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Abstract 

In the pharmaceutical industry, firms frequently engage in licensing agreements to overcome 
innovation challenges and keep up with the pace of developing new drugs. Licensing helps firms 
jointly develop new drugs and acquire external knowledge, which helps improve their internal 
drug development capability. Our study examines the dynamic effects of licensing on the success 
of the licensees’ internal drug development across research stages. We adopt a structural equation 
modeling approach and find that external knowledge transfer via licensing can have differential 
effects on firms’ internal research stage-specific R&D capabilities. The success of transferring 
external knowledge to an in-licensing firm is critically dependent on the firm’s internal R&D 
capabilities, their financial capability, and the research stage. We find that license agreements 
formed at the early stage (the discovery and preclinical test phases) and intermediate stage (phase 
1 and 2 clinical test phases) exert strong direct and short-run effects on internal R&D capabilities 
in the same research stages. Moreover, licensing formed at the intermediate stage exerts 
remarkably strong indirect and long-run effects that impact R&D capabilities in successive 
research stages. Licensing in the late stage (phase 3 clinical test and product approval) is costly 
and does little to enhance firms’ internal R&D capabilities. Our results also show that licensing is 
formed among firms with stronger financial resources, and those resources are necessary for a 
successful technology transfer. Our results also provide insights into the impact of licensing on 
project success rates across research stages. 
JEL-Codes: L240, L250, L650, D220. 
Keywords: pharmaceutical drug development, licensing, R&D capabilities, effects of licensing on 
R&D capabilities. 
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1. Introduction

The pharmaceutical industry faces considerable challenges that impede the innovation process.

Studies have shown that only a small fraction of research projects successfully pass the drug

development process (see Grabowski and Vernon 1990, Grabowski et al. 2002, DiMasi et al. 1991).

The high project failure rate puts enormous pressure on pharmaceutical firms to explore alternative

innovation strategies that improve the success of their drug development. R&D licensing agreements

are one prominent alternative in which pharmaceutical companies invest. Firms invested nearly $37

billion into licensing (see Cartwright and Ahmed 2017), which makes licensing far more popular

than other R&D alliances such as research joint ventures (see EvaluatePharma 2013, Hagedoorn

and Narula 1996, Hagedoorn and Duysters 2002).

Licensing is a non-equity R&D partnership that is a core strategy that helps firms jointly develop

new drugs and benefit from synergy effects. Pharmaceutical firms use licensing as an instrument to

access external knowledge and technologies. More specifically, licensing agreements are formed to

treat diseases, define novel drug targets, validate targets, signal transduction pathway know-how,

animal models, disease expertise, translational medicine know-how, and biomarkers (Schuhmacher

et al. 2016). Companies like GlaxoSmithKline allocated 50% of its R&D budget to external drug

development projects (Ceccagnoli et al. 2014). Industry wide, 25% of drugs are developed under

licensing terms.

Licensing is an important instrument for firms and can serve multiple purposes: First, licensing

provides the opportunity for cooperating firms to pool development resources for launching new

research projects completing existing projects. Second, licensing enables firms to acquire external

knowledge from their licensing partners. The successful transfer and adoption of external knowledge

to boost firms’ internal drug development capability is an important aspect that is promoted

by many pharmaceutical firms. For example, Pfizer created a new division that concentrated on

making externally acquired technologies more accessible to internal scientists (Ceccagnoli et al.

2014).

To date, few scholars have examined whether license agreements help firms transfer external

knowledge to improve the licensees’ drug development capabilities. Technology adoption and trans-

fer are important, as they determine the licensees’ (also referred to as in-licensors’) drug develop-

ment capability and productivity. Our study examines whether licensing agreements help licensees

improve their internal drug development capabilities. We concentrate on one type of licensing

agreement—ex ante licensing agreements. An ex ante licensing agreement is when firms decide to

engage jointly in drug development agreements that are negotiated before the innovation has been

explored.
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Pisano (1990) has shown that a firm’s R&D productivity depends on its internal R&D capability,

which describes the ability to develop and exploit new technologies. The internal R&D capabilities

determine the success rate of R&D projects, internally developed new products, and R&D intensity

(Wang et al. 2008). The primary function of R&D capability is to recombine existing knowledge

in novel ways to generate new knowledge or innovations (Cohen and Levinthal 1989, Fleming

2001). Internal R&D capabilities also play a fundamental role in acquiring external technologies

and knowledge via licensing. New drug development technologies require firms to establish and

invest in internal R&D capabilities such that the externally acquired knowledge can be internally

processed and become productive (Pisano 2006). Therefore, firms’ internal R&D capabilities form

the center of our study when evaluating the effects of licensing on the licensees’ internal R&D

productivity.

One challenge with evaluating R&D capabilities is that they are not directly observed. Moreover,

R&D capabilities in the pharmaceutical industry—which is characterized by a complex market

structure—have not been well investigated yet because the drug development process is inherently

dynamic. Drugs have to successfully pass multiple research stages and receive the FDA’s permission

to be marketed. The dynamic drug development process implies that internal R&D capabilities

are research stage specific, which has to be considered when evaluating the effects of licensing.

Licensing agreements are formed at different research stages and have differential effects depending

on when they are formed. This study examines the differential effects of licensing on stage-specific

internal R&D capabilities.

The research stage-specific characterization of licensing and R&D capabilities also implies that

licensing engagements in one specific research stage can exert: (1) direct and short-run effects on

R&D capabilities in that specific research stage that are unmediated by any R&D capability from

other stages; and (2) indirect and long-run effects on R&D capabilities in successive stages that are

mediated by R&D capabilities in earlier stages. Licensing engagement in one research stage may

influence the firm’s internal R&D capabilities in the same stage as well as successive stages.

We focus on ex ante licensing where firms engage in R&D partnerships at specific research stages

or research phases (discovery, preclinical, phases 1, 2, and 3) of the drug development process.

We group firms’ engagements in licensing by research phases and examine the licensing effects on

research stage-specific internal R&D capabilities. More specifically, we evaluate the licensing effects

on firms’ internal R&D capabilities using a “structural equation modeling” (SEM) approach. SEM

is a useful approach in our context since unobserved R&D capabilities are formulated as latent

variables and measured by phase-specific variables. For similar reasons, SEM was adopted in other

studies, including Liao et al. (2007), who evaluated the effects of knowledge sharing and absorptive

capacity on product innovation capability. Rothaermel and Deeds (2004) estimate an SEM to
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evaluate the effects of alliances on firms’ product development using the number of approved

products and patents as their measured variables.

We estimate a set of linear equations that define the relations between research phase-specific

latent variables and observed variables. Our study relates to Halfat (1997) and Kim et al. (2018),

who measured R&D capabilities by R&D investment, project portfolio management, and the num-

ber of R&D employees. Our model treats the stage-specific R&D capabilities as latent variables,

which are measured by variables such as the number of projects in the corresponding research

phases, licensing experience, economies of scope (measured by the variety of products in develop-

ment), and value (scale) variables (Ceccagnoli et al. 2014). Our study specifically addresses the

direct and indirect licensing effects across stages. We also allow financial resources to affect internal

R&D capabilities and firms’ licensing engagements, which are measured by variables such as the

number of deals and deal values in the corresponding phases.

Our estimation results confirm that the licensing effects on the licensees’ internal R&D capabil-

ities are highly dependent on the R&D phase. Our results show that license agreements formed

at the early phases of the drug development process (drug discovery and preclinical test) have a

strong direct effect on R&D capability in the discovery phase. That is, the externally acquired R&D

activities in the drug discovery and preclinical phases are complementary with the internal R&D

activities in the discovery phase. This type of licensing agreement is characterized by pronounced

indirect effects that affect the R&D capability in subsequent phases, such as the preclinical stage

and phase 1.

Licensing engagements in the intermediate development phases (phase 1 and 2 clinical trials)

have significant direct and indirect effects on internal R&D capabilities across all clinical phases.

Similar to the early-stage licensing agreements, licensing engagements in phase 1 and 2 clinical

trials have strong indirect and long-run effects on R&D capabilities across different phases. Hence,

licensing agreements in the early and intermediate stages are characterized by strong indirect effects

on R&D capabilities in subsequent phases. These indirect effects are so strong that they frequently

dominate the direct effects. The results also show that the indirect effects are more pronounced

with firms’ financial capabilities.

We also find that licensing agreements formed in the late stage of drug development (phase 3

clinical trials) do not exert any direct or indirect effects on the licensees’ late-phase R&D and

product approval capabilities. Hence, external and internal R&D capabilities are substitutable in

late stages of development.

We also examine the effects of the licensees’ improved internal R&D capabilities on their R&D

productivity. The results show that licenses strongly improve project success rates (in compari-

son to non-licensing firms) in early research stages. Licensing formation across research stages is
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strongly explained by firms’ financial capabilities. Our study shows that the internal and external

R&D activities in early and intermediate stages are complements (especially in the drug discov-

ery, preclinical, and phase 1 and 2 stages), but they are substitutes in the late stages of the drug

development process (phase 3). However, the success of knowledge transfer critically depends on

the strength of the acquirers’ internal R&D capabilities, which requires large investments.

Pharmaceutical companies search for alternatives that help improve their internal R&D capa-

bilities and boost their drug development productivity (Paul et al. 2010). The formation of R&D

partnerships can help firms pool development funds, share technological know-how, and benefit

from synergies. R&D partnerships are a fast and flexible way to get access to complementary

resources and skills residing in other companies (Jorde and Teece 2003). In fact, companies are

increasingly dependent on R&D partnerships, as the steady increase in the number and scope of

R&D partnership suggests (see Feachem and Sachs 2002). DiMasi et al. (1991) reports that higher

R&D costs are a big factor underlying the recent trend toward more R&D partnerships.1 Hage-

doorn et al. (2006) mention that R&D partnerships have constituted an important instrument since

1975. During the 1980s, partnerships with small, entrepreneurial biotechnological companies played

a crucial role in the development of drugs (see Arora and Gambardella 1990, Barley et al. 1992,

Pisano 1990, Powell et al. 1996). In the 1990s, partnerships among large pharmaceutical companies

became more frequent. R&D partnerships are quite common, and R&D capabilities have long been

of substantial interest to companies, policy makers, and scholars. However, empirical studies on the

impact of one specific type of R&D cooperation in the pharmaceutical industry—that is, ex ante

licensing agreements—is rather scarce. More insight on this relevant topic is needed. Most existing

studies focus on ex post licensing (in which an existing innovation is transferred (see Gallini 1984,

Gallini and Winter 1985)), rather than ex ante licensing (in which firms decide to cooperate before

the invention has been made).

As we mentioned, licensing become a popular and promising instrument for firms to acquire

knowledge and technologies pertaining to new drug development. Firms’ incentives to engage in

licensing agreements can be determined by the state of their internal R&D capabilities (see Cecca-

gnoli et al. 2014). A firm’s internal R&D capability is its ability to develop and exploit new tech-

nologies (see Wang et al. 2008, Cohen and Levinthal 1989, Fleming 2001). A firm’s R&D capability

can determine the extent to which it can absorb and externally acquire knowledge and technologies.

Ceccagnoli et al. (2014) show that licensing becomes more efficient for firms that invest heavily in

R&D to generate internal R&D capabilities and absorptive capacity. Jekunen (2014) shows that

firms’ internal clinical capabilities (the ability to internalize critical external knowledge as well as

1 The 20 biggest pharmaceutical firms alone formed nearly 1,500 alliances with biotech companies alone from 1997
to 2002.
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the means by which the firm organizes developmental activities with key partners) are important

success factors for collaborations.

The remainder of the study is organized as follows: Section 2 introduces relevant studies related

to the effects of licensing on R&D capabilities. Section 3 introduces the pharmaceutical industry

and the licensing effects on research stage-specific R&D capabilities. Section 5 presents the data

and defines the variables in our model. Section 6 provides the structural equation model that we

use to examine the effects of licensing. Section 7 presents the results of the measurement and

structural models. In Section 8, we conclude.

2. Literature Review

Our study is related to the literature on the collaboration of creating innovation in the biotechnol-

ogy and pharmaceutical industries. In the pharmaceutical industry, lack of knowledge of emerging

technologies can have negative impacts on internal R&D capabilities and the development of drugs.

In order to acquire external knowledge or R&D capabilities, firms engage in acquisitions, alliances,

and licensing (Capron and Mitchell 2009). Licensing plays an important role, as it provides an

opportunity for biotechnology firms to gain experience and complementary capabilities related to

clinical testing, regulatory filings, and commercialization (Quintana-Garcia and Benavides-Velasco

2004). Our data show that licensing activities in the pharmaceutical industry increased drastically

from 1998 to 2011 (see section 5).

The relationship between externally acquired technologies and firms’ internal R&D capabilities

is a critical success component. Arora and Gambardella (1994) emphasize the relevance of comple-

mentarities between externally acquired technologies and firms’ internal R&D capabilities. Arora

and Gambardella (1994) show that companies need internal know-how to be able to use exter-

nal know-how effectively. In evaluating the success of cooperations, Cassiman et al. (2005) argue

that the relationship between cooperating firms’ technologies is important. They show that the

merging firms’ post-merger R&D activities increase when their technologies are complements, but

their R&D investments decrease when their technologies are substitutes. Cassiman and Veugelers

(2006) find that internal and external knowledge are complementary. Based on a sample of M&As

from the drug, chemical, and electronics industries, Makri et al. (2010) find that complementaries

between firms’ technological knowledge are relevant contributors that explain post-merger innova-

tion performance. In addition, Makri et al. (2010) find that technology complementarities combined

with similarities in the acquirer’s and target’s knowledge base have positive effects on post-merger

innovation. Ceccagnoli et al. (2014) mention that complementarities are better exploited if firms

continue investing in internal R&D. Previous research studies (Arora and Gambardella 1994, Ahuja
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and Katila 2001, Cassiman et al. 2005, Cassiman and Veugelers 2006, Makri et al. 2010) demon-

strate that complementarity between internal and external knowledge is an important determinant

for technology transfer.

In a related vein, several studies emphasized the relevance of firms’ absorptive capacity; that is,

firms’ ability to integrate the external knowledge and technologies into their internal R&D. For

example, the study by Ceccagnoli et al. (2014) fomulates complementarities as being dependent on

absorptive capacity, economies of scope, and licensing experience. If the external R&D activities are

complementary to the internal R&D activities, the collaboration can be effective and increase firms’

internal R&D capabilities. In contrast, if the external and internal R&D activities are substitutes,

the cooperation will act purely as replenishing firms’ drug development pipelines, and joint R&D

activities will not enhance firms’ R&D capability.

Nerkar and Roberts (2004) classify knowledge elements into a firm’s proximal knowledge (internal

R&D capabilities) and a firm’s distal knowledge (external knowledge in our study). Proximal

knowledge provides a firm with advantages, making incremental improvements via exploitation,

while distal knowledge provides advantages in exploration, which underlies more radical product

innovations. Licensing is one opportunity that allows firms to access distal knowledge developed

in other firms. Nerkar and Roberts (2004) find that a firm’s proximal knowledge increases its new

product successes, but they did not find any evidence for the positive relation between a firm’s

distal knowledge and its new product successes.

In the pharmaceutical industry, Ceccagnoli et al. (2014) show that internal R&D investments and

licensing investments are neither complements nor substitutes. Grigoriou and Rothaermel (2017)

show that internal investment and external knowledge helped pharmaceutical firms slowly build

new biotechnology-related knowledge and adapt to the technological discontinuity. Grigoriou and

Rothaermel (2017) tracked the development of internal knowledge of biotechnology from the begin-

ning of the biotechnology revolution (1974) until the end of 1998. They find that external sourcing

strategies are less effective when firms can internally generate new knowledge or if they have high

internal coordination costs. That is, when the external knowledge and the internally developed

knowledge are substitutable, the externally acquired R&D activities become less effective.

In summary, external knowledge and technologies can be complementary or substitutable to

the internal knowledge and technologies. The previous literature is inconclusive on the effect of

licensing on firms’ internal R&D capabilities (some literature finds positive effects, while the other

literature finds negative effects).

Our study also addresses the fact that pharmaceutical firms license and acquire external knowl-

edge throughout the various research stages—that is, during the early phases that focus on product

development and scientific discovery, the intermediate phases (initial clinical testing phases), and
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the late phases that focus on final clinical testing stages (FDA 2018). Licensing of drugs (knowledge

or technologies) in one phase may have a different effect on firms’ R&D capability than licens-

ing in another phase. Thus, our study examines the differential effect of licensing on firms’ R&D

capabilities across research stages, as will be detailed in the following sections.

3. The Pharmaceutical Industry

New drug development in the pharmaceutical industry is typically a sequential process. BIO (2016)

recorded a total of 9,985 drug observations in clinical drug development and regulatory review

phases over a period of 10 years, 2006 to 2015. BIO (2016) assessed the success rate of drug

development in four phases: phases 1, 2, 3, and the regulatory filing phase. The overall likelihood

of drug approval (LOA) in phase 1 was 9.6%. Table 1 reports the success rates for phases 1-3.

Phase 1 has the highest success rate (63.2%), which is explained by the fact that phase 1 testing

concentrates on safety aspects, and drug efficacy is not part of the evaluation.2 The phase 2 success

rate (30.7%) is the lowest of the four phases studied, while phase 3 has a success rate of 58.1%. The

probability of FDA approval after submitting a New Drug Application (NDA) or Biologics License

Application (BLA) was 85.3%. DiMasi et al. (2016) reported very similar success rates, with an

overall probability of 11.83% for clinical success. The transition or success probability from phase

2 to phase 3 is 59.52%, from phase 2 to phase 3 is 35.52%, and from phase 3 to regulation filing is

61.95%.

In addition to the low success rates in the clinical phases, these phases are also characterized by

high development costs. DiMasi et al. (2003) mentions that costs have been relatively stable in the

preclinical phases, but have risen dramatically in clinical phases. Table 1 reports the development

cost per phase. The development costs in phase 1 were notably lower than the costs in phases 2

and 3. The ratio of phase 3 to phase 1 development cost is 10.1, the ratio of phase 3 to 2 is 4.4,

and the ratio of phase 2 to 1 is 2.3. Clinical development (phases 1-3) accounts for approximately

63% of the costs.
Firms in the pharmaceutical industry reacted to the decrease in R&D productivity and the

increase in drug development costs through engaging in mergers and acquisitions, licensing, and

other strategic alliances. The benefit of licensing is that pharmaceutical firms spend less compared

to acquiring an entire firm.

4. Licensing Engagement and Effects on R&D Capabilities

The pharmaceutical industry experienced challenges in developing new drugs such that pharma-

ceutical firms faced difficulties in sustaining revenue growth. Additionally, the complexity of drug

2 Phase 1 success rates may also benefit from delayed reporting bias, as larger companies may not deem failed phase
1 programs as material, and these failures may not be reported publicly.
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Table 1 Development Costs and Success Rates

Phases Development Costs Success Rates
mean cost median cost1 (%)

Phase 1 25.3 17.3 63.8
Phase 2 58.6 44.8 30.7
Phase 3 255.4 200.0 58.1

1 The cost represents average out-of-pocket clinical period

costs for investigational compounds (in millions of 2013 U.S.

dollars).

discovery and development fundamentally increased. Pharmaceutical firms also experienced pres-

sure to build a new knowledge base during times where R&D expenditures were rising and average

sales per drug were falling (Pisano 1996) and (Higgins and Rodriguez 2006). Pharmaceutical firms

increasingly invested in internal R&D capability due to the emergence of biotechnology and the

associated new drug development technologies; externally acquired technology can be absorbed and

properly processed internally (Pisano 2006). In this regard, (Jekunen 2014) show that the success

of licensing is dependent on the ability to internalize external knowledge, as well as the means by

which the firm organizes developmental activities with key partners.

The drug development process is classified in several research phases (see the FDA), and firms’

R&D capabilities are dependent on the development phases (see Paul et al. 2010). In the discov-

ery stage, teams of chemists, pharmacologists, and biologists screen thousands of compounds and

modify them to fight diseases. In the preclinical phase, compounds undergo laboratory and animal

testing to answer basic safety questions. The preclinical phase delivers clinical candidate molecules,

which have sufficient evidence of biologic activity, sufficient safety, and other drug-like properties

(Mohs and Greig 2017).

Clinical research focuses on drug safety and effectiveness. Clinical research is categorized in three

phases. In phase 1 of the clinical trials, drugs are tested on people. Researchers adjust dosing

schemes based on preclinical data to find out how much of a drug the body can tolerate and to

discover its side effects. In phase 2, researchers test a drug on patients to gauge the drug’s efficacy

and to find side effects. Phase 3 demonstrates whether or not a drug offers a treatment benefit to a

specific population. These trials confirm the efficacy from phase 2 and identify long-term and rare

side effects. If a drug is safe and effective, the firm will file an application for marketing the drug

(product approval phase). The FDA reviews a New Drug Application (NDA) and decides whether

to approve or reject the NDA.

Based on the drug development process, we classify firms’ internal R&D capabilities into the

following six phase-specific R&D capabilities that serve as latent variables in our study: discov-

ery (CapDiscover), preclinical (CapPreClin), phase 1 (CapPh1), phase 2 (CapPh2), phase 3

(CapPh3), and drug approval (CapProduct) capabilities (see Table 2).
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Table 2 Latent Variables of R&D Capabilities and Licensing Engagement

Latent Variables Description
CapDiscover (η1) R&D capability in drug discovery phase
CapPreClin (η2) R&D capability in preclinical phase
CapPh1 (η3) R&D capability in phase 1 clinical trial
CapPh2 (η4) R&D capability in phase 2 clinical trial
CapPh3 (η5) R&D capability in phase 3 clinical trial
CapProduct (η6) Capability in obtaining FDA approval
EngESLicense (η7) Engagement in licensing deals in discovery phase and preclinical phase
EngPh12License (η8) Engagement in licensing deals in phases 1 and 2 trials
EngPh3License (η9) Engagement in licensing deals in phase 3 trials
CapFin (ξ) Capability in financial support of internal R&D projects and external R&D

collaboration projects

Pharmaceutical firms engage in licensing throughout all different research phases, and their

effects of licensing are research stage specific. We classify licensing engagements into three groups.

We consider licenses formed at (a) the early stages (discovery and preclinical testing), (b) the

intermediate stages (phases 1 and 2), and (c) the late stage (phase 3) of the drug development.

Our latent variables reflect the licensing engagement at the early stages (EngESLicense), the

intermediate stage (EngPh12License), and the late stage (EngPhLicense3).

As mentioned earlier, our study emphasizes the engagement of licensing across research phases

and evaluates their direct effects on phase-specific R&D capabilities, as well as their indirect effects

on successive research stages through the R&D capabilities in the intermediate phases. Figure 1

displays the effects of licensing and a firm’s financial capability on R&D capabilities. It also displays

the determinants and effects of licensing engagements. The licensing effects on firms’ R&D capabil-

ities are represented by the paths from the latent licensing engagement variables (EngESLicense,

EngPh12License, and EngPh3License) to the latent R&D capability variables CapDiscover,

CapPreClin, CapPh1, CapPh2, CapPh3, and CapProduct. For example, the effect of licensing

in the early stages (EngESLicense) on firms’ internal R&D capabilities in the discovery phase

(CapDiscover), the preclinical phase (CapPreclin), and phase 1 (CapPh1) are depicted by the

path coefficients, β71, β72, and β73, respectively.

Moreover, the effect of licensing in the intermediate stages (EngPh12License) on firms’ internal

R&D capabilities in phase 1 (CapPh1), phase 2 (CapPh2), and phase 3 (CapPh3) are illustrated

by the path coefficients, β83, β84, and β85, respectively. The path coefficient β95 represents the effect

of late-stage licensing (EngPh3License) on phase 3 capability (CapPh3).

Firms need to invest in developing their internal R&D capabilities, which requires a strong finan-

cial background. At the same time, licensing engagements require substantial financial resources.

Since licensing engagement can crowd out firms’ funding resources to invest in promoting internal

R&D capabilities, our model specification also includes firms’ financial capabilities (CapFin) as
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Figure 1 Influence Diagram

a latent variable. As shown in Figure 1, a firm’s financial capability (CapFin) has an effect on

its internal R&D capabilities (CapDiscover, CapPreclin, CapPh1, CapPh2, and CapPh3, and

CapProduct), as illustrated by the path coefficients γ2 - γ6. Note that firms’ financial capabil-

ity (CapFin) does not exert an effect on firms’ capability in the discovery phase (CapDiscover)

since the development cost in this phase is low and this effect is not really explained by firms’

revenues and R&D expenditures. Hence, the figure does not show a direct path from CapFin

to CapDiscover. Firms’ financial capability also has an effect on firms’ licensing engagements

(EngESLicense, EngPh12License, and EngPh3License), as shown by the path coefficients γ7 -

γ9. Section 7 discusses the licensing effects on firms’ R&D capabilities, accounting for direct and

indirect effects.

5. Data and Variable Definitions

We use data on licensing and R&D and augment those with financial information for public U.S.-

based pharmaceutical and biopharmaceutical firms from 1998 to 2011. The R&D projects and

licensing deals are taken from BioPharm Insight, which collects information from U.S. Securities

and Exchange Commission filings and a global network of journalists and industry research analysts.

The data consist of detailed firm-level licensing deals, research projects, and drug approvals. Our

sample includes 311 firms, of which 138 firms engaged in licensing deals.
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Firms’ licensing engagement is measured by the number of deals and the deal values. Figure 2

displays the number of licensing deals and the total deal values. The number of licensing deals

increased from 1998 to 2010, and it reached the peak in 2010, with 275 registered deals. The total

deal value also increased in this period, reaching its maximum of $45 billion in 2010.
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Figure 2 Licensing Deals from 1998 to 2011

Figure 3 depicts the number of licensing deals and the number of NDA and BLA approvals from

1998 to 2011. In 2006 and 2010, we observe sharp reductions in drug approvals, which coincided

with a large number of licensing deals. This observation provides some indication that licensing

might replenish drug development pipelines; our analysis will devote attention to this possibility.
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Figure 3 Licensing Deals and New Drug Approvals from 1998 to 2011

Figure 4 shows the R&D spending and licensing deal values. The figure shows that R&D spending

increased overall from 1998 to 2011; R&D spending increased from 1998 to 2008and then hovered

around $65 billion from 2009 to 2011. Therefore, R&D spending, the number of licensing deals,

and total deal values show increasing trends from 1998 to 2010.
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Figure 4 Licensing Deal Value and R&D Spending from 1998 to 2011

Table 3 shows summary statistics for several variables used in our empirical model and classified

by licensing and non-licensing firms. The upper panel of Table 3 reports several firm-level char-

acteristics that may determine firms’ R&D capabilities and licensing activities. These variables

include firms’ annual revenues (Revenuest), R&D spending (RDExpenset), the number of licens-

ing deals (NDealst), and the value of licensing deals (DealV aluet). In terms of revenue and R&D

investment, licensing firms are characterized by higher annual revenues than non-licensing firms.

Licensing firms also invest more in R&D and are involved in more drug development projects than

non-licensing firms.

Table 3 Summary Annual Statistics for Licensing and Non-Licensing Firms

Licensing Firms Non-Licensing Firms
Average Standard Deviation Average Standard Deviation

Revenues ($ billion) 341.2 110.5 11.5 2.4
R&DSpending ($ billion) 52.1 20.7 6.2 2.3
NDeals 145 82
DealV alue ($ billion) 15 15

NDiscovery 22 30 7 10
NPreclin 31 37 17 21
NPhase1 39 42 13 13
NPhase2 57 61 18 20
NPhase3 30 28 9 10
NApprovals 10 5 3 3

We examine the effect of licensing on licensees’ internal R&D capabilities. We build on the study

by Ceccagnoli et al. (2014), who formulate complementarities as being dependent on absorptive

capacity, economies of scope, and licensing experience. We follow this approach and include mea-

surement variables such as project count variables, project scope variables, licensing deal count

and value (scale) variables, and licensing scope variables.

More specifically, we introduce the measurement variables as shown in Table 4. As mentioned

above, R&D capabilities in the six research phases (CapDiscover, CapPreClin, CapPh1, CapPh2,
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CapPh3, and CapProduct) are treated as latent variables in our study. The corresponding R&D

capabilities in year t will be measured by the following measurement variables: 1) The number of

projects across research stages: We denote the number of projects in the discovery and preclinical

phases, phases 1, 2, and 3, and the product approval stage as NDiscovery, NPreclin, NPhase1,

NPhase2, NPhase3, and NApprovals, respectively. 2) The variety of those projects in the corre-

sponding phases: The project variety is measured by the number of projects in each treatment (or

indication). Some firms develop drugs in many indications, while others work on only a few indi-

cations. We characterize a firm’s drug development scope by the number of indications on which

a firm works. We consider the number of indications in discovery (NDiscoverInds), preclinical

(NPreclinInds), and phases 1 to 3 (NPh1Inds, NPh2Inds, and NPh3Inds). We denote the

number of approved drugs by the FDA as NApprovals.

Table 4 Latent Variables and Measurement Variables

Latent Variables Measurement Variables Description

CapDiscovert NDiscoveryt The number of discovery projects in year t
NDiscoveryt−1 The number of discovery projects in year t− 1

NDiscoveryIndst−2 The number of indications projects in year t− 2

CapPreClint NPreclint The number of projects in preclinical trial in year t
NPreclint−1 The number of projects in preclinical phase in year t− 1

NPreclinIndst−2 The number of indications in preclinical phase in year t− 2

CapPh1t NPhase1t The number of projects in phase 1 in year t
NPhase1t−1 The number of projects in phase 1 in year t− 1
NPh1Indst−2 The number of indications tested in phase 1 projects in year t− 2

CapPh2t NPhase2t The number of projects in phase 2 in year t
NPhase2t−1 The number of projects in phase 2 in year t− 1
NPh2Indst−2 The number of indications tested in phase 2 projects in year t− 2

CapPh3t NPhase3t The number of projects in phase 3 in year t
NPhase3t−1 The number of projects in phase 3 in year t− 1
NPh3Indst−2 The number of indications tested in phase 3 projects in year t− 2

CapProductt NApprovalst The number of approved drugs in year t
NApprovalst−1 The number of approved drugs in year t− 1
NIndicationst−2 The number of approved drug indications in year t− 2

EngESLicenset LicenseESt The number of licensing deals in discovery or preclinical phases in year t
LicESDealV alt The total licensing deal value in discovery or preclinical phases in year t
LicESIndst−1 The number of licensing indications in discovery or preclinical phases

in year t− 1

EngPh12Licenset LicensePh12t The number of licensing deals in phases 1 and 2 in year t
LicensePh12t−1 The number of licensing deals in phases 1 and 2 in year t− 1
LicPh12DealV alt The total licensing deal values in phases 1 and 2 in year t

EngPh3Licenset LicensePh3t The number of licensing deals in phase 3 in year t
LicPh3TAt The number of licensing therapeutic areas in phase 3 in year t

LicPh3Indst−1 The number of licensing indications in phase 3 in year t− 1

CapFint Revenuet The revenue in year t
RDExpenset−2 The R&D spending in year t− 2
RDExpenset−3 The R&D spending in year t− 3

To capture the dynamic effects of licensing and financial capability on the licensees’ R&D capa-

bilities, the measurement variables for R&D capabilities in year t include the count variables of
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drug development projects and product approvals in years t, t−1, and t−2. For the same reasons,

the measured variables for financial capability and licensing engagement include current and past

measurement variables.

Engagement in licensing deals across the research phases (EngESLicense, EngPh12License

and EngPh3License) is formulated as latent variables and proxied by the several measurement

variables (see Table 4, lower panel). Engagement in licensing deals in the corresponding research

phases will be measured by the number of licensing deals in the corresponding phases (LicenseES,

LicensePh12, and LicensePh3). Moreover, since some licensing deals involve large amounts

of investments, we also consider the deal values in the development stages (LicESDealV al,

LicPh12DealV al, and LicPh3DealV al) The number of licensing deals and deal values measure

the scale of the licensing deals.

We also include the number of therapeutic areas of licensing deals in the early stage (LicESTAs),

phases 1 and 2 (LicPh12TAs), and phase 3 (LicPh3TA) to characterize the scope of licensing

for a firm. Finally, the numbers of indications of licensing deals in the early stage (LicESInds),

phases 1 and 2 (LicPh12Inds), and phase 3 (LicPh3Inds) measure the scope of licensing.

Figure 7 in Appendix A.1 summarizes the measurement variables that measure firms’ research

capabilities, firms’ licensing engagements, and firms’ financial capability in support of internal

R&D and external R&D (licensing) projects.

6. Research Methodology

We evaluate the effect of licensing on firms’ R&D capabilities using an SEM approach (see also

Liao et al. (2007) and Rothaermel and Deeds (2004)). Based on this technique, we estimate a set

of linear equations between latent and measurement variables. In Section 6.1, we introduce the

specifications of the measurement model. In Section 6.2, we introduce the specifications of the

structural model.

6.1. Measurement Model Specifications

We now introduce the measurement model as illustrated in Fig. 7. The measurement model is based

on the measurement variables as shown in Table 4. The specification of the measurement model

is illustrated in Figure 7 in the Appendix A.1, where the rectangles represent the measurement

variables and the arrows represent the impact of the latent variables on the measurement variables.

Consider the vector of measured variables, y, which is associated with the following latent vari-

ables or constructs: CapDiscover (η1), CapPreclin (η2), CapPh1 (η3), CapPh2 (η4), CapPh3

(η5), CapProduct (η6), EngESLicense (η7), EngPh12License (η8), and EngPh3License (η9).

The vector y has 24 elements, y1, · · · , y24. We let x be the vector of measured variables associated

with the latent variable CapFin, which is a 3× 1 vector. The measurement model is given by
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y = Λyη+ ε, (1a)

x = Λxξ+ δ. (1b)

In the above equations, η is the vector of latent endogenous variables, which has the following

nine elements η1, · · · , η9, ξ is the latent exogenous variable, Λy is the coefficient matrix that shows

the relation of y to η and has 24 rows and nine columns, Λx is the coefficient matrix that shows

the relation of x to ξ and has three rows and one column, and ε(24× 1) and δ(3× 1) are vectors

of the measurement errors for y and x, respectively.

In considering the measurement model in equations (1a) and (1b), the measured variables y

and x are dependent variables. Thus, unlike in linear regression models, multicollinearity between

a count variable in year t and its counterpart in year t− 1 does not cause parameter estimation

problems.

6.2. Structural Model Specifications

We now turn to the structural model to estimate the effects of licensing on a licensee’s R&D

capabilities, as illustrated in Figure 1. We also consider the fact that the financial capability of a firm

(revenue and spending on R&D) determines a firm’s R&D capabilities and licensing engagements.

The structural model is defined as follows: Let B denote the 9×9 coefficient matrix that reflects

the effects that the latent endogenous variables have on each other. Some coefficients are zero

because we do not include some paths in our model. The nonzero elements of B are the path

coefficients, β71, · · · , β91 (see Fig. 1). Let Γ be the 9×1 coefficient matrix for the effects of ξ on the

vector of endogenous variables, η. The nonzero elements of Γ are γ2, · · · , γ9 (as shown in Fig. 1).

The structural model is given by
η= Bη+ Γξ+ ζ, (2)

where ζ is the vector of disturbances, which we assume to have an expected value of zero, E[ζ] = 0,

and to be uncorrelated with ξ.

6.3. Direct and Indirect Effects

Using the structural model, we can estimate the direct and indirect effects of licensing and financial

capability on R&D capabilities. The direct effect is the effect of one latent variable on another

latent variable that is unmediated by any other variables (see Figure 1). The indirect effect of a

latent variable is mediated by at least one intervening (intermediate) variable.

To illustrate the direct and indirect effects, we consider the effects of licensing in phases 1 and

2 (latent variable η8) on a firm’s R&D capability in phase 2 (latent variable η4). The direct effect,

represented by β84, is the effect of EngPh12License (η8) on CapPh2 (η4). The indirect effect works

via the intervening variable, the R&D capability in phase 1 (latent variable η3). A unit change in

η8 results in an expected β83 change in η3. The β83 change in η3 leads to an expected β34 change

in η4. The indirect effect of η8 on η4 is β83β34. The total effect of η8 on η4 is β84 +β83β34.
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7. Model Analyses and Results

We follow Anderson and Gerbing (1988) and estimate the model using a two-step approach; that

is, we estimate the measurement model and the structural model. All analyses are based on a

covariance matrix of the entire set of measured variables, which we estimate using the maximum

likelihood estimation method.

7.1. Examining the Overall Measurement Model

In the measurement model, the sample data are represented by a covariance matrix of measured

variables. The measurement model represents the relationships between the latent variables (con-

structs) and provides an assessment of convergent and discriminant validity. The goodness-of-fit

indices for the measurement model measure how well the theoretical covariance matrix matches

the covariance matrix of the sample data.

7.1.1. Factor analysis. Confirmatory factor analysis (CFA) tests how well the measured vari-

ables represent the latent variables. Measured variables of a specific construct should converge or

share a high proportion of variance. High loadings on a factor indicate that the indicators converge

to some common point. All factor loadings should be statistically significant. A rule of thumb is

that standardized loading estimates should be 0.5 or higher. The factor loadings are shown in

Table 7 in Appendix A.2. The table shows that all factor loadings are greater than 0.5 except

the ones for NDiscoveryt−1, NPreclint−1, NPreclinIndst−2, NApprovalst, NApprovalst−1, and

LicPh12Dealst−1. A rule of thumb suggests that factor loadings greater than 0.33 are considered

to meet the minimal level of practical significance (Ho 2006). By this rule, only NDiscoveryt−1,

NApprovalst−1, and LicPh12Dealst−1 are considered insignificant (i.e., less than 10% of the vari-

able’s total variance is accounted for by their respective factors). However, we keep those measured

variables with smaller factor loadings since they appropriately represent the R&D capabilities in

drug discovery, product approval, and the engagement in licensing of drugs in clinical tests in

phases 1 and 2 (EngPh12License). Section 7.1.2 explains why these measured variables should

remain in the structural equation model.

7.1.2. Reliability analysis. Reliability is the consistency of measurement of variables for

each construct (latent variable). We use Cronbach’s alpha reliability measure. This coefficient is

an estimate of the average of all the correlation coefficients of the measured variables within a

construct. Reliability is also an indicator of convergent validity. The rule of thumb says that an

estimate of 0.7 or higher suggests good reliability. A Cronbach’s alpha between 0.6 and 0.7 may be

acceptable if the other indicators of the model’s construct validity are good.

We report the Cronbach’s alpha coefficient for each construct and the Cronbach’s alpha coef-

ficients after we delete a measurement variable from the construct in Table 7 in Appendix A.2.
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If the standardized alpha decreases after removing a variable from the construct, this variable is

strongly correlated with other variables in the construct. But, if the standardized alpha increases

after removing a variable from the construct, then removing this variable from the construct makes

the construct more reliable.

The Cronbach’s alpha coefficients are all above 0.63, which demonstrates that all of the

measured variables in each construct are reliable, and each construct is internally consistent.

The Cronbach’s alpha coefficients do not increase, with the exception of removing variables

NPhase2t−1, LicPh12Dealst−1, and LicPh3Indst−1 from their constructs. However, we still keep

the three variables in their corresponding constructs for the reasons below. The factor loadings for

both—NPhase2t−1 and LicPh12Dealst−1—are above 0.33, and these variables measure the firm’s

R&D capability for phase 2 and the engagement in licensing of drugs in phases 1 and 2. Although

the factor loading for LicPh3Indst−1 is below 0.33, this variable measures the scope of licensing

of drugs in phase 3 for a firm, and it is indispensable for the measurement model.

We now provide some evidence in support of retaining the measured variables with low fac-

tor loadings, as identified in section 7.1.1. Removal of NDiscoveryt−1 will reduce the Cronbach’s

alpha coefficient for the latent variable CapDiscover. Thus, NDiscoveryt−1 is consistent with

other measurement variables that represent the latent variable CapDiscover and should be kept

in this construct. Similarly, removal of NApprovalst−1 will reduce the Cronbach’s alpha coeffi-

cient for the latent variable CapProduct. Thus, NApprovalst−1 is consistent with other measured

variables that represent the latent variable CapProduct and should be kept in this construct.

Although the removal of LicPh12Dealst−1 raises the Cronbach’s alpha coefficient for the latent

variable EngPh12License, we keep this measurement variable because it is an important variable

representing the dynamics of licensing activities.

7.1.3. Measurement model estimation. We estimate the measurement model along with

the covariance matrix for all latent variables. The measurement model is supported by the various

fit indices that are reported in Table 5, column 1. The χ2 takes on a value of 2244.8 with 359 degrees

of freedom. The χ2 test provides a statistical test of the difference between the covariance matrix of

the sample data and the estimated covariance matrix. The smaller the χ2 statistic, the better the

measurement model. However, this statistic increases with the sample size and also increases with

the number of measured variables. The ratio of χ2 value to the degrees of freedom of the model is

6.3. A larger χ2 may be due to a large sample size (which is 388) and the large number of measured

variables (which is 30). Furthermore, in case of large samples, almost every reasonable model will
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be rejected if only the chi-square value is considered (Ho 2006). Nevertheless, the measurement

model is acceptable based on the ratio of the χ2 value and the degrees of freedom.3.

Table 5 Overall Fit Indices

Index Measurement Model Structural Model
(1) (2)

Chi-Square 2262.6 2270.8
Chi-Square Degree of Freedom 359 382
Standardized RMR (SRMR) 0.16 0.0827

RMSEA 0.117 0.113
RMSEA Lower 90% Confidence Limit 0.108 0.109
RMSEA Upper 90% Confidence Limit 0.121 0.118

Goodness-of-Fit Index (GFI) 0.71 0.70
Bentler Comparative Fit Index 0.82 0.82

Bentler-Bonett NFI 0.79 0.79
Bentler-Bonett Non-normed Index 0.78 0.80

The goodness-of-fit index (GFI) is less sensitive to sample size; it ranges from 0 to 1. Although a

higher value of GFI indicates a better fit, no threshold level for acceptability has been established

(Ho 2006). Our GFI returns a value of 0.71, indicating a reasonably good model fit given our large

sample size.

The root mean square residual is the square root of the squared residuals where the errors are the

prediction errors for the elements in the covariance matrix of the sample data. The standardized

root mean square residual (SRMS) is 0.158. The root mean square error of approximation (RMSEA)

has a known probability distribution. Hence, it represents how well a model fits the population.

A lower RMSEA value indicates a better fit. Our RMSEA returns a value of 0.117. The 95%

confidence interval of RMSEA is between 0.108 and 0.124. The SRMR and RMSEA along with

the 95% confidence interval suggest a good model fit given the large sample size of the data.

The incremental fit indices assess how well a specified model fits relative to a null model, which

assumes that all observed variables are uncorrelated. The normed fit index (NFI) is the ratio of the

difference in the χ2 value for the fitted model and a null model divided by the χ2 value of the null

model. A model with perfect fit has an NFI of 1. The Bentler-Bonett NFI and the Bentler-Bonett

non-normed index are 0.78 and 0.79, respectively. The Bentler comparative fit index is 0.82. The

NFI indices and the comparative fit index all indicate a reasonably good model fit.
We report the factor loadings, variances of error terms, and R squares of the measured variables

in Table 8 in Appendix A.2. All the measured variables have statistically significant relationships

with their latent variables (constructs) where their t-values exceed the critical value of the 0.1%

significance level.

3 The ratios of the χ2 values in other studies published in Management Science, Journal of Operations Management,
Decision Sciences, and Journal of Production and Operations Management Society (in the years from 1984 to 2003)
have a mean of 2.17, a median of 1.62, and a range of (0.01, 21.71) (Shah and Goldstein 2006).
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7.2. Examining the Overall Structural Model

Section 7.1 demonstrates that the measurement model fits the covariance matrix of the measured

variables well. We now evaluate the fit and validity of the structural model.

Table 5 lists the overall fit indices in column 2. Because we restrict some path coefficients to be

zero in the structural model, the chi-square of the structural model is higher than the one of the

measurement model. The ratio of the χ2 value to the degrees of freedom of the structural model

is 5.9. Thus, the chi-square value indicates that the structural model fits the data well. The GFI

is 0.7, which indicates a reasonably good model fit of the structural model given the large sample

size.

The SRMR is 0.083, the RMSEA is 0.11, and the 95% confidence interval of the RMSEA is

between 0.109 and 0.118. The SRMR < 0.08 and RMSEAs range from 0.05 to 0.08 and are deemed

acceptable (Anderson and Gerbing 1988). The SRMS indicates an acceptable model fit. The incre-

mental fit indices are the same as the ones for the measurement model. These indices demonstrate

that the structural model fits the covariance matrix of the measured variables well.

The overall structural model replicates the covariance of the measured variables well. We report

the factor loadings, variances of error terms, and R-squares of the measured variables in Table 9 in

Appendix A.2. All the measurement variables have statistically significant relationships with their

latent variables where their t-values exceed the critical value at the 0.1% significance level. The

variances of the error terms are all different from zero at the 1% significance level.

The factor loadings for the measured variables in the structural model are roughly the same as

those in the measurement model, which are listed in Table 8 in Appendix A.2, even though we

reestimate the factor loadings along with the relationship paths in the structural model. Recall

that the measurement model assumes that a relationship between each pair of latent variables

exists. The factor loading consistency between the measurement model and the structural model

demonstrates that the structural model replicates the covariance of the measured variables well,

and the structural model represents all relationships among the latent variables.

7.3. Results of the Structural Equation Model

After validating the measurement and structural models in sections 7.1 and 7.2, we now examine

the effects of licensing engagements, financial capability, and product approval capability on the

licensees’ R&D capabilities and licensing activities across various stages, see Figure 5. The direct,

indirect, and total effects across all the latent variables are estimated in our structural model.

Table 6 reports the estimation results.
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Table 6 The Direct and Indirect Licensing Effects on Product Development and Financial Performance

From To Total Direct Indirect
EngESLicense CapDiscover Effect 0.385 0.374 0.011

Std Error 0.076 0.073 0.006
t Value 5.066 5.156 1.910
p Value < 0.0001 < 0.0001 0.0561

EngESLicense CapPreClin Effect 0.357 -0.098 0.455
Std Error 0.110 0.096 0.100
t Value 3.238 -1.028 4.568
p Value 0.0012 0.3039 <.0001

EngESLicense CapPh1 Effect 0.594 0.043 0.551
Std Error 0.405 0.383 0.169
t Value 1.467 0.112 3.259
p Value 0.1425 0.9107 0.00112

EngPh12License CapPh1 Effect 3.529 3.477 0.052
Std Error 0.948 0.930 0.031
t Value 3.723 3.738 1.692
p Value 0.000197 0.000186 0.0908

EngPh12License CapPh2 Effect 2.773 -1.024 3.797
Std Error 0.882 0.475 1.059
t Value 3.146 -2.154 3.585
p Value 0.0017 0.0312 0.000337

EngPh12License CapPh3 Effect 1.081 -0.452 1.533
Std Error 0.439 0.271 0.504
t Value 2.461 -1.666 3.043
p Value 0.0139 0.0958 0.002343

EngPh3License CapPh3 Effect -0.210 -0.204 -0.006
Std Error 0.445 0.432 0.013
t Value -0.472 -0.472 -0.462
p Value 0.6372 0.6372 0.644

EngPh3License CapProduct Effect -0.051 0.000 -0.051
Std Error 0.109 0.109
t Value -0.471 -0.471
p Value 0.6374 0.6374

CapProduct EngESLicense Effect 0.348 0.338 0.010
Std Error 0.198 0.192 0.007
t Value 1.758 1.763 1.329
p Value 0.0787 0.078 0.1839

CapFin EngESLicense Effect 0.050 0.045 0.005
Std Error 0.003 0.004 0.003
t Value 16.052 11.360 1.792
p Value < 0.0001 < 0.0001 0.0731

CapFin EngPh12License Effect 0.018 0.018 0.000
Std Error 0.002 0.002
t Value 8.350 8.350
p Value < 0.0001 < 0.0001

CapFin EngPh3License Effect 0.016 0.016 0.000
Std Error 0.002 0.002
t Value 8.529 8.529
p Value < 0.0001 < 0.0001

CapFin CapPreClin Effect 0.014 -0.003 0.017
Std Error 0.004 0.005 0.005
t Value 3.713 -0.711 3.248
p Value 0.0002 0.4771 0.0012

CapFin CapPh1 Effect 0.053 -0.034 0.086
Std Error 0.008 0.025 0.026
t Value 6.287 -1.328 3.305
p Value < 0.0001 0.1841 0.0009

CapFin CapPh2 Effect 0.063 0.025 0.038
Std Error 0.009 0.009 0.012
t Value 7.217 2.883 3.336
p Value < 0.0001 0.0039 0.0008

CapFin CapPh3 Effect 0.038 0.015 0.024
Std Error 0.005 0.009 0.009
t Value 7.822 1.688 2.501
p Value < 0.0001 0.0913 0.0124

CapFin CapProduct Effect 0.014 0.005 0.009
Std Error 0.002 0.002 0.001
t Value 7.668 3.245 6.533
p Value < 0.0001 0.0012 < 0.0001
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Figure 5 Influence Diagram (Direct Effect)

7.3.1. Effects of licensing on internal R&D capabilities across phases. We begin with

presenting the effects of licensing on the licensees’ R&D capabilities, as shown in the upper panel

of Table 6. Licensing engagements in the discovery and preclinical phases (EngESLicense) have

positive and statistically significant total effects only on the firms’ R&D capabilities in the discov-

ery and preclinical phases. However, the total effect on phase 1 R&D capability is not significant.

It is interesting to note that the direct effects of early-stage licensing (EngESLicense) are posi-

tively significant only for R&D capability in the discovery phase. In contrast, early-stage licensing

(EngESLicense) indirectly affects the R&D capabilities in the discovery, preclinical, and phase

1 stages. These indirect effects are positive and significant. For example, the indirect effect of

early-stage licensing (EngESLicense) on R&D capability in the preclinical phase (CapPreClin)
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becomes effective via the firms’ R&D internal capability in the drug discovery phase. Similarly,

the indirect effect of early-stage licensing (EngESLicense) on phase 1 capability (CapPh1) is

facilitated by the firms’ internal R&D capabilities in the drug discovery and preclinical phases. In

general, early-stage licensing (EngESLicense) is more frequently characterized by indirect effects

than by direct effects on R&D capabilities. This result provides evidence that early-stage licensing

has long-run effects that are complementary to in-house R&D capabilities; this type of licensing

agreement works via positive indirect effects across different phases. Moreover, it should be rec-

ognized that the indirect effect of early-stage licensing (EngESLicense) on phase 1 capability

(CapPh1) is not strong enough to compensate for the insignificant direct effect. This result shows

that early-stage licensing improves preclinical research capability, but licensees may not be able to

transfer the external preclinical research capability to improve internal R&D capabilities in clinical

phases.

Licensing engagements in phases 1 and 2 (EngPh12License) have significant effects on phase 1,

2, and 3 capabilities. All direct, indirect, and total effects are significant in this case. Interestingly,

the direct effects of licensing on phase 2 and 3 capabilities are negative, and these will be dominated

by the positive indirect effects (via the licensee’s R&D capabilities in phases 1 and 2), turning the

total effects into positive effects. This result shows that even the licensing deals formed in clinical

phases are affected by delayed indirect effects that are so strong that they even dominate the

negative direct effects. This result also indicates that licensees (often established pharmaceutical

firms) acquire technologies from innovators and effectively integrate these external technologies

into their R&D. Thus, licensing engagements in clinical trial phases have lagged indirect effects on

the licensees’ R&D capabilities.

Licensing engagements in the clinical phase 3 (EngPh3License) exert no significant total, direct,

and indirect effects on firms’ late-phase R&D capabilities in phase 3 and the product development

phases. Engagement in licensing in the late-stage clinical phases does not influence a firm’s R&D

capabilities, possibly due to the fact that licensing engagements in the late phase replenish a firm’s

drug development pipeline.

In summary, licensing agreements at the early research stage have strong indirect effects on R&D

capabilities in subsequent phases. This finding highlights the role of firms’ absorptive capacities

in drug development. That is, firms have to integrate their external technologies into their R&D

processes. Licensing at the intermediate stage (phases 1 and 2) has negative direct effects, which

are turned into positive total effects due to the strong indirect effects. Licensing at the late stage

has no significant direct or indirect effect on licensees’ capabilities in the phase 3 clinical tests and

the product approval phase.
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7.3.2. Effects of product approval and financial capabilities on licensing. We turn to

the estimation results of the effects of firms’ product approval (CapProduct) and firms’ spending

in R&D or their financial capabilities (CapFin) on licensing engagements across phases (see the

middle panel of Table 6). A firm’s product approval capability (CapProduct) has a significantly

positive direct effect on early-stage licensing, while the indirect effect is not significant. Firms’

financial capabilities (CapFin) have significant direct and total effects on licensing across all phases.

This finding manifests the important role of financial resources in internal R&D and external

collaboration. These results show that financial endowment is a direct predictor for licensing, and

it confirms that a strong financial background promotes licensing engagements across all phases.

This gives rise to the fact that licensing is associated with high R&D expenses and financially more

solid and more capital-intensive firms, such that larger pharmaceutical firms are more inclined to

engage in licensing deals. It should be noted that the indirect effects on licensing engagements in

clinical phases are close to zero, which further supports the fact that financial strength is necessary

for engaging in licensing deals.

7.3.3. Effects of financial capability on pre-clinical and clinical R&D capabilities.

The lower panel of Table 6 shows that firms’ financial capabilities also exert positive total effects

on firms’ R&D capabilities across all phases. Having a closer look reveals that the direct effects of

a firm’s financial capability (CapFin) on R&D capabilities are negative but not significant for the

preclinical tests and phase 1 clinical tests. This finding shows that even financially more established

firms face constraints in drug research and development (discovery and preclinical phases) and, as

a solution to this problem, they rely on licensing agreements. The direct effects of a firm’s financial

capability on R&D capabilities are significant and positive for clinical tests in all phases. The

significant and positive direct effects indicate that licensees also invest substantially in developing

their own R&D capabilities in clinical phases.

It is remarkable that financial capabilities (CapFin) have strong indirect effects on firms’ R&D

capabilities via licensing activities.4 The above findings reflect that firms increasingly collaborate

with other firms, especially biotechnology firms, to develop drugs in the preclinical and phase 1 to

3 phases.

The positive and significant total effect of financial capabilities on the R&D capabilities in the

preclinical and phase 1 test (CapPreClin and CapPh1) supports that licensing engagements are

4 The indirect effect of CapFin on a firm’s R&D capability in the preclinical phase works via firms’ licensing engage-
ment in the early development stages (discovery and preclinical). Similarly, the indirect effect of CapFin on a firm’s
R&D capabilities in phases 1 and 2 becomes effective via the firm’s licensing in the early stage and intermediate
stage (phase 1 and 2 of the clinical tests) of the drug development. The indirect effect of CapFin on a firm’s R&D
capability in phase 3 works through the firm’s licensing in the early stage and intermediate stage of drug development
and in phase 3 clinical tests. Similarly, the indirect effect on CapFin on a firm’s product approval capability works
through licensing in all stages.
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helpful in turning the negative direct effects into positive effects. Specifically, financial resources

exert significant and positive effects on the above two phases through licensing engagements in

previous phases. These firms seem to divert their R&D spending to acquire external knowledge

and technologies through licensing in the early stages. This result shows that investment in R&D

strengthens firms’ research capabilities. The effects of licensing are even more pronounced for the

capabilities in the clinical phases 2 and 3 and product approval. Interestingly, the indirect effects of

finance on R&D capabilities are significant and positive across all phases. This confirms that R&D

capabilities and success in successive research phases depend on research success and capabilities

in previous phases. Moreover, the significant and positive indirect effects also provide evidence that

financial resources are crucial for building firms’ R&D capabilities (through licensing engagements

in the previous phases that affect R&D capabilities in successive phases). In summary, established

firms’ financial resources help them develop R&D capabilities in phases 2 and 3 clinical tests and

product approvals (i.e., developing expertise in conducting large-scale clinical trials and expertise

in working with the FDA to get products approved) both directly and indirectly, but the indirect

effects are through licensing engagements.

7.3.4. Project transition rate. After examining the effect of licensing on firms’ R&D capa-

bilities, we examine how the enhanced R&D capabilities translate into R&D productivity. The

productivity is measured by the transition rate from one phase to a later phase, which we introduce

below. After a firm tests a drug in the preclinical phase, it will continue testing the drug in phase

1.

The ratio of the number of projects in phase 1 in year t (NPhase1t) to that of the projects in

preclinical phase in year t− 1 (NPreclint−1) is a proxy of the transition rate from the preclinical

phase to phase 1 (S01). That is, NPhase1t is a function of NPreclint−1,

NPhase1t = S01 ×NPreclint−1.

The definitions of transition rates from phase 1 to phase 2 (S12), from phase 2 to phase 3 (S23),

and from phase 3 to the FDA approval of drugs (S34) are similar. The following equations relate

the number of projects in year t in one phase to the number of projects in year t− 1 in an earlier

phase,

NPhase2t = S12 ×NPhase1t−1, (3a)

NPhase3t = S23 ×NPhase2t−1, and (3b)

NApprovalst = S34 ×NPhase3t−1. (3c)

From the structural equations in Section 6, we can derive the transition rates from the above

equations. As an example, we derive transition rate S12 that equation (3a) defines. From the

measurement equation (1a), we have
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NPhase1t−1 = λ8CapPh1t + ε8,t−1 = λ8η3t + ε8,t−1, (4)

NPhase2t = λ10CapPh2t + ε10,t = λ10η8t + ε10,t. (5)

From the latent variable model (2), we have

CapPh2t = β34CapPh1t + ζ4t = β34η3t + ζ4t. (6)

Rearranging terms in equation (4), we have η3t = 1
λ8
NPhase1t−1−

ε8,t−1

λ8
. Substituting η3t from the

above equation into equation (6) yields CapPh2t = β34(
1
λ8
NPhase1t−1 −

ε8,t−1

λ8
) + ζ4t. Replacing

CapPh2t in equation (5) yields, NPhase2t = λ10

[
β34(

1
λ8
NPhase1t−1 −

ε8,t−1

λ8
) + ζ4t

]
+ ε10,t. The

coefficient of NPhase1t−1 in the above equation is S12. We similarly derive the transition rates

S01, S23, and S34. In summary, we estimate the transition rates using the coefficient estimates of

the structural equation by the following formulas,

S01 =
λ7β23

λ5

, S12 =
λ10β34

λ8

, S23 =
λ13β45

λ11

, and S34 =
λ16β56

λ14

.

We calculate the transition rates for firms that engage in licensing using the parameter estimates

of the structural equation model in Section 7.2. We also calculate the transition rates for firms

that do not engage in licensing using the parameter estimates of the structural equation model

that Appendix B provides. For the latter type of firms, we cannot estimate the transition rate from

phase 3 (CapPh3) to product approval (CapProduct) due to the small number of observations

associated with this transition.

Licensing firms often possess different R&D capabilities in drug discovery and development than

do firms that do not engage in licensing. To eliminate such effect on the transition rates from one

phase to the next phase, we normalize the transitions rates S01, S12, S23, and S34 by the transition

rate from the discovery to the preclinical phase for each firm. Figure 6 displays the normalized

transition rates for licensing firms with a solid line and for non-licensing firms with a dashed line.

Firms that engage in licensing have higher transition rates from the early development stage to

phase 1 (S01) than the firms that do not engage in licensing (0.78 vs. 0.39). In Section 7.3.1, we find

that licensing in early stages of the drug development process (EngESLicense) enhances firms’

R&D capability (CapPreClin). Through licensing, firms (typically large pharmaceutical firms)

learn new mechanisms from innovative firms (typically biotechnology firms) for treating diseases or

developing drugs. The enhanced R&D capability in the preclinical phase (CapPreClin) translates

into R&D productivity in the preclinical phase (CapPreClin), which results in a higher transition

rate of projects from the preclinical tests to phase 1 clinical tests.

Licensing firms have a slightly lower transition rate from phase 1 to phase 2 (S12) than non-

licensing firms (0.81 vs. 0.84). The high transition rate S12 for both types of firms is also congru-

ent with the industry average transition rate of 59.52% (DiMasi et al. 2003). Although licensing
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Figure 6 Project Transition Rates for Firms: Licensing Firms vs. Non-Licensing Firms

enhances firms’ R&D capabilities in phase 1, the enhanced R&D capabilities cannot further improve

the project transition rate for licensing firms. This may be because firms already have high tran-

sition rates S12 and have little room to further improve their productivity.

Transition rates from phase 2 to phase 3 (S23) for both types of firms are lower than those from

phase 1 to phase 2. In particular, the transition rates for licensing firms and non-licensing firms

are 0.43 and 0.35, respectively. The transition rate for the latter type of firms is the same as the

industry average transition rate of 35.52% (DiMasi et al. 2003). Phase 3 clinical trials are expensive,

and firms have difficulties in finding patients. Facing financial constraints in R&D, some firms

discontinue their projects in phase 3. However, licensing in phases 1 and 2 enhances firms’ R&D

capabilities in phase 2 (CapPh2). In addition, licensing in the early stage of drug development

(CapESLicense) enhances firms’ R&D capabilities in phase 1 (CapPh1). The knowledge gained

and technologies acquired from licensing in the early stage and phase 1 carry over to phase 2.

The enhanced R&D capabilities translate into higher productivity for licensing firms (a 7% higher

transition rate) than for the non-licensing firms.

Because project transition rates from phase 2 to phase 3 for both types of firms are low, the

transition rate S34 from phase 3 to approved products is also low. In fact, only licensing firms have

a sizable transition rate from phase 3 to product approval. Licensing in phases 1 and 2 indirectly

enhances firms’ R&D capability in phase 3. The enhanced R&D capability in turn boosts the

productivity for licensing firms from other firms. Thus, licensing firms have a sizable transition

rate S34. Although licensing in phases 1 and 2 indirectly enhances firms’ R&D capabilities in phase

3, licensing in phase 3 does not enhance R&D capability in phase 3. Since licensing in phase 3 does

not increase firms’ R&D capabilities, the transition rate from phase 3 to product approval S34 for

licensing firms is lower than the industry average of 61.95% (DiMasi et al. 2003).
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8. Discussion and Conclusions

Pharmaceutical firms face enormous pressure to develop new drugs. In order to keep up with this

innovation pressure, firms often engage in R&D alliances such as licenses, which become increasingly

important for the development of new drugs. Licensing allows firms to acquire external knowledge

and expertise from other firms that is beneficial for the development of new drugs. This knowledge

and expertise are dependent on the specific drug development phases. The successful transfer of

externally acquired knowledge to (inside) the firm is critically dependent on firms’ internal R&D

capabilities, which are specific to the drug development phases.

Our study examines the effects of licensing on firms’ internal R&D capabilities across drug

development phases and on firms’ product approval capabilities. The evaluation is challenging

because the R&D capabilities are not observable. To overcome this challenge, we adopt a structural

equation modeling approach that enables us to examine the direct, indirect, and total effects of

licensing on firms’ internal R&D capabilities and product approval capability. We also examine the

direct, indirect, and total effects of firms’ financial capabilities on their R&D capabilities, licensing

engagement, and product approval capability.

Our estimation results show that licensing can be a useful instrument for firms to access partner

firms’ knowledge and technologies. However, the successful transfer of externally acquired knowl-

edge is critically dependent on how well the acquirer’s internal R&D capabilities are developed. It

also depends on the development stage when two firms form their licensing agreements. Licensing

formed in the early and intermediate stages of the drug development process improve licensees’

internal R&D capabilities in the discovery, preclinical, phase 1, and phase 2 stages. Our results

provide evidence that licensing can have indirect and long-lasting effects.

More specifically, licensing in the early stage of the drug development process enhances the

licensee’s R&D capability in phase 1, and licensing engagement in the intermediate stage of drug

development (phases 1 and 2) raises internal R&D capabilities in phases 2 and 3. The indirect effects

of early-stage licensing on the acquirer’s internal R&D capabilities are large, and they support the

fact that absorptive capacity plays an important role in transferring external knowledge in-house.

Our results also show that financial capabilities facilitate licensing and improve internal R&D

capabilities.

Licensing in later stages is costly and does not do much to enhance firms’ internal R&D capa-

bilities. Our study stresses that the internal and external R&D activities in early stages are com-

plements (especially in the drug discovery, preclinical, and phase 1 and 2 stages), but they are

substitutes in the late stage (phase 3) of the drug development process.

To conclude, our study suggests that licensing can be an appropriate instrument to help learning

and acquiring external knowledge. Especially at the early stages, externally acquired knowledge
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via licensing can be complementary to internal R&D capabilities. However, the success of knowl-

edge transfer critically depends on the strength of the acquirers’ internal R&D capabilities, which

requires large investments. Therefore, the success of licensing and the transfer of external knowl-

edge to boost internal drug development is critically dependent on the state of firms’ internal R&D

capabilities and their financial strength.
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Appendix A: Measurement Model Specification, Estimates of Measurement and
Structural Models, and Transition Rates

This appendix provides the specification of the measurement model and estimates of the measurement

and structural models for public firms with in-licensing. The appendix also provides the derivation of the

transition rates from one phase to the next phase.

A.1. Measurement Model Specification

This appendix provides the specification of the measurement model as illustrated in Fig. 7. The rectangles

represent the measurement variables. The arrows in the figures represent the impact of the latent variables

on the measurement variables.

A.2. Estimates of the Measurement and Structural Models

Table 7 in this appendix reports the factor loadings in the CFA and the Cronbach’s alpha coefficients in the

reliability analysis. Tables 8 and 9 in the appendix report the factor loadings, the variance of error terms,

and the R-squares of the measured variables in the measurement and structural models.
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Table 7 Factor Analyses and Cronbachs Alpha Coefficients

Cronbachs Alpha
Coefficient

Factor Factor Factor Factor Factor Factor Commun- with All without One
1 2 3 4 5 6 ality Variable Variable

NDiscoveryt 0.2564 0.1521 0.1699 0.0086 0.7243 0.0511 0.6963 0.7278 0.5945
NDiscoveryt−1 0.4312 0.0933 0.1032 -0.0477 0.1943 -0.0120 0.7224 0.7066
NDiscoveryt−2 0.2546 0.0415 0.5002 -0.0109 0.4783 0.0382 0.6249 0.6154

NPreclint 0.1499 0.0488 0.0020 -0.0780 0.6724 0.0348 0.4921 0.6395 0.6322
NPreclint−1 0.2655 0.0419 0.2432 0.0052 0.3332 -0.0107 0.6797 0.5144

NPreclinIndst−2 0.5671 0.0504 0.0824 -0.0789 0.3212 0.0739 0.6739 0.4689
NPhase1t 0.7130 0.1286 0.2830 0.0386 0.2925 0.3370 0.8252 0.9063 0.8826

NPhase1t−1 0.7157 0.0836 0.4638 -0.0046 0.1493 0.1896 0.8854 0.8721
NPh1Indst−2 0.8029 0.0917 0.3177 -0.0148 0.1888 0.0431 0.8083 0.8419
NPhase2t 0.8361 0.1952 0.1199 -0.0635 0.1359 0.1036 0.8047 0.8689 0.8028

NPhase2t−1 0.5712 0.1403 0.6221 -0.0157 0.2536 0.2082 0.8569 0.8738
NPh2Indst−2 0.8331 0.1875 0.2339 -0.0370 0.0909 -0.0192 0.8414 0.7646
NPhase3t 0.8446 0.1584 0.0443 0.0517 0.0294 0.1280 0.7976 0.8331 0.7575

NPhase3t−1 0.5809 0.1373 0.6798 0.0107 0.1421 0.0590 0.8457 0.8154
NP3Indst−2 0.6957 0.1776 0.1979 -0.0231 0.1403 0.1384 0.6128 0.7307
NApprovalst 0.3188 0.2302 0.4079 -0.0323 0.0305 -0.1063 0.3877 0.6391 0.3866

NApprovalst−1 0.5250 0.1419 0.1286 -0.0084 0.0508 0.0425 0.6289 0.6306
NIndicationst−2 0.2416 0.1519 0.7532 0.0061 0.0050 -0.0015 0.6634 0.6597

Revenuet 0.1087 0.8582 0.1344 0.2168 -0.0089 0.0997 0.9502 0.9746 0.9543
RDExpenset−2 0.1505 0.8744 0.1628 0.1699 0.0496 0.1073 0.9249 0.9620
RDExpenset−3 0.1396 0.8579 0.1708 0.1970 0.0566 0.1497 0.9029 0.9709
LicenseESt 0.2256 0.6755 0.1142 0.0768 0.1696 0.1184 0.5887 0.7450 0.5671

LicESDealV alt -0.0025 0.6183 -0.1031 0.1065 0.1026 0.0320 0.4953 0.7245
LicESIndst−1 0.2909 0.6147 0.1383 0.0001 0.0526 0.2463 0.5822 0.6812
LicPh12Dealst 0.1206 0.3158 0.0194 0.0582 0.0219 0.6734 0.5797 0.6271 0.3163

LicPh12Dealst−1 0.2120 0.3680 0.1367 -0.1113 -0.0420 0.1420 0.2959 0.7927
LicPh12DealV alt 0.2200 0.1750 0.0177 0.1101 0.0689 0.7653 0.6911 0.3782

LicensePh3t -0.0359 0.2099 -0.0118 0.9476 -0.0475 0.0642 0.9542 0.7665 0.4643
LicPh3TAst -0.0435 0.2540 -0.0030 0.9351 -0.0505 0.1004 0.9566 0.4566

LicPh3Indst−1 0.0419 0.3402 -0.0015 0.2052 -0.0757 0.0633 0.3471 0.9843
Variance

Explained by
Each Factor 6.3885 4.2802 2.5972 2.0009 1.8017 1.4661

Appendix B: Structural Equation Model for Non-Licensing Firms

Following the same rationale as in Sections 6.1 and 6.2, we develop a structural equation model for firms

that do not engage in licensing, and we estimate the parameters of the model. Note that in this model, we

do not have latent variables that represent firms’ engagement in licensing.

B.1. Examining the Overall Measurement Model

As before, we first conduct the CFA of the measurement model and then estimate the parameters of the

measurement model.

Factor analysis. Table 10 provides the standardized factor loadings. All factor loadings are at least

0.33 except NPreclint−1, NPreclint−2, NPreclinIndst−3, NPhase1t−2, NPhase3t−2, and NPh3Indst−3.

Similar to the SEM for the licensing firms, we keep these measured variables since they properly measure

the R&D capabilities of the firms.

Reliability analysis. Table 10 lists the standardized Cronbach’s alpha for each latent variable and the

standardized alpha once a measured variable has been removed from the construct. The reliability measure-

ment alphas for constructs CapDiscover and CapFin are at or above 0.6. However, the alphas for preclinical
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Table 8 Measurement Model Estimates

90% Confidence
Latent Measurement t Interval Limits Error t R-

Variable Variable Estimates Statistic Lower Upper Variance Statistic Square

CapDiscover NDiscoveryt 1.00 1.77 13.25 0.563
NDiscoveryt−1 0.85 17.15 0.77 0.93 0.93 12.64 0.638
NDiscoveryt−2 0.54 15.62 0.49 0.60 0.57 13.36 0.542

CapPreclin NPreclint 1.00 5.33 13.48 0.533
NPreclint−1 0.74 17.43 0.67 0.81 2.55 13.27 0.564

NPreclinIndst−2 0.46 16.76 0.41 0.51 1.14 13.48 0.531

CapPh1 NPhase1t 1.00 4.33 13.66 0.506
NPhase1t−1 1.45 21.78 1.34 1.56 2.11 11.30 0.815
NPh1Indst−2 0.76 20.50 0.70 0.82 0.84 12.46 0.751

CapPh2 NPhase2t 1.00 5.55 14.31 0.614
NPhase2t−1 1.04 20.28 0.95 1.12 3.56 13.73 0.727
NPh2Indst−2 0.60 19.97 0.55 0.65 1.30 13.86 0.710

CapPh3 NPhase3t 1.00 1.83 13.35 0.597
NPhase3t−1 0.87 19.03 0.79 0.94 0.87 12.37 0.702
NPhase3t−2 0.47 15.89 0.42 0.52 0.54 13.67 0.525

CapProduct NApprovalst 1.00 0.48 12.55 0.347
NApprovalst−1 0.81 9.86 0.68 0.95 0.27 12.19 0.388
NIndicationst−2 0.75 10.06 0.63 0.87 0.21 11.96 0.410

CapFin Revenuet 1.00 17.71 7.38 0.951
RDExpenset−2 0.13 53.86 0.13 0.14 0.42 8.99 0.934
RDExpenset−3 0.12 48.00 0.12 0.13 0.55 10.78 0.904

EngESLicense LicenseESt 1.00 0.87 10.63 0.589
LicESDealV alt 0.11 10.71 0.09 0.13 0.03 12.94 0.318
LicESIndst−1 0.74 15.10 0.66 0.82 0.45 10.39 0.603

EngPh12License LicPh12Dealst 1.00 0.64 12.53 0.148
LicPh12Dealst−1 1.16 6.31 0.85 1.46 0.05 11.05 0.169
LicPh12DealV alt 0.34 10.13 0.28 0.39 0.73 12.05 0.212

EngPh3License LicensePh3t 1.00 0.40 11.76 0.250
LicPh3TAst 0.95 35.95 0.91 1.00 0.30 11.16 0.288
LicPh3Indst−1 0.81 7.69 0.64 0.99 0.21 11.00 0.297

capability (CapPreclin), R&D capability in (CapPh1), R&D capability in phase 2 (CapPh2), R&D capa-

bility in phase 3 (CapPh3), and product approval capability (CapProduct) are below 0.6. For the constructs

CapPreClin, CapPh1, and CapPh2, the standardized Cronbach’s alphas all decrease after we remove one

measured variable (see the last column in Table 10). This observation implies that the measured variables

for each of the above constructs are internally consistent. Removing any variable from each of the above

constructs makes the construct less reliable. Note that the standardized alpha for the construct CapPh3

increases once NPhase3t−1, NPhase3t−2, or NPh3Indst−3 is removed and that the standardized alpha for

the construct CapProduct also increases once Napprovalst−2 +Napprovalst−3 is removed. Nevertheless, we

keep those three variables in their respective constructs because they properly represent firms’ drug R&D

capability in phase 3 and the drug approval stage.

Measurement model estimation. We estimate the parameters in the measurement model in which

relations exist for all pairs of latent variables. Table 11 lists the fit indices in column (1). The chi-square

value is 990, which is based on 271 degrees of freedom. The large chi-square is due to a large sample that

contains 561 observations. Nonetheless, the ratio of the chi-square value to the degrees of freedom of the

chi-square test is 3.65. The SRMR is 0.065, and the RMSEA is 0.069. The 95% confidence interval of the
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Table 9 Structural Model Estimates

90% Confidence
Latent Measurement t Interval Limits Error t R-

Variable Variable Estimate Statistic Lower Upper Variance Statistic Square

CapDiscover NDiscoveryt 1.00 1.88 13.31 0.408
NDiscoveryt−1 0.90 13.11 0.90 0.90 0.88 12.21 0.545
NDiscoveryt−2 0.57 11.87 0.57 0.57 0.57 13.20 0.428

CapPreclin NPreclint 1.00 3.90 13.67 13.665
NPreclint−1 1.50 9.68 1.50 1.50 2.27 12.22 12.216

NPreclinIndst−2 0.90 9.32 0.90 0.90 1.12 12.87 12.873

CapPh1 NPhase1t 1.00 3.50 12.52 0.716
NPhase1t−1 1.01 24.09 1.01 1.01 2.16 11.41 0.805
NPh1Indst−2 0.54 23.29 0.54 0.54 0.73 11.88 0.777

CapPh2 NPhase2t 1.00 4.52 12.93 0.677
NPhase2t−1 0.99 20.91 0.99 0.99 3.46 12.65 0.727
NPh2Indst−2 0.59 21.63 0.59 0.59 1.05 12.41 0.758

CapPh3 NPhase3t 1.00 1.70 12.93 0.620
NPhase3t−1 0.84 18.83 0.84 0.84 0.90 12.37 0.688
NPhase3t−2 0.48 16.38 0.48 0.48 0.50 13.24 0.556

CapProduct NApprovalst 1.00 0.46 12.01 0.364
NApprovalst−1 0.75 9.24 0.75 0.75 0.28 12.22 0.341
NIndicationst−2 0.70 9.59 0.70 0.70 0.21 11.87 0.377

CapFin Revenuet 1.00 17.83 7.36 0.950
RDExpenset−2 0.13 53.55 0.13 0.13 0.41 8.87 0.934
RDExpenset−3 0.12 47.62 0.12 0.12 0.55 10.76 0.903

EngESLicense LicenseESt 1.00 0.81 9.65 0.567
LicESDealV alt 0.11 10.67 0.11 0.11 0.03 12.68 0.326
LicESIndst−1 0.71 14.23 0.71 0.71 0.48 10.42 0.611

EngPh12License LicPh12Dealst 1.00 0.55 10.93 0.267
LicPh12Dealst−1 1.05 6.79 1.05 1.05 0.05 11.19 0.264
LicPh12DealV alt 0.27 10.15 0.27 0.27 0.66 11.41 0.283

EngPh3License LicensePh3t 1.00 0.41 11.64 0.302
LicPh3TAst 0.97 31.97 0.97 0.97 0.30 11.01 0.233
LicPh3Indst−1 0.85 6.87 0.85 0.85 0.20 10.50 0.275

RMSEA is between 0.064 and 0.074. The SRMS, RMSEA, and the 95% confidence interval of the RMSEA

indicate that the measurement model fits the covariance matrix of the measured variables well. The GFI is

0.9, which indicates a good model fit given the large sample of data we used. The Bentler comparative fit

index, the Bentler-Bonett NFI, and the Bentler-Bonett non-normed index take on values of 0.89, 0.86, and

0.87, respectively. These incremental fit indices indicate a good fit of the measurement model.

Table 12 lists the factor loadings and t-statistics of the measured variables. All the measured variables have

statistically significant relationships with their latent variables, their t-statistics exceed the critical value of

the 0.1% significance level, and the measured variables are significantly entering the model.

B.2. Examining the Overall Structural Model

Table 11 lists the fit indices in column (2). The chi-square of the structural model is 992, which is based on

260 degrees of freedom. The ratio of the chi-square value to the degrees of freedom is 3.82, which corrects

for model size. The SRMR is 0.066, and the RMSEA is 0.071. The 95% confidence interval of the RMSEA is

between 0.066 and 0.076. The SRMR, RMSEA, and the 95% confidence interval of the RMSEA all indicate

that the structural model fits the covariance matrix of the measured variables well, even though we restrict

some path coefficients to be zero. The GFI is 0.88, which indicates a good model fit. The Bentler comparative
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Table 10 Factor Analyses and Cronbachs Alpha Coefficients for Non-licensing Firms

Cronbach Cronbachs Alpha
Alpha Coefficient with

Variable Factor 1 Factor 2 Factor 3 Factor 4 Community Coefficient Deleted Variable

NDiscoveryt -0.011 0.148 -0.087 0.433 0.220 0.563 0.450
NDiscoveryt−1 0.048 0.261 -0.073 0.419 0.283 0.503
NDiscoveryt−2 0.136 0.359 -0.117 0.554 0.476 0.431

NPreclint -0.057 0.062 -0.068 0.347 0.140 0.244 0.231
NPreclint−1 -0.075 0.149 -0.033 0.203 0.071 0.169
NPreclint−2 -0.072 0.111 -0.020 0.129 0.038 0.225

NPreclinIndst−3 -0.043 0.160 0.019 0.117 0.077 0.153

NPhase1t -0.192 0.441 0.004 -0.122 0.452 0.336 0.240
NPhase1t−1 -0.155 0.451 0.065 -0.040 0.287 0.228
NPhase1t−2 -0.079 0.251 0.005 0.112 0.129 0.304
NPh1Indst−3 -0.133 0.423 0.067 0.075 0.386 0.325

NPhase2t -0.136 0.348 -0.068 0.087 0.349 0.356 0.354
NPhase2t−1 -0.147 0.550 0.079 -0.116 0.402 0.197
NPhase2t−2 -0.126 0.372 0.066 0.011 0.278 0.270
NPh2Indst−3 -0.135 0.416 0.083 0.013 0.421 0.337

NPhase3t -0.097 0.526 0.057 -0.253 0.426 0.428 0.428
NPhase3t−1 -0.144 0.556 0.176 -0.260 0.514 0.464
NPhase3t−2 -0.104 0.241 0.070 -0.189 0.288 0.446
NPh3Indst−3 -0.108 0.229 0.087 -0.106 0.224 0.461

Napprovalst 0.100 -0.054 0.370 -0.010 0.155 0.362 -0.005
Napprovalst−1 +Napprovalst−2 0.162 -0.071 0.835 0.143 0.758 0.337
Napprovalst−2 +Napprovalst−3 0.214 -0.093 0.848 0.143 0.804 0.435

Revenuet 0.896 0.219 -0.085 -0.051 0.861 0.976 0.989
RDExpenset−2 0.949 0.238 -0.097 -0.081 0.974 0.946
RDExpenset−3 0.940 0.242 -0.090 -0.082 0.958 0.957

Table 11 Overall Fit Indices for Non-Licensing Firms

Index Measurement Model Structural Model
(1) (2)

Chi-Square (χ2) 990 992
Chi-Square (χ2) Degree of Freedom 271 260

Standardized RMR (SRMR) 0.065 0.066
Goodness of Fit Index (GFI) 0.88 0.88

RMSEA 0.069 0.071
RMSEA Lower 90% Confidence Limit 0.064 0.066
RMSEA Upper 90% Confidence Limit 0.074 0.076

Bentler Comparative Fit Index 0.89 0.86
Bentler-Bonett NFI 0.86 0.82

Bentler-Bonett Non-normed Index 0.87 0.84

fit index, the Bentler-Bonett NFI, and the Bentler-Bonett non-normed index are 0.86, 0.82, and 0.84. These

incremental indices all indicate a reasonably good model fit given our large sample size. Table 12 shows the

path weight estimates. The factor loadings for the measured variables in the structural model are roughly the

same as those in the measurement model, even though we reestimate them along with the relationship paths

in the structural model. The consistency implies that the specification for the structural model is appropriate,

which significantly represents the relationships among the latent variables. Therefore, the structural model

replicates the covariance of the measured variables well. Figure 8 depicts the path coefficients that are

different from zero at a 5% significance level, except the transition from the R&D capability in phase 3

(CapPh3) to the product approval capability (CapProduct).
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Table 12 Measurement and Structural Model Estimates for Non-Licensing Firms

Measurement Latent Measurement Model Structural Model
Variable Variable Estimate t statistic Estimate t statistic

NDiscoveryt CapDiscover 1.000 1.000
NDiscoveryt−1 0.740 6.242 0.709 5.719
NDiscoveryt−2 0.951 6.962 1.212 5.838
NPreclint CapPreClin 1.000 1.000
NPreclint−1 0.379 4.362 0.304 3.129
NPreclint−2 0.269 3.910 0.283 3.560

NPreclinIndst−3 0.255 4.636 0.175 2.900
NPhase1t CapPh1 1.000 1.000
NPhase1t−1 1.181 6.547 0.693 8.143
NPhase1t−3 0.428 4.605 0.208 4.224
NPh1Indst−3 0.869 6.710 0.418 7.552
NPhase2t−1 CapPh2 1.000 1.000
NPhase2t−2 1.297 6.808 1.270 6.990
NPhase2t−3 0.613 5.768 0.550 5.541
NPh2Indst−3 0.716 6.596 0.537 6.023
NPhase3t CapPh3 1.000 1.000
NPhase3t−1 0.899 10.198 0.775 10.456
NPhase3t−2 0.227 5.272 0.171 4.411
NPh3Indst−3 0.183 4.812 0.152 4.396
Napprovalst CapProduct 1.000 1.000

Napprovalst−1 +Napprovalst−2 1.319 7.771 1.150 8.772
Napprovalst−2 +Napprovalst−3 2.746 5.525 1.846 6.913

Revenuet CapFin 1.000 1.000
RDExpenset−2 0.056 14.884 0.055 16.943
RDExpenset−3 0.054 14.719 0.058 17.344
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Figure 8 Estimates of the Structural Equation Model for Non-licensing Firms.
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