A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Caporin, Massimiliano; Pelizzon, Loriana; Plazzi, Alberto #### **Working Paper** Does monetary policy impact international market comovements? SAFE Working Paper, No. 276 #### **Provided in Cooperation with:** Leibniz Institute for Financial Research SAFE *Suggested Citation:* Caporin, Massimiliano; Pelizzon, Loriana; Plazzi, Alberto (2020): Does monetary policy impact international market co-movements?, SAFE Working Paper, No. 276, Leibniz Institute for Financial Research SAFE, Frankfurt a. M. This Version is available at: https://hdl.handle.net/10419/217221 #### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. Massimiliano Caporin | Loriana Pelizzon | Alberto Plazzi # Does Monetary Policy Impact International Market Co-Movements? SAFE Working Paper No. 276 # Leibniz Institute for Financial Research SAFE Sustainable Architecture for Finance in Europe # Does Monetary Policy Impact International Market Co-Movements? MASSIMILIANO CAPORIN*, LORIANA PELIZZON†, and ALBERTO PLAZZI‡ May 11, 2020 #### **ABSTRACT** We show that FED policy announcements lead to a significant increase in international comovements in the cross-section of equity and in particular sovereign CDS markets. The relaxation of unconventionary monetary policies is felt strongly by emerging markets, and by countries that are open to the trading of goods and flows, even in the presence of floating exchange rates. It also impacts closed economies whose currencies are pegged to the dollar. This evidence is consistent with recent theories of a global financial cycle and the pricing of a FED's put. In contrast, ECB announcements hardly affect comovements, even in the Eurozone. JEL classification: E58, G12, G15 Keywords: Unconventional Monetary policy, Quantitative easing, Mundellian trilemma, Co- movements, Sovereign credit risk ^{*}University of Padova, Via C. Battisti 241, 35121, Padova, Italy, massimiliano.caporin@unipd.it [†]Leibniz Institute for Financial Research SAFE, Goethe University Frankfurt Theodor-W.-Adorno-Platz 3, 60323, Frankfurt am Main, Germany and Ca' Foscari University of Venice, Dorsoduro, 3246, 30123 Venezia, Italy. pelizzon@safe.uni-frankfurt.de [‡]Institute of Finance, Università della Svizzera Italiana and Swiss Finance Institute, Via Buffi 13, Lugano, Switzerland, alberto.plazzi@usi.ch We thank participants to the Financial Intermediation in Emerging Markets Conference (Cape Town), 4th International Conference on Sovereign Bond Markets (Singapore), 2017 CREDIT, 2017 Paris Finance Meeting, 2nd Annual CEBRA International Finance and Macroeconomics Meeting, Project Workshop and 2019 Closing Conference "Quantitative Easing and Financial (In)Stability", seminar participants at Queensland University of Technology and Brisbane, as well as Pasquale Della Corte, Andrey Ermolov, Sergio Mayordomo, Paolo Pasquariello, Stephen Schaefer, and Annet Vissing-Jorgensen for comments. We also thank Xu Liu for the data collection research support. We gratefully acknowledge research and financial support from the Leibniz Institute for Financial Research SAFE, Inquire Europe, the VolkswagenStifftung Europe and Global Challenges. First draft: April 2016. All remaining errors are our own. ## 1 Introduction Many central banks have introduced quantitative easing (QE) as a new policy tool where they massively buy bonds from market participants with the intent of providing liquidity to the market, reducing the cost of capital, and ultimately fostering economic growth. These policies were introduced by the Federal Reserve in the aftermath of the financial crisis, and by the ECB as a response to the crisis in the Eurozone sovereign bond market. As central banks are still undertaking these measures, a number of studies highlight their effect on bond yields, stock prices, and exchange rates of the developed countries where they are being implemented. However, several open questions remain with respect to the effect of QE on global markets. In particular, given the unprecedented size of these interventions it is natural to ask how their introduction (and subsequent unwinding) affects not only domestic markets but more generally the whole international financial system. In this paper, we contribute to our understanding of the global consequences of revisions in monetary policies by examining to what extent do the ECB and FED policy announcements affect international market comovements. Specifically, we study comovements in the equity and sovereign credit risk (i.e. CDS) markets of a large cross-section of 39 countries, of which 18 developed and 21 emerging markets. While most studies are concerned with the effect of monetary policy news on expected equity returns (see e.g. Lucca and Moench (2015) and Cieslak et al. (2019)), we expand the discussion by looking at spillovers that alter the correlation structure of asset prices. We show that central banks', and in particular FED's meetings, are associated with significant swings in international market linkages. Our analysis focuses on the extent of market comovement given its central role in international asset pricing: changes in the correlation structure reflect changes in the relative importance of local versus global factors, Karolyi and Stulz (1996). A surge in cross-country correlations also implies a decrease in international diversification benefits. This point is particularly relevant in the ¹See for example Krishnamurthy and Vissing-Jorgensen (2011), Krishnamurthy et al. (2014) D'Amico et al. (2012), D'Amico and King (2013), Banerjee et al. (2014), and Li and Wei (2013), Rogers et al. (2014), Pericoli and Veronese (2018), Eser and Schwaab (2016) among others. most recent period where the search for performance by institutional investors, in particular those focusing on sovereign debt, lead to an increase in the weights associated with emerging markets. Finally, a stronger degree of comovement may generate potential risks associated with the diffusion of local shocks within the entire system, and limit the ability of regulators to keep systemic risk under control. A distinguishing feature of our study is the analysis of comovements separately within various groups of countries – Eurozone, Developed markets outside the Eurozone, and Emerging countries in different areas – as well as between developed and emerging markets. This approach allows us to assess whether changes in monetary policy have regional effects, global effects, or both. We measure the degree of market comovement with the fraction of overall variance explained by the first principal component of the correlation matrix.² For recent papers on equity and credit comovements, compare Kapadia and Pu (2012) and Augustin et al. (2020). Akin to an event-study approach, we estimate this measure separately on the days surrounding a given central bank's announcement, and on ex-window days. We then uncover the impact of monetary policy revisions on the correlation structure of asset prices by testing whether the difference in the role of the first principal component between these two subsamples is statistically different from zero based on a bootstrap procedure. To pin down the role of varying monetary policies, we break down the 2007 to 2015 sample into three periods that were characterized by markedly different central banks' interventions, and further distinguish between announcements generating markedly negative versus positive reactions in the level of yields, similar to Altavilla et al. (2019). We find that FED's announcements are overall accompanied with a strengthening in equity return comovements during the 2007-2009 financial crisis and in the following period. This result is largely confined to emerging markets, and in particular to those in the Asia & Pacific region, which are highly exposed to the U.S. from direct investments or trading of goods. Finally, during the last June 2013 to November 2015 "tapering" period, we observe stronger comovements within ²Compare Pukthuanthong and Roll (2009) for a study that uses principal component analysis on equity returns, and Longstaff et al. (2011) for evidence of common exposure to global factors on the sovereign CDS market. To be precise, we work on volatility-filtered data as time variation in conditional volatility makes correlation-based tests biased and inaccurate (Forbes and Rigobon (2002)). This issue is especially important for emerging markets, as it is well-known that their equity returns tend to be particularly volatile and subject to structural changes (see e.g. Bekaert and Harvey (1997) and Bekaert and Harvey (2000)). emerging, and between developed and emerging markets, whenever the FED's announcements lead to an increase in the U.S. yield curve. In contrast, ECB's announcements have a positive and significant impact only during the sovereign crisis of 2010-2012. Surprisingly, such an impact is more
modest for EMU countries and highest for emerging markets in Europe & MiddleEast. Even more striking is the evidence that during the 2013-2015 period, when the ECB started its QE policies, its impact on equity market comovements is mildly negative, small, and not statistically different from zero. Thus, these policies were not perceived as a global shock in equity markets, not even in the Eurozone. The results on the pricing of sovereign risk are even more pronounced, as the FED's and ECB's announcements display now an *opposite* effect on market comovements. In particular, ECB's interventions largely induce market "fragmentation", especially in the last QE period and within EMU countries. The impact of FED's announcements on comovements in the sovereign CDS market is extremely large and positive in the last part of the sample. The first hints appear during the massive QE intervention of 2010-2013 within the emerging Asia & Pacific area. In the subsequent period, as the FED starts tapering its unconventional monetary policies, we observe a large and positive impact on market comovements both between and especially *within* the developed and emerging markets, with quite significant heterogeneity in the size of the increase among the different areas. We dig deeper into these patterns in the correlation structure of the data by separately analyzing factor exposures and the determinants of the first principal component. We find no evidence of changes in the former around announcement days. In contrast, FED's announcements tend to be accompanied with an increase in the role of U.S. equity and (especially) credit risk news in driving the global factor. The importance of equity returns and credit spread to Germany does not instead increase when the ECB announces its policies. We also do not observe a much larger role of exchange rate fluctuations during the announcements. We quantify the economic magnitude of our findings from an asset allocation perspective. Compared to ex-announcements days, the average pairwise correlation in equity returns and CDS changes to Emerging Markets during the "tapering" period increases respectively by +32% (from 0.13 to 0.17) and +66% (from 0.29 to 0.48) during FED announcements that lead to an upward shift in the yield curve. As a consequence, FED news are accompanied by a significant loss in international portfolio diversification benefits, a result that we confirm within a standard mean-variance analysis. Our results are especially relevant for the debate on the degree of independence of monetary policies around the world. In the standard Mundell-Fleming frictionless model, a country can attain only two out of three objectives among fixed exchange rates, full capital mobility, and independent monetary policy (the so-called "Mundellian's trilemma"). The recent literature has challenged this claim by arguing that even in the presence of floating exchange rates, revisions in monetary policies of key countries may spillover to other countries' monetary conditions through complex channels such as financial imbalances and market imperfections (see Rey 2015 and 2016). These spillovers are responsible for a global financial cycle in both prices and quantities. We offer three contributions in this context. First, we show that the degree of financial and trade openness matter, as open countries exhibit a much higher response to ECB's and especially FED's news compared to closed economies. The effect is stronger in absolute terms for equity markets, and in relative terms (i.e. relative to ex-announcement days) for the sovereign CDS market. Second, we double-sort countries based on the degree of openness and exchange rate anchoring (from Ilzetzki et al. (2019)) to either the Euro (for ECB announcements) or the USD (for FED announcements). We find that sovereign CDS spreads to closed countries whose currency is anchored to the USD do comove more strongly following FED news, which is consistent with them being unable to maintain a separate policy of output stabilization (as in the standard Mundell-Fleming model). However, open countries with no anchored exchange rate also exhibit a significant surge in market comovements around FED announcements, in both the equity and CDS market. This result is in line with Rey's (2016) argument that floating exchange rates may not be sufficient to insulate from the influence of global factors. Third, we test a possible channel through which monetary autonomy can be jeopardized, namely the incidence of corporate or sovereign debt that is denominated in foreign (Euro or USD) currency. We find no empirical support for this channel, as countries with a lower share of foreign debt exhibit even more pronounced reaction to FED's announcements. From an econometric viewpoint, given that our cross-section is large relative to the number of announcements, the statistical power of our tests is potentially limited. Hence, if anything, our results might underestimate the true effect.³ Moreover, by looking at the effect of monetary policy revisions of a large developed market onto other (smaller) markets we enhance our identification, as the intervention can be regarded as (quasi)-exogenous to these markets' economic conditions.⁴ Regarding identification issues, we first stress that we rely mostly on pre-scheduled meetings, hence their timing is clearly not endogenous. Second, we contend that our results might be also read in light of a possible reverse causality story, i.e. central bank announcements are responses to fundamental news. However, if news were already anticipated by market participants, we should not observe a systematic change in comovements during meeting days. In fact, the central bank reaction should also be anticipated by the market participants. Differently, if the news are (in full or in part) not anticipated by the market, then the central banks' actions help in disclosing them and spreading information to the market participants, coherently with our evidence. The message that emerges from our study is that central banks' announcements massively influence international asset co-movements. We thus contribute to the recent literature that documents cyclical patterns in domestic stock markets around central bank meetings.⁵ The FED exerts the largest impact on international markets, in that its monetary policy decisions make U.S. local factors more globally relevant. The same does not hold for the ECB, a finding that resonates with the evidence in Brusa et al. (2020). Our results are thus consistent with the claim that FED news convey additional information on economic prospects that is processed by market participants, as argued by Albuquerque and Vega (2008), or with the FED leading role in experimenting monetary policies that are strongly geared towards stock market reactions, an argument found in Brusa et al. (2020). Despite these similarities, it is important, however, to stress that cyclical patterns in returns ³Information leaks may dilute the true impact of monetary policy news that is revealed on announcement days – see Cieslak et al. (2019) for evidence that such leaks generate bi-weekly patterns in equity returns. These leaks also impair our identification. ⁴See Albuquerque and Vega (2008) for a similar argument in the case of U.S. and Portugal. ⁵See inter alia Lucca and Moench (2015), Cieslak et al. (2019), and Kroencke et al. (2019)). do not automatically translate into changes in correlations.⁶ In addition, we show that not all announcements trigger such changes, as distinct asymmetries across periods are seen depending on the direction with which they impact the yield curve. Finally, we are the first to document that a similar if not more pronounced impact on comovements is observed for the sovereign CDS market. The finding that sovereign CDS markets react strongly to FED news also supports the view that its policies affect the market participants' perception of the severity of bad states of the world. This "downside risk channel" (Cieslak et al. (2019)) implies that, when the FED starts releasing its accommodating policies in light of better economic outlook, the investors start increasing the likelihood (and price) associated to these states. As sovereign credit markets are especially sensitive to tail risk, FED's actions are felt more heavily. This argument provides an explanation for the spillovers from FED's unconventional policies to emerging markets' CDS spreads, which reduce the relevance of local sovereign credit risk and potentially erode the ability of local regulators to control such risk. By studying how these effects vary in the cross-section of countries based on capital and trade mobility and currency pegging we provide novel empirical evidence that could guide the modelling of the underlying transmission channels. We complement our analysis with a series of robustness checks. Importantly, we carry a counterfactual analysis through a "placebo" test, where we focus on the sample of days with a large (positive or negative) equity shock but no central bank intervention. We find that, while such extreme market moves do impact market comovements around the world, central bank's (and again, FED's in particular) announcements are still accompanied by a significant differential effect. Thus, our results are not merely the outcome of portfolio rebalancing, but rather highlight that FED's unconventional monetary policies generate special spillovers over and beyond those already exercised by U.S. news (see Eun and Shim (1989) and Dèes and Galesi (2018)). The remainder of the paper is organized as follows. Section 2 discusses related literature. ⁶In other words, it could still be the case that markets experience swings in returns and volatilities during or around FED announcements, but that cross-country correlations remain unchanged (or are even lower) with respect to ex-announcement days. ⁷The FED's and ECB's policies have indeed been
accused of having created excessive global liquidity, and thus caused the massive acceleration of capital flows to emerging markets since 2009. Several policymakers in emerging countries, including Raghu Rajan (former Governor of the Bank of India) and Brazil's President Rousseff (2012), have raised concerns that QE policies may generate a monetary tsunami, currency wars, and new protectionism forms around the world. Section 3 review the various phases of monetary policy interventions over the last 10 years. We outline our data and methodology in Section 4. Section 5 presents our main empirical results. Section 6 tests for alternative explanations of our results. Section 7 collects a series of robustness checks. Finally, Section 8 offers concluding remarks. ## 2 Related literature There is a long-standing debate in the literature about the effects of monetary policy on asset prices. In particular, the role of monetary policy announcements on asset prices has recently received considerable attention (see Cook and Hahn (1989), Bernanke and Kuttner (2005), Gurkaynak et al. (2005), Ehrmann and Fratzscher (2004), Bjornland and Leitemo (2009), Schmeling and Wagner (2019), Adrian and Liang (2016), Neuhierl and Weber (2016), Boyarchenko et al. (2017), Swanson (2019) and Kroencke et al. (2019) among others). A strand of this literature looks at stock returns on FOMC announcement days and find a significant impact, larger than macroeconomic announcement days (see Savor and Wilson (2013), Lucca and Moench (2015), Cieslak et al. (2019), Brooks et al. (2018)). Brusa et al. (2020) provide evidence of international effects as well. Within this context, the literature on QE and near-zero rates has focused how QE policies alter interest rates and equity markets in the U.S. and developed European countries. Examples for works in this area are Krishnamurthy and Vissing-Jorgensen (2011), D'Amico et al. (2012), D'Amico and King (2013), Banerjee et al. (2014), Li and Wei (2013) and Pericoli and Veronese (2018) and Bulligan and Delle Monache (2018). A few studies explore the impact of QE on Emerging markets, see Fratzscher et al. (2016) Fratzscher et al. (2018) and Chen et al. (2014). Our paper is complementary to this literature in that we study second (co-)moments, and investigate in which direction and how do monetary policy news spillover to other markets using a factor structure approach. We are also the first to investigate, form an international point of view, what are the channels triggering such changes in co-movements. The paper also naturally adds to the vast literature on market integration.⁸ This literature looks ⁸A (very) partial list of studies include see Stulz (1981), Errunza and Losq (1985), Stulz (1987), Cappiello et al. (2006), and Kumar and Okimoto at a wide array of measures of integration, including cross-country differences in cost of capital (Bekaert and Harvey (2000)), volatilities (Bekaert and Harvey (1997)), and correlations (Goetzmann et al. (2005)), and the role of global versus local factors in explaining these differences. Principal component analysis has also been recently extensively used as a statistical tool to extract common factors from a cross-section of economic indicators (see e.g. Ludvigson and Ng (2009)) or asset prices, Pukthuanthong and Roll (2009) and Namvar et al. (2016) for equity, and Longstaff et al. (2011) for sovereign CDS and our paper belong to this strand of literature as well. In fact, the ability of few 'global' factors to summarize the full covariance or correlation structure, and conversely the percentage of the variance of individual country movements explained by such factors are commonly utilized as indicators of integration. From a methodological point of view, our analysis allows for comparison of the impact of ECB and FED monetary policy interventions addressing the relevance of "externalities" originating from a country' monetary policy decision. The main empirical problem in this context is to conduct a natural experiment that can serve as basis for comparison of QE with non-QE periods or of periods when different monetary policy instruments were applied. On this regards, our identification approach builds on the solutions proposed by Altavilla et al. (2019), Rogers et al. (2014), Rogers et al. (2018), and Pericoli and Veronese (2018). # 3 Monetary policy interventions The 2007-2009 global financial crisis forced central banks to explore a new universe – a battery of unconventional monetary policy measures that brought interest rates close to their economic lower bound equal to or even slightly less than zero. With cash being a risk-free asset with a zero rate of interest (and only potentially small handling costs), central banks are bound by this rate and cannot lower their policy rates much further to stimulate growth if necessary. Consequently, they started to introduce new intervention tools, such as quantitative easing programs (QE), where ^{(2011),} Mauro et al. (2002), Codogno et al. (2003), Geyer et al. (2004), and Pagano and von Thadden (2004), Remolona et al. (2008), Pan and Singleton (2008), Ehrmann et al. (2011), Bernoth and Erdogan (2012), Jotikasthira et al. (2015)). Volosovych (2011), Dahlquist and Hasseltoft (2013), Carrieri et al. (2007) and Pukthuanthong and Roll (2009). central banks massively buy bonds from market participants with the intent of fostering economic growth. The Fed's initial round of U.S. Treasury bond purchases in late 2009 at a volume of USD 300 billion represented an unprecedented intervention in the market for U.S. government bonds, mortgage backed securities (Large Scale Asset Purchase Program), and provided substantial forward guidance regarding the future direction of its policies. It continued in the second round (the so-called QE2), which started in November 2010, and the Maturity Extension Program announced in September 2011. On September 2012, the FED announced a new USD 40 billion per month, open-ended bond purchasing program of agency mortgage-backed securities (QE3). Moreover, the Federal Open Market Committee (FOMC) announced the aim to maintain the federal funds rate near zero at least through 2015. As a result, the balance sheets U.S central bank reached unprecedented levels. On June 2013, Ben Bernanke announced a "tapering" of some of the Fed's QE policies contingent upon continued positive economic data. As a direct consequence of the announcement, the stock market dropped by approximately 4.3% over the following three trading days, and there was a huge spike in market volatility in emerging markets. The ECB's monetary intervention as a response to the 2007-2009 crisis and the sovereign crisis of 2010-2012 takes many forms, ranging from the jawboning and formal guidance by its board members, in particular its President, to the injection of liquidity into the major banks in the Eurozone (the fixed-rate tender, full-allotment) and even to direct purchases of sovereign bonds in the cash markets. During the Euro-zone crisis, the policy interventions by the ECB consisted of (i) the Security Market Program, initiated in May 2010, (ii) Long Term Refinancing Operations or LTRO, announced and implemented in December 2011, (iii) policy guidance, including the "whatever it takes" speech by Mario Draghi on July 26, 2012 who unveiled the potential for new tools to ease the European sovereign debt crisis, and (iv) Outright Monetary Transactions or OMT, also announced in December 2011. On January 2015, in a dramatic change of policy, ECB announced (and in March 2015 started into) a prolonged period of quantitative easing, with an expected balance sheet expansion of more than Eur 1 trillion in the following 18 months that it has prolonged till Dec 2018, suspended, and then reintroduced on Nov 2019, with a monthly purchases in public and private sector securities amount that ranges between Eur 20 to 80 billion during the whole period. Given the size and extraordinary nature of these interventions, that have no precedents in the history of ECB and other modern central banks, their impact on the well-functioning of (domestic and international) capital markets and on real growth are still being questioned. # 4 Data and methodology In Section 4.1, we describe our data for monetary policy announcements and asset prices. In Section 4.2, we outline our empirical methodology and discuss the assumptions underneath our identification approach. #### 4.1 Data and variables construction We look at comovements in the pricing of equity claims and sovereign credit risk, as measured by the premium of CDS contracts. For equity, we use total return indices from Datastream.¹⁰ The indices are denominated in local currency, to avoid contaminating our results with the factor structure in exchange rates (see e.g. Lustig et al. (2011)). Our source for CDS contracts is Markit.¹¹ To maximize sample availability, we use the most common restructuring clauses available on a given date (typically, CR or MR) for the 5-year contract, as this is by far the most liquid issue. The data coverage varies significantly across countries, starting January 2002. However, it is only after mid-2007 that most of sovereign CDS series depart from zero and exhibit significant time-variation. For this reason, we focus our analysis on the period starting from August, 2007. We work with daily returns of equity total return indices and changes in CDS. ⁹For a more detailed description of ECB and FED's interventions, see Fawley and Neely (2013) and Borio and Zabai (2016). ¹⁰These are the value-weighted 'DS Market' indices that are constructed using all available stocks in a given country. The only exception is Slovakia, for which we use the SAX 16 Index. ¹¹Markit collects CDS prices via a survey of brokers-dealers and proceeds to clean the data by discarding stale information, outliers, and inconsistent observations. It then reports the daily composite price for each CDS contract
for each reference firm in its database. For our analysis, we utilize data for quotations that are denominated in USD and reference the sovereign of a given country, as these are the most frequently available and liquid contracts. Using Euro-denominated CDS does not, however, alter our findings. Our cross-section consists of a total of 39 countries, which are listed in Table AI.¹² We group countries into 18 Developed and 21 Emerging markets following the classification provided by FTSE.¹³ We further contrast the impact of ECB and FED's interventions on the group of the 11 markets that are in the Eurozone (EMU) with that on the 8 developed markets that are not part of it (DM ex-EMU). Finally, we separately analyze the effect on emerging markets based on whether they are located in Europe & MiddleEast (8 countries), Asia & Pacific (5 countries), and Americas (6 countries). We also construct two equally-weighted indices of developed and emerging markets, that we denote respectively "DM Idx" and "EM Idx", to study dynamics *between* the two groups.¹⁴ Appendix A provides a discussion of the time-series and cross-sectional patterns in each subsample, with reference to Figure AI. Our goal is to measure how monetary policy interventions affect market co-movements. To identify dates of central banks' interventions, we rely on the list of ECB and FED meetings and announcements that is compiled by Pericoli and Veronese (2018) (see their Appendix Table 4 and 5). This list comprises of all scheduled and unscheduled Governing Council and FOMC meetings, combined with a series of dates where changes in QE policy were announced. In what follows, we refer to such dates simply as meetings. There are a total of 109 ECB meetings and 107 FOMC meetings during the August, 2007 to November 2015 sample period, which are held on week days – mostly, on Thursday for ECB and Wednesday for FOMC. For each of these announcement days, we construct "event windows" which include the day of the meeting, the two days before and the two days after. We refer to these 5-day (-2;+2) windows as "event days". This choice of event window takes into account possible lead-lag effects which may be due to market participants reacting in anticipation of the actual release of information. In addition, the market for credit derivatives is neither centralized nor fully liquid, and therefore it may take some time before the information is fully reflected in CDS prices. In Section 7, we verify that our findings are robust to ¹²The list is comparable to existing studies on international equity and bond markets (see inter alia Longstaff et al. (2011) and Ghysels et al. (2016)). The most notable exceptions are Canada, Switzerland, and the U.K. among the Developed markets (as CDS data for these countries is either stale, or starts much later in the sample period), and India for Emerging markets (CDS data does not vary for most of the sample). We further exclude Greece as the CDS quotes are stale at above 10,000 basis points for a prolonged period during 2011-2012. ¹³We pool the group of (4) frontier markets with emerging markets, as they are too few to be analyzed separately. ¹⁴Note that the country equity indices are denominated in local currencies, so these indices do not reflect a feasible equity trading strategy. changes in the event window definition and to using data sampled at the weekly frequency. #### 4.2 Methodology A common issue when analysing market data for the evaluation of economic policies (even beyond the focus on monetary policies of this paper) is the identification of structural changes in the underlying data-generating-process. Any of such changes would, in turn, affect the covariance structure of the data, which represents the starting point for all the analyses we perform, so that neglecting them would result in inconsistent estimates. To this end, the first step in our approach is to split the full sample over three periods which were characterized by relevant changes in the activities and policies of central banks. The first period runs from August, 2007 to December, 2009 and spans the global financial crisis starting with the tensions in the subprime market and followed by Lehman's default and the interventions by the FED and the ECB. The second period ranges from January, 2010 until May, 2013 and includes the Euro sovereign crisis and the corresponding ECB interventions on one side, and QE2 and QE3 of the FED on the other side. The third and last period ranges from June, 2013 until November, 2015 and is characterized by the tapering of the FED and, in January 2015, by the beginning of ECB QE program. We separately analyse the impact of FED and ECB announcements within each of these subsamples. A different concern than the presence of structural breaks is that market players' activity generates variation in volatility *within* a given period. This heteroscedasticity has distortive effects in 'reduced' form approaches such as event studies, as demonstrated by Forbes and Rigobon (2002), and may well lead to inconsistent estimates.¹⁵ For this reason, we pre-filter returns and changes in CDS by time variation in conditional volatility. Specifically, we fit the asymmetric GARCH model of Glosten et al. (1993) for each series and period, and treat the scaled residuals (i.e, the series scaled by conditional volatility) as our input data. This step guarantees that our measures of comovement reflect only changes in the correlation structure originating from central banks' ¹⁵ Changes in volatility around announcement days play, instead, a key role in the 'structural' approach of Rigobon (2003) and Rigobon and Sack (2004), whose identification strategy actually exploits the presence of heteroscedasticity in the data. The crucial assumption underneath this approach, however, is that the structural model parameters are invariant across periods, which is not going to hold throughout our full sample given the switch between conventional and unconventional policies. announcement, and are not contaminated by (or, do not capture) heteroscedasticity or potential heterogeneity in the level of volatilities. We comment on the results when using the raw (unfiltered) series in Section 7. To proceed, let X_t be the panel of such volatility-filtered equity returns (or CDS changes) for K countries in a given period and consider announcements by a given central bank, be it alternatively the ECB or the FED. We are interested in understanding whether these announcements had a significant impact on the correlation structure of the data. To this end, akin to an event-study approach, we contrast the degree of comovement during all announcement days (denoted by the All subscript), i.e. those falling in the event window of the meetings, with that in the subsample of non-announcement days that fall outside the event window (No subscript). In addition, to capture heterogeneity in the impact of monetary policy "surprises", we look at announcement events that are accompanied by a largely positive or negative reaction on the government bond yield curve. To be precise, we group announcement windows into those that fall below the first tercile ("Low") and above the second tercile ("High") of the overall change in the level of yields, which we proxy with the first principal component of the yield curve for the U.S. and Eurozone. No We measure the extent of international comovements by looking at the fraction of overall variance explained by the first principal component of the correlation matrix of the market data (equity returns or changes in CDS spreads). Principal Component Analysis (PCA) has been extensively used in the financial literature as an efficient way of summarizing the joint behavior of several asset classes including fixed income, equity, and exchange rates. See Pukthuanthong and Roll (2009) for a paper that uses PCA on equity returns, and Longstaff et al. (2011) for evidence of common exposure to global factors in the sovereign CDS market. Formally, consider a given combination of market (equity or CDS), sample period (three of ¹⁶Note that K changes as we carry our analysis on different subset of countries to understand the degree of heterogeneity in comovements across different grouping criteria. To avoid cumbersome notation, we do not introduce separate subscripts for the given period and central bank. ¹⁷ Altavilla et al. (2019) measure ECB monetary policy impact on yield curve changes by focusing on a high frequency event study approach and considering different intra-day time windows associated with the monetary policy event, the press release and the press conference. Their data are freely available at the ECB website and include both the Overnight Interest Swap and country-specific data including Germany. We compare the sign of our factor with the sign of the average yield curve changes in the monetary policy event data using the press conference window of Altavilla et al. (2019). Focusing on German data, we found an association of signs on the event days equal to 69%. This evidence confirms that our identification from daily data aligns quite closely with alternative methods based on intra-day movements. them), group of countries, and central bank (FED or ECB). Let \mathcal{R}_i be the correlation matrix of X_t separately computed within each subsample of days $i = \{No, Low, High, All\}$. Let L_i denote the matrix of eigenvectors in the spectral decomposition of \mathcal{R}_i . We construct principal components as $F_{t,i} = L_i'X_{t,i}$ and look at the fraction of total variance accounted for by the first principal component, which we denote $F1_i$. In what follows, we use the terms principal component and factor interchangeably. Under the assumption that central bank's announcements are not accompanied by changes in comovements in a given sample period, then $\mathcal{R}_{\iota} = \mathcal{R}_{No}$, for $\iota = \{Low, High, All\}$.
Consequently, the fraction of variance explained by the first principal component should be identical during announcement and non-announcement days. Under this null hypothesis, we expect that the distances $$\Delta F1 = F1_{\iota} - F1_{No} \tag{1}$$ should be statistically indistinguishable from zero $\forall \iota$. We test this hypothesis for each time period, asset (equity or CDS spreads) and central bank combination by resorting to the following bootstrap procedure. Let N be the total number of events (i.e. announcement days) in a given period. We then randomly draw N blocks of five days within the non-announcement sample of that period, and compute the fraction explained by the first principal component $F1_{No}$ on this random sample. We repeat this procedure 5,000 times, and use the resulting empirical distribution to assess the significance of $F1_{\iota}$ based on a two-sided test under the null hypothesis of no change between the announcement vs non-announcement sample. From an econometric viewpoint, the identification of monetary policy surprise effect might be challenged by the possible presence of reserve causality effects, i.e. central banks react to news. From our perspective, two possible situations might realize: the news are anticipated or are not anticipated by market participants. In the latter case, reverse causality effects do not alter identification as the central banks diffuse the information to the market, adding to the fundamental news ¹⁸That is, we decompose $\mathcal{R}_i = L_i D_i L_i'$, where D_i denotes the diagonal matrix of eigenvalues. Then, $F1_i = d_{1,i}/K$, where $d_{j,i}$ is the eigenvalue associated with the j-th principal component. additional elements associated to the announcement. On the contrary, if the market participants anticipate the news, they would also anticipate the central bank announcement and policies, leading to stability in the distance $\Delta F1$. Evidences supporting statistically significant changes in $\Delta F1$ rule out the reverse causality argument and the possible identification issues that it might generate. Obviously, if we believe that the information flow is started by a news, either anticipated or not anticipated by the market, analysing the market reaction in the absence of a central bank announcement would provide a more complete picture. As an endeavour in this direction, in Section 7 we present a "placebo" test where we look at days with a large (positive or negative) equity shock but no central bank announcement, which further confirms our findings. # 5 Monetary policy and market co-movements Tables 1 and 2 present our main empirical results on the impact of monetary policy announcements on co-movements in equity and CDS prices, respectively. Within each table, we report the estimates of the fraction of total variance accounted for by the first principal component F1 in the three sample periods considered. In the last two columns of each period, this measure is computed on all announcement and ex-announcement event days. In the tables, we mark in bold F1 estimates whose distance with respect of the non-announcement days ($\Delta F1$) is statistically significant at least at the 10% level. The analysis is performed by pooling data across all countries, and separately for: the group of EMU countries; developed markets (DM) ex-EMU (Australia, Denmark, Israel, Korea, Japan, Norway, Sweden and the U.S.); all emerging markets (EM); emerging markets in either Europe & MiddleEast, Asia & Pacific, or Americas; and finally, the bivariate system consisting of the developed market and emerging market indices (DM Index & EM Index). #### 5.1 Results for equity We begin by discussing the impact of ECB announcements on equity markets' comovements in Panel A of Table 1. A first general trend we observe is that, independently of the release of monetary policy news, international equity linkages were stronger during the global and European sovereign crisis (i.e. Aug2007 to May2013) compared to the most recent period. This difference is present when considering all 39 countries together, at the regional level, and even *between* developed and emerging markets. Zooming in on the results during the global crisis, the effect of ECB announcements when pooling all meetings is almost muted, as the difference with respect to ex-meeting days is a modest (and statistically insignificant) -0.14% across all countries and -0.18% between developed and emerging countries. However, when the ECB announcement was able to "cool down" the rise in sovereign yields ("Low" column) we observe a significant negative impact on equity comovements, which is particularly pronounced for emerging markets and between developed and emerging. The second period (Jan2010-May2013) is characterized by the European sovereign crisis, where the ECB heavily intervened to avoid the breakup of the Euro area. A few interesting facts are noteworthy. First, the announcements are accompanied by a marked increase in market comovements, with the fraction explained by the first factor being about 4% higher both across all countries as well as between DM and EM. Second, ECB news did *not* significantly impact comovements among EMU countries. Instead, countries ex-EMU and in particular emerging countries strongly reacted to ECB announcements. The effect is widespread when the announcement was not enough to mitigate the sovereign crisis ("High" column), with an increase in F1 which is statistically significant among all markets (from 37.21% to 45.76%), between DM and EM (from 86.25% to 92.47%), and especially for DM ex-EMU (by about 10%) and EM (by about 8%). The last period is dominated by ECB massive QE policy interventions. A striking result that emerges from the table is the modest and overall even negative effect that ECB announcements had on market comovements. The only significant estimate is for the relation between DM and EM when ECB policies resulted in a slight increase in yields, where the first factor explains about 10% less compared to ex-meeting days. This evidence demonstrates that QE actions by the ECB were not perceived as a major global shock and, if anything, lead to a de-coupling between the group of DM and EM equity markets. The corresponding results for FED announcements are reported in Panel B. We note several differences with respect to Panel A, which are again particularly pronounced for emerging countries. First, news from the FED are generally accompanied by an increase in the importance of the first factor. This increase is largest during the Global financial crisis period and for emerging markets at 5.90%, and mainly for emerging markets in Europe & MiddleEast (at 7.75%). The increase is significant for nearly all country groups (the exceptions are EMU and DM ex-EMU). However, the impact is quite different if we look across the three yield regimes, as the largest differences are driven by the announcement that were accompanied by a significant increase in U.S. interest rates. There, we observe a 8.53% statistically significant increase in the comovement for all 39 countries, and an even larger 10.60% figure for Emerging markets. Significant differences are also noted for Emerging markets when the FED interventions were effective in reducing interest rates. Co-movement among Emerging markets raise by 10.48%, and for EM Europe&ME by 13.85%. These results reveal that the FED's announcements significantly altered market comovements both between and within developed and emerging markets. Thus, its announcements are truly perceived as global shocks. Among emerging markets, the change is statistically significant across all geographical areas. During the second period, which was characterized by FED's QE2 and QE3 interventions, announcements that were accompanied by a drop in the level of rates lead to a significant and across-the-board increase in the degree of comovement of emerging markets in the order of 10%. This result provides empirical support for the concerns of policymakers in these countries that changes in FED's monetary policy spill over to EM in an even amplified manner. In the last period, when the FED started the QE tapering, the response across All market comovements appears muted compared to the sample of No announcements. Looking across the separate country groups and yield reactions, however, reveals a richer picture. Announcements associated with a reduction in interest rates are accompanied by a nearly 6% decrease in the importance of the global factor with respect to ex-meeting days, whereas nearly the opposite effect (that is, a 7% increase) is observed during announcements that lead to higher rates. In this latter case, the reaction is amplified for the group of emerging markets, with a nearly one-third increase from 24.45% to 37.61%. This evidence again testifies the large impact of FED's policy decisions on these economies. Notably, whenever significant, the impact of FED news is almost always to increase the linkages between emerging and developed markets, with the fraction accounted for by the global factor increasing by more than 7% (from 79.21% to 86.60%) when pooling across announcements. #### 5.2 Results for CDS We next turn to the discussion of market comovements in the CDS market. Panel A of Table 2 reports the impact of ECB announcements on the correlation structure of CDS changes. Looking across the periods, the only across-the-board significant effect is observed during the European sovereign crisis and when ECB announcements were accompanied by an increase in interest rates. During these days, the fraction accounted for by the first principal component increases by nearly 13% among all countries, and within EMU as well as emerging markets. In all other period-country-rates combinations, changes in the correlation structure appear to be modest. Some exceptions are observed during the global crisis, when ECB announcements lead to a
drop in the importance of the global factor by about 10% across all countries (in the Low subsample), for EM Americas (in the High subsample), and also between the groups of developed and emerging markets. Taken together, this evidence indicates that ECB announcements either lead to a general fragmentation (i.e. a decrease in correlations), or to an increase in co-movement when its policy was not enough to fully cool down market tensions. The impact on emerging markets, if any, is largely confined to the EM Europe & MiddleEast and EM Americas countries. The reaction of CDS market comovements to FED announcements is, instead, quite different. In the first period, during the global crisis characterized by Lehman's default and several FED announcements of unconventional monetary policies surrounded by large uncertainty, FED's announcements increase CDS market comovements. However, the differences are mostly not statistically significant. The main exception is for the comovement of the emerging markets, with a large and significant 8% increase which is independent on the yield reaction. During the second period, when the FED implemented its QE2 and QE3 policies, we again observe a surge in correlations among emerging markets CDS, with a raise in F1 by about 10%, but a reduction of about 7% for comovements between developed and emerging markets. The most striking and significant results for the sovereign CDS market are found in the last period, when the FED starts tapering its QE policies. The degree of comovement in CDS changes among the 39 countries increases substantially, with the first factor explaining an additional 10.13% of the overall variance (from 26.28% to 36.41%). This change is strongly significant, and is mostly driven by tapering announcements which were followed by a rise in interest rates, when the increase in F1 nearly doubles at 19.69%. The impact on CDS market comovement among emerging markets in the High regime is also positive and significant both across all countries (when F1 jumps by about a half, from 36.11% to 53.30%) and among the group of EM Americas and EM Asia &Pacific as these are geographically and politically strongly connected to the U.S. (from 66.74% to 73.43% and from 78.57% to 84.74%, respectively). For other groups of countries, the impact is also positive and large albeit not significant. Overall, the CDS market provides even more clear-cut evidence than equities that the FED's policy plays a relevant role in generating comovements around the world, especially in the last period when it relaxed its QE policies. FED announcements can thus be viewed as a global factor generating spillovers to developed markets, and even more largely so to emerging countries. In contrast, we observe a generally muted response to changes in ECB's policy. # **5.3** Economic Magnitude To further establish the economic magnitude of the above-documented patterns, Table 3 collects the average pairwise asset correlations around ECB and FED meetings using the same format as the previous tables. We again note distinct asymmetries across central banks and yield regime combinations. For ECB, most of the significant entries are observed during the sovereign crisis, during days when the market reacted with an increase in Eurozone yields (i.e. a worsening of the crisis). In the last period, neither the equity nor the sovereign CDS market display any discernible reaction to ECB policy revisions. For the FED, instead, we observe a much more widespread impact on equity correlations throughout the full sample, with usually an increase in correlations. More strikingly, correlations in sovereign CDS almost double in the last period, with most of the being statistically significant, and this surge is clearly traced to meetings that lead to an increase in U.S. yields. For example, the correlation in CDS changes to EM is 0.29 outside announcements, 0.37 during all FED meetings, and as large as 0.48 (i.e. a +66% increase) during High FED meetings. From an asset allocation perspective, changes in correlations naturally have implications for diversification. To see this, Figure 1 displays the efficient frontier for the two-asset case of the developed and emerging market (equally-weighted) equity indices corresponding to the last period for Low ECB announcements (associated to QE intervention) and High FED announcements (associated to QE release). As we can see, the efficient frontiers during and outside ECB announcements overlap almost completely, which again proves the lack of a significant impact on co-movements. In contrast, FED announcements that were accompanied by an increase in the yield curve triggered a significant loss in diversification benefits. Seemingly, for the entire cross-section of EM, the standard deviation to the minimum variance portfolio in the last period raises by +7% for equity and +22% for the CDS market. #### 5.4 Factor or factor loadings? Variations in the importance of the first factor around meeting days can originate from either changes in factor exposures, changes in the 'systematic' nature of the principal components, or both. To see this formally, consider a particular time period and central bank (be it the ECB or the ¹⁹In the plot, we keep expected returns and volatilities constant at their sample period estimates (i.e. we assume they are unaffected by the announcement) to capture the incremental contribution of changes in correlation. FED). Let $\hat{F}_{t,All} = L'_{No}X_{t,All}$ be the factor we would have observed during All meeting days had the announcement not changed the factor loadings with respect to the non-announcement sample. We can decompose the panel of market data during the announcement sample as: $$X_{t,All} = L_{All}F_{t,All}$$ $$= L_{All}F_{t,All} \pm L_{No}\hat{F}_{t,All} \pm L_{All}\hat{F}_{t,All}$$ $$= L_{No}\hat{F}_{t,All} + (L_{All} - L_{No})\hat{F}_{t,All} + L_{All}\left(F_{t,All} - \hat{F}_{t,All}\right)$$ $$= L_{No}\hat{F}_{t,All} + \Delta L \times \hat{F}_{t,All} + L_{All} \times \Delta F$$ (2) Equation (2) clarifies that if both the factors and the loadings are unaffected by the announcement, so that both ΔL and ΔF are zero, then the first term should be the only one relevant. On the other hand, if monetary policy announcements do affect financial market comovements, this must happen through either changes in factor loadings (the ΔL term), changes in the nature of the factors (the ΔF term), or a combination of the two. We begin by testing for changes in factor loadings, that is, in the exposure of country shocks to the aggregate factors. Our test exploits the fact that, if the two correlation matrices in the non-announcement to announcement sample of central bank j meetings in a given period are identical, then the orthonormality property of eigenvectors implies that: $$L'_{\iota}L_{N} \sim I \qquad \iota = \{Low, High, All\}.$$ (3) This result suggests that changes in the loading structure with respect to the first principal component can be detected by the following statistic:²⁰ $$\Delta D = [L_{\iota}' L_{No}]_{1,1} - 1 \tag{4}$$ where $[.]_{1,1}$ identifies the element in position (i, j). ²⁰For comparability of the principal components we impose that the loading to the first principal component of the first asset is positive in both samples. We find (see Appendix Table AII) that the differences are fairly small and never meet statistical significance. In particular, during the QE period of the ECB and the FED the difference averages at -0.01 for returns and -0.03 CDS changes. Therefore, monetary policy announcements do not result in pronounced shifts in the eigenvector, that is, in the exposure to the dominant factor. Next, we examine the systematic nature of the first principal component by projecting it onto aggregate factors capturing the impact of news fundamentals or revisions in risk premia, similarly to Longstaff et al. (2011). Our list of factors is confined to market variables that are available on a daily basis, and that are likely to represent global shocks. Drawing from prior studies, we include the following seven variables: the return to a weighted average index of exchange rates of the Euro (for ECB meetings) and USD (for FED meetings) against the currencies of a large group of major trading partners²¹; the VIX equity implied volatility index; the equity volatility risk premium, measured by the difference between the VIX and the realized volatility over the past 22 days of daily returns to the S&P500 index; the TYVIX index of implied volatility in the fixed income market, see Mele and Obayashi (2015); the volatility risk premium in the fixed income market, measured by the difference between the TYVIX and the realized volatility over the past 22 days of daily returns to a 10-year bond index; the change in the price of Crude Oil; and the return to the Bloomberg Commodity Index, which comprises of 22 commodity futures.²² In line with Longstaff et al. (2011), and following the work of Lucca and Moench (2015) and Cieslak et al. (2019) on the role of FED announcements on the US equity market, we augment the set of explanatory variables with the stock market indexes of the US and Germany. We also include their corporate credit risk as measured by the difference between a low grade and high grade corporate bond indexes respectively for the U.S. (for FED meetings) or Germany (for ECB meetings). The scope is to understand whether "local" shocks in the area whose monetary policy is being revised become more globally important. We treat Germany as the representative country for the Eurozone, as in Ang and Longstaff (2013).²³ Structural models of default imply that returns ²¹The source is the Bank of International Settlements. ²²While some of these factors are constructed on the U.S. market, we include them following the argument in Longstaff et al. (2011) that they presumably highly correlate with global-wide shocks.
²³Including alternatively an equally weighted average of the equity or credit risk of EMU countries does not alter our conclusions. to equity and credit spreads should move in the opposite direction, so we expect their loadings in the regressions to have opposite sign. Given then relatively high dimensionality of our study, we provide a selected discussion that focuses on the most representative findings. In particular, we restrict our attention to the comovements of emerging markets vis-à-vis developed markets when pooling all announcement days and report the estimates only for the three "market-specific" factors, namely the stock market, corporate credit risk, and exchange rate factors. All specifications, however, include also the other six control variables listed above. Table 4 collects the estimates in the regression of the first principal component from the DM and EM indices on the aforementioned variables. In the table, coefficients that are significant at least at the 10% level are marked in bold. The rightmost columns report the R-squared and the partial R-squared statistics, computed as Shapley-Owen value, capturing the relative contribution of a variable to the overall R-squared. The regressors are standardized to mean zero and unit variance within each sample to ease comparisons. We start with Panel A of the table that relates equity comovement between DM and EM to our list of regressors during ECB meeting and ex-meeting days. Across all periods, the equity and credit risk variable enter the regression with statistically significant coefficients during meeting days. Interestingly, instead, the Euro exchange rate is relevant only *outside* meetings days. This result gives a first indication that the impact of ECB policies on equity markets is not related to a currency channel. Another striking pattern we note is that the impact of ECB announcements has progressively shifted away from equity return news, as the coefficient on the return to the German market actually decreases in the QE period (compared to ex-meeting days), and so does its partial R-squared. In turn, the credit risk coefficient doubles in magnitude during ECB announcements in that period. A potential explanation for this result is the large effect of ECB interventions on the reduction of banks' as well as sovereign credit risk. Overall, the partial R-squared for the three reported variables is not substantially altered by ECB announcements, which suggests that its unconventional monetary policies did not markedly tilt the nature of global shocks towards European market news. Panel B of the table reports analogous statistics for FED meetings. The evidence is almost the opposite as that for the ECB in the corresponding periods. Namely, the first two periods are characterized by a decrease in the importance of US equity news on the global factor during announcement days, which is particularly pronounced in the crisis sample. This effect is partly compensated by a more negative (and significant) coefficient on credit risk during the QE, in analogy to what we observed for the ECB in the third (QE) period. Another difference with the ECB is that the exchange rate (USD) enters now with a large and significant coefficient, which is however largely unaffected by the announcement. In the last Jun2013-Nov2015 period, we observe a sharp increase in the overall R-squared, from 0.36 to 0.51. This result largely originates from the equity and credit risk factors, whose coefficients are twice as large as in ex-meeting days and are together responsible for most of the R-squared. Hence, the role of U.S. shocks in driving the global factor becomes stronger as the FED starts tapering its unconventional monetary policy. The same is not true, however, for the USD exchange rate factor, as its coefficient turns smaller and insignificant during announcement days. This result again suggests that equity comovements are not likely on account of a currency channel. We next turn to the principal component analysis of the sovereign CDS market. In Panel C for ECB announcements, the results broadly mimic those for equity, with some notable differences. First, the role of the Euro exchange rate is now much more pronounced during the European sovereign crisis period. Second, when the ECB started its quantitative easing program in the last part of the sample, the equity, credit risk, and exchange rate factors all enter the regression with a significant loading. However, their contribution in terms of partial R-squared is almost at par with ex-meetings days, and the overall R-squared actually decreases, from 0.42 to 0.36. The effect of FED monetary policy revisions is presented in Panel D. During the crisis period, FED announcements are associated with a larger regression R-squared, which raises from 0.26 to 0.38 during announcement days. However, this result does not originate from an heightened role of U.S. news on the global factor, as the higher importance of U.S. credit risk (partial R-squared from 0.03 to 0.10) is compensated by a decrease in that of the equity and exchange rate factor (together, from 0.14 to 0.08). This evidence is broadly observed also in the second period, with a slight reduction in the role of U.S. shocks on the global factor. In the tapering period, instead, the impact of US news on the global factor during FED announcement days is felt very strongly. The reported coefficients are up to two to three times larger than those for ex-announcement days, and the R-squared sensibly increases from 0.31 to 0.47. The USD factor stands out with a 0.15 increase in the partial R-squared, while the US equity return and credit risk account for an additional 0.06. Thus, the stronger degree of comovement in the sovereign CDS market during the tapering period we document in Table 2 comes from a larger impact of U.S. news on the global factor during FED announcement days. In other words, FED announcement are truly perceived as global factors in the equity and even more so sovereign CDS market, as the role of U.S. equity and credit risk in explaining the first principal component raises significantly in the last period. # 6 Transmission channels and global financial cycle We show that central banks announcements, and those of the FED in particular, have a significant impact on the international comovements of equity and sovereign CDS markets with very peculiar and asymmetric effects. In this section, we investigate which transmission channels might explain this evidence. Our design is guided by the so-called Mundell-Fleming "Trilemma", i.e. the argument that only two objectives can actually be achieved among i) independent monetary policy, ii) full capital mobility, and iii) fixed exchange rates. Clearly, alternative combinations of these three objectives generate different effects of foreign monetary policies on local markets and therefore on their comovements. A first prediction of the Mundell-Fleming frictionless model is that, in presence of full capital mobility (i.e. financial and trade openness), the domestic monetary policy has to mimic the foreign one to maintain a fixed exchange rate. Therefore, we expect open countries to exhibit an higher degree of market comovements in general, and especially during foreign monetary policy announcements as this information is impounded into prices. We test this prediction by classifying countries as either Open or Closed based on their degree of financial openness, as measured by the Chinn and Ito (2006) index, and trade openness, as measured by the ratio of import plus export over GDP.²⁴ Table 5 reports the analysis of comovement for the two groups of Closed and Open countries. We find that countries that are more open do generally show a larger increase in comovements compared to closed economies. The difference is especially pronounced for equity returns. For the sovereign CDS market, in the third period announcements by the FED have a significant impact on both closed and open countries, although the latter exhibit a proportionally higher increase compared to non-announcement days. At first sight, the finding that outside monetary policy shocks are felt more heavily by open countries is in line with the Mundell-Fleming Trilemma. The previous analysis on openness does not, however, condition on whether a country has anchored its currency to either the US dollar or the Euro. In the Mundell-Fleming model, asset valuations of countries whose exchange rate vis-a-vis the foreign currency is free to fluctuate are expected to be less sensitive to outside central banks' policy revisions. To explore this prediction, we classify a country as either Anchored or Non-Anchored to the U.S. dollar (for FED announcements) or the Euro (for ECB announcements) in a given time period based on Ilzetzki et al. (2019), who provide a comprehensive history of anchor or reference currencies as well as exchange rate arrangements. We then separately assign countries across the two dimensions of openness and anchoring into either of four groups: Anchored&Closed, Anchored&Open, Non-Anchored&Closed, and Non-Anchored&Open. We display a summary of the results from this double-sorting analysis in Figure 2, and report the full set of estimates in Appendix Table AIV. Specifically, the figure shows the difference in the degree of comovement $\Delta F1$ during announcement versus exannouncement days in the last period of the sample for the "ECB Low" (i.e. ECB QE introduction) ²⁴Specifically, we consider a country financially closed (open) if its Chinn and Ito (2006) index of capital account openness averaged during the sample period is below (resp., above) the median. A country is closed (open) to the trading of goods if its ratio of import plus export over GDP averaged during the sample period is below (resp., above) the median. A country is then finally classified into either Closed or Open following the analysis in Martin and Rey (2006) about the
relation between openness and outside shocks (crashes). Namely, Developed markets are classified as open is they are either financially closed and open to trade, or financially open and closed to trade. Emerging markets are classified as closed if they are financially closed. and "FED High" (i.e. FED QE tapering) events. The top panel is for equity, while the bottom panel for sovereign CDS. Estimates that are statistically significant are marked with a star. Across all combinations, we see an increase in comovements during central banks announcements. In most cases, the entries are not statistically different than the ex-announcement estimate, which may partly be due to a lack of power of the test as the double sorting reduces the number of countries per group. For the equity market, the largest impact of ECB announcements is found in the extreme cases of Anchored&Open and Non-Anchored&Closed countries. The impact of FED announcements always outweighs that from the ECB, with the degree of a country's openness being the main driver. An economically important (albeit not statistically significant) effect is seen for Anchored&Open countries. This is consistent with the Trilemma, as the local monetary authority must react to the FED's policy revisions to keep the exchange rate anchored, thereby affecting the local equity market. However, contrary to the prediction of the Mundell-Fleming model, we find the largest (and statistically significant) change to be for the group of Non-Anchored&Open countries. This evidence is consistent with the argument in Rey (2015) that, even with floating exchange rates, revisions in monetary policies of key countries may spillover to other countries' markets through various channels such as financial imbalances and market imperfections, and generate a global financial cycle. For comovements in the CDS market, an even more complex pattern emerges. For the ECB, the effect is again small and not statistically significant. For the FED, as in the case of equity, the largest (and significant) impact is found for the group of Non-Anchored&Open countries. Within these countries, FED announcements that lead to higher US yields in the recent sample were accompanied by an increase of more than 20% in the role of the common factor – i.e. the pricing of sovereign credit risk co-moves much more strongly, a finding that confirms the arguments in Rey (2015). However, an economically sizeable (above +10%) and again statistically significant change is observed for the group of Anchored&Closed countries. This result represents a further challenge to the Mundell-Fleming Trilemma, which would predict the local market to remain unaffected by the foreign central bank announcement. It is also hard to justify on the ground of financial imbalances, given the absence of capital mobility. Rather, the evidence is mostly consistent with a "Fed's put" story (Cieslak et al. (2019)) where the FED's tapering induced an across-the-board re-pricing of the default states in the sovereign CDS market. Finally, we explore the alternative channel of adjustments in exchange rates. As some countries load differently on currency risk, such adjustments may generate heterogenous reactions to foreign central banks' policies. We explore this channel by using data on currency exposures in international markets available from the BIS. For the analysis on Equity market comovement, we look at the Absolute Net exposure (Claims minus Liabilities) of the banking sector versus Banks and Non-Banks which are denominated in Euro (for ECB) or USD (for FED), scaled by nominal GDP. For the analysis on Sovereign CDS comovement, we look at the total amount of International debt securities of the General government denominated in Euro (for ECB) or USD (for FED), scaled by nominal GDP. Data are quarterly and averaged for each country within each period. We group countries in each period into Low and High, where Low (High) means Below (Above) the median country. If the extent of market comovements is on account of different exposures to currency risk at the corporate (for Equity) or sovereign (for CDS) level, we expect countries in the High group to display a stronger reaction to monetary policy news. Table 6 reports the results of this analysis. We find that indeed, the group of countries with higher currency exposure do generally present a higher degree of comovement, both for the equity and the CDS market, compared to Low exposure countries. The only exception is in the CDS market, third period, for countries grouped based on Euro exposure. Therefore, the currency exposure channel does affect financial market comovements. However, the degree of comovement for High exposure countries during announcement days is not generally different than that during ex-announcement days. Quite the opposite, most of the significant entries are for countries with a low exposure. As a case in point, FED announcements in the sovereign CDS market in the tapering period are felt quite strongly for countries with a lower relative amount of USD-denominated debt, for which the importance of the first factor increases by a stunning 13% (from 31.13% to 44.34%). As expected, much of this effect is concentrated during days with positive interest rates reaction, where the global factor now accounts for 50% of the overall variability. The same figure is comparable at 49% for High exposure countries, although the change relative to ex-announcement days is smaller. Taken together, this evidence runs contrary to the claim that the changes in comovements are triggered by currency exposures. In sum, our analysis shows that the FED (and to a lesser extent, ECB) announcements impact international market comovements particularly for countries with free capital mobility and flexible exchange rates, i.e. in a situation where the domestic monetary policy should be largely independent and could react to local shocks, and this effect is not driven by higher exposure to the foreign currency. #### 6.1 Placebo test In order to further clarify the provenance of our results and provide a "counterfactual" analysis, we carry the following "placebo" test. We contrast announcement vs non-announcement comovements only on the sub-sample of days when the equity market of either Germany (for ECB meetings) or the U.S. (for FED meetings) experienced a large shock. We define as such days when the equity return is below the first quartile or above the third quartile of the within-period return distribution of the raw (i.e. not volatility-filtered) series.²⁵ The rationale for this test is to verify whether our results merely originate from equity market shocks being large during announcement days. If markets are priced according to an International CAPM framework, where the international market portfolio is largely represented by US or Euro stocks, large equity moves would lead to portfolio rebalancing and thus correlated changes in prices. For this channel to explain our findings, once the estimation is conditioned on days with large equity returns we should no longer observe significant differences in the extent of comovements between meetings and ex-meeting dates. In other words, if the information flow originates from a large news reaching the market, analysing the market reaction in the absence of an announcement can provide a cleaner identification of the differential impact of central bank policy interventions. ²⁵ This definition of a large movement strikes a compromise between isolating returns in the tail of the distribution and allowing a sufficient number of observations to break down meeting days based on the yield reaction. Table 7 collects the fraction of overall variance accounted for by the first principal component of equity returns (Panel A and B) and CDS spreads (Panel C and D) in this subsample. As we can see, the results resamble quite closely those from Table 1 and 2 in terms of magnitude, direction, and statistical significance. Namely, the reaction of equity markets to ECB news is confined to the European sovereign crisis period, and generally shows an increase in comovements, while is muted or even accompanied with "disintegration" in the last period when the ECB carried its QE interventions. For the FED, instead, both the introduction of QE (during Jan2010 to May2013) and its relaxation in the subsequent period have a wider impact. Similarly, in the CDS market, the ECB action was accompanied by an increase in comovements only when it generated the undesired effect of increasing rates in the second period, and if anything by a decrease in comovements during the most recent QE period. In contrast, the FED's intervention was felt much strongly especially by emerging countries in the second and in the last "tapering" period. We thus conclude that central bank announcements, and particularly those from the FED, lead to heightened joint market dynamics and are felt differently than days with similar equity market moves. #### 7 Robustness tests We perform an extensive set of checks and additional analyses to confirm and extend our main results along various dimensions. Event window: We perform sensitivity analysis with respect to the length and start of the event window. We modify the window so that the start is at the event day, and thus focus on (0,+2). Such a first choice allows verifying the possible role of anticipation. We also consider windows of larger size, defined as (-2,+4) and (0,+4), to capture potentially long-lasting news. Results, which are reported in Table AV–AVII, confirm our findings are not dependent upon the exact definition of event window. *Unfiltered data:* Instead of pre-filtering the data by asymmetric volatility, we run the analysis on the raw series. Results are collected in Table AVIII. Again, we observe a clear asymmetry in the response to FED meetings (which is broadly significant across all periods, and in the last one for sovereign CDS) with respect to
ECB meetings, whose effect on asset markets during the QE period is essentially muted. Alternative covariance estimator: To capture the effect of market a-synchronicity, we retain the daily nature of the data but rely on a Newey-West type of covariance (and hence, also correlation) estimator that also takes into account one lead/lag response.²⁶ We found our main findings remain robust, see Table AIX. Dynamic factor model: As an alternative to the use of Principal Components Analysis where we recover factors from a decomposition of the correlation matrix, we estimate a variation of the latent factor model of Breitung and Eickmeier (2015). The idea is to filter unobservable factors driving the evolution of the cross-section of equity or CDS that are specific to meeting and exmeeting days. We defer a description of the model we adopt to Appendix B. Even focusing on a different approach for estimating the factors, our main conclusions regarding the impact of ECB and FED policy announcements on market comovements remain valid. # 8 Conclusions How does monetary policy affect the broader economy? As pointed out by Bernanke (2003), answering this question requires an understanding of how policy actions affect both domestic as well as foreign financial markets. In this paper, we find that FED monetary policy announcements significantly affect market comovements. In particular, the sovereign CDS market of Emerging countries exhibits a marked surge in co-movements during the tapering period. We show that these findings reflect a heightened importance of US equity and credit risk news on the global factor. We add to the current debate on the empirical validity of the Mundell-Fleming frictionless ²⁶Given the mismatch in timing induced by combining together the events, we apply the lead/lag covariance matrices within each event window, take the average, and finally add it to the contemporaneous covariance matrix. model by grouping countries based on openness, currency anchoring, and amount of liabilities denominated in foreign currencies. Consistent with the argument in Rey (2015) of a global financial cycle, we detect a large reaction to FED policy news in the co-movement of equity returns and CDS of within open countries whose currency is not pegged. At the same time, close countries with anchored currencies also experience an increase in CDS co-movements. In the absence of capital mobility, this result is mostly suggestive of a "Fed's put" explanation. Our findings have clear policy implications. The fact that FED announcements are perceived as global shocks, especially on sovereign CDS, supports concerns expressed by policymakers in emerging countries: FED monetary policy has a strong impact on the price of sovereign risk on both developed and emerging markets. We do not find a similar result for ECB interventions. This indicates that, at least for FED monetary policy, more coordination is needed at the global level in order to deal with externalities and spillovers. ## References - Adrian, T., and N. Liang. 2016. Monetary Policy, Financial Conditions, and Financial Stability. *International Journal of Central Banking* 14:73–131. - Albuquerque, R., and C. Vega. 2008. Economic News and International Stock Market Co-Movement. *Review of Finance* 13:401–465. - Altavilla, C., L. Brugnolini, R. Gürkaynak, R. Motto, and G. Ragusa. 2019. Measuring Euro Area Monetary Policy. *Journal of Monetary Economics* 108:162 179. - Ang, A., and F. A. Longstaff. 2013. Systemic Sovereign Credit Risk: Lessons from the U.S. and Europe. *Journal of Monetary Economics* 60:493 510. - Augustin, P., F. Jiao, S. Sarkissian, and M. J. Schill. 2020. Cross-Listings and the Dynamics between Credit and Equity Returns. *The Review of Financial Studies* 33:112–154. - Banerjee, R. N., D. Latto, and N. McLaren. 2014. Using Changes in Auction Maturity Sectors to Help Identify the Impact of QE on Gilt Yields. *Economic Journal* 124:453–479. - Bekaert, G., and C. R. Harvey. 1997. Emerging Equity Market Volatility. *Journal of Financial Economics* 43:29–77. - Bekaert, G., and C. R. Harvey. 2000. Foreign Speculators and Emerging Equity Markets. *Journal of Finance* 55:565–613. - Bernanke, B. 2003. Some Thoughts on Monetary Policy in Japan. FED Board, Remarks for the Japan Society of Monetary Economics. - Bernanke, B., and K. N. Kuttner. 2005. What Explains the Stock Market's Reaction to Federal Reserve Policy? *The Journal of Finance* 60:1221–1257. - Bernoth, K., and B. Erdogan. 2012. Sovereign Bond Yield Spreads: A Time-Varying Coefficient Approach. *Journal of International Money and Finance* 31:639–656. - Bjornland, H. C., and K. Leitemo. 2009. Identifying the Interdependence between US Monetary Policy and the Stock Market. *Journal of Monetary Economics* 56:275–282. - Boyarchenko, N., V. Haddad, and M. C. Plosser. 2017. The Federal Reserve and Market Confidence. Working Paper, Fed New York. - Breitung, J., and S. Eickmeier. 2015. Analyzing Business Cycle Asymmetries in a Multilevel Factor Model. *Economics Letters*, 127, 31-34. 127:31–34. - Brooks, J., M. Katz, and H. Lustig. 2018. Post-FOMC Announcement Drift in U.S. Bond Markets. NBER Workign Paper. - Brusa, F., P. Savor, and M. Wilson. 2020. One Central Bank to Rule Them All? *Review of Finance* 24:263–304. - Bulligan, G., and D. Delle Monache. 2018. Financial Markets Effects of ECB Unconventional Monetary Policy Announcements. *Bank of Italy Occasional Paper*. - Cappiello, L., R. F. Engle, and K. Sheppard. 2006. Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns. *Journal of Financial Econometrics* 4:537–572. - Carrieri, F., V. Errunza, and K. Hogan. 2007. Characterizing World Market Integration through Time. *Journal of Financial and Quantitative Analysis* 42:915–940. - Chen, J., T. Mancini Griffoli, and R. Sahay. 2014. Spillovers from United States Monetary Policy on Emerging Markets: Different this Time? IMF Working Paper. - Cieslak, A., A. Morse, and A. Vissing-Jorgensen. 2019. Stock Returns over the FOMC Cycle. *Journal of Finance* 74:2201–2248. - Codogno, L., C. Favero, and A. Missale. 2003. Yield Spreads on EMU Government Bonds. *Economic Policy* 18:503–532. - Cook, T., and T. Hahn. 1989. The Effect of Changes in the Federal Funds Rate Target on Market Interest Rates in the 1970s. *Journal of Monetary Economics* 24:331–351. - Dahlquist, M., and H. Hasseltoft. 2013. International Bond Risk Premia. *Journal of International Economics* 90:17–32. - D'Amico, S., W. English, D. López-Salido, and E. Nelson. 2012. The Federal Reserve's Largescale Asset Purchase Programmes: Rationale and Effects. *Economic Journal* 122:F415–F446. - D'Amico, S., and T. B. King. 2013. Flow and Stock Effects of Large-Scale Treasury Purchases: Evidence on the Importance of Local Supply. *Journal of Financial Economics* 108:425–448. - Dèes, S., and A. Galesi. 2018. The Policy Trilemma and the Global Financial Cycle: Evidence from the International Transmission of Unconventional Monetary Policy. Working Paper. - Ehrmann, M., and M. Fratzscher. 2004. Taking Stock: Monetary Policy Transmission to Equity Markets. *Journal of Money, Credit and Banking* 36:719–737. - Ehrmann, M., M. Fratzscher, R. S. Gürkaynak, and E. T. Swanson. 2011. Convergence and Anchoring of Yield Curves in the Euro Area. *Review of Economics and Statistics* 93:350–364. - Errunza, V., and E. Losq. 1985. International Asset Pricing under Mild Segmentation: Theory and Test. *The Journal of Finance* 40:105–124. - Eser, F., and B. Schwaab. 2016. Evaluating the Impact of Unconventional Monetary Policy Measures: Empirical Evidence from the ECB's Securities Markets Programme. *Journal of Financial Economics* 119:147–167. - Eun, C. S., and S. Shim. 1989. International Transmission of Stock Market Movements. *The Journal of Financial and Quantitative Analysis* 24:241–256. - Forbes, K., and R. Rigobon. 2002. No Contagion, Only Interdependence: Measuring Stock Market Co-Movements. *Journal of Finance* 57:2223–2261. - Fratzscher, M., M. L. Duca, and R. Straub. 2016. ECB Unconventional Monetary Policy Actions: Market Impact, International Spillovers and Transmission Channels. *IMF Economic Review* 64:36–74. - Fratzscher, M., M. Lo Duca, and R. Straub. 2018. On the International Spillovers of US Quantitative Easing. *The Economic Journal* 128:330–377. - Geyer, A., S. Kossmeier, and S. Pichler. 2004. Measuring Systematic Risk in EMU Government Yield Spreads. *Review of Finance* 8:171–197. - Ghysels, E., A. Plazzi, and R. Valkanov. 2016. Why Invest in Emerging Markets? The Role of Conditional Return Asymmetry. *Journal of Finance* 71:2145–2192. - Glosten, L. R., R. Jagannathan, and D. E. Runkle. 1993. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. *Journal of Finance* 48:1779–1801. - Goetzmann, W. N., L. Li, and K. G. Rouwenhorst. 2005. Long-Term Global Market Correlations. *Journal of Business* 78:1–38. - Gurkaynak, R., B. Sack, and E. Swanson. 2005. Do Actions Speak Louder than Words? The Response of Asset Prices to Monetary Policy Actions and Statements. *International Journal of Central Banking* 1:55–93. - Ilzetzki, E., C. M. Reinhart, and K. S. Rogoff. 2019. Exchange Arrangements Entering the 21st Century: Which Anchor Will Hold? *Quarterly Journal of Economics* 134:599–646. - Jotikasthira, C., A. Le, and C. Lundblad. 2015. Why Do Term Structures in Different Currencies Co-Move? *Journal of Financial Economics* 115:58–83. - Kapadia, N., and X. Pu. 2012. Limited Arbitrage Between Equity and Credit Markets. *Journal of Financial Economics* 105:542 564. - Karolyi, G. A., and R. Stulz. 1996. Why Do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovements. *The Journal of Finance* 51:951–986. - Krishnamurthy, A., S. Nagel, and A. Vissing-Jorgensen. 2014. ECB Policies Involving Government Bond Purchases: Impact and Channels. *Review of Finance* 22:144. - Krishnamurthy, A., and
A. Vissing-Jorgensen. 2011. The Effects of Quantitative Easing on Interest Rates: Channels and Implications for Policy. NBER Working Paper No. 17555. - Kroencke, T. A., M. Schmeling, and A. Schrimpf. 2019. The FOMC Risk Shift. Working Paper. - Kumar, M. S., and T. Okimoto. 2011. Dynamics of International Integration of Government Securities' Markets. *Journal of Banking and Finance* 35:142–154. - Li, C., and M. Wei. 2013. Term Structure Modeling with Supply Factors and the Federal Reserve's Large-scale Asset Purchase Programs. *International Journal of Central Banking* 9:3–39. - Longstaff, F. A., J. Pan, L. H. Pedersen, and K. J. Singleton. 2011. How Sovereign Is Sovereign Credit Risk? *American Economic Journal: Macroeconomics* 3:75–103. - Lucca, D., and E. Moench. 2015. The Pre-FOMC Announcement Drift. *The Journal of Finance* 70:329–371. - Ludvigson, S. C., and S. Ng. 2009. Macro Factors in Bond Risk Premia. *Review of Financial Studies* 22:5027–5067. - Lustig, H., N. Roussanov, and A. Verdelhan. 2011. Common Risk Factors in Currency Markets. *Review of Financial Studies* 24:3731–3777. - Martin, P., and H. Rey. 2006. Globalization and Emerging Markets: With or Without Crash? *American Economic Review* 96:1631–1651. - Mauro, P., N. Sussman, and Y. Yafeh. 2002. Emerging Market Spreads: Then versus Now. *Quarterly Journal of Economics* 117:695–733. - Mele, A., and Y. Obayashi. 2015. *The price of fixed income market volatility*. Springer International Publishing. - Namvar, E., B. Phillips, K. Pukthuanthong, and R. Rau. 2016. Do Hedge Funds Dynamically Manage Systematic Risk? *Journal of Banking and Finance* 64:1–15. - Neuhierl, A., and M. Weber. 2016. Monetary policy and the Stock Market: Time-Series Evidence. NBER Working Paper No. w22831. - Pagano, M., and E.-L. von Thadden. 2004. The European Bond Markets under EMU. *Oxford Review of Economic Policy* 20:531–554. - Pan, J., and K. J. Singleton. 2008. Default and Recovery Implicit in the Term Structure of Sovereign CDS Spreads. *Journal of Finance* 63:2345–2384. - Pericoli, M., and G. Veronese. 2018. Monetary Policy Surprises and Channels of Transmissions. *Quarterly Journal of Finance* 8:1–60. Working Paper, Banca d'Italia. - Pukthuanthong, K., and R. Roll. 2009. Global Market Integration: an Alternative Measure and its Application. *Journal of Financial Economics* 94:214–232. - Remolona, E. M., M. Scatigna, and E. Wu. 2008. A Ratings-Based Approach to Measuring Sovereign Risk. *International Journal of Finance and Economics* 13:26–39. - Rey, H. 2015. Dilemma not Trilemma: the Global Financial Cycle and Monetary Policy Independence. Tech. rep., National Bureau of Economic Research. - Rey, H. 2016. International Channels of Transmission of Monetary Policy and the Mundellian Trilemma. *IMF Economic Review* 64:6–35. - Rigobon, R. 2003. Identification through Heteroskedasticity. *Review of Economics and Statistics* 85:777–792. - Rigobon, R., and B. Sack. 2004. The Impact of Monetary Policy on Asset Prices. *Journal of Monetary Economics* 51:1553–1575. - Rogers, J. H., C. Scotti, and J. H. Wright. 2014. Evaluating Asset-Market Effects of Unconventional Monetary Policy: a Cross-Country Comparison. International finance discussion papers, Federal Reserve Board. - Rogers, J. H., C. Scotti, and J. H. Wright. 2018. Unconventional Monetary Policy and International Risk Premia. *Journal of Money, Credit and Banking* 50:1827–1850. - Savor, P., and M. Wilson. 2013. How Much Do Investors Care about Macroeconomic Risk? Evidence from Scheduled Economic Announcements. *Journal of Financial and Quantitative Analysis* 48:343–375. - Schmeling, M., and C. Wagner. 2019. Does Central Bank Tone Move Asset Prices? CEPR Discussion Paper No. DP13490. - Stulz, R. M. 1981. On the Effects of Barriers to International Investment. *The Journal of Finance* 36:923–934. - Stulz, R. M. 1987. An Equilibrium Model of Exchange Rate Determination and Asset Pricing with Nontraded Goods and Imperfect Information. *Journal of Political Economy* 95:1024–1040. - Swanson, E. T. 2019. Measuring the Effects of Federal Reserve Forward Guidance and Asset Purchases on Financial Markets. Working Paper. - Volosovych, V. 2011. Measuring Financial Market Integration over the Long Run: Is There a U-shape? *Journal of International Money and Finance* 30:1535–1561. Table 1. Equity market comovements and central bank meetings This table presents the percentage explained by the first principal component of country stock market returns during ECB (Panel A) and FED (Panel B) meetings. For each central bank, event (meeting) days are from two days prior to two days following an official meeting date. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). Results are reported across: All countries, EMU countries, Developed countries ex-EMU, all Emerging countries, Emerging countries in Europe&Middle East, Emerging countries in Asia&Pacific, Emerging countries in Americas, and two equally-weighted Developed Markets and Emerging Markets indices. Row ' $Q(\Delta y)$ ' reports the tercile (in basis points) of the change in the first principal component of the yield curve. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015. | | | Aug2007- | Dec2009 | | • | Jan2010-1 | May2013 | | | Jun2013- | Nov2015 | i | |-----------------|--------|----------|---------|-------|------------|-----------|---------|-------|-------|----------|---------|-------| | | | | | Pa | nel A: ECB | meetings | | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 34.27 | 41.90 | 42.52 | 42.66 | 42.91 | 45.76 | 41.02 | 37.21 | 35.86 | 29.53 | 31.82 | 32.58 | | EMU | 68.19 | 72.83 | 72.37 | 71.98 | 71.08 | 75.00 | 71.55 | 69.43 | 73.19 | 65.74 | 68.56 | 68.98 | | DM ex-EMU | 44.09 | 42.20 | 48.01 | 49.05 | 51.40 | 56.55 | 49.87 | 46.98 | 45.11 | 39.27 | 41.57 | 40.9 | | EM | 20.91 | 30.89 | 31.26 | 31.72 | 32.60 | 32.35 | 28.41 | 24.72 | 26.75 | 21.02 | 21.77 | 21.2 | | EM Europe&ME | 34.34 | 48.67 | 43.85 | 45.25 | 41.70 | 40.51 | 37.60 | 32.47 | 32.12 | 21.64 | 24.85 | 25.5 | | EM Asia&Pacific | 31.10 | 42.74 | 42.51 | 43.20 | 43.12 | 37.69 | 39.32 | 39.45 | 39.44 | 34.28 | 36.62 | 36.19 | | EM Americas | 45.36 | 46.52 | 51.54 | 47.30 | 49.65 | 52.07 | 45.83 | 43.66 | 42.21 | 44.20 | 40.68 | 38.5 | | DM Idx & EM Idx | 85.61 | 91.00 | 91.22 | 91.40 | 90.06 | 92.47 | 89.79 | 86.25 | 81.56 | 71.54 | 77.86 | 81.6 | | No. Obs. | 55 | 55 | 160 | 470 | 80 | 80 | 230 | 659 | 50 | 50 | 147 | 481 | | $Q(\Delta y)$ | -6.98 | 10.03 | | | -8.05 | 3.74 | | | -7.20 | 1.28 | | | | | | | | Pa | nel B: FED | meetings | | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 46.59 | 49.64 | 45.60 | 41.11 | 42.74 | 34.47 | 38.88 | 38.13 | 26.26 | 39.17 | 32.60 | 32.2 | | EMU | 74.11 | 73.55 | 73.42 | 71.39 | 73.12 | 61.12 | 67.89 | 70.84 | 62.67 | 73.79 | 68.39 | 69.0 | | DM ex-EMU | 47.45 | 53.81 | 48.63 | 48.75 | 50.82 | 45.88 | 48.42 | 47.50 | 28.71 | 48.84 | 37.74 | 41.6 | | EM | 38.03 | 40.14 | 35.45 | 29.55 | 35.23 | 23.28 | 28.59 | 24.82 | 21.70 | 25.08 | 21.02 | 21.4 | | EM Europe&ME | 56.07 | 53.24 | 49.97 | 42.22 | 45.82 | 31.58 | 36.72 | 33.05 | 22.99 | 37.61 | 28.21 | 24.4 | | EM Asia&Pacific | 50.18 | 51.55 | 47.50 | 40.93 | 54.91 | 33.25 | 43.45 | 38.14 | 51.49 | 34.96 | 39.42 | 35.7 | | EM Americas | 53.30 | 50.25 | 51.97 | 46.20 | 51.14 | 39.20 | 44.87 | 43.84 | 34.74 | 36.87 | 35.63 | 39.6 | | DM Idx & EM Idx | 93.29 | 94.35 | 92.98 | 90.60 | 88.40 | 90.21 | 89.73 | 86.45 | 76.12 | 92.61 | 86.80 | 79.2 | | No. Obs. | 63 | 60 | 178 | 452 | 70 | 70 | 205 | 684 | 50 | 48 | 138 | 490 | | $Q(\Delta y)$ | -19.03 | 9.17 | | | -17.30 | 1.06 | | | -6.95 | 9.35 | | | Table 2. Sovereign CDS comovements and central bank meetings This table presents the percentage explained by the first principal component of changes in country sovereign CDS spreads during ECB (Panel A) and FED (Panel B) meetings. For each central bank, event (meeting) days are from two days prior to two days following an official meeting date. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). Results are reported across: All countries, EMU countries, Developed countries ex-EMU, all Emerging countries, Emerging countries in Europe&Middle East, Emerging countries in Asia&Pacific, Emerging countries in Americas, and two equally-weighted Developed Markets and Emerging Markets indices. Row ' $Q(\Delta y)$ ' reports the tercile (in basis points) of the change in the first principal component of the yield curve. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015. | | | Aug2007- | -Dec2009 | | | Jan2010-1 | May2013 | | | Jun2013- | Nov2015 | i | |-----------------|--------|----------|----------|-------|------------|-----------|---------|-------|-------|----------|---------|-------| | | | | | Pa | nel A: ECB | meetings | | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 31.56 | 38.93 | 38.91 | 41.63 | 43.40 | 56.75 | 48.94 | 44.12 | 38.42 | 24.34 | 25.90 | 29.38 | | EMU | 48.69 | 62.53 | 57.94 | 56.62 | 61.16 | 76.24 | 68.87 | 65.90 | 54.83 | 42.58 | 45.84 |
47.17 | | DM ex-EMU | 28.70 | 38.90 | 35.64 | 36.74 | 41.12 | 51.40 | 44.74 | 39.28 | 30.28 | 28.51 | 25.74 | 32.16 | | EM | 45.35 | 51.20 | 51.38 | 53.38 | 54.12 | 63.54 | 55.93 | 51.04 | 46.99 | 36.43 | 36.93 | 37.75 | | EM Europe&ME | 60.70 | 69.05 | 66.65 | 67.57 | 71.96 | 84.43 | 74.76 | 71.94 | 57.46 | 37.62 | 42.42 | 38.87 | | EM Asia&Pacific | 68.17 | 66.21 | 66.98 | 69.31 | 69.87 | 71.97 | 70.24 | 69.59 | 68.33 | 66.03 | 64.92 | 68.41 | | EM Americas | 78.25 | 68.88 | 75.39 | 76.65 | 86.83 | 80.10 | 81.21 | 76.21 | 81.38 | 84.04 | 80.41 | 78.54 | | DM Idx & EM Idx | 81.53 | 67.81 | 77.07 | 84.47 | 74.96 | 82.49 | 80.13 | 79.94 | 77.79 | 61.60 | 66.37 | 70.44 | | No. Obs. | 55 | 55 | 160 | 470 | 80 | 80 | 230 | 659 | 50 | 50 | 147 | 481 | | $Q(\Delta y)$ | -6.98 | 10.03 | | | -8.05 | 3.74 | | | -7.20 | 1.28 | | | | | | | | Pa | nel B: FED | meetings | | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 48.15 | 47.24 | 44.01 | 39.49 | 45.67 | 41.73 | 43.70 | 46.36 | 33.10 | 45.97 | 36.41 | 26.28 | | EMU | 60.72 | 59.32 | 58.71 | 55.93 | 66.55 | 64.91 | 64.36 | 67.72 | 49.63 | 66.14 | 53.72 | 45.41 | | DM ex-EMU | 38.81 | 40.71 | 37.04 | 36.01 | 38.61 | 36.23 | 39.03 | 41.76 | 40.55 | 43.23 | 39.38 | 28.80 | | EM | 59.69 | 60.89 | 58.20 | 50.18 | 57.42 | 53.97 | 54.78 | 51.76 | 36.15 | 53.30 | 42.42 | 36.11 | | EM Europe&ME | 72.46 | 76.06 | 71.64 | 65.58 | 81.56 | 72.99 | 76.50 | 71.37 | 48.75 | 53.88 | 46.52 | 37.45 | | EM Asia&Pacific | 67.10 | 73.86 | 69.04 | 68.64 | 75.25 | 67.31 | 71.88 | 68.80 | 70.19 | 73.43 | 70.79 | 66.74 | | EM Americas | 83.59 | 78.51 | 79.81 | 74.65 | 80.30 | 81.02 | 79.83 | 77.22 | 78.87 | 84.74 | 80.53 | 78.5 | | DM Idx & EM Idx | 86.26 | 86.61 | 85.82 | 81.01 | 75.57 | 73.20 | 74.62 | 81.70 | 63.49 | 76.70 | 70.41 | 68.86 | | No. Obs. | 63 | 60 | 178 | 452 | 70 | 70 | 205 | 684 | 50 | 48 | 138 | 490 | | $Q(\Delta y)$ | -19.03 | 9.17 | | | -17.30 | 1.06 | | | -6.95 | 9.35 | | | ## Table 3. Paiwise correlations and central bank meetings This table presents the average pairwise correlation of country stock market returns (panels A and B) and changes in sovereign CDS spread (panels C and D) during ECB (panels A and C) and FED (panels B and D) meetings. For each central bank, event (meeting) days are from two days prior to two days following an official meeting date. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). Results are reported across: All countries, EMU countries, Developed countries ex-EMU, all Emerging countries, and two equally-weighted Developed Markets and Emerging Markets indices. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015. | | A | Aug2007- | Dec200 | 9 | J | an2010-l | May201 | 3 | J | un2013- | Nov201: | 5 | |-----------------|------|----------|--------|------------|------------|-----------|---------|------|------|---------|---------|------| | | | | Pa | inel A: E0 | CB meeting | s, Equity | returns | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 0.25 | 0.32 | 0.35 | 0.35 | 0.33 | 0.36 | 0.32 | 0.29 | 0.27 | 0.20 | 0.23 | 0.24 | | EMU | 0.57 | 0.60 | 0.63 | 0.62 | 0.55 | 0.69 | 0.62 | 0.59 | 0.67 | 0.57 | 0.61 | 0.60 | | DM ex-EMU | 0.35 | 0.32 | 0.39 | 0.41 | 0.43 | 0.49 | 0.42 | 0.38 | 0.36 | 0.29 | 0.32 | 0.32 | | EM | 0.12 | 0.20 | 0.23 | 0.23 | 0.21 | 0.21 | 0.19 | 0.16 | 0.18 | 0.12 | 0.13 | 0.13 | | DM Idx & EM Idx | 0.71 | 0.82 | 0.82 | 0.83 | 0.80 | 0.85 | 0.80 | 0.72 | 0.63 | 0.43 | 0.56 | 0.63 | | | | | Pa | nnel B: FE | ED meeting | s, Equity | returns | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 0.39 | 0.43 | 0.38 | 0.34 | 0.36 | 0.25 | 0.31 | 0.29 | 0.16 | 0.31 | 0.24 | 0.24 | | EMU | 0.64 | 0.62 | 0.63 | 0.62 | 0.64 | 0.49 | 0.57 | 0.61 | 0.54 | 0.64 | 0.59 | 0.61 | | DM ex-EMU | 0.39 | 0.45 | 0.40 | 0.41 | 0.43 | 0.36 | 0.40 | 0.39 | 0.10 | 0.40 | 0.27 | 0.32 | | EM | 0.29 | 0.31 | 0.27 | 0.21 | 0.27 | 0.12 | 0.20 | 0.16 | 0.10 | 0.17 | 0.13 | 0.13 | | DM Idx & EM Idx | 0.87 | 0.89 | 0.86 | 0.81 | 0.77 | 0.80 | 0.79 | 0.73 | 0.52 | 0.85 | 0.74 | 0.58 | | | | | Pa | anel C: E | CB meeting | s, CDS | changes | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 0.26 | 0.34 | 0.35 | 0.38 | 0.39 | 0.53 | 0.45 | 0.40 | 0.32 | 0.16 | 0.21 | 0.25 | | EMU | 0.43 | 0.58 | 0.53 | 0.52 | 0.56 | 0.73 | 0.65 | 0.62 | 0.47 | 0.30 | 0.37 | 0.39 | | DM ex-EMU | 0.16 | 0.27 | 0.25 | 0.27 | 0.31 | 0.43 | 0.35 | 0.28 | 0.17 | 0.12 | 0.12 | 0.21 | | EM | 0.40 | 0.42 | 0.46 | 0.48 | 0.48 | 0.58 | 0.50 | 0.46 | 0.41 | 0.28 | 0.30 | 0.31 | | DM Idx & EM Idx | 0.63 | 0.36 | 0.54 | 0.69 | 0.50 | 0.65 | 0.60 | 0.60 | 0.56 | 0.23 | 0.33 | 0.41 | | | | | Pa | anel D: Fl | ED meeting | s, CDS | changes | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 0.44 | 0.44 | 0.40 | 0.36 | 0.41 | 0.37 | 0.40 | 0.42 | 0.28 | 0.42 | 0.32 | 0.22 | | EMU | 0.56 | 0.55 | 0.54 | 0.51 | 0.62 | 0.61 | 0.60 | 0.64 | 0.43 | 0.62 | 0.48 | 0.36 | | DM ex-EMU | 0.28 | 0.30 | 0.27 | 0.26 | 0.26 | 0.25 | 0.27 | 0.32 | 0.29 | 0.32 | 0.29 | 0.16 | | EM | 0.54 | 0.57 | 0.53 | 0.45 | 0.53 | 0.48 | 0.50 | 0.46 | 0.30 | 0.48 | 0.37 | 0.29 | | DM Idx & EM Idx | 0.73 | 0.73 | 0.72 | 0.62 | 0.51 | 0.46 | 0.49 | 0.63 | 0.27 | 0.53 | 0.41 | 0.38 | #### Table 4. What drives the global factor This table presents the coefficients from regressing the first principal component (global factor) of the Developed Markets and Emerging Markets indices of equity returns (Panel A and B) and changes in sovereign CDS (Panel C and D) on risk factors. The principal component is constructed from the correlation matrix separately computed on central bank' (ECB in Panel A and C, or FED in Panel B and D) meeting and ex-meeting days. The risk factors are: the return to the German stock market index (r_{Ger}) and the change in the German corporate default spread (DEF_{Ger}) for Panel A and C; the return to the U.S. stock market index (r_{US}) and the change in the U.S. corporate default spread (DEF_{Ger}) for Panel B and D; the change in the exchange rate of the EUR (for Panel A and C) or USD (for Panel B and D) versus a panel of currencies (Exch. Rate); and the following list of controls defined in Section 5.4: the VIX equity volatility index, the variance risk premium in the equity market, the TYVIX fixed-income volatility index, the variance risk premium in the fixed-income market, changes in the Oil price, and changes in the value of a commodity index. Coefficients that are significant at least at the 10% level are marked in bold. The column " R^2 " reports the overall R-squared statistic, while the last three columns report the partial R^2 (computed as Shapley-Owen decomposition) for the return, default spread, and exchange rate factors. The full sample consists of daily observations from August, 2007 to November, 2015. | | | Panel A | A: Equity mar | kets comovem | ents and ECB | meetings | | partial R | 2 | |-------------------|--------------|-----------------------|----------------|--------------|--------------|----------------|------------------|-------------|-----------| | Period | Central Bank | r_{Ger} | DEF_{Ger} | Exch.Rate | Controls | \mathbb{R}^2 | r_{Ger} | DEF_{Ger} | Exch.Rate | | Aug2007-Dec2009 | ECB | 0.81 | -0.14 | -0.01 | Yes | 0.63 | 0.36 | 0.07 | 0.00 | | | ex-ECB | 0.57 | -0.06 | 0.01 | Yes | 0.53 | 0.26 | 0.03 | 0.00 | | Jan2010-May2013 | ECB | 0.70 | -0.10 | 0.06 | Yes | 0.74 | 0.31 | 0.11 | 0.01 | | | ex-ECB | 0.63 | -0.12 | 0.10 | Yes | 0.67 | 0.32 | 0.07 | 0.03 | | Jun2013-Nov2015 | ECB | 0.60 | -0.24 | -0.01 | Yes | 0.61 | 0.35 | 0.10 | 0.01 | | | ex-ECB | 0.65 | -0.11 | -0.06 | Yes | 0.66 | 0.39 | 0.05 | 0.02 | | | | Panel 1 | B: Equity mar | kets comovem | ents and FED | meetings | | partial R | 2 | | Period | Central Bank | r_{US} | DEF_{US} | Exch.Rate | Controls | R^2 | r_{US} | DEF_{US} | Exch.Rate | | Aug2007-Dec2009 | FED | 0.41 | -0.05 | -0.20 | Yes | 0.44 | 0.08 | 0.02 | 0.07 | | 11ag2007 2002009 | ex-FED | 0.64 | -0.06 | -0.21 | Yes | 0.46 | 0.17 | 0.02 | 0.07 | | Jan2010-May2013 | FED | 0.60 | -0.11 | -0.34 | Yes | 0.64 | 0.15 | 0.02 | 0.17 | | van2010 1/1a/2015 | ex-FED | 0.63 | -0.04 | -0.34 | Yes | 0.61 | 0.19 | 0.00 | 0.15 | | Jun2013-Nov2015 | FED | 0.76 | -0.27 | -0.07 | Yes | 0.51 | 0.23 | 0.06 | 0.01 | | | ex-FED | 0.41 | -0.13 | -0.10 | Yes | 0.36 | 0.12 | 0.02 | 0.01 | | | | Panel (| C: Sovereign C | CDS comovem | ents and ECB | meetings | | partial R | 2 | | Period | Central Bank | r a | DEF_{Ger} | Exch.Rate | Controls | R^2 | | DEF_{Ger} | Exch.Rate | | | ECB | r_{Ger} | 0.20 | 0.03 | | | r _{Ger} | 0.06 | 0.00 | | Aug2007-Dec2009 | ex-ECB | -0.31
-0.41 | 0.20 | -0.03 | Yes
Yes | 0.33
0.32 | 0.11
0.13 | 0.06 | 0.00 | | Jan2010-May2013 | ECB | -0.23 | 0.24 | -0.28 | Yes | 0.54 | 0.11 | 0.11 | 0.10 | | Jan 2010-Way 2013 | ex-ECB | -0.25 | 0.29 | -0.22 | Yes | 0.48 | 0.11 | 0.11 | 0.10 | | Jun2013-Nov2015 | ECB | -0.37 | 0.21 | 0.12 | Yes | 0.36 | 0.16 | 0.05 | 0.02 | | Juli2013-140V2013 | ex-ECB | -0.35 | 0.13 | 0.02 | Yes | 0.42 | 0.15 | 0.03 | 0.02 | | | | Panel I | D: Sovereign (| CDS comovem | ents and FED | meetings | | | | | | | | | | | | | partial R | 2 | | Period | Central Bank | r_{US} | DEF_{US} | Exch.Rate | Controls | R^2 | r_{US} | DEF_{US} | Exch.Rate | | Aug2007-Dec2009 | FED | -0.15 | 0.27 |
0.13
0.29 | Yes | 0.38 | 0.03 | 0.10 | 0.05 | | | ex-FED | -0.31 | 0.14 | 0.29 | Yes | 0.26 | 0.05 | 0.03 | 0.09 | | Jan2010-May2013 | FED | -0.38 | 0.11 | 0.35 | Yes | 0.42 | 0.07 | 0.02 | 0.16 | | | ex-FED | -0.42 | 0.06 | 0.43 | Yes | 0.45 | 0.10 | 0.01 | 0.18 | | Jun2013-Nov2015 | FED | -0.45 | 0.24 | 0.41 | Yes | 0.47 | 0.09 | 0.05 | 0.17 | | | ex-FED | -0.15 | 0.12 | 0.11 | Yes | 0.31 | 0.06 | 0.02 | 0.02 | ## Table 5. Market comovements and central bank meetings: analysis by openness This table presents the percentage explained by the first principal component of country stock market returns (panels A and B) and changes in sovereign CDS spread (panels C and D) during ECB (panels A and C) and FED (panels B and D) meetings. For each central bank, event (meeting) days are from two days prior to two days following an official meeting date. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). The analysis is carried separately on the group of countries that are closed and those that are open to capital flows and the trading of goods. Row 'Q (Δy)' reports the tercile (in basis points) of the change in the first principal component of the yield curve. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015. | | | Aug2007- | -Dec2009 | | : | Jan2010- | May2013 | | | Jun2013- | Nov2015 | | |-----------------------------------|----------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|----------------|----------------|-----------------------|-----------------------|----------------|----------------| | | | | Pan | el A: Equi | ty markets co | moveme | nts and E | CB meeting | gs | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Closed
Open | 36.20
35.18 | 43.68
42.42 | 43.83
43.79 | 44.62
42.97 | 36.60
51.24 | 37.75
54.76 | 35.21
48.61 | 33.11
43.64 | 30.11
42.57 | 26.44
34.18 | 26.91
37.57 | 27.85
38.82 | | No. Obs. $Q\left(\Delta y\right)$ | 55
-6.98 | 55
10.03 | 160 | 470 | 80
-8.05 | 80
3.74 | 230 | 659 | 50
-7.20 | 50
1.28 | 147 | 481 | | | | | Pan | el B: Equi | ty markets co | moveme | nts and Fl | ED meeting | ţs | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Closed
Open | 47.79
47.69 | 50.39
50.71 | 46.30
46.98 | 43.52
41.16 | 37.16
50.30 | 30.31
40.92 | 34.01
45.90 | 33.74
44.73 | 25.12
31.09 | 30.75
48.36 | 27.14
39.54 | 27.62
38.19 | | No. Obs. $Q\left(\Delta y\right)$ | 63
-19.03 | 60
9.17 | 178 | 452 | 70
-17.30 | 70
1.06 | 205 | 684 | 50
-6.95 | 48
9.35 | 138 | 490 | | | | | Pan | el C: Sove | reign CDS co | omoveme | nts and E | CB meeting | gs | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Closed
Open | 29.24
37.36 | 35.59
46.22 | 37.34
44.24 | 39.92
46.90 | 36.48
54.32 | 48.22
67.47 | 42.29
59.11 | 39.22
53.54 | 42.05
40.13 | 33.46
23.85 | 32.31
26.65 | 36.24
28.50 | | No. Obs. $Q\left(\Delta y\right)$ | 55
-6.98 | 55
10.03 | 160 | 470 | 80
-8.05 | 80
3.74 | 230 | 659 | 50
-7.20 | 50
1.28 | 147 | 481 | | | | | Pan | el D: Sove | reign CDS co | omoveme | nts and F | ED meeting | gs | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Closed
Open | 44.76
54.77 | 45.43
52.24 | 41.19
49.94 | 38.29
44.45 | 38.27
57.66 | 36.81
50.35 | 37.61
54.10 | 41.16
55.68 | 36.80
34.98 | 48.96
47.51 | 40.84
36.98 | 33.65
25.32 | | No. Obs. $Q\left(\Delta y\right)$ | 63
-19.03 | 60
9.17 | 178 | 452 | 70
-17.30 | 70
1.06 | 205 | 684 | 50
-6.95 | 48
9.35 | 138 | 490 | #### Table 6. Market comovements and central bank meetings: analysis by currency exposure This table presents the percentage explained by the first principal component of country stock market returns (panels A and B) and changes in sovereign CDS spread (panels C and D) during ECB (panels A and C) and FED (panels B and D) meetings. For each central bank, event (meeting) days are from two days prior to two days following an official meeting date. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low'), between the first and second tercile ('Mid'), or above the second tercile ('High'). In Panel A, the analysis is carried separately on the group of countries with an average absolute net exposure in Euro to GDP that is below ("Low" group) or above ("High" group) the median during the sample period. Panel B reports corresponding analysis when the grouping is based on exposures denominated in USD. In Panel C, the analysis is carried separately on the group of countries with an average amount outstanding of government debt securities denominated in Euro (resp. USD) to GDP that is below ("Low" group) or above ("High" group) the median during the sample period. Panel D reports corresponding analysis when the grouping is based on the amount outstanding denominated in USD. Row 'Q (Δy)' reports the tercile (in basis points) of the change in the first principal component of the yield curve. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015 | | | Aug2007- | -Dec2009 | | | Jan2010- | May2013 | | | Jun2013- | Nov2015 | i | |---|--------------------|--------------------|--------------------|----------------|--------------------|-----------------------|----------------|----------------|-----------------------|--------------------|--------------------|----------------| | | | 1 | Panel A: | Equity mar | kets comove | ments and | d ECB me | eetings | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Low Corp Euro Exp
High Corp Euro Exp | 24.94 50.49 | 30.04
57.51 | 33.29
57.17 | 32.87
57.08 | 33.28
57.33 | 34.85
61.60 | 30.61
56.75 | 28.34
54.03 | 29.86
48.90 | 25.80
43.38 | 26.43
45.38 | 26.43
45.85 | | No. Obs. $Q\left(\Delta y\right)$ | 55
-6.98 | 55
10.03 | 160 | 470 | 80
-8.05 | 80
3.74 | 230 | 659 | 50
-7.20 | 50
1.28 | 147 | 481 | | | | | Panel B: | Equity mar | kets comove | ments and | d FED me | eetings | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Low Corp USD Exp
High Corp USD Exp | 46.49 51.29 | 48.25 54.49 | 43.46 51.34 | 36.06
49.43 | 38.73 49.06 | 27.63
44.53 | 32.90
47.39 | 32.48
46.05 | 26.58
28.07 | 39.18 41.78 | 32.99
34.68 | 30.35
36.31 | | No. Obs. $Q\left(\Delta y\right)$ | 63
-19.03 | 60
9.17 | 178 | 452 | 70
-17.30 | 70
1.06 | 205 | 684 | 50
-6.95 | 48
9.35 | 138 | 490 | | | |] | Panel C: S | Sovereign C | CDS comove | ments an | d ECB m | eetings | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Low Govn Euro Exp
High Govn Euro Exp | 32.14 39.87 | 41.88
47.23 | 41.24
46.68 | 43.55
48.29 | 44.16
51.49 | 52.68
66.71 | 47.77
58.62 | 43.94
55.20 | 43.75
40.83 | 37.17
25.16 | 35.16
30.11 | 39.31
31.01 | | No. Obs. $Q\left(\Delta y\right)$ | 55
-6.98 | 55
10.03 | 160 | 470 | 80
-8.05 | 80
3.74 | 230 | 659 | 50
-7.20 | 50
1.28 | 147 | 481 | | | |] | Panel D: | Sovereign (| CDS comove | ments an | d FED m | eetings | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Low Govn USD Exp
High Govn USD Exp | 46.46
55.82 | 44.71
55.24 | 41.74
52.33 | 38.09
47.14 | 40.85
54.66 | 37.11
51.96 | 38.48
53.37 | 40.93
56.02 | 43.38
33.39 | 50.01
49.59 | 44.34 39.46 | 31.16
34.93 | | No. Obs. $Q(\Delta y)$ | 63
-19.03 | 60
9.17 | 178 | 452 | 70
-17.30 | 70
1.06 | 205 | 684 | 50
-6.95 | 48
9.35 | 138 | 490 | Table 7. Market comovements and central bank meetings: a placebo test This table presents the percentage explained by the first principal component of country stock market returns (panels A and B) and changes in sovereign CDS spread (panels C and D) during ECB (panels A and C) and FED (panels B and D) meetings. For each central bank, event (meeting) days are from two days prior to two days following an official meeting date. The analysis is confined to days when the German (for ECB meetings) or U.S. (for FED meetings) equity market returns falls either below the first quartile or above the third quartile of its within-period empirical distribution. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). Results are reported across: All countries, EMU countries, Developed countries ex-EMU, all Emerging countries, Emerging countries in Europe&Middle East, Emerging countries in Asia&Pacific, Emerging countries in Americas, and
two equally-weighted Developed Markets and Emerging Markets indices. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. A dash "-" denotes combinations where the number of days is below the number of countries, and a proper variance-covariance matrix is not defined. The full sample consists of daily observations from August, 2007 to November, 2015. | | | Aug2007 | -Dec2009 |) | | Jan2010- | May2013 | | | Jun2013- | Nov2015 | | |-----------------|-------|---------|----------|------------|------------|------------|-----------|-------|-------|----------|---------|-------| | | | | | Panel A: I | ECB meetin | gs, Equit | y returns | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | - | - | 50.55 | 49.39 | 52.86 | 53.30 | 49.66 | 45.03 | - | - | 38.41 | 39.18 | | EMU | 78.11 | 78.10 | 79.19 | 77.62 | 82.10 | 81.00 | 79.32 | 76.42 | 79.17 | 72.59 | 76.40 | 76.83 | | DM ex-EMU | 49.43 | 48.93 | 54.05 | 54.58 | 57.49 | 63.72 | 57.93 | 55.82 | 56.99 | 42.62 | 50.12 | 46.91 | | EM | 29.57 | 37.11 | 38.65 | 37.46 | 41.84 | 38.82 | 35.85 | 30.70 | 32.04 | 23.64 | 26.14 | 25.37 | | EM Europe&ME | 41.51 | 54.32 | 48.42 | 51.10 | 49.54 | 50.02 | 45.67 | 39.84 | 38.41 | 28.22 | 30.26 | 29.11 | | EM Asia&Pacific | 35.93 | 48.01 | 50.36 | 43.15 | 40.66 | 41.89 | 41.11 | 42.01 | 44.57 | 36.89 | 40.47 | 39.03 | | EM Americas | 47.40 | 51.30 | 57.42 | 54.77 | 62.12 | 58.46 | 55.60 | 50.00 | 46.11 | 40.66 | 42.60 | 42.64 | | DM Idx & EM Idx | 89.78 | 92.89 | 93.82 | 93.74 | 93.54 | 96.19 | 93.58 | 89.97 | 85.72 | 74.00 | 82.22 | 86.86 | | No. Obs. | 23 | 28 | 81 | 235 | 40 | 48 | 120 | 324 | 28 | 22 | 71 | 243 | | | | | | Panel B: I | FED meetin | gs, Equity | y returns | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 40.63 | - | 45.27 | 46.42 | 44.81 | - | 43.81 | 45.24 | - | - | 38.60 | 36.44 | | EMU | 72.16 | 74.90 | 74.10 | 75.60 | 75.61 | 68.32 | 74.32 | 76.74 | 65.38 | 78.64 | 73.62 | 73.00 | | DM ex-EMU | 40.90 | 54.12 | 44.53 | 53.98 | 50.01 | 44.17 | 48.27 | 55.34 | 31.86 | 54.66 | 41.01 | 46.37 | | EM | 31.03 | 48.69 | 36.30 | 33.81 | 38.71 | 27.56 | 33.83 | 30.27 | 22.41 | 29.10 | 25.50 | 24.17 | | EM Europe&ME | 51.76 | 57.74 | 50.18 | 45.08 | 48.72 | 37.43 | 43.31 | 38.81 | 22.19 | 42.51 | 33.98 | 26.31 | | EM Asia&Pacific | 47.96 | 59.55 | 48.98 | 43.90 | 56.15 | 32.89 | 43.50 | 38.74 | 52.04 | 35.01 | 42.59 | 36.95 | | EM Americas | 52.25 | 57.74 | 55.68 | 53.16 | 55.30 | 46.94 | 51.78 | 51.51 | 38.65 | 38.26 | 41.07 | 45.15 | | DM Idx & EM Idx | 90.35 | 95.07 | 92.24 | 92.55 | 88.72 | 91.83 | 91.91 | 90.81 | 83.73 | 94.04 | 91.29 | 83.95 | | No. Obs. | 40 | 33 | 105 | 211 | 46 | 35 | 116 | 328 | 31 | 28 | 75 | 239 | | | | | | Panel C: | ECB meetin | gs, CDS | changes | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | - | - | 44.96 | 47.43 | 48.05 | 61.98 | 54.84 | 49.19 | _ | _ | 26.90 | 33.84 | | EMU | 55.26 | 60.75 | 62.00 | 62.49 | 65.28 | 79.47 | 72.89 | 69.24 | 51.74 | 51.08 | 50.60 | 51.95 | | DM ex-EMU | 32.62 | 43.60 | 40.95 | 42.20 | 41.57 | 55.09 | 48.43 | 40.74 | 33.34 | 33.88 | 26.64 | 35.25 | | EM | 59.83 | 54.45 | 57.56 | 58.69 | 57.79 | 68.72 | 61.75 | 56.68 | 42.32 | 40.60 | 38.83 | 42.45 | | EM Europe&ME | 74.75 | 70.79 | 72.18 | 72.25 | 76.17 | 87.57 | 81.39 | 77.49 | 50.53 | 40.87 | 38.82 | 43.23 | | EM Asia&Pacific | 73.94 | 69.72 | 68.75 | 69.99 | 69.31 | 73.24 | 71.17 | 70.46 | 68.99 | 67.03 | 64.60 | 71.38 | | EM Americas | 84.28 | 73.16 | 80.57 | 81.12 | 90.39 | 85.01 | 86.05 | 80.51 | 81.59 | 86.46 | 82.64 | 79.84 | | DM Idx & EM Idx | 86.58 | 68.22 | 78.57 | 86.95 | 76.27 | 86.52 | 83.12 | 84.52 | 71.99 | 63.02 | 67.03 | 74.63 | | No. Obs. | 23 | 28 | 81 | 235 | 40 | 48 | 120 | 324 | 28 | 22 | 71 | 243 | | | | | | Panel D: | FED meetir | gs, CDS | changes | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 49.66 | - | 45.26 | 43.09 | 46.60 | - | 45.81 | 51.55 | - | - | 40.99 | 30.27 | | EMU | 63.69 | 66.57 | 62.26 | 59.98 | 64.22 | 67.82 | 64.61 | 72.22 | 51.55 | 69.40 | 56.45 | 49.22 | | DM ex-EMU | 41.49 | 39.42 | 37.98 | 41.92 | 42.53 | 34.61 | 41.14 | 44.53 | 43.60 | 49.62 | 41.37 | 31.46 | | EM | 61.55 | 63.28 | 59.53 | 53.94 | 59.04 | 50.56 | 55.96 | 56.79 | 41.21 | 56.94 | 47.54 | 40.34 | | EM Europe&ME | 75.58 | 78.48 | 73.40 | 66.75 | 82.09 | 68.56 | 76.32 | 75.13 | 50.22 | 57.68 | 50.23 | 43.68 | | EM Asia&Pacific | 67.80 | 75.29 | 68.21 | 68.83 | 76.70 | 63.36 | 72.15 | 69.56 | 73.62 | 75.73 | 72.21 | 67.65 | | EM Americas | 86.66 | 81.80 | 83.76 | 80.29 | 84.50 | 83.55 | 84.19 | 82.18 | 80.35 | 88.52 | 83.03 | 81.72 | | DM Idx & EM Idx | 84.04 | 89.59 | 84.84 | 84.14 | 72.20 | 77.73 | 75.92 | 84.41 | 68.00 | 82.66 | 76.69 | 72.17 | | | | | | | | | | | | | | | **Figure 1. Central bank announcement and equity diversification.** This figure reports the efficient mean-variance frontier corresponding to the two-asset case of the developed and emerging market (equally-weighted) equity indices corresponding to the Jun2013-Nov2015 period for Low ECB announcements and High FED announcements. Expected returns and volatilities are kept equal to their sample period estimates. Figure 2. Anchoring and Openness. This figure reports the difference in the percentage explained by the first principal component, $\Delta F1$ of country stock market returns (top panel) and changes in sovereign CDS spread (bottom panel) between meeting days when either the ECB announcements lower the level of yields (ECB Low, grey bars) or FED announcements increase the level of yields (FED High, blue bars) and days with No announcement, over the period Jun2013 to Nov2015. The results are reported for countries grouped according to currency anchoring and openness. Anchored countries are those whose currency is explicitly or implicitly pegged to the Euro (for ECB announcements) or USD (for FED announcements) based on . Countries are classified as Open/Closed as in Table 5. For each central bank, event (meeting) days are from two days prior to two days following an official meeting date. 'ECB Low' events are those where the change in the first principal component of the Euro yield curve falls below the first tercile. 'FED High' events are those where the change in the first principal component of the Euro yield curve falls above the second tercile ('High'). Entries that are significant at least at the 10% level are marked with an asterisk. ## **Appendix** ## A A first look at the data We summarize the time-series and cross-sectional properties of equity returns and sovereign CDS spreads in Figure AI. As a mean of comparison, we also plot in the gray area the data for the January, 2006 to August 2007 period that is not used in our analysis. The top plot of the figure displays the cumulative, equally-weighted average equity return (black thick line) separately computed across EMU countries (left plot), Developed markets ex-EMU (middle plot), and emerging markets (right plot). The vertical dotted lines mark the end of the periods considered. We note broadly similar patterns across groups, with a sharp decline in valuations during the crisis followed by a recovery towards the end of 2010, the turmoil of the European sovereign debt crisis (which is especially pronounced in EMU countries), and the increase in valuations in the last part of the sample reaching levels above the pre-crisis period. To give a sense of the cross-sectional distribution within countries of a given group, we plot the cross-sectional standard deviation (blue dotted line) on a common scale across the three groups. Overall, the cross-sectional dispersion is much higher for Emerging markets, and shows pronounced spikes exceeding 5% during the major events in the sample. The volatility of EMU countries returns during the sovereign debt crisis is at comparable levels to the 2008-2009 period, and remains high in the last part of the sample. In contrast, the dispersion in returns for developed markets ex-EMU shows a declining trend after 2012 and hovers around lower values. The fact that Emerging markets display rich (heterogeneous) cross-sectional dynamics underscores the potentials for looking at the transmission of monetary policy shocks toward these countries. The bottom figures plot the time series of equally-weighted average sovereign CDS spread (black thick line). The differences across the three groups of countries are even more pronounced. It is noteworthy that the CDS spreads for EMU countries reached their maximum at 420bps in the middle of the second period, and then calmed down following the ECB intervention reaching values in the 50bps range toward sample end. In contrast, the CDS spread of the other Developed markets has its maximum around 200bps at the peak of credit crisis in 2009, increased to a more modest 100bps level in 2012, and decreased almost steadily thereafter to a level of 30bps. Finally, Emerging markets reach averages above 700bps in 2009 and 300bps in 2012, and are characterized by a distinct upward trend in the later part of the sample to values in the 400 to 500bps range. The figure also shows that for the period preceding August, 2007 CDS spreads are quite close to zero and very sticky, indicating that either sovereign credit risk, the liquidity in the market, or both were very modest. We summarize the cross-sectional distribution of sovereign CDS spreads by the standard deviation of their changes divided by the average CDS in a given group (blue dotted line). This 'coefficient of variation' is scale-free, and allows us to account for the marked differences in average CDSs. We note that this coefficient is lowest for Developed markets ex-EMU, while EMU countries show cyclical spikes in their dispersion. The variability of CDS spreads for Emerging
markets is highest in the last part of the sample, again suggesting that Emerging markets provide a potentially diverse set of countries to study. ## **B** Latent Factor Model As a further robustness check, we estimate on our data a latent factor model inspired by the multilevel factor model of Breitung and Eickmeier (2015). We assume that our variables of interest X_t have a common dynamic behavior, which is driven by two sets of latent factors: $$X_t = \mu_i + \beta'_{A,i} F_{A,t} + \beta'_{N,i} F_{No,t} + \varepsilon_{i,t}. \tag{5}$$ The factors included in $F_{A,t}$ appear only during announcement periods while the factors included in $F_{No,t}$ are active in non-announcement periods. Differently from Breitung and Eickmeier (2015) we do not include a global factor appearing both on announcements and non-announcements. We estimate the model using the approach suggested by Breitung and Eickmeier (2015) that consists of iterating between two least squares estimation steps: the first conditions on the factors in order to estimate the loadings vectors $\beta_{A,i}$ and $\beta_{No,i}$; the second steps conditions on the loadings to estimate the latent factors. We also include a normalization step to ensure we obtain orthonormal factors in both announcement and non-announcement periods. For further details on the estimation approach, see Breitung and Eickmeier (2015). Given the estimated factors and the corresponding loadings, we look at the fraction of variance explained by the factors for both the announcement and non-announcement period. Since the fraction of explained variance is country-specific, we focus on the median across countries and group Emerging Markets together. We assume the presence of three latent factors in the two subsamples.²⁷ Table AIII reports the corresponding results. For equity, in the first and second period we do not observe large changes when contrasting announcement and non-announcement samples. In the third period, both ECB and FED interventions seem to drive a limited increase in comovements, while in the fourth period we observe more heterogeneity, with a decrease in comovements on EM during both central banks announcements. Turning to sovereign CDS, we observe that the fraction of total variance explained by the latent factors is higher in the second and third periods, coherently with the analyses on correlation in the main text. Moreover, we do see a different impact in the role played by the ECB and the FED. While the former seems to decrease market comovements in the fourth period for the CDS case (the change is negative for all country groups), FED's announcements drive comovements up as reflected by the sharp increase in the fraction of variance explained by the latent factors. In the third period, both ECB and FED interventions reduce comovements for both EMU and EM markets, with a much larger impact by the FED. Overall, the message that emerges from the table lines up quite closely with that from Section 5. ²⁷We also consider the presence of a single factor. Patterns appear in a more clear way when we introduce three factors, thus suggesting that a single period-specific common factor (one for announcement and one for non-announcement) is not sufficient to capture the latent behavior (and heterogeneity) of the markets. Figure AI. Equity and Sovereign CDS Spreads. The top three figures plot the time-series pattern of cumulative equally-weighted average equity returns (black thick line, left Y axis) and the cross-sectional standard deviation (blue dotted line, right Y axis) separately computed across EMU countries (left plot), Developed markets ex-EMU (middle plot), and Emerging markets (right plot). The bottom figures plot the time-series pattern of equally-weighted average sovereign CDS spread (black thick line, left Y axis) and the ratio between the cross-sectional standard deviation of changes in sovereign CDS spreads and the average sovereign CDS spread (blue dotted line, right Y axis) separately computed across EMU countries (left plot), Developed markets ex-EMU (middle plot), and Emerging markets (right plot). The vertical dotted lines mark the end of the subsamples considered. The full sample is daily observations from January, 2006 to November, 2015. The gray area marks the January, 2006 to August 2007 period that is not used in our analysis. ## Table AI. Country list and classification This table presents the list of 39 countries in our sample, their classification into Developed or EM markets, their geographical classification, and the EMU dummy which is 1 for countries in the Eurozone and 0 otherwise. The classification is based on FTSE. In the analysis, we pool the group of frontier markets with emerging markets, as they are too few to be analyzed separately. | Country | Developed/Emerging | Location | EMU | |-------------|--------------------|--------------|-----| | Australia | Developed | Asia&Pacific | 0 | | Austria | Developed | Europe&ME | 1 | | Belgium | Developed | Europe&ME | 1 | | Brazil | Emerging | Americas | 0 | | Bulgaria | Emerging | Europe&ME | 0 | | Chile | Emerging | Americas | 0 | | China | Emerging | Asia&Pacific | 0 | | Colombia | Emerging | Americas | 0 | | Croatia | Emerging | Europe&ME | 0 | | Czech Rep. | Emerging | Europe&ME | 0 | | Denmark | Developed | Europe&ME | 0 | | Finland | Developed | Europe&ME | 1 | | France | Developed | Europe&ME | 1 | | Germany | Developed | Europe&ME | 1 | | Ireland | Developed | Europe&ME | 1 | | Israel | Developed | Europe&ME | 0 | | Italy | Developed | Europe&ME | 1 | | Japan | Developed | Asia&Pacific | 0 | | Korea | Developed | Asia&Pacific | 0 | | Malaysia | Emerging | Asia&Pacific | 0 | | Mexico | Emerging | Americas | 0 | | Morocco | Frontier | Africa | 0 | | Netherlands | Developed | Europe&ME | 1 | | Norway | Developed | Europe&ME | 0 | | Pakistan | Emerging | Asia&Pacific | 0 | | Peru | Emerging | Americas | 0 | | Philippines | Emerging | Asia&Pacific | 0 | | Poland | Emerging | Europe&ME | 0 | | Portugal | Developed | Europe&ME | 1 | | Romania | Frontier | Europe&ME | 0 | | Russia | Emerging | Europe&ME | 0 | | S. Africa | Emerging | Africa | 0 | | Slovakia | Frontier | Europe&ME | 1 | | Spain | Developed | Europe&ME | 1 | | Sweden | Developed | Europe&ME | 0 | | Thailand | Emerging | Asia&Pacific | 0 | | Turkey | Emerging | Europe&ME | 0 | | U.S. | Developed | Americas | 0 | | Venezuela | Frontier | Americas | 0 | ## Table AII. Analysis of factor loadings This table presents estimates of the ΔD test for orthonormality of the first eigenvector between the announcement and non-announcement samples, equation (4). The distance is computed on equity returns (Panel A and B) and changes in sovereign CDS spreads (Panel C and D) in correspondence to either ECB (Panel A and C) or FED (Panel C and D) announcements. Results are reported across the three periods considered, when pooling all event days (column 'All') as well as for the Low and High meeting days as defined in Table 1, for: All countries, EMU countries, Developed countries ex-EMU, and Emerging countries, and between DM and EM. Bold numbers denote entries that are significant at the 10% level. | | Pa | nel A: E | quity marl | kets comover | ments an | d ECB me | etings | | | |-----------|-------|------------|------------|--------------|----------|-----------|---------|-------|-------| | Countries | Low | High | All | Low | High | All | Low | High | All | | All | -0.03 | -0.02 | 0.00 | -0.01 | -0.01 | -0.01 | -0.03 | -0.02 | -0.01 | | EMU | 0.00 | 0.00 | 0.00 | -0.01 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | DM ex-EMU | 0.00 | -0.02 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.01 | 0.00 | | EM | -0.04 | -0.03 | -0.01 | -0.03 | -0.03 | -0.01 | -0.04 | -0.04 | -0.01 | | | | | | | | | | | | | | Pa | inel B: Ed | quity mark | ets comover | ments an | d FED me | etings | | | | Countries | Low | High | All | Low | High | All | Low | High | All | | All | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.04 | -0.01 | -0.01 | | EMU | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | DM ex-EMU | 0.00 | -0.01 | 0.00 | -0.01 | -0.01 | 0.00 | -0.32 | -0.01 | -0.01 | | EM | -0.02 | -0.01 | -0.01 | -0.03 | -0.05 | -0.01 | -0.10 | -0.04 | -0.02 | | | | | | | | | | | | | | Pa | nel C: So | overeign C | DS comove | ments an | d ECB me | eetings | | | | Countries | Low | High | All | Low | High | All | Low | High | All | | All | -0.02 | -0.01 | 0.00 | -0.01 | -0.01 | 0.00 | -0.04 | -0.09 | -0.03 | | EMU | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.05 | -0.01 | | DM ex-EMU | -0.05 | -0.08 | -0.02 | 0.00 | -0.01 | -0.01 | -0.13 | -0.30 | -0.05 | | EM | -0.01 | -0.01 | 0.00 | -0.01 | 0.00 | 0.00 | -0.02 | -0.02 | -0.01 | | | | | | | | | | | | | | Pa | nel D: So | overeign C | CDS comove | ments an | ıd FED me | eetings | | | | Countries | Low | High | All | Low | High | All | Low | High | All | | All | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.08 | -0.02 | -0.03 | -0.01 -0.02 -0.01 0.00 -0.02 0.00 0.00 -0.01 0.00 -0.01 -0.03 -0.05 -0.04 -0.02 -0.03 -0.01 -0.03 -0.02 EMU EM DM ex-EMU -0.01 -0.03 -0.01 0.00 -0.01 -0.01 0.00 -0.01 0.00 ## Table AIII. Dynamic factor model This table presents the median fraction of the variance explained by the three latent factors in the dynamic factor model described in Appendix B across four groups of countries. The factors are filtered from the cross section of either equity (Panel A and B) or sovereign CDS changes (Panel C and D) during central bank' (ECB in Panel A and C, or FED in Panel B and D) meeting and ex-meeting days. | | Au | g2007-Dec2 | 2009 | Jan | n2010-May2 | 2013 | Jur | 12013-Nov2 | 2015 | |-----------|-------|------------|--------------|--------------|-------------|------------|-------|------------|----------| | | | Panel A | · Fauity ma | arkets comov | vements and | FFD meeti | inge | | | | | | I allel A | . Equity ina | irkets como | vements and | TED IIICCI | iligs | |
 | Countries | ECB | ex-ECB | Δ | ECB | ex-ECB | Δ | ECB | ex-ECB | Δ | | All | 69.70 | 60.00 | 9.70 | 69.70 | 51.10 | 18.60 | 35.80 | 31.00 | 4.80 | | EMU | 90.30 | 87.80 | 2.50 | 89.90 | 86.60 | 3.40 | 84.90 | 83.40 | 1.50 | | DM ex-EMU | 83.50 | 82.00 | 1.50 | 85.00 | 76.80 | 8.20 | 70.10 | 70.50 | -0.40 | | EM | 83.60 | 80.90 | 2.70 | 87.40 | 81.20 | 6.20 | 78.50 | 80.00 | -1.50 | | | | Panel B | : Equity ma | ırkets comov | vements and | FED meeti | ings | | | | Countries | FED | ex-FED | Δ | FED | ex-FED | Δ | FED | ex-FED | Δ | | All | 67.00 | 59.90 | 7.10 | 70.70 | 53.60 | 17.10 | 43.50 | 30.20 | 13.30 | | EMU | 86.90 | 86.70 | 0.10 | 89.10 | 86.70 | 2.50 | 85.70 | 83.70 | 2.10 | | DM ex-EMU | 87.00 | 81.10 | 5.90 | 85.70 | 76.40 | 9.30 | 69.70 | 70.40 | -0.70 | | EM | 85.10 | 78.30 | 6.80 | 82.30 | 81.70 | 0.60 | 70.30 | 81.60 | -11.20 | | | | Panel C | Sovereign | CDS comov | vements and | ECB meet | ings | | | | Countries | ECB | ex-ECB | Δ | ECB | ex-ECB | Δ | ECB | ex-ECB | Δ | | All | 43.80 | 60.70 | -17.00 | 61.50 | 50.50 | 11.00 | 16.50 | 28.80 | -12.20 | | EMU | 84.50 | 78.20 | 6.30 | 63.90 | 73.70 | -9.80 | 38.10 | 52.00 | -13.90 | | DM ex-EMU | 70.10 | 55.10 | 15.00 | 83.20 | 65.50 | 17.70 | 39.90 | 57.00 | -17.00 | | EM | 76.70 | 61.10 | 15.60 | 54.10 | 57.50 | -3.40 | 19.30 | 39.60 | -20.20 | | | | Panel D | : Sovereign | CDS como | vements and | FED meet | ings | | | | Countries | FED | ex-FED | Δ | FED | ex-FED | Δ | FED | ex-FED | Δ | | | | | | | | | | | | | All | 54.30 | 56.50 | -2.30 | 55.40 | 51.90 | 3.60 | 52.60 | 22.30 | 30.40 | | EMU | 83.40 | 78.30 | 5.00 | 46.30 | 73.60 | -27.40 | 78.10 | 36.20 | 41.90 | | DM ex-EMU | 60.20 | 56.10 | 4.00 | 67.60 | 71.70 | -4.10 | 72.80 | 51.10 | 21.70 | | EM | 67.30 | 62.10 | 5.20 | 40.80 | 57.70 | -16.90 | 64.10 | 31.10 | 33.10 | # Table AIV. Market comovements and central bank meetings: double sorting by openness and anchoring This table presents the percentage explained by the first principal component of country stock market returns (panels A and B) and changes in sovereign CDS spread (panels C and D) during ECB (panels A and C) and FED (panels B and D) meetings. For each central bank, event (meeting) days are from two days prior to two days following an official meeting date. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). The analysis is carried separately on the four groups of countries obtained by double-sorting them in a given time period in Open/Closed (as in Table 5) and Anchored/Non-Anchored to the U.S. dollar (for FED announcements) or the Euro (for ECB announcements) based on Ilzetzki et al. (2019). Row 'Q (Δy)' reports the tercile (in basis points) of the change in the first principal component of the yield curve. Entries whose difference with the ex-event sample is significant at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015. | | | Aug2007- | Dec2009 | | | Jan2010-1 | May2013 | | | Jun2013- | Nov2015 | | |--|---|---|--|---|--|---|---|---|---|--|--|---| | | | P | anel A: E | quity mark | ets comovem | ents and | ECB mee | etings | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Anchored&Closed | 62.47 | 70.71 | 69.27 | 70.50 | 62.91 | 70.33 | 66.62 | 65.81 | 69.36 | 67.11 | 68.25 | 68.07 | | Anchored&Open | 49.32 | 53.64 | 53.82 | 52.04 | 55.14 | 57.52 | 52.98 | 50.38 | 49.50 | 43.13 | 45.86 | 46.70 | | Non-Anchored&Closed | 25.33 | 31.97 | 33.62 | 35.17 | 32.77 | 32.39 | 30.18 | 27.98 | 29.21 | 26.54 | 25.62 | 25.60 | | Non-Anchored&Open | 37.04 | 37.85 | 44.95 | 41.23 | 52.07 | 56.05 | 48.16 | 42.74 | 38.13 | 36.16 | 37.00 | 36.41 | | No. Obs. | 55 | 55 | 160 | 470 | 80 | 80 | 230 | 659 | 50 | 50 | 147 | 481 | | $Q\left(\Delta y\right)$ | -6.98 | 10.03 | | | -8.05 | 3.74 | | | -7.20 | 1.28 | | | | | | P | anel B: E | quity mark | ets comovem | nents and | FED mee | tings | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Anchored&Closed | 41.24 | 44.59 | 40.46 | 37.90 | 38.53 | 27.46 | 33.91 | 30.59 | 29.07 | 30.46 | 26.00 | 28.42 | | Anchored&Open | 48.32 | 52.69 | 48.67 | 43.06 | 58.06 | 41.38 | 50.06 | 49.62 | 42.18 | 47.15 | 42.96 | 40.91 | | Non-Anchored&Closed | 60.87 | 59.83 | 58.27 | 57.02 | 53.33 | 45.18 | 48.87 | 51.13 | 43.31 | 50.24 | 47.40 | 46.80 | | Non-Anchored&Open | 54.77 | 56.90 | 53.38 | 48.50 | 53.79 | 44.92 | 49.46 | 48.84 | 36.89 | 51.66 | 44.12 | 44.37 | | No. Obs. | 63 | 60 | 178 | 452 | 70 | 70 | 205 | 684 | 50 | 48 | 138 | 490 | | $Q\left(\Delta y\right)$ | -19.03 | 9.17 | | | -17.30 | 1.06 | | | -6.95 | 9.35 | | | | | | P | anel C: Se | overeign CI | DS comoven | nents and | ECB mee | etings | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | Anchored&Closed | 38.51 | 50.92 | 48.52 | 51.79 | | | | | | | | | | Anchored&Open | 44.46 | 52.48 | | | 54.47 | 63.99 | 60.87 | 58.30 | 66.16 | 60.41 | 62.05 | 60.47 | | Non-Anchored&Closed | | 32.40 | 50.46 | 51.04 | 54.47
56.30 | 63.99
71.36 | 60.87
62.86 | 58.30
59.00 | 66.16
41.09 | 60.41
22.24 | 62.05
29.93 | 60.47
30.37 | | | 35.66 | 42.58 | 50.46
44.22 | 51.04
46.63 | | | | | | | | | | Non-Anchored&Open | 35.66
53.64 | | | | 56.30 | 71.36 | 62.86 | 59.00 | 41.09 | 22.24 | 29.93 | 30.37 | | | 53.64 55 | 42.58 | 44.22 | 46.63 | 56.30
44.56 | 71.36
54.22 | 62.86
48.68 | 59.00
45.88 | 41.09
43.13 | 22.24
38.62 | 29.93
36.15 | 30.37
40.75 | | Non-Anchored&Open | 53.64 | 42.58
60.36 | 44.22
59.52 | 46.63
61.42 | 56.30
44.56
70.88 | 71.36
54.22
71.70 | 62.86
48.68
68.46 | 59.00
45.88
62.07 | 41.09
43.13
62.96 | 22.24
38.62
66.03 | 29.93
36.15
63.27 | 30.37
40.75
62.01 | | Non-Anchored&Open No. Obs. | 53.64 55 | 42.58
60.36
55
10.03 | 44.22
59.52
160 | 46.63
61.42
470 | 56.30
44.56
70.88 | 71.36
54.22
71.70
80
3.74 | 62.86
48.68
68.46
230 | 59.00
45.88
62.07
659 | 41.09
43.13
62.96 | 22.24
38.62
66.03 | 29.93
36.15
63.27 | 30.37
40.75
62.01 | | Non-Anchored&Open No. Obs. | 53.64 55 | 42.58
60.36
55
10.03 | 44.22
59.52
160 | 46.63
61.42
470 | 56.30
44.56
70.88
80
-8.05 | 71.36
54.22
71.70
80
3.74 | 62.86
48.68
68.46
230 | 59.00
45.88
62.07
659 | 41.09
43.13
62.96 | 22.24
38.62
66.03 | 29.93
36.15
63.27 | 30.37
40.75
62.01 | | Non-Anchored&Open No. Obs. $Q\left(\Delta y\right)$ | 53.64
55
-6.98 | 42.58
60.36
55
10.03 | 44.22
59.52
160
anel D: Se | 46.63
61.42
470
overeign Cl | 56.30
44.56
70.88
80
-8.05 | 71.36
54.22
71.70
80
3.74 | 62.86
48.68
68.46
230 | 59.00
45.88
62.07
659 | 41.09
43.13
62.96
50
-7.20 | 22.24
38.62
66.03
50
1.28 | 29,93
36.15
63.27
147 | 30.37
40.75
62.01
481 | | Non-Anchored&Open No. Obs. $Q\left(\Delta y\right)$ Countries | 53.64
55
-6.98 | 42.58
60.36
55
10.03 | 44.22
59.52
160
anel D: Se | 46.63
61.42
470
overeign Cl | 56.30
44.56
70.88
80
-8.05 | 71.36
54.22
71.70
80
3.74
ments and
High | 62.86
48.68
68.46
230
FED mee | 59.00
45.88
62.07
659
etings | 41.09
43.13
62.96
50
-7.20 | 22.24
38.62
66.03
50
1.28 | 29.93
36.15
63.27
147 | 30.37
40.75
62.01
481 | | Non-Anchored&Open No. Obs. $Q\left(\Delta y\right)$ Countries | 53.64
55
-6.98
Low
54.56 | 42.58
60.36
55
10.03
P:
High
60.54 | 44.22
59.52
160
anel D: S
All
55.27 | 46.63
61.42
470
overeign Cl
No
49.81 | 56.30
44.56
70.88
80
-8.05
DS comoven
Low
52.67 | 71.36
54.22
71.70
80
3.74
enents and
High
46.91 | 62.86
48.68
68.46
230
FED mee | 59.00
45.88
62.07
659
etings
No
50.06 | 41.09
43.13
62.96
50
-7.20
Low | 22.24
38.62
66.03
50
1.28
High | 29.93
36.15
63.27
147
All | 30.37
40.75
62.01
481
No
41.95 | | Non-Anchored&Open No. Obs. $Q\left(\Delta y\right)$ Countries $\begin{array}{c} \text{Countries} \\ \text{Anchored&Closed} \\ \text{Anchored&Open} \end{array}$ |
53.64 55 -6.98 Low 54.56 75.69 | 42.58
60.36
55
10.03
Pri
High
60.54
73.42 | 44.22
59.52
160
anel D: Sa
All
55.27
74.10 | 46.63
61.42
470
overeign Cl
No
49.81
66.30 | 56.30
44.56
70.88
80
-8.05
DS comoven
Low
52.67
70.64 | 71.36
54.22
71.70
80
3.74
ments and
High
46.91
77.92 | 62.86
48.68
68.46
230
FED mee
All
50.33
72.96 | 59.00
45.88
62.07
659
etings
No
50.06
73.22 | 41.09
43.13
62.96
50
-7.20
Low
46.06
63.27 | 22.24
38.62
66.03
50
1.28
High
54.07
78.84 | 29.93
36.15
63.27
147
All
48.32
71.91 | 30.37
40.75
62.01
481
No
41.95
73.26 | | Non-Anchored&Open No. Obs. $Q\left(\Delta y\right)$ Countries $\begin{array}{c} \text{Anchored\&Closed} \\ \text{Anchored\&Open} \\ \text{Non-Anchored\&Closed} \end{array}$ | 53.64 55 -6.98 Low 54.56 75.69 46.42 | 42.58
60.36
55
10.03
Pi
High
60.54
73.42
45.50 | 44.22
59.52
160
anel D: S
All
55.27
74.10
43.05 | 46.63
61.42
470
overeign Cl
No
49.81
66.30
43.06 | 56.30
44.56
70.88
80
-8.05
DS comoven
Low
52.67
70.64
41.62 | 71.36
54.22
71.70
80
3.74
ments and
High
46.91
77.92
44.60 | 62.86
48.68
68.46
230
FED mee
All
50.33
72.96
42.72 | 59.00
45.88
62.07
659
etings
No
50.06
73.22
48.54 | 41.09
43.13
62.96
50
-7.20
Low
46.06
63.27
41.65 | 22.24
38.62
66.03
50
1.28
High
54.07
78.84
52.89 | 29.93
36.15
63.27
147
All 48.32
71.91
45.61 | 30.37
40.75
62.01
481
No
41.95
73.26
43.93 | #### Table AV. Market comovements and central bank meetings with (0;+2) event window This table presents the percentage explained by the first principal component of country stock market returns (panels A and B) and changes in sovereign CDS spread (panels C and D) during ECB (panels A and C) and FED (panels B and D) meetings. For each central bank, event (meeting) days are from the official meeting day to two days following it. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). Results are reported across: All countries, EMU countries, Developed countries ex-EMU, all Emerging countries, Emerging countries in Europe&Middle East, Emerging countries in Asia&Pacific, Emerging countries in Americas, and two equally-weighted Developed Markets and Emerging Markets indices. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015. | | | Aug2007- | -Dec2009 | 1 | | Jan2010- | May2013 | | | Jun2013- | Nov2015 | | |--------------------------------|----------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------| | | | | | Panel A: I | ECB meetin | gs, Equit | y returns | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 37.61 | 44.82 | 41.38 | 42.81 | 47.39 | 43.96 | 41.70 | 37.60 | 36.61 | 36.04 | 32.96 | 32.29 | | EMU | 68.72 | 72.55 | 71.09 | 72.19 | 75.65 | 73.75 | 72.11 | 69.60 | 74.57 | 74.58 | 72.47 | 68.18 | | DM ex-EMU | 49.69 | 50.20 | 50.76 | 48.40 | 54.26 | 57.41 | 50.80 | 47.20 | 45.80 | 46.89 | 41.96 | 41.00 | | EM | 24.12 | 37.15 | 29.29 | 31.96 | 37.84 | 29.43 | 29.53 | 24.94 | 24.24 | 23.53 | 22.37 | 21.18 | | EM Europe & ME | 34.53 | 50.52 | 41.04 | 45.59 | 50.89 | 35.89 | 38.47 | 32.90 | 32.79 | 24.87 | 24.70 | 25.49 | | EM Asia & Pacific | 32.60 | 51.07 | 44.35 | 42.87 | 51.09 | 42.65 | 41.52 | 39.02 | 40.76 | 39.26 | 38.35 | 36.28 | | EM Americas
DM Idx & EM Idx | 45.67
86.90 | 48.21
89.13 | 49.64
89.72 | 48.07
91.62 | 53.46
92.89 | 48.02
89.65 | 48.23
90.64 | 43.39
86.58 | 38.09
83.29 | 46.78
74.66 | 42.91
75.80 | 38.37
81.66 | | N- Ob- | 22 | 22 | 07 | 522 | 40 | 40 | 120 | 751 | 20 | 20 | 90 | 520 | | No. Obs. $Q(\Delta y)$ | 33
-12.95 | 33
12.18 | 97 | 533 | 48
-6.12 | 48
5.96 | 138 | 751 | 30
-14.12 | 30
1.89 | 89 | 539 | | | | | | Panel B: I | FED meetin | gs, Equity | y returns | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 47.45 | 48.24 | 45.25 | 41.97 | 39.36 | 38.36 | 38.84 | 38.26 | 24.67 | 41.37 | 33.05 | 32.18 | | EMU | 75.18 | 73.16 | 74.75 | 71.38 | 71.13 | 69.03 | 68.86 | 70.33 | 54.25 | 71.46 | 65.44 | 69.40 | | DM ex-EMU | 43.06 | 57.47 | 49.51 | 48.71 | 49.01 | 47.93 | 47.28 | 47.91 | 29.27 | 51.62 | 42.00 | 40.62 | | EM | 39.93 | 35.86 | 33.75 | 31.03 | 27.55 | 26.66 | 28.63 | 25.31 | 21.93 | 28.44 | 22.32 | 21.17 | | EM Europe & ME | 55.99 | 50.69 | 48.63 | 43.94 | 38.43 | 37.27 | 37.18 | 33.53 | 27.16 | 30.90 | 24.65 | 25.54 | | EM Asia & Pacific | 57.16 | 50.17 | 48.81 | 41.64 | 44.41 | 37.57 | 43.01 | 38.94 | 42.21 | 38.24 | 36.50 | 36.20 | | EM Americas | 57.82 | 50.10 | 52.93 | 47.00 | 44.24 | 40.27 | 45.28 | 43.81 | 40.70 | 41.64 | 39.61 | 38.74 | | DM Idx & EM Idx | 93.97 | 94.64 | 93.38 | 90.95 | 90.16 | 89.96 | 90.05 | 86.81 | 80.17 | 95.29 | 87.33 | 79.89 | | No. Obs. | 36 | 36 | 110 | 520 | 42 | 42 | 123 | 766 | 27 | 28 | 82 | 546 | | $Q(\Delta y)$ | -23.30 | 10.96 | | | -5.79 | 3.65 | | | -10.61 | 7.66 | | | | | | | | Panel C: 1 | ECB meetir | ıgs, CDS | changes | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 33.40 | 44.59 | 38.73 | 41.43 | 51.63 | 56.58 | 50.28 | 44.51 | 42.62 | 28.28 | 29.25 | 28.38 | | EMU | 42.16 | 64.35 | 58.50 | 56.60 | 68.77 | 70.03 | 67.41 | 66.76 | 56.68 | 46.02 | 51.70 | 46.05 | | DM ex-EMU | 23.55 | 37.87 | 36.74 | 36.50 | 52.97 | 51.10 | 49.19 | 39.07 | 34.72 | 28.94 | 27.41 | 31.39 | | EM | 46.96 | 58.72 | 51.15 | 53.33 | 58.79 | 64.56 | 58.02 | 51.22 | 52.07 | 42.37 | 41.07 | 36.90 | | EM Europe & ME | 63.22 | 73.04 | 65.51 | 67.77 | 78.47 | 83.46 | 77.91 | 71.59 | 60.87 | 40.58 | 47.04 | 38.45 | | EM Asia & Pacific | 74.17 | 68.29 | 68.09 | 68.99 | 73.02 | 75.09 | 70.35 | 69.58 | 73.72 | 67.03 | 66.32 | 67.87 | | EM Americas | 80.30 | 84.61 | 81.36 | 75.48 | 88.05 | 82.98 | 83.45 | 76.33 | 85.08 | 84.40 | 81.69 | 78.44 | | DM Idx & EM Idx | 87.33 | 78.33 | 82.12 | 82.88 | 80.07 | 81.18 | 80.53 | 79.89 | 79.13 | 64.03 | 68.46 | 69.37 | | No. Obs. | 33 | 33 | 97 | 533 | 48 | 48 | 138 | 751 | 30 | 30 | 89 | 539 | | $Q(\Delta y)$ | -12.95 | 12.18 | | | -6.12 | 5.96 | | | -14.12 | 1.89 | | | | | | | | Panel D: | FED meetir | ıgs, CDS | changes | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 39.90 | 49.14 | 40.45 | 41.54 | 40.00 | 40.13 | 44.02 | 45.98 | 37.47 | 54.23 | 40.63 | 26.36 | | EMU | 51.96 | 62.29 | 58.28 | 56.88 | 62.82 | 58.76 | 62.48 | 67.63 | 52.32 | 69.01 | 57.43 | 45.03 | | DM ex-EMU | 32.08 | 41.41 | 35.17 | 36.69 | 42.50 | 39.18 | 42.42 | 40.78 | 45.05 | 50.08 | 44.19 | 28.92 | | EM | 52.54 | 61.49 | 55.84 | 52.25 | 51.71 | 51.91 | 54.91 | 52.18 | 38.47 | 60.44 | 44.14 | 36.37 | | EM Europe & ME | 63.04 | 77.32 | 69.30 | 67.09 | 74.75 | 67.33 | 75.20 | 72.27 | 57.18 | 66.08 | 52.64 | 37.00 | | EM Asia & Pacific | 70.59 | 73.41 | 68.36 | 68.85 | 73.26 | 72.60 | 73.35 | 68.94 | 76.16 | 74.41 | 71.92 | 66.89 | | EM Americas | 79.16 | 79.31 | 80.60 | 75.73 | 81.30 | 82.76 | 80.25 | 77.46 | 82.20 | 85.41 | 79.92 | 78.88 | | DM Idx & EM Idx | 86.12 | 88.58 | 85.77 | 82.06 | 67.73 | 73.31 | 75.31 | 80.82 | 67.57 | 76.91 | 72.11 | 68.66 | | No. Obs. | 36 | 36 | 110 | 520 | 42 | 42 | 123 | 766 | 27 | 28 | 82 | 546 | | $Q(\Delta y)$ | -23.30 | 10.96 | | | -5.79 | 3.65 | | | -10.61 | 7.66 | | | ## Table AVI. Market comovements and central bank meetings with (0;+4) event window This table presents the percentage explained by the first principal component of country stock market returns (panels A and B) and changes in sovereign CDS spread (panels C and D) during ECB (panels A and C) and FED (panels B and D) meetings. For each central bank, event (meeting) days are from the official meeting day to four days following it. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). Results are reported across: All countries, EMU countries, Developed countries ex-EMU, all Emerging countries, Emerging countries in Europe&Middle East, Emerging countries in Asia&Pacific, Emerging countries in Americas, and two equally-weighted Developed Markets and Emerging Markets indices. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015 | | Aug2007-Dec2009 | | | | Jan2010- | May2013 | i | | Jun2013-Nov2015 | | | | |------------------------------------|-----------------|-------|-------|----------|-------------|------------|---------|-------|-----------------|-------|-------|-------| | | | | | Panel A: | ECB meeting | gs, Equity | returns | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 42.06 | 44.97 | 42.49 | 42.68 | 42.79 | 37.56 | 40.01 |
37.24 | 32.03 | 33.23 | 32.01 | 32.65 | | EMU | 74.19 | 72.87 | 72.07 | 72.07 | 71.29 | 69.67 | 71.03 | 69.47 | 66.85 | 70.17 | 68.68 | 69.13 | | DM ex-EMU | 52.48 | 47.04 | 49.42 | 48.46 | 50.61 | 47.59 | 48.71 | 47.22 | 43.27 | 40.65 | 41.78 | 40.84 | | EM | 29.73 | 35.73 | 31.27 | 31.70 | 31.29 | 24.12 | 27.22 | 24.84 | 22.47 | 23.76 | 21.54 | 21.27 | | EM Europe & ME | 39.18 | 50.81 | 44.04 | 45.31 | 40.70 | 32.21 | 35.92 | 32.84 | 25.67 | 23.52 | 24.31 | 25.91 | | EM Asia & Pacific | 38.73 | 48.07 | 41.57 | 43.80 | 41.91 | 35.94 | 38.99 | 39.64 | 36.80 | 41.13 | 37.29 | 35.86 | | EM Americas | 52.66 | 51.56 | 50.87 | 46.82 | 52.37 | 41.72 | 45.81 | 43.03 | 40.62 | 41.52 | 38.84 | 39.11 | | DM Idx & EM Idx | 88.98 | 91.42 | 90.99 | 91.52 | 91.19 | 88.84 | 89.55 | 85.86 | 80.45 | 79.39 | 78.85 | 81.72 | | No. Obs. | 77 | 75 | 220 | 410 | 105 | 105 | 318 | 571 | 69
5.27 | 70 | 204 | 424 | | $Q(\Delta y)$ | -4.93 | 21.91 | | | -5.46 | 7.50 | | | -5.37 | 1.49 | | | | | | | | Panel B: | FED meeting | gs, Equity | returns | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 45.07 | 52.19 | 46.76 | 39.52 | 42.59 | 32.86 | 39.75 | 37.49 | 29.67 | 36.95 | 31.50 | 32.74 | | EMU | 71.73 | 76.04 | 73.84 | 70.62 | 75.02 | 63.14 | 70.68 | 69.76 | 67.13 | 70.85 | 67.87 | 69.41 | | DM ex-EMU | 47.97 | 54.27 | 51.18 | 47.06 | 49.93 | 42.80 | 49.44 | 46.82 | 35.53 | 46.56 | 37.84 | 42.33 | | EM | 35.63 | 42.91 | 36.48 | 27.75 | 30.93 | 20.57 | 27.64 | 24.70 | 20.60 | 23.97 | 20.22 | 21.84 | | EM Europe & ME | 48.07 | 55.21 | 50.21 | 40.85 | 43.44 | 28.19 | 36.21 | 32.80 | 22.78 | 35.04 | 25.79 | 25.26 | | EM Asia & Pacific | 47.47 | 49.91 | 47.21 | 39.78 | 44.52 | 34.67 | 41.18 | 38.49 | 42.20 | 37.10 | 37.62 | 35.78 | | EM Americas | 52.51 | 53.86 | 52.40 | 44.77 | 45.19 | 40.29 | 45.48 | 43.47 | 37.14 | 41.08 | 38.06 | 39.14 | | DM Idx & EM Idx | 92.76 | 95.44 | 93.02 | 90.09 | 89.75 | 88.56 | 89.31 | 86.08 | 79.12 | 91.60 | 85.27 | 79.00 | | No. Obs. | 84 | 84 | 242 | 388 | 98 | 98 | 286 | 603 | 70 | 68 | 194 | 434 | | $Q(\Delta y)$ | -10.55 | 9.84 | | | -9.24 | 9.39 | | | -4.55 | 9.15 | | | | | | | | Panel C: | ECB meetin | gs, CDS | changes | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 37.36 | 45.47 | 39.69 | 41.66 | 46.75 | 47.90 | 46.75 | 44.93 | 34.97 | 24.83 | 25.89 | 30.01 | | EMU | 58.69 | 64.57 | 58.21 | 56.54 | 63.43 | 67.15 | 67.05 | 66.92 | 51.38 | 40.26 | 44.89 | 48.05 | | DM ex-EMU | 32.13 | 38.54 | 34.02 | 37.47 | 43.66 | 42.95 | 42.61 | 39.96 | 26.08 | 28.73 | 25.73 | 33.08 | | EM | 49.66 | 58.30 | 51.39 | 53.64 | 55.71 | 55.44 | 54.12 | 51.45 | 45.22 | 36.14 | 36.64 | 38.16 | | EM Europe & ME | 65.94 | 74.29 | 67.51 | 67.34 | 75.82 | 75.96 | 73.71 | 72.13 | 53.01 | 39.19 | 40.77 | 39.69 | | EM Asia & Pacific | 68.36 | 66.15 | 66.85 | 69.67 | 68.57 | 72.84 | 69.91 | 69.76 | 65.73 | 69.16 | 65.44 | 68.70 | | EM Americas | 79.76 | 80.89 | 75.42 | 76.75 | 84.56 | 79.27 | 80.17 | 76.05 | 81.11 | 79.68 | 79.39 | 78.89 | | DM Idx & EM Idx | 84.09 | 74.10 | 78.87 | 84.56 | 80.87 | 75.60 | 79.14 | 80.63 | 77.84 | 63.01 | 67.64 | 70.26 | | No. Obs. | 77 | 75 | 220 | 410 | 105 | 105 | 318 | 571 | 69 | 70 | 204 | 424 | | $Q(\Delta y)$ | -4.93 | 21.91 | | | -5.46 | 7.50 | | | -5.37 | 1.49 | | | | Panel D: FED meetings, CDS changes | | | | | | | | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 39.99 | 54.65 | 43.61 | 39.28 | 45.77 | 42.03 | 45.55 | 45.80 | 33.65 | 40.06 | 33.18 | 26.63 | | EMU | 56.22 | 69.36 | 58.40 | 56.28 | 64.85 | 64.93 | 65.33 | 67.78 | 48.80 | 59.67 | 50.12 | 46.10 | | DM ex-EMU | 32.81 | 45.34 | 36.01 | 36.99 | 43.55 | 36.96 | 40.65 | 41.36 | 42.21 | 39.28 | 37.00 | 28.39 | | EM | 53.67 | 65.28 | 57.58 | 49.11 | 53.01 | 52.73 | 55.16 | 51.19 | 41.08 | 47.79 | 40.68 | 36.17 | | EM Europe & ME | 66.19 | 78.55 | 70.22 | 65.60 | 77.35 | 75.22 | 75.83 | 71.13 | 47.50 | 53.88 | 47.09 | 36.49 | | EM Asia & Pacific | 67.40 | 71.41 | 68.73 | 68.67 | 71.09 | 69.40 | 71.18 | 68.92 | 71.76 | 72.63 | 70.85 | 66.17 | | EM Americas | 75.88 | 84.60 | 81.13 | 72.76 | 77.56 | 75.30 | 80.54 | 76.41 | 81.01 | 85.86 | 79.50 | 78.76 | | DM Idx & EM Idx | 76.37 | 89.23 | 84.48 | 81.47 | 78.38 | 73.23 | 77.30 | 81.38 | 67.45 | 73.55 | 68.37 | 69.48 | | No. Obs. | 84 | 84 | 242 | 388 | 98 | 98 | 286 | 603 | 70 | 68 | 194 | 434 | | $Q(\Delta y)$ | -10.55 | 9.84 | | | -9.24 | 9.39 | | | -4.55 | 9.15 | | | | | | | | | | | | | | | | | ## Table AVII. Market comovements and central bank meetings with (-2;+4) event window This table presents the percentage explained by the first principal component of country stock market returns (panels A and B) and changes in sovereign CDS spread (panels C and D) during ECB (panels A and C) and FED (panels B and D) meetings. For each central bank, event (meeting) days are from two days to four days following the official meeting. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). Results are reported across: All countries, EMU countries, Developed countries ex-EMU, all Emerging countries, Emerging countries in Europe&Middle East, Emerging countries in Asia&Pacific, Emerging countries in Americas, and two equally-weighted Developed Markets and Emerging Markets indices. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015 | | Aug2007-Dec2009 | | | | Jan2010- | May2013 | | | Jun2013-Nov2015 | | | | |---------------------------------------|--------------------|----------------|----------------|----------------|-----------------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|----------------| | Panel A: ECB meetings, Equity returns | | | | | | | | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 43.84 | 43.76 | 42.09 | 42.75 | 45.71 | 35.29 | 39.80 | 37.72 | 34.08 | 37.12 | 32.82 | 32.31 | | EMU | 75.56 | 73.47 | 71.31 | 72.24 | 74.72 | 67.13 | 70.99 | 69.71 | 69.57 | 74.25 | 71.23 | 68.20 | | DM ex-EMU | 57.01 | 50.65 | 52.28 | 47.69 | 53.65 | 41.92 | 48.57 | 47.48 | 42.55 | 47.46 | 42.08 | 40.90 | | EM | 31.02 | 32.95 | 30.33 | 31.92 | 33.92 | 23.25 | 27.26 | 25.14 | 24.84 | 25.60 | 21.77 | 21.21 | | EM Europe & ME | 40.31 | 47.66 | 42.29 | 45.67 | 45.09 | 29.31 | 35.74 | 33.29 | 29.35 | 24.69 | 23.97 | 25.82 | | EM Asia & Pacific
EM Americas | 37.72
53.80 | 45.52
45.79 | 42.13
49.61 | 43.33
47.72 | 47.74
52.93 | 39.42
43.97 | 40.21
46.94 | 39.18
42.90 | 37.53
41.89 | 42.25
43.76 | 38.28
39.40 | 35.99
38.88 | | DM Idx & EM Idx | 88.37 | 90.34 | 90.13 | 91.71 | 91.81 | 88.94 | 89.99 | 86.33 | 78.47 | 82.21 | 77.89 | 81.73 | | Divi fait to Divi fait | 00.57 | , , , , | 70.12 | ,,,,, | 71101 | 00.7 | 03.33 | 00.55 | 70.17 | 02.21 | 77105 | 01.75 | | No. Obs. | 55 | 55 | 159 | 471 | 80 | 80 | 229 | 660 | 49 | 50 | 146 | 482 | | $Q(\Delta y)$ | -7.33 | 17.54 | | | -3.10 | 7.20 | | | -9.99 | 0.93 | | | | | | | | Panel B: | FED meeting | gs, Equity | returns | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 46.80 | 48.24 | 46.48 | 40.87 | 43.91 | 38.47 | 40.07 | 37.68 | 27.61 | 36.80 | 31.45 | 32.61 | | EMU | 74.03 | 74.10 | 74.67 | 70.78 | 77.37 | 69.41 | 72.21 | 69.32 | 60.79 | 71.08 | 65.84 | 69.72 | | DM ex-EMU | 50.33 | 56.11 | 52.08 | 47.32 | 51.17 | 48.92 | 49.32 | 47.24 | 34.79 | 47.82 | 40.48 | 41.07 | | EM | 36.75 | 37.04 | 35.56 | 29.71 | 30.72 | 27.66 | 27.54 | 25.16 | 19.18 | 25.07 | 20.99 | 21.50 | | EM Europe & ME | 48.93 | 51.63 | 48.92 | 43.05 | 43.18 | 32.67 | 36.77 | 33.18 | 21.80 | 29.71 | 23.33 | 26.39 | | EM Asia & Pacific | 51.05 | 47.97 | 47.79 | 40.74 | 45.91 | 43.96 | 42.01 | 38.70 | 40.96 | 39.01 | 35.87 | 36.34 | | EM Americas | 55.93 | 45.62 | 52.81 | 45.99 | 51.43 | 47.08 | 46.26 | 43.50 | 37.78 | 43.51 | 41.20 | 38.17 | | DM Idx & EM Idx | 92.88 | 93.68 | 92.87 | 90.72 | 90.34 | 88.35 | 89.23 | 86.54 | 81.28 | 87.84 | 84.93 | 79.77 | | No. Obs. | 63 | 60 | 178 | 452 | 70 | 70 | 205 | 684 | 50 | 48 | 138 | 490 | | $Q(\Delta y)$ | -22.32 | 20.36 | | | -1.35 | 8.74 | | | -5.73 | 8.72 | | | | | | | | Panel C: | ECB meeting | gs, CDS | changes | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | A 11 | 24.28 | | 20.01 | 41.41 | 47.72 | | 16.69 | 45.27 | 25 11 | | 20.00 | 20.02 | | All
EMU | 34.28 55.44 | 48.20
66.69 | 39.91
58.90 | 41.41
56.52 | 47.72
63.65 | 44.33
62.70 | 46.68
65.08 | 45.27
67.67 | 35.11
48.95 | 26.84
46.44 | 28.08
48.17 | 28.82
46.67 | | DM ex-EMU | 26.06 | 39.22 | 34.20 | 37.14 | 49.22 | 40.73 | 44.78 | 39.59 | 29.71 | 29.03 | 26.71 | 32.17 | | EM | 47.44 | 58.53 | 51.29 | 53.50 | 57.53 | 54.15 | 54.86 | 51.65 | 45.29 | 39.56 | 39.09 | 37.14 | | EM Europe & ME | 64.63 | 73.90 | 67.34 | 67.59 | 77.48 | 76.52 | 75.54 | 71.74 | 56.01 | 37.37 | 42.54 | 39.05 | | EM Asia & Pacific | 70.46 | 69.48 | 67.09 | 69.22 | 72.17 | 71.31 | 69.86 | 69.72 | 64.15 | 68.73 | 66.47 | 68.06 | | EM Americas | 82.33 | 80.24 | 79.14 | 75.44 | 85.85 | 81.08 | 81.19 | 76.21 | 79.26 | 81.09 | 79.89 | 78.73 | | DM Idx & EM Idx | 83.04 | 83.28 | 82.89 | 82.77 | 76.95 | 75.26 | 78.88 | 80.49 | 78.96 | 69.59 | 69.72 | 69.09 | | No. Obs. | 55 | 55 | 159 | 471 | 80 | 80 | 229 | 660 | 49 | 50 | 146 | 482 | | $Q(\Delta y)$ | -7.33 | 17.54 | 139 | 4/1 | -3.10 | 7.20 | 229 | 000 | -9.99 |
0.93 | 140 | 402 | | • (3) | | | | Panel D | FED meeting | | rhanges | | | | | | | Countries | Low | Hich | A 11 | | | _ | _ | Nο | Low | High | A 11 | No | | | Low | High | All | No | Low | High | All | No | Low | High | All | | | All | 37.61 | 46.72 | 40.69 | 41.68 | 47.03 | 46.22 | 46.28 | 45.47 | 34.71 | 43.38 | 35.16 | 26.68 | | EMU | 59.27 | 60.70 | 57.47 | 57.32 | 65.27 | 63.69 | 64.28 | 67.71 | 53.55 | 63.49 | 52.06 | 45.62 | | DM ex-EMU
EM | 36.48 | 37.00 | 34.07 | 37.64 | 44.82 | 43.75 | 43.17
55.61 | 40.39 | 44.60 | 43.35 | 38.92 | 28.54 | | EM Europe & ME | 54.61
67.79 | 59.90
76.43 | 55.73
68.11 | 51.79
67.40 | 54.40
79.56 | 57.53
75.77 | 75.12 | 51.56
71.96 | 38.86
56.08 | 51.46
62.99 | 41.53
51.89 | 36.47
36.10 | | EM Asia & Pacific | 63.96 | 72.08 | 68.37 | 68.96 | 79.36 | 77.28 | 72.55 | 68.82 | 72.74 | 74.54 | 71.36 | 66.37 | | EM Americas | 79.67 | 82.21 | 82.30 | 74.43 | 82.84 | 78.34 | 80.91 | 76.78 | 77.71 | 84.86 | 78.75 | 79.09 | | DM Idx & EM Idx | 84.47 | 87.52 | 83.46 | 82.49 | 78.31 | 78.11 | 78.13 | 80.61 | 67.76 | 73.41 | 69.20 | 69.24 | | No. Oho | 62 | 60 | 170 | 450 | 70 | 70 | 205 | 604 | 50 | 40 | 120 | 400 | | No. Obs. $Q(\Delta y)$ | 63
-22.32 | 60
20.36 | 178 | 452 | 70
-1.35 | 70
8.74 | 205 | 684 | 50
-5.73 | 48
8.72 | 138 | 490 | | &(<u>Δ</u> y) | -44.34 | 20.30 | | | -1.33 | 0.74 | | | -3.13 | 0.72 | | | #### Table AVIII. Market comovements and central bank meetings on unfiltered asset data This table presents the percentage explained by the first principal component of country stock market returns (panels A and B) and changes in sovereign CDS spread (panels C and D) during ECB (panels A and C) and FED (panels B and D) meetings. Unlike Table 1 and 2, the stock market returns and changes in sovereign CDS spread are not pre-filtered by time-varying volatility. For each central bank, event (meeting) days are from two days prior to two days following an official meeting date. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). Results are reported across: All countries, EMU countries, Developed countries ex-EMU, all Emerging countries, Emerging countries in Europe&Middle East, Emerging countries in Asia&Pacific, Emerging countries in Americas, and two equally-weighted Developed Markets and Emerging Markets indices. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015. | | Aug2007-Dec2009 | | | : | May2013 | | Jun2013-Nov2015 | | | | | | |---------------------------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|----------------|--------------------|----------------|----------------|-----------------------|-----------------------|----------------| | Panel A: ECB meetings, Equity returns | | | | | | | | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 42.26 | 43.58 | 48.57 | 45.89 | 48.16 | 48.63 | 45.43 | 39.97 | 38.57 | 29.81 | 33.30 | 33.98 | | EMU | 73.20 | 74.32 | 76.23 | 71.63 | 74.45 | 80.19 | 76.38 | 73.08 | 75.64 | 65.32 | 69.69 | 71.61 | | DM ex-EMU | 54.45 | 47.61 | 55.71 | 51.80 | 55.59 | 58.63 | 55.28 | 49.96 | 51.04 | 38.11 | 43.68 | 42.01 | | EM | 27.78 | 30.65 | 36.42 | 36.30 | 37.60 | 33.76 | 31.53 | 25.82 | 27.08 | 21.03 | 22.22 | 22.46 | | EM Europe & ME
EM Asia & Pacific | 41.94
32.77 | 48.13
37.57 | 48.75
42.60 | 49.39
44.84 | 46.22
43.39 | 44.73
39.73 | 42.13 40.08 | 35.18
42.04 | 32.31
41.21 | 24.07
35.30 | 26.35
37.39 | 26.12
38.30 | | EM Asia & Pacific
EM Americas | 51.23 | 47.45 | 56.28 | 53.66 | 56.66 | 49.88 | 47.99 | 44.93 | 44.62 | 42.17 | 40.68 | 39.80 | | DM Idx & EM Idx | 92.20 | 92.78 | 94.39 | 93.43 | 93.03 | 94.18 | 92.51 | 88.78 | 84.05 | 76.33 | 80.99 | 83.02 | | No. Obs. | 55 | 55 | 160 | 470 | 80 | 80 | 230 | 659 | 50 | 50 | 147 | 481 | | $Q(\Delta y)$ | -6.98 | 10.03 | | | -8.05 | 3.74 | | | -7.20 | 1.28 | | | | | | | | Panel B: I | ED meeting | s, Equity | returns | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 45.24 | 54.23 | 46.84 | 46.35 | 45.57 | 38.31 | 42.18 | 41.48 | 27.12 | 40.56 | 34.00 | 33.71 | | EMU | 74.70 | 73.34 | 71.96 | 73.66 | 75.13 | 68.28 | 72.70 | 74.64 | 64.57 | 74.24 | 69.56 | 71.67 | | DM ex-EMU | 45.86 | 59.16 | 49.25 | 54.94 | 51.96 | 46.73 | 50.16 | 52.03 | 30.01 | 50.14 | 39.15 | 42.90 | | EM | 35.62 | 45.64 | 37.53 | 35.15 | 37.13 | 25.49 | 30.73 | 26.39 | 22.05 | 27.66 | 22.93 | 22.29 | | EM Europe & ME | 53.68 | 53.09 | 50.43 | 47.98 | 48.51 | 33.85 | 39.57 | 36.45 | 21.98 | 40.40 | 30.71 | 24.61 | | EM Asia & Pacific | 50.74 | 52.52 | 48.66 | 41.39 | 57.72
55.06 | 33.32 | 46.00 | 40.09 | 51.07 | 35.21 | 39.13 | 38.03 | | EM Americas
DM Idx & EM Idx | 57.21
94.01 | 58.35
96.59 | 56.92
94.58 | 52.55
93.07 | 55.96
89.85 | 41.36
89.43 | 49.93 90.16 | 44.03
89.98 | 35.08
75.71 | 41.76
92.72 | 37.72
87.38 | 40.42
81.37 | | No. Obs. | 63 | 60 | 178 | 452 | 70 | 70 | 205 | 684 | 50 | 48 | 138 | 490 | | $Q(\Delta y)$ | -19.03 | 9.17 | 170 | 132 | -17.30 | 1.06 | 203 | 001 | -6.95 | 9.35 | 150 | 170 | | | | | | Panel C: I | ECB meeting | gs, CDS o | changes | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 45.07 | 48.38 | 48.40 | 46.73 | 44.03 | 61.16 | 54.52 | 48.73 | 36.35 | 24.74 | 26.69 | 34.94 | | EMU | 68.41 | 75.10 | 73.22 | 63.02 | 66.25 | 77.03 | 72.69 | 64.99 | 62.12 | 41.96 | 49.48 | 52.94 | | DM ex-EMU | 26.51 | 42.79 | 42.33 | 39.49 | 37.97 | 52.96 | 48.05 | 43.40 | 34.10 | 31.40 | 28.86 | 38.08 | | EM | 67.97 | 52.86 | 61.43 | 62.89 | 53.79 | 69.47 | 62.52 | 56.48 | 40.78 | 36.35 | 35.79 | 42.27 | | EM Europe & ME | 74.06 | 74.41 | 75.47 | 76.36 | 72.74 | 89.55 | 83.05 | 80.12 | 46.44 | 41.13 | 40.56 | 49.25 | | EM Asia & Pacific | 78.52 | 74.24 | 72.21 | 73.05 | 70.84 | 75.43 | 73.92 | 72.15 | 71.20 | 68.71 | 69.15 | 70.03 | | EM Americas | 80.84 | 74.14 | 82.73 | 84.22 | 89.74 | 85.70 | 85.03 | 79.67 | 84.33 | 83.82 | 80.85 | 79.44 | | DM Idx & EM Idx | 82.39 | 75.93 | 78.27 | 84.79 | 72.29 | 90.01 | 85.25 | 83.05 | 64.52 | 61.52 | 60.82 | 64.23 | | No. Obs. | 55 | 55 | 160 | 470 | 80 | 80 | 230 | 659 | 50 | 50 | 147 | 481 | | $Q(\Delta y)$ | -6.98 | 10.03 | | | -8.05 | 3.74 | | | -7.20 | 1.28 | | | | | | | | Panel D: | FED meeting | gs, CDS o | changes | | | | | | | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | All | 43.20 | 50.66 | 45.44 | 48.47 | 48.48 | 51.87 | 48.24 | 51.43 | 36.29 | 55.38 | 44.27 | 29.19 | | EMU | 68.23 | 67.33 | 65.49 | 66.30 | 64.14 | 69.62 | 64.02 | 68.44 | 51.98 | 75.19 | 61.85 | 49.74 | | DM ex-EMU | 37.44 | 38.14 | 35.89 | 42.57 | 45.63 | 41.40 | 43.36 | 45.49 | 43.65 | 55.49 | 45.01 | 33.12 | | EM | 52.91 | 68.16 | 62.74 | 62.81 | 57.55 | 59.55 | 56.97 | 58.92 | 37.28 | 60.22 | 50.47 | 37.42 | | EM Europe & ME | 69.37 | 80.03 | 76.83 | 75.94 | 85.07 | 82.27 | 82.32 | 80.66 | 52.20 | 60.69 | 55.36 | 45.38 | | EM Asia & Pacific | 70.68 | 77.10 | 74.63 | 71.77 | 77.42 | 70.27 | 75.05 | 71.56 | 70.71 | 75.48 | 72.60 | 68.83 | | EM Americas | 79.48 | 88.18 | 82.03 | 86.05 | 83.21 | 84.73 | 82.81 | 80.53 | 74.92 | 88.20 | 82.71 | 78.67 | | DM Idx & EM Idx | 77.18 | 88.56 | 83.32 | 83.22 | 75.77 | 79.56 | 78.64 | 85.26 | 54.60 | 64.58 | 62.62 | 63.27 | | | | | 170 | 450 | | | | | | | | | | No. Obs. | 63 | 60 | 178 | 452 | 70 | 70 | 205 | 684 | 50 | 48 | 138 | 490 | ## Table AIX. Market comovements and central bank meetings using Newey-West covariance estimator This table presents the percentage explained by the first principal component of country stock market returns (panels A and B) and changes in sovereign CDS spread (panels C and D) during ECB (panels A and C) and FED (panels B and D) meetings. Unlike Table 1 and 2, we use a Newey and West estimator for the covariance (and hence, correlation) matrix to account for the impact of asynchronicity (i.e. differences in time zones). For each central bank, event (meeting) days are from two days prior to two days following an official meeting date. Results are presented when pooling all event days (column 'All'), for ex-event days (column 'No'), and when breaking down the events into those where the change in the first principal component of the Euro (resp., U.S.) yield curve falls either below the first tercile ('Low') or above the second tercile ('High'). Results are reported across: All countries, EMU countries, Developed countries ex-EMU, all Emerging countries, Emerging countries in Europe&Middle East, Emerging countries in Asia&Pacific, Emerging countries in Americas, and two equally-weighted Developed Markets and Emerging Markets indices. Entries whose difference with the ex-event sample is significant at least at the 10% level are marked in bold. The full sample consists of daily observations from August, 2007 to November, 2015. | Countries Low High All No Al | | Aug2007-Dec2009 | | | J | Jan2010- | May2013 | | | Jun2013-Nov2015 | | | |
--|------------------------------------|-----------------|-------|-------|----------|-------------|------------|---------|-------|-----------------|-------|-------|-------| | All 34.70 41.79 42.51 42.59 43.14 46.07 41.13 37.35 34.71 29.80 31.66 32.94 EMU 45.66 67.94 72.76 72.28 71.89 70.88 74.90 71.48 69.52 72.08 65.85 68.15 69.18 DM ex-EMU 45.66 42.47 48.05 49.09 51.96 57.42 50.36 47.10 44.12 39.47 41.55 41.33 EM 42.72 49.18 43.97 45.10 41.82 39.78 43.25 24.83 26.45 21.70 21.74 21.75 EM Europe & ME 35.04 49.18 43.97 45.10 41.85 40.88 37.84 32.52 31.31 32.12 42.13 58.26 M.Asia & Pacific EM Americas 45.17 45.96 51.41 47.22 49.82 52.38 45.69 43.70 41.29 44.14 41.29 49.87 M.Asia & Pacific EM Americas 45.17 45.96 51.41 47.22 49.82 52.38 45.69 43.70 41.29 44.10 40.11 88.77 DM ldx & EM ldx 8 60.60 90.48 91.20 91.37 90.36 92.52 89.84 86.41 80.22 71.02 77.57 81.79 M.O. Obs. 55 55 160 470 80 80 80 230 659 50 50 14.7 481 Q.Δyy 6.98 10.03 Pacific EM Europe & ME 50.37 53.64 43.89 4 | Panel A: ECB n | | | | | | gs, Equity | returns | | | | | | | EMU | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | DM ex-EMU 45.66 42.47 48.05 49.09 51.96 57.42 50.36 47.10 44.12 39.47 41.55 41.35 EM 21.62 31.13 31.43 31.62 32.77 32.69 28.55 24.83 26.45 20.45 21.70 21.74 21.75 21 | All | 34.70 | 41.79 | 42.51 | 42.59 | 43.14 | 46.07 | 41.13 | 37.35 | 34.71 | 29.80 | 31.66 | 32.94 | | EM Europe & ME 21.62 31.13 31.34 31.62 32.77 32.69 28.55 24.83 26.45 21.70 21.74 21.75 EM Europe & ME 35.04 49.18 43.97 45.10 41.85 40.88 37.84 32.52 31.13 22.15 24.43 25.83 EM Asia & Pacífic 49.18 43.97 45.06 41.14 47.22 49.82 52.38 45.69 43.70 41.29 41.17 40.41 36.63 36.41 EM Americas 45.17 45.96 51.14 47.22 49.82 52.38 45.69 43.70 41.29 41.17 40.41 38.70 No. Obs. 55 55 160 470 80 80 230 659 50 50 147 481 Value 47.33 50.25 45.92 41.24 42.57 35.04 38.88 38.65 42.71 40.66 32.84 32.18 EMU 74.18 73.99 73.29 71.41 72.73 61.35 67.72 71.17 62.23 75.22 68.57 68.90 DM ex-EMU 48.93 53.67 49.09 48.90 50.73 47.06 48.42 48.18 28.91 51.07 38.05 EM Asia & Pacífic 50.37 51.87 47.65 41.13 52.99 37.83 35.41 33.50 EM Asia & Pacífic 50.37 51.87 47.65 41.13 52.99 37.43 51.06 38.88 38.65 25.71 40.66 32.84 32.18 EM Asia & Pacífic 50.37 51.87 47.65 41.13 53.99 35.31 23.75 28.66 25.33 20.80 26.32 21.23 21.52 EM Asia & Pacífic 50.37 51.87 47.65 41.13 54.99 33.54 43.70 43.43 43.27 38.77 36.08 39.11 No. Obs. 63 60 178 452 70 70 205 684 50 48 138 490 Q(Δy) -19.03 91.7 52.35 46.35 51.65 39.01 44.78 44.24 34.27 38.77 36.08 39.11 No. Obs. 63 60 178 452 70 70 205 684 50 48 138 490 Q(Δy) -19.03 91.7 50.18 41.67 43.12 57.71 49.33 44.30 37.80 24.38 25.69 29.73 No. Obs. 63 60.18 58.45 56.67 61.10 76.48 69.01 61.45 57.77 49.33 44.70 43.12 57.77 49.33 44.70 43.12 57.77 49.33 44.70 43.12 57.77 49.33 44.70 43.12 43.73 43.73 43.13 EMU 50.49 50.18 51.65 53.85 66.79 67.72 77.90 85.16 69.79 67.57 57.48 63.90 63.88 63.60 63.88 | EMU | | | | | | | | | | | | | | EM Em Grope & ME BM Asia & Paperillo 31,02 4 49,18 43,97 45,10 41,85 40,88 37,84 32,52 31,13 22,15 24,43 25,83 EM Asia & Paperillo 31,02 43,00 42,00 43,00 43,00 43,00 41,29 41,17 40,41 38,87 DM Idx & EM Idx 86,06 90,48 91,20 91,37 90,36 92,52 89,84 86,41 80,22 71,02 77,57 81,79 No. Obs. 55 55 160 470 80 80 80 230 659 50 50 147 481 Q(Δy) -6,98 10,03 35 160,03 36,41 EM Long Marker Mark | | | | | | | | | | | | | | | EM Asia & Pacific 24 A 51.0 43.60 42.80 43.20 43.15 37.59 39.41 39.44 39.44 34.03 36.63 36.41 38.87 DM Idx & EM Idx $^{\circ}$ 48.06 50.48 91.20 91.37 90.36 92.52 89.84 86.41 80.22 71.02 77.57 81.79 No. Obs. 55 55 160 470 80 80 230 659 50 50 147 481 $Q(\Delta y)$ -6.98 10.03 $^{\circ}$ -8.05 3.74 $^{\circ}$ -7.20 1.28 $^{\circ}$ -7.20 1.28 $^{\circ}$ -8.05 3.74 $^{\circ}$ -7.20 1.28 | | | | | | | | | | | | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | • | | | | | | | | | | | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | | | | | | | | | No. Obs. 55 55 160 470 80 80 230 659 50 50 147 481 $Q(\Delta y)$ -6.98 10.03 80 80 230 659 50 50 147 481 $Q(\Delta y)$ -6.98 10.03 80 80 230 659 50 50 147 481 $Q(\Delta y)$ -6.98 10.03 80 80 230 659 50 50 147 481 $Q(\Delta y)$ -7.20 1.28 80 80 80 230 659 80 80 1.00 80 80 1.00 80 80 1.00 80 80 1.00 80 80 1.00 80 80 1.00 80
1.00 80 1.00 | | | | | | | | | | | | | | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | DM Idx & EM Idx | 80.00 | 90.48 | 91.20 | 91.37 | 90.36 | 92.52 | 89.84 | 80.41 | 80.22 | /1.02 | 11.51 | 81.79 | | Panel B: FED meetings, Equity returns | | | | 160 | 470 | | | 230 | 659 | | | 147 | 481 | | Countries Low High All No Low High All No Low High All No Low High All No | $Q(\Delta y)$ | -0.96 | 10.03 | | | | | | | -7.20 | 1.20 | | | | All 47.33 50.25 45.92 41.24 42.57 35.04 38.88 38.65 25.71 40.66 32.84 32.18 EMU 74.18 73.99 73.29 71.41 72.73 61.35 67.72 71.17 62.23 75.22 68.57 68.90 DM ex-EMU 48.93 53.67 49.09 48.90 50.73 47.06 48.42 48.18 29.91 51.07 38.05 41.02 EM 38.82 41.08 35.99 29.73 35.31 23.75 28.66 25.33 20.80 26.32 21.23 21.52 EM Europe & ME 56.37 53.18 50.21 42.30 45.65 31.38 36.74 33.49 24.19 37.83 28.47 24.32 EM Asia & Pacífic 50.73 51.87 47.65 41.13 54.99 33.54 43.70 38.35 50.16 36.81 39.43 35.50 EM Americas 54.77 51.21 52.35 46.35 51.65 39.01 44.78 44.24 34.27 38.77 36.08 39.71 DM Idx & EM Idx 93.40 94.43 92.99 90.70 88.38 90.27 89.76 86.75 75.48 92.61 86.79 78.96 No. Obs. 63 60 178 452 70 70 70 205 684 50 48 138 490 Q(Δy) -19.03 9.17 Panel C: ECB meetings, CDS changes Countries Low High All No Low High All No Low High All No Low High All No DM ex-EMU 28.76 39.21 35.84 36.80 44.00 52.25 44.88 39.0 29.64 28.13 25.40 32.09 EM Americas Pace ME 61.72 68.87 66.79 67.72 71.90 85.16 75.17 72.08 29.64 57.81 32.84 42.38 39.62 EM Americas Pace ME 61.72 68.87 67.09 67.72 71.90 85.16 75.17 72.08 29.64 57.81 32.84 42.38 39.62 EM Americas Pace ME 61.72 68.87 77.22 84.42 74.63 82.10 80.02 80.18 78.01 66.14 53.73 42.57 45.88 40.80 20 EM Americas Pace ME 61.72 68.87 66.79 67.72 71.90 85.16 75.17 72.08 57.48 37.81 42.38 39.62 EM Americas 77.71 68.84 75.40 76.62 86.77 80.82 81.46 76.15 80.99 84.15 80.05 78.87 DM Idx & EM Id | | | | | Panel B: | FED meeting | s, Equity | returns | | | | | | | EMU 74,18 73,99 73,29 71,41 72,73 61,35 67,72 71,17 62,23 75,22 68,57 68,90 DM ex-EMU 48,93 53,67 49,09 48,90 50,73 47,06 48,42 48,18 28,91 51,07 38,05 41,72 EM Europe & ME 56,37 53,18 35,99 29,73 35,31 23,75 28,66 25,33 20,80 26,32 21,23 21,23 21,23 21,23 21,23 21,23 21,23 21,23 21,23 21,23 21,23 24,32 28,66 25,33 20,80 26,32 21,23 24,32 24,32 28,66 25,33 20,80 26,32 21,33 36,08 30,71 24,32 25,33 20,44 28,14 | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | DM ex-EMU 48,93 53.67 49,09 48,90 50,73 47,06 48.42 48,18 28,91 51,07 38.05 41,72 EM Europe & ME 56,37 53,18 50,21 42,30 45.65 31,38 36,74 33,49 24,19 37,83 28,47 24,32 EM Asia & Pacific 50,73 51,87 47,65 41,13 54,99 33,54 43.70 38.33 50,16 36.81 39,43 35,50 EM Americas 54,77 51,21 52,35 46,35 51,65 39,01 44,78 44,24 34,27 38,77 36,08 39,71 DM Idx & EM Idx 93,40 94,43 92,99 90,70 88,38 90,27 89,76 86,75 75,48 92,61 86,79 78,96 No. Obs. 63 60 178 452 70 70 205 684 50 48 138 490 40,00 | All | 47.33 | | 45.92 | 41.24 | 42.57 | 35.04 | 38.88 | 38.65 | 25.71 | 40.66 | 32.84 | | | EM | EMU | | 73.99 | | 71.41 | 72.73 | 61.35 | | 71.17 | 62.23 | | | 68.90 | | EM Europe & ME 56.37 53.18 50.21 42.30 45.65 31.38 36.74 33.49 24.19 37.83 28.47 24.32 EM Asia & Pacific 50.73 51.87 47.65 41.13 54.99 33.54 43.70 38.33 50.16 36.81 39.43 35.50 EM Americas 54.77 51.21 52.35 46.35 51.65 39.01 44.78 44.24 34.27 38.77 36.08 39.71 DM Idx & EM Idx 93.40 94.43 92.99 90.70 88.38 90.27 89.76 86.75 75.48 92.61 86.79 78.96 No. Obs. 63 60 178 452 70 70 205 684 50 48 138 490 Q(Δy) -19.03 9.17 Panel C: ECB meetings, CDS changes Countries Low High All No EM 4.39 37.10 45.88 46.80 DM ex-EMU 28.76 39.21 35.84 36.80 41.00 52.25 44.88 39.30 29.64 28.13 25.40 32.09 EM 46.39 51.08 51.45 53.38 54.20 64.77 56.48 51.31 46.73 36.52 36.70 38.74 EM Em Europe & ME 74.71 68.84 75.40 76.62 86.77 80.82 14.67 76.15 80.99 84.15 80.05 78.87 DM Idx & EM Idx & S2.11 67.83 77.22 84.42 74.63 82.10 80.02 80.18 78.01 44.56 35.50 26.31 EMU 61.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.90 66.19 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.90 68.02 EM EM 61.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.90 68.02 EM EM 60.72 61.73 58.74 30.90 39.71 38.74 36.08 39.19 37.01 39.12 42.55 36.15 42.53 38.69 28.42 EM EM Europe & ME 61.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.90 64.09 52.06 45.28 EM EM Gl.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.90 64.09 52.06 45.28 EM EM Gl.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.90 64.09 52.06 45.28 EM EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.75 65.98 52.64 52.55 36.15 42.53 38.69 28.42 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.75 71.96 44.92 52.55 42.57 34.48 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.75 71.96 44.92 52.55 45.57 37.44 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.75 71.96 44.92 52.55 45.75 37.44 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 77.86 76.72 71.96 44.92 52.55 45.75 37.44 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 77.86 76.72 71.96 44.92 52.55 45.75 37.44 EM Europe & ME 74.04 74.04 76.47 72.34 65.59 82.22 77.86 76.72 71.96 44.92 | DM ex-EMU | 48.93 | 53.67 | | 48.90 | 50.73 | 47.06 | 48.42 | 48.18 | 28.91 | 51.07 | 38.05 | 41.72 | | EM Asia & Pacific EM Americas 54.77 51.21 52.35 46.35 51.65 39.01 44.78 44.24 34.27 38.77 36.08 39.71 DM Idx & EM Idx 93.40 94.43 92.99 90.70 88.38 90.27 89.76 86.75 75.48 92.61 86.79 78.96 No. Obs. 63 60 1.78 45.20 70 70 205 684 50 48 138 490 (Δy) -19.03 9.17 178 452 70 70 205 684 50 48 138 490 -6.95 9.35 | EM | | | | | | | | | | | | | | EM Americas DM Idx & EM Idx $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | No. Obs. 63 60 178 452 70 70 205 684 50 48 138 490 Q(Δy) -19.03 9.17 Panel C: ECB meetings, CDS changes Panel C: ECB meetings, CDS changes Countries Low High All No Low High All No Low High All No All 32.59 39.15 39.18 41.67 43.12 57.71 49.33 44.30 37.80 24.38 25.69 29.73 EMU 50.49 63.18 58.45 56.67 61.30 76.48 69.01 66.14 53.73 42.57 45.88 46.80 DM ex-EMU 28.76 39.21 35.84 36.80 41.00 52.25 44.88 39.30 29.64 28.13 25.40 32.09 EM Europe & ME 61.72 68.87 66.79 67.72 71.90 85.16 75.17 72 | | | | | | | | | | | | | | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | DM Idx & EM Idx | 93.40 | 94.43 | 92.99 | 90.70 | 88.38 | 90.27 | 89.76 | 86.75 | 75.48 | 92.61 | 86.79 | 78.96 | | Panel C: ECB meetings, CDS changes Countries Low High All No Low High All No Low High All No All No Low High All No All No All No Low High All No All No All No All All No All All No All No All All No All All All No All All All No All All All No All All All All No All All All All No All All All All All All All No All | No. Obs. | | 60 | 178 | 452 | | | 205 | 684 | | | 138 | 490 | | Countries Low High All No Low High All No Low High All No Low High All No All 32.59 39.15 39.18 41.67 43.12 57.71 49.33 44.30 37.80 24.38 25.69 29.73 EMU 50.49 63.18 58.45 56.67 61.30 76.48 69.01 66.14 53.73 42.57 45.88 46.80 DM ex-EMU 28.76 39.21 35.84 36.80 41.00 52.25 44.88 39.30 29.64 28.13 25.40 32.09 EM 46.39 51.08 51.45 53.38 54.20 64.77 56.48 51.31 46.73 36.52 36.70 38.74 EM Europe & ME 61.72 68.87 66.79 67.72 71.90 85.16 75.17 72.08 57.48 37.81 42.38 39.62 EM
Americas 77.71 | $Q(\Delta y)$ | -19.03 | 9.17 | | | -17.30 | 1.06 | | | -6.95 | 9.35 | | | | All 32.59 39.15 39.18 41.67 43.12 57.71 49.33 44.30 37.80 24.38 25.69 29.73 EMU 50.49 63.18 58.45 56.67 61.30 76.48 69.01 66.14 53.73 42.57 45.88 46.80 DM ex-EMU 28.76 39.21 35.84 36.80 41.00 52.25 44.88 39.30 29.64 28.13 25.40 32.09 EM 46.39 51.08 51.45 53.38 54.20 64.77 56.48 51.31 46.73 36.52 36.70 38.74 EM Europe & ME 61.72 68.87 66.79 67.72 71.90 85.16 75.17 72.08 57.48 37.81 42.38 39.62 EM Asia & Pacific 68.26 66.22 67.00 69.32 69.77 72.25 70.42 69.71 67.63 65.58 64.79 68.62 EM Americas 77.71 68.84 75.40 76.62 86.77 80.82 81.46 76.15 80.99 84.15 80.05 78.87 DM Idx & EM Idx 82.11 67.83 77.22 84.42 74.63 82.10 80.02 80.18 78.01 60.48 65.79 70.42 No. Obs. 55 55 160 470 80 80 80 230 659 50 50 147 481 Q(Δy) -6.98 10.03 -8.05 3.74 -7.20 1.28 Panel D: FED meetings, CDS changes Countries Low High All No Low High All No Low High All No Low High All No All 456 35.50 26.31 EMU 61.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.98 64.09 52.06 45.28 DM ex-EMU 39.57 40.92 37.42 36.08 39.19 37.01 39.12 42.55 36.15 42.53 38.69 28.42 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.72 71.96 44.92 52.52 45.75 37.44 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.72 71.96 44.92 52.52 45.75 37.44 | | | | | Panel C: | ECB meeting | gs, CDS o | changes | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | All | 32.59 | 39.15 | 39.18 | 41.67 | 43.12 | 57.71 | 49.33 | 44.30 | 37.80 | 24.38 | 25.69 | 29.73 | | EM 46.39 51.08 51.45 53.38 54.20 64.77 56.48 51.31 46.73 36.52 36.70 38.74 EM Europe & ME 61.72 68.87 66.79 67.72 71.90 85.16 75.17 72.08 57.48 37.81 42.38 39.62 EM Asia & Pacific 68.26 66.22 67.00 69.32 69.77 72.25 70.42 69.71 67.63 65.58 64.79 68.62 EM Americas 77.71 68.84 75.40 76.62 86.77 80.82 81.46 76.15 80.99 84.15 80.05 78.87 DM Idx & EM Idx 82.11 67.83 77.22 84.42 74.63 82.10 80.02 80.18 78.01 60.48 65.79 70.42 No. Obs. 55 55 160 470 80 80 230 659 50 50 147 481 $Q(\Delta y)$ -6.98 10.03 Panel D: FED meetings, CDS changes Panel D: FED meetings, CDS changes Panel D: FED meetings, CDS changes | EMU | 50.49 | 63.18 | 58.45 | 56.67 | 61.30 | 76.48 | 69.01 | 66.14 | 53.73 | 42.57 | 45.88 | 46.80 | | EM Europe & ME 61.72 68.87 66.79 67.72 71.90 85.16 75.17 72.08 57.48 37.81 42.38 39.62 EM Asia & Pacific 68.26 66.22 67.00 69.32 69.77 72.25 70.42 69.71 67.63 65.58 64.79 68.62 EM Americas 77.71 68.84 75.40 76.62 86.77 80.82 81.46 76.15 80.99 84.15 80.05 78.87 DM Idx & EM Idx 82.11 67.83 77.22 84.42 74.63 82.10 80.02 80.18 78.01 60.48 65.79 70.42 80.05 80.05 80.18 78.01 60.48 65.79 70.42 80.05 80.05 80.18 78.01 60.48 65.79 70.42 80.05 80.05 80.18 78.01 60.48 65.79 70.42 80.05 80.05 80.18 78.01 60.48 65.79 70.42 80.05 80.05 80.18 80.05 80.18 78.01 60.48 65.79 70.42 80.05 80.05 80.18 80.18 80.05 80.18 80.05 80.18 80.18 80.05 80.18 80.05 80.18 80.18 80.05 80.18 80.18 80.05 80.18 80.18 80.18 80.05 80.18 80.18 80.18 80.18 80.05 80.18 | DM ex-EMU | 28.76 | 39.21 | 35.84 | 36.80 | 41.00 | 52.25 | 44.88 | 39.30 | 29.64 | 28.13 | 25.40 | 32.09 | | EM Asia & Pacific EM Asia & Pacific EM Asia & Pacific EM Americas 68.26 \cdot 66.22 \cdot 67.00 \cdot 69.32 \cdot 69.77 \cdot 72.25 \cdot 70.42 \cdot 69.71 \cdot 67.63 \cdot 65.58 \cdot 64.79 \cdot 68.62 \cdot 68. Marricas 67.63 \cdot 65.58 \cdot 64.79 \cdot 68.62 \cdot 68. Marricas 67.63 \cdot 65.58 \cdot 64.79 \cdot 68.62 \cdot 68. Marricas 68.61 \cdot 77.71 \cdot 68.84 \cdot 75.40 \cdot 76.62 \cdot 86.77 \cdot 80.82 \cdot 81.46 \cdot 76.15 \cdot 80.99 \cdot 84.15 \cdot 80.05 \cdot 78.87 \cdot 79. Marricas 80.02 \cdot 80.18 \cdot 78.01 \cdot 60.48 \cdot 65.79 \cdot 70.42 \cdot 70.42 \cdot 70.00 \cdot 80 \cdot 80 \cdot 80 \cdot 230 \cdot 659 \cdot 50 \cdot 50 \cdot 147 \cdot 481 \cdot 481 \cdot 20.00 \cdot 40.00 \cdot 80 \cdot 80 \cdot 80 \cdot 230 \cdot 659 \cdot 50 \cdot 50 \cdot 147 \cdot 481 \cdot 20.00 \cdot 80 | EM | 46.39 | 51.08 | 51.45 | 53.38 | 54.20 | 64.77 | 56.48 | 51.31 | 46.73 | 36.52 | 36.70 | 38.74 | | EM Americas 77.71 68.84 75.40 76.62 86.77 80.82 81.46 76.15 80.99 84.15 80.05 78.87 DM Idx & EM Idx 82.11 67.83 77.22 84.42 74.63 82.10 80.02 80.18 78.01 60.48 65.79 70.42 No. Obs. 55 55 160 470 80 80 230 659 50 50 147 481 $Q(\Delta y)$ -6.98 10.03 -8.05 3.74 -7.20 1.28 Panel D: FED meetings, CDS changes Countries Low High All No Low High All No Low High All No Low High All No All High All No Low High All No EMU 61.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.98 64.09 52.06 45.28 DM ex-EMU 39.57 40.92 37.42 36.08 39.19 37.01 39.12 42.55 36.15 42.53 38.69 28.42 EM 60.72 61.73 58.72 50.26 58.21 54.68 54.98 52.89 35.69 52.76 42.04 36.48 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.72 71.96 44.92 52.52 45.75 37.44 | EM Europe & ME | 61.72 | 68.87 | 66.79 | 67.72 | 71.90 | 85.16 | 75.17 | 72.08 | 57.48 | 37.81 | 42.38 | 39.62 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | EM Asia & Pacific | 68.26 | 66.22 | 67.00 | 69.32 | 69.77 | 72.25 | 70.42 | 69.71 | 67.63 | 65.58 | 64.79 | 68.62 | | No. Obs. 55 55 160 470 80 80 230 659 50 50 147 481 Q(Δy) -6.98 10.03 FED meetings, CDS changes Panel D: FED meetings, CDS changes Countries Low High All No Low High All No Low High All No All 49.26 47.93 44.41 39.60 47.17 42.46 43.90 47.40 31.10 44.56 35.50 26.31 EMU 61.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.98 64.09 52.06 45.28 DM ex-EMU 39.57 40.92 37.42 36.08 39.19 37.01 39.12 42.55 36.15 42.53 38.69 28.42 EM 60.72 61.73 58.72 50.26 58.21 54.68 54.98 52.89 35.69 | EM Americas | | | | | 86.77 | | | 76.15 | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | DM Idx & EM Idx | 82.11 | 67.83 | 77.22 | 84.42 | 74.63 | 82.10 | 80.02 | 80.18 | 78.01 | 60.48 | 65.79 | 70.42 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | No. Obs. | 55 | 55 | 160 | 470 | 80 | 80 | 230 | 659 | 50 | 50 | 147 | 481 | | Countries Low High All No Low High All No Low High All No Low High All No All 49.26 47.93 44.41 39.60 47.17 42.46 43.90 47.40 31.10 44.56 35.50 26.31 EMU 61.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.98 64.09 52.06 45.28 DM ex-EMU 39.57 40.92 37.42 36.08 39.19 37.01 39.12 42.55 36.15 42.53 38.69 28.42 EM 60.72 61.73 58.72 50.26 58.21 54.68 54.98 52.89 35.69 52.76 42.04 36.48 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.72 71.96 44.92 52.52 45.75 37.44 | | | | | | | | | | | | | | | All 49.26 47.93 44.41 39.60 47.17 42.46 43.90 47.40 31.10 44.56 35.50 26.31 EMU 61.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.98 64.09 52.06 45.28 DM ex-EMU 39.57 40.92 37.42 36.08 39.19 37.01 39.12 42.55 36.15 42.53 38.69 28.42 EM 60.72 61.73 58.72 50.26 58.21 54.68 54.98 52.89 35.69 52.76 42.04 36.48 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.72 71.96 44.92 52.52 45.75 37.44 | Panel D: FED meetings, CDS changes | | | | | | | | | | | | | | All 49.26 47.93 44.41 39.60 47.17 42.46 43.90 47.40 31.10 44.56 35.50 26.31 EMU 61.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.98 64.09 52.06 45.28 DM ex-EMU 39.57 40.92 37.42 36.08 39.19 37.01 39.12 42.55 36.15 42.53 38.69 28.42 EM 60.72 61.73 58.72 50.26 58.21 54.68 54.98 52.89 35.69 52.76 42.04 36.48 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.72 71.96 44.92 52.52 45.75 37.44 | Countries | Low | High | All | No | Low | High | All | No | Low | High | All | No | | EMU 61.97 60.81 58.97 56.22 67.93 65.18 64.55 68.30 47.98 64.09 52.06 45.28 DM ex-EMU 39.57 40.92 37.42 36.08 39.19 37.01 39.12 42.55 36.15 42.53 38.69 28.42 EM 60.72 61.73 58.72 50.26 58.21 54.68 54.98 52.89 35.69 52.76 42.04 36.48 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.72 71.96 44.92 52.52 45.75 37.44 | All | 49.26 | 47.93 | 44.41 | 39.60 | 47.17 | 42.46 | 43.90 | 47.40 | 31.10 | 44.56 | 35.50 | 26.31 | | DM ex-EMU 39.57 40.92 37.42 36.08 39.19 37.01 39.12 42.55 36.15 42.53 38.69 28.42 EM 60.72 61.73 58.72 50.26 58.21 54.68 54.98 52.89 35.69 52.76 42.04 36.48 EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.72 71.96 44.92 52.52 45.75 37.44 | | | | | | | | | | | | | | | EM Europe & ME 74.04 76.47 72.34 65.59 82.22 72.86 76.72 71.96 44.92 52.52 45.75 37.44 | DM ex-EMU | | | 37.42 | 36.08 | | | | | | | 38.69 | | | | EM | 60.72 | 61.73 | 58.72 | 50.26 | 58.21 | 54.68 | 54.98 | 52.89 | 35.69 | 52.76 | 42.04 | 36.48 | | EM Asia & Pacific 67.22 74.05 68.83 68.67 75.31 66.68 71.91 68.99 68.90 73.75 70.70 66.48 | EM Europe & ME | | 76.47 | | 65.59 | | 72.86 | | | | | | 37.44 | | | | | | | | | | | | | | | | | EM Americas 84.50 78.49 79.82 74.61 81.02 81.45 79.80 77.50 78.39 84.79 80.42 78.78 | | | | | | | | | | | | | | | DM Idx & EM Idx 86.40 86.36 85.97 81.09 76.24 73.89 74.81 82.28 63.42 75.13 69.26 68.73 | DM Idx & EM Idx | 86.40 | 86.36 | 85.97 | 81.09 | 76.24 | 73.89 | 74.81 | 82.28 | 63.42 | 75.13 | 69.26 | 68.73 | | No. Obs. 63 60 178 452 70 70 205 684 50 48 138 490 | | | | 178 | 452 | | | 205 | 684 |
 | 138 | 490 | | $Q(\Delta y)$ -19.03 9.17 -17.30 1.06 -6.95 9.35 | $Q(\Delta y)$ | -19.03 | 9.17 | | | -17.30 | 1.06 | | | -6.95 | 9.35 | | | ## **Recent Issues** | No. 275 | Loriana Pelizzon, Max Riedel,
Zorka Simon, Marti Subrahmanyam | Collateral Eligibility of Corporate Debt in the Eurosystem | |---------|--|---| | No. 274 | Christopher Busch, Alexander
Ludwig | Higher-Order Income Risk Over the Business Cycle | | No. 273 | Di Bu, Tobin Hanspal, Yin Liao,
Yong Liu | Financial Literacy and Self-Control in FinTech:
Evidence from a Field Experiment on Online
Consumer Borrowing | | No. 272 | Christine Laudenbach, Benjamin
Loos, Jenny Pirschel, Johannes
Wohlfart | The Trading Response of Individual Investors to Local Bankruptcies | | No. 271 | Pietro Dindo, Andrea Modena,
Loriana Pelizzon | Risk Pooling, Leverage, and the Business
Cycle | | No. 270 | Mario Bellia, Kim Christensen,
Aleksey Kolokolov, Loriana
Pelizzon, Roberto Renó | High-Frequency Trading During Flash
Crashes: Walk of Fame or Hall of Shame? | | No. 269 | Ester Faia, Maximilian Mayer,
Vincenzo Pezone | The Value of Firm Networks: A Natural Experiment on Board Connections | | No. 268 | Lorenzo Maria Levati, Marie
Lalanne | The Impact of Job Referrals on
Employment Outcomes in Top
Corporate Positions | | No. 267 | Wataru Kureishi, Hannah Paule-
Paludkiewicz, Hitoshi Tsujiyama,
Midori Wakabayashi | Time Preferences over the Life Cycle | | No. 266 | Benjamin Bluhm, Jannic Cutura | Econometrics at Scale: Spark Up Big Data in Economics | | No. 265 | Christian Schlag, Julian Thimme,
Rüdiger Weber | Implied Volatility Duration: A Measure for the Timing of Uncertainty Resolution | | No. 264 | Hengjie Ai, Jun E. Li, Kai Li,
Christian Schlag | The Collateralizability Premium | | No. 263 | Vanya Horneff, Daniel Liebler,
Raimond Maurer, Olivia S. Mitchell | Implications of Money-Back Guarantees for Individual Retirement Accounts: Protection Then and Now | | No. 262 | Andrea Bedin, Monica Billio,
Michele Costola, Loriana Pelizzon | Credit Scoring in SME Asset-Backed Securities: An Italian Case Study |