 0)
) = 1 + inf

y∈Y0

(−1 + FcY1
(y)− FcY0

(y − 0)
)
�
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This ensures the argument of the infimum is nonpositive, a property we use below. As
Fang and Santos (2015) note in their example 2.3 on page 10, if this infimum always has
a unique optimizer, then the infimum operator is actually ordinary Hadamard differen-
tiable. To avoid assuming that such a unique optimizer always exists, however, we will
also replace the infimum by a smooth approximation. Specifically, let

‖f‖p =
(∫

Y0

∣∣f (y)∣∣pdy)1/p

denote the Lp(Y0)-norm. As p→ ∞, the Lp-norm converges to the sup-norm. We use
this result to construct our smooth approximation to the infimum. Let y = infY0 and y =
supY0, which are both finite since Y0 is compact. Let D2 denote the set of all nonpositive
functions in �∞(R× C) with Lp-norm bounded away from zero and range contained in
[−2�0]. Let p≥ 1. Define ψ2�p : D2 → �∞(C) by

[
ψ2�p(f )

]
(c)= − 1

(y − y)1/p
∥∥−f (·� c)∥∥

p
�

We scale theLp-norm to ensure that we obtain a lower approximation to the supremum.
The two minus signs then switch this to an upper approximation to the infimum.

Lemma S.4. ψ2�p is a smooth upper approximation to the infimum function, as p→ ∞.

Using this result, we replace

1 + inf
y∈Y0

(−1 + FcY1
(y)− FcY0

(y − 0)
)

by its smooth upper approximation

1 + [
ψ2�p

(−1 + F(·)Y1
(·)− F(·)Y0

(· − 0)
)]
(c)

in equation (10), which decreases the value of the breakdown frontier. In this step we
require the argument of ψ2�p to have nonzero Lp-norm. This assumption rules out ex-
treme cases, such as when both 0 ∈ C and FY |X(· | 0)= FY |X(· | 1).

Finally, the maximum in the definition of BF(c�p) can be replaced with smκ. For the
minimum in this definition we want a smooth lower approximation. Since min{0�x} =
x[1 − 1(x≥ 0)], one such approximation is x[1 − ss+

κ (x)].
In Section 3 we showed that the population breakdown frontier is a composition

of Hadamard directionally differentiable functionals. In this section, we showed how
to replace each functional in this composition by an ordinary Hadamard differentiable
functional in such a way that the overall function is weakly smaller than the original
breakdown frontier. Moreover, the difference between the original and smoothed fron-
tiers can be made arbitrarily small by choosing appropriate values of the tuning param-
eters. Corollary 1 above shows how to use this construction to do valid inference on the
original breakdown frontier.
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We conclude by comparing our two approaches to inference: The first based on
Hadamard directional differentiability and the second based on smoothing the popu-
lation frontier. For any fixed finite grid of c values, the first approach provides asymptot-
ically exact inference while the second approach will always be possibly conservative.
Visually, the first approach uses step functions to obtain a uniform band while the sec-
ond approach produces a smoother appearing frontier. The first approach required As-
sumption A6 while the second approach does not. The first approach requires choosing
the εN tuning parameter for the numerical delta method bootstrap, while the second
approach does not since the ordinary bootstrap is valid. The second approach, however,
requires choosing a large number of smoothing functions and bandwidths, unlike the
first approach. Too much smoothing will lead to conservative inference, while too little
smoothing will likely lead to poor finite sample performance. Overall, neither approach
appears to strictly dominate.

Proofs for Appendix G

Proof of Proposition S.3. Equation (S.1) follows by the functional delta method
(e.g., Theorem 3.1 of Fang and Santos (2019)), since ψ is Hadamard differentiable. The
rest of the proof follows as in the proof of Proposition 2.

Proof of Corollary 1. This result follows immediately by the lower envelope prop-
erty of the smoothed breakdown frontier.

Proof of Lemma S.1. We give the proof for part 1. Part 2 is analogous.

1. Let x1� � � � � xn ∈ R. smκ{x1� � � � � xn} is a weighted average of x1� � � � � xn where the
weights are in (0�1). Hence it must always be weakly smaller than the maximum of
x1� � � � � xn. Thus smκ{f1(y)� � � � � fn(y)} ≤ max{f1(y)� � � � � fn(y)} for any functions f1� � � � � fn
and any y ∈ D.

2. Let x1� � � � � xn ∈ R. Suppose xk = max{x1� � � � � xn}. Without loss of generality, sup-
pose this maximum is unique. Multiplying and dividing by exp(−κxk) yields

smκ{x1� � � � � xn} =
n∑
i=1

xi
exp

(
κ[xi − xk]

)
n∑
j=1

exp
(
κ[xj − xk]

) �

For all i 
= k, xi − xk < 0, hence exp(κ[xi − xk])→ 0 as κ→ ∞. Thus the weights on all
i 
= k converge to zero while the weight on xk converges to one. Hence for any fixed
f1� � � � � fn and y ∈ D, [ψ1�κ(f1� � � � � fn)](y) converges to ψ1�max(f1� � � � � fn)](y).

3. For any fixed κ, the derivatives of the weights with respect to each xi are uniformly
bounded. This follows by the functional form of the weights and compactness of Y .
Therefore ψ1�κ is Fréchet differentiable by Lemma S.5 below. Finally, note that Fréchet
differentiability implies Hadamard differentiability.
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Lemma S.5. Let g : Rn →R be an everywhere differentiable function with uniformly con-
tinuous derivative on Y ⊆R

n. Let D be a subset of a Euclidean space. Define the functional
φ : �∞(D)n → �∞(D) by [

φ(f1� � � � � fn)
]
(y)= g(f1(y)� � � � � fn(y)

)
�

Let D denote the set of functions in �∞(D)n with range contained in Y . Let f ∈ D. Then φ
is Fréchet differentiable at f with derivative

[
φ′
f (h)

]
(y)=

n∑
i=1

[∇ig]
(
f1(y)� � � � � fn(y)

) · hi(y)�

where ∇ig denotes the ith partial derivative of g.

Proof of Lemma S.5. We show the n= 1 case, where[
φ′
f (h)

]
(y)= g′(f (y))h(y)�

The n≥ 2 case is similar. We also suppose Y =R for simplicity. We have∣∣[φ(f + h)](y)− ([
φ(f)

]
(y)+ [

φ′
f (h)

]
(y)

)∣∣
= ∣∣(g(f (y)+ h(y)) − g(f (y))) − g′(f (y))h(y)∣∣
= ∣∣g′(f̄ (y))h(y)− g′(f (y))h(y)∣∣
= ∣∣g′(f̄ (y)) − g′(f (y))∣∣ · ∣∣h(y)∣∣�

The second equality follows by the mean value theorem, which says that there exists a
f̄ (y) such that

g
(
f (y)+ h(y)) − g(f (y)) = g′(f̄ (y))h(y)

and |f̄ (y)− f (y)| ≤ |h(y)|. We apply this argument for each y ∈ D.
Next, fix ε > 0. By uniform continuity of g′(·), there is a δ > 0 such that for all h̃ ∈ R

with |h̃|< δ and all f̃ ∈R, ∣∣g′(f̃ + h̃)− g′(f̃ )
∣∣< ε�

Therefore, ∣∣g′(f̄ (y)) − g′(f (y))∣∣ · ∣∣h(y)∣∣ ≤ ε∣∣h(y)∣∣
for all ‖h‖∞ < δ. Hence

sup
y∈D

∣∣[φ(f + h)](y)− ([
φ(f)

]
(y)+ [

φ′
f (h)

]
(y)

)∣∣ ≤ ε sup
y∈D

∣∣h(y)∣∣
for all ‖h‖∞ < δ. That is, ∥∥φ(f + h)− (

φ(f)+φ′
f (h)

)∥∥∞
‖h‖∞

≤ ε

for ‖h‖∞ < δ. Since ε was arbitrary, this shows that the left-hand side is o(1).
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Proof of Lemma S.2. We show that sprκ is a smooth lower approximation to pr when

ssκ is a smooth upper approximation to the step function. The second part is analogous.

1. This follows immediately since ssκ is an upper approximation to the step function,

which is then multiplied by a negative sign in the definition of sprκ.

2. This follows by our assumption that ssκ approximates the step function in the L1-

norm: ∫
R

∣∣ssκ(u)− 1(u≥ 0)
∣∣du→ 0

as κ→ ∞.

3. This follows immediately from Lemma S.6 below.

Lemma S.6. Let Λ : R → R be an everywhere differentiable function with uniformly con-

tinuous derivative on its domain. Let C ⊆ R. Define the functional φ : �∞((0�1) × C)→
�∞(C) by

[
φ(f)

]
(c)=

∫ 1

0
Λ

[
f (u� c)

]
du�

Then φ is Fréchet differentiable, where

[
φ′
f (h)

]
(c)=

∫ 1

0
Λ′[f (u� c)]h(u� c)du

is the Fréchet derivative of φ at f .

Proof of Lemma S.6. This result is a modification of example 5 on page 174 of Luen-

berger (1969). We have

∣∣[φ(f + h)](c)− ([
φ(f)

]
(c)+ [

φ′
f (h)

]
(c)

)∣∣
=

∣∣∣∣∫ 1

0

(
Λ

[
f (u� c)+ h(u� c)] −Λ[

f (u� c)
] −Λ′[f (u� c)]h(u� c))du∣∣∣∣�

By the usual mean value theorem,

Λ
[
f (u� c)+ h(u� c)] −Λ[

f (u� c)
] =Λ′[f̄ (u� c)]h(u� c)�

where |f (u� c)− f̄ (u� c)| ≤ |h(u� c)|. We apply this argument for each u ∈ (0�1) and c ∈ C.

Next, fix ε > 0. Λ′(·) is uniformly continuous by assumption. Hence there is a δ > 0
such that for all h̃ ∈R with |h̃|< δ and all f̃ ∈R,

∣∣Λ′(f̃ + h̃)−Λ′(f̃ )
∣∣< ε�
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Therefore,

sup
c∈C

∣∣∣∣∫ 1

0

(
Λ

[
f (u� c)+ h(u� c)] −Λ[

f (u� c)
] +Λ′[f (u� c)]h(u� c))du∣∣∣∣

= sup
c∈C

∣∣∣∣∫ 1

0

(
Λ′[f̄ (u� c)] −Λ′[f (u� c)])h(u� c)du∣∣∣∣

≤ sup
c∈C

∣∣∣∣∫ 1

0
εh(u� c)du

∣∣∣∣
≤ ε sup

c∈C
sup

u∈(0�1)

∣∣h(u� c)∣∣
= ε‖h‖∞�

The first inequality holds for ‖h‖∞ < δ. Thus∥∥φ(f + h)− (
φ(f)+φ′

f (h)
)∥∥∞

‖h‖∞
≤ ε

for ‖h‖∞ < δ. Since ε was arbitrary, this shows that the left-hand side is o(1).

Proof of Lemma S.3. We give the proof for part 1. Part 2 is analogous.

1. By construction, 0 ≤ S1(x)≤ 1 on (0�1).

2. By construction, ss+
κ (x) equals 1(x ≥ 0) everywhere except on (0�1/κ). Thus we

immediately obtain the desired pointwise convergence. Furthermore, note that∫
R

∣∣ss+
κ (x)− 1(x≥ 0)

∣∣dx≤ 1
κ

which converges to zero as κ→ ∞. We use this property in Lemma S.2.

3. This follows since S1 : R→R is differentiable.

S′
1(x)= 6x(1 − x) is bounded by 3 on x ∈ [0�1]. For x /∈ [0�1], S′

1(x)= 0. Hence S1 is Lip-
schitz. Therefore it is uniformly continuous. Thus both ss+

κ and ss−
κ are also uniformly

continuous.

Proof of Lemma S.4. 1. This follows from(∫
Y0

f (y� c)p dx

)1/p
≤ sup
y∈Y0

f (y� c)

(∫
Y0

1dx
)1/p

≤ ∥∥f (·� c)∥∥∞(y − y)1/p�

2. This follows, for example, from Proposition 2.2 on page 8 of Stein and Shakarchi
(2011).

3. Define φ : D2 → �∞(C) by [φ(f)](c) = ‖−f (·� c)‖p. ψ2�p is just a scaled version of
this functional. Define ψ :D2 → �∞(C) by

[
ψ(f)

]
(c)= [

φ(f)
]
(c)p = ∥∥−f (·� c)∥∥p

p
=

∫ 1

0

[−f (u� c)]p du�
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The last equality follows since −f is nonnegative. By Lemma S.6, ψ is Fréchet differen-
tiable with Fréchet derivative

[
ψ′
f (h)

]
(c)= −

∫ 1

0
p

[−f (u� c)]p−1
h(u� c)du�

Here we use uniform continuity of (−x)p on the compact set [−2�0].
Let D3 denote the set of nonnegative functions in �∞(C)withLp-norm bounded away

from zero. Note that the range of ψ is contained in D3. Consider the functional θ : D3 →
�∞(C) defined by [θ(g)](c)= g(c)1/p. By arguments as in Lemma S.5, the Fréchet deriva-
tive of θ is [

θ′
g(h)

]
(c)= 1

p
g(c)1/p−1h(c)�

Here we will use both the bounded range of our input functions f and their Lp-
norm bounded away from zero to ensure uniform continuity of (1/p)x1/p−1. Note that
[φ(f)](c) = [θ(ψ(f ))](c). The result now follows by the chain rule, which further states
that [φ′

f (h)](c)= [θ′
ψ(f)(ψ

′
f (h))](c). Hence

[
φ′
f (h)

]
(c)= 1

p

(∫ 1

0

[−f (u� c)]p du)1/p−1
(−1)

(∫ 1

0
p

[−f (u� c)]p−1
h(u� c)du

)

= −
∥∥−f (·� c)∥∥

p∫ 1

0

[−f (u� c)]p du
∫ 1

0

[−f (u� c)]p−1
h(u� c)du�

This derivative is not defined when f has zero Lp-norm.

Appendix H: Additional empirical analyses

In our empirical analysis of Section 4 we collapse our two discrete covariates into two
binary indicators of whether one is above or below the median value of the covariate. In
this section we explore the impact of alternative coarsenings of these covariates on our
empirical results. Specifically, we consider six different coarsenings total: three binary
coarsenings and three trinary coarsenings.

For the binary coarsenings, we collapse each covariate Wk into a binary variable
based on whether the value of the covariate is above or below the τth quantile QWk(τ),
for τ ∈ {0�25�0�5�0�75}. This includes our baseline case, τ = 0�5. For the trinary coarsen-
ings, we collapse each covariate Wk into three bins: below QWk(τ1), between QWk(τ1)

and QWk(τ2), and above QWk(τ2), where QWk(τ) is the τth quantile of the covariate Wk.
We use three choices of (τ1� τ2): (0�35�0�65), (0�30�0�70), and (0�25�0�75). As discussed in
Section 4, given our overall sample size of 448 observations, using finer coarsenings (that
is, more cells) or more asymmetric choices of τ yields cells with too few observations.

Figure S.4 shows the estimated breakdown frontiers for each of the six different
coarsenings, and for p ∈ {0�1�0�25�0�5}. The solid line is our baseline estimate—the bi-
nary coarsening split at the median. The dotted lines show our alternative coarsenings.
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Figure S.4. Estimated breakdown frontiers using various coarsenings of the conditioning vari-
ables. The solid bold line is our baseline estimate. The dotted lines represent the five alternative
coarsenings we consider.
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Comparing the dotted lines with the solid line, we see that the estimated breakdown
frontier generally does not change much as we vary how we coarsen the covariates. This
is especially true for p = 0�1 and p = 0�25. Thus our overall conclusions regarding the
robustness of claims about P(Y1 >Y0) do not appear to depend strongly on the specific
choice of coarsening.
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