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Abstract: Whereas game theorists and logicians use formal methods to investigate ideal strategic
behavior, many cognitive scientists use computational cognitive models of the human mind to predict
and simulate human behavior. In this paper, we aim to bring these fields closer together by creating
a generic translation system which, starting from a strategy for a turn-based game represented in
formal logic, automatically generates a computational model in the Primitive Information Processing
Elements (PRIMs) cognitive architecture, which has been validated on various experiments in
cognitive psychology. The PRIMs models can be run and fitted to participants’ data in terms of
decisions, response times, and answers to questions. As a proof of concept, we run computational
modeling experiments on the basis of a game-theoretic experiment about the turn-based game
“Marble Drop with Surprising Opponent”, in which the opponent often starts with a seemingly
irrational move. We run such models starting from logical representations of several strategies,
such as backward induction and extensive-form rationalizability, as well as different player types
according to stance towards risk and level of theory of mind. Hereby, response times and decisions
for such centipede-like games are generated, which in turn leads to concrete predictions for future
experiments with human participants. Such precise predictions about different aspects, including
reaction times, eye movements and active brain areas, cannot be derived on the basis of a strategy
logic by itself: the computational cognitive models play a vital role and our generic translation system
makes their construction more efficient and systematic than before.

Keywords: logic; computational cognitive modeling; turn-based games

1. Introduction

Many events that happen in our daily life can be thought of as turn-based games. In fact, besides the
“games” in the literal sense, our day-to-day dialogues, interactions, legal procedures, social and political
actions, and biological phenomena—all these can be viewed as games together with their goals
and strategies. Thus, effective and efficient strategies are needed everywhere, not just in games such as
chess and bridge, but also in many social interactions in daily life, as well as other global phenomena
and scientific procedures. For example, consider negotiations among rival parties to attain certain
goals satisfactory to all, stabilization of entering firms in existing markets and decisions regarding
an ideal situation to approach somebody for business. On an even larger scale, strategies are also of
vital importance in negotiations in international crisis cases such as the Cuba missile crisis, the North
Korean crisis, and Copenhagen climate change control. In biology, studying strategies is an important
part of investigations of evolution and stabilization of populations.
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Since strategies influence our daily lives as well as our broader existence in so many different
ways, the study of strategies has become an integral part of many areas of science: game theory itself;
ethics and social philosophy; the study of multi-agent systems in computer science; evolutionary game
theory in biology; strategic reasoning in cognitive science; and the study of meaning in linguistics.
There are various signs of interdisciplinary cooperation between these fields based on the basic
similarities between the perspectives on strategies, and our current study is an example of this
cooperation from the viewpoints of logic and computational cognitive modeling. The focus is on
human strategic behavior.

In game theory (cf. [1]), strategies and their dependence on information form the main topics
of study. One focus of study is on strategies bringing about equilibrium play in competitive as well
as cooperative situations. Many important concepts, such as Nash equilibrium, sub-game perfect
equilibrium, sequential equilibrium and extensions and modifications thereof have been developed over
the years by game theorists while modeling various situations as games [1]. From the viewpoint of logical
studies, modeling social interaction has brought to the fore various formal systems to model agents’
knowledge, beliefs, preferences, goals, intentions, common knowledge and common belief [2–4]. While
modeling intelligent interaction, logicians have been interested in the questions of how an agent selects a
particular strategy, what structure strategies may have, and how strategies are related to information [5–7].
In contrast to the idealized game-theoretic and logical studies on strategies in interactive systems, which
assume the interactive agents to be “rational”, many experiments (e.g., see [8–10]) have shown that
people are not completely rational in the sense of maximizing their current utilities. Players may be
altruists, giving more weight to the opponent’s payoff; or they may try to salvage a good cooperative
relation in the case they meet the other agent again in the future1. There might be cognitive constraints
as well, such as working memory capacity [15,16], because of which the players are unable to perform
optimal strategic reasoning, even if in principle they are willing to do so.

In fact, strategic reasoning in complex interactive situations consists of multiple serial
and concurrent cognitive functions, and thus it may be prone to great individual differences.
Cognitive scientists construct fine-grained theories about human reasoning strategies [17,18], based on
which they construct computational cognitive models. These models can be validated by comparing
the model’s predicted outcomes to results from experiments with human subjects. They aim to explain
certain aspects of cognition by assuming only general cognitive principles. Cognitive models can be
broken down into mechanisms and thus one can focus on the basic cognitive functions, their properties
and their combinations [19]. One can also compare the model’s output with human data, and acquire
a better understanding of individual differences.

In [20,21], Ghosh, Verbrugge and other authors investigate how formal models and cognitive models
can aid each other to bring about a more meaningful model of real-life scenarios. Here, formal models are
used to describe actual human behavior, and not just ideal game-theoretic rationality. Game experiments
lead to the behavioral strategies of humans in turn-based games among others. Such strategies
can be modeled as logical formulas constituting a descriptive logic of strategies, which help in the
construction of cognitive models. The cognitive models predict human behavior, which can be tested
against the human data available from the experiments. The first actual computational cognitive
models based on logical formulas were provided in [21], which were made in an ad hoc way, based on
some heuristic strategies.

In this paper, we provide a translation system that, starting from a strategy represented in formal
logic, automatically generates a computational model in a cognitive architecture, which can then
be run to generate decisions made in certain games, e.g., perfect-information games in our case.
The formal strategies that we use describe a range of possible player types and behaviors, not

1 Human cooperative and competitive behavior in games has been modeled using many different approaches from the cognitive
modeling one we use here, for example, evolutionary game theory, statistical physics, network theory, and agent-based
modeling [11–14].
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just idealized behavior. Our main objective is to help understand human behavior. Our place in
this body of research can be found in Figure 1. In Figure 1, human behavior is found at the top
of the diagram. Based on this human behavior, game theorists formalize strategies that human
participants may be using. Cognitive scientists can then use these formal strategies to manually
construct cognitive models. These models can be used to automatically generate data, such as response
times, decisions, neurological measures and simulated eye-tracking data. The behavior of such a model
can be verified by, or provide predictions for, behavioral experiments, which can be used to obtain
data on human behavior, closing the circle. In this diagram, dashed lines are automated processes.
The red dashed line is our current research, which automates the creation of cognitive models from
formal strategies. The blue line is the classical method of creating cognitive models by hand, based on
observed human behavior.

Figure 1. A diagram showing the elements involved in our research. Dashed arrows indicate
automated processes. The red dashed arrow indicates our place in cognitive modeling research,
as we aim to automate the creation of cognitive models from formal strategies. The blue line indicates
the classical method of constructing cognitive models based on human behavior.

Our translation system has been developed based on centipede-like games, a particular kind
of perfect-information games. The choice of these games is not a matter of necessity but rather
of convenience. Since we wanted to make predictions about experiments such as those reported
in [9,10] which are based on centipede-like games, we concentrate on these games—the games that
we base our discussions on are provided in Figure 2. These games are similar to centipede games (cf.
Game 2 in Figure 2) in almost all respects, the only difference being that, unlike centipede games, the
sum of the points of players may not increase in the subsequent moves [22]. The logic presented in
Section 2 deals with strategic reasoning in any perfect-information game, not just the centipede-like
games that we discuss here, and the translation method would work in principle for any finite binary
perfect-information game, with at most two choices at each decision point.

A natural question to ask here is this: How would a translation method from strategy formulas
to cognitive models help in the research on logic and game theory? Various logics of strategic
reasoning in various forms of games have been developed until date, where elegant methods have
been proposed to express and study properties of strategic reasoning (see, e.g., [23]). However, when
it comes to human strategic reasoning, the formal systems can only express possible ways of doing
strategic reasoning (cf. Section 2), without being able to pinpoint what actually happens. By this
translation system, we are providing the next steps towards exploring the relation between the logical
expressions and human behavior via cognitive models which provide us with both model behavior
and reaction times which we can match with the human data to give a better understanding of these
logical formulas in terms of expressing human strategic behavior. Our aim is to provide cognitive
models of various strategies and reasoning types from the literature, namely, backward induction
(BI) [1], extensive-form rationalizability (EFR) [24], different levels of theory of mind [25], and stances
towards risk [25]. We take off from empirical studies with adults, focusing on these strategies and
player types [9,10]. With these cognitive models corresponding to strategy and type specifications,
we are all set to make predictions about human strategic reasoning based on logical formulas via
the behavior of the corresponding cognitive models, which can be seen as “virtual participants”.
From the cognitive modeling perspective, the logical formulas provide a systematic, exhaustive list of
possibilities corresponding to each kind of strategic behavior, which aids in the development of these
cognitive models that have been constructed hitherto in ad hoc ways.
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In the next section, we present a strategy logic framework from [21] in terms of a strategy
specification language which is used in the translation method. In Section 3, we present the translation
system from strategy specifications to computational cognitive models. In Section 4, we perform
various verification and exploratory experiments to verify the translation system and to discuss the
behavior of the generated cognitive models in terms of their decisions and response times. We conclude
in Section 5 with a discussion of our findings and some predictions about human strategic behavior.

C P C P
(6,3)

(4,1) (1,2) (3,1) (1,4)

b d f h

a c e g

C P C P
(6,3)

(2,1) (1,2) (3,1) (1,4)

b d f h

a c e g

Game 1 Game 2

C P C P
(6,4)

(4,1) (1,2) (3,1) (1,4)

b d f h

a c e g

C P C P
(6,4)

(2,1) (1,2) (3,1) (1,4)

b d f h

a c e g

Game 3 Game 4

P C P
(6,3)

(1,2) (3,1) (1,4)

d f h

c e g

Game 5

Figure 2. Collection of centipede-like games constituting the running examples for discussion
throughout the text. The ordered pairs at the leaves represent payoffs for the computer (C) and
the subject (P), respectively. Note that Game 5 is a truncated version of both Games 1 and 2. Players
who are commonly known to be rational use the backward induction (BI) strategy: one works backwards
from the end of the game tree to reach a decision. For example, in P’s last turn in Game 5, he has
to decide between going down or to the right, for payoffs of 4 or 3, respectively. Using BI, because
4 is more than 3, he chooses to go down, delivering the outcome pair (1,4). One can then continue
backwards to compare the down and right choices in C’s turn: going right gives (1,4) while going
down gives (3,1); because 3 is more than 1, C would choose to go down. One then continues to
reason backwards to compare the actions in P’s first turn, where the outcome is (1,2) when playing
down and (3,1) when playing right. One assumes that, 2 being more than 1, P chooses to go down.
Playing rationally by backward induction need not lead to the outcome with the highest sum of players’
payoffs—that would have been achieved by both players choosing to continue to the right at all three
decision points and ending up with a combined payoff of 6 + 3.

2. A Strategy Logic

In [20], Ghosh et al. used a logical framework as a bridge between experimental findings
and computational cognitive modeling of strategic reasoning in a simple Marble Drop setting, in
which the computer opponent always made rational choices: “Marble Drop with Rational Opponent”
(see Figure 3). Following this line of work, in [21], Ghosh et al. proposed a logical language specifying
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strategies as well as reasoning types of players that use empirical studies to provide insights into
cognitive models of human strategic reasoning as performed during the experiment discussed in [26].
The marble drop setting was slightly different from the previous one—the computer opponent
sometimes made surprising choices at the beginning, not adhering to rational choices all the time:
“Marble Drop with Surprising Opponent”. The underlying games of this setting include the games
given in Figure 2, with the computer opponent starting in Games 1–4 and playing b sometimes in
Games 1 and 2, instead of the rational choice a.

Figure 3. Marble Drop with rational opponent. Figures (a), (b) and (c) correspond to marble drop
games of level 1, 2 and 3, respectively. Player 1’s payoffs are represented by a1, a2, a3, and a4, and
Player 2’s payoffs by b1, b2, b3, and b4, both in increasing order of value. The goal for each player is to
let the white marble end up in the bin with the highest attainable payoff. At the first set of diagonal
trapdoors, Player 1 decides to remove the left or right trapdoor, at the second set Player 2 decides,
and at the third set Player 1 decides. Dashed lines represent the trapdoors that both players should
rationally remove for these payoff distributions.

For the purpose of the current work, we consider the logic as proposed in [21]. For ease of
reference, we now provide a detailed description of the syntax and semantics of the logic, starting with
certain concepts necessary for describing strategies and typologies.

2.1. Describing Game Trees and Strategies

In this subsection, we give definitions of extensive form games, game trees and strategies. Based
on these concepts, we present the logic from [21] (with permission) in Section 2.2, where reasoning
strategies and typologies are formalized.

2.1.1. Extensive Form Games

Extensive form games are a natural model for representing finite games in an explicit manner.
In this model, the game is represented as a finite tree where the nodes of the tree correspond to the
game positions and edges correspond to moves of players. For this logical study, we focus on game
forms, and not on the games themselves, which come equipped with players’ payoffs at the leaf nodes
of the games. The formal definition is presented below.

Let N denote the set of players, and let us restrict our attention to two player games, taking
N “ tC, Pu, C for computer and P for participant. The notation i and ı is often used to denote the
players, where C “ P and P “ C. Let Σ be a finite set of action symbols representing moves of players;
let a, b range over Σ. For a set X and a finite sequence ρ “ x1x2 . . . xm P X˚, let lastpρq “ xm denote the
last element in this sequence.

2.1.2. Game Trees

Let T “ pS,ñ, s0q be a tree rooted at s0 on the set of vertices S and letñ : pSˆ Σq Ñ S be a partial
function specifying the edges of the tree. The tree T is said to be finite if S is a finite set. For a node
s P S, let

Ñ
s“ ts1 P S | s

a
ñs1 for some a P Σu. A node s is called a leaf node (or terminal node) if

Ñ
s“ H.
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An extensive form game tree is a pair T “ pT, pλq where T “ pS,ñ, s0q is a tree. The set S denotes
the set of game positions with s0 being the initial game position. The edge function ñ specifies the
moves enabled at a game position and the turn function pλ : S Ñ N associates each game position with
a player. Technically, one needs player labeling only at the non-leaf nodes. However, for the sake of
uniform presentation, there is no distinction between leaf nodes and non-leaf nodes as far as player
labeling is concerned. An extensive form game tree T “ pT, pλq is said to be finite if T is finite. For i P N,
let Si “ ts | pλpsq “ iu and let frontierpTq denote the set of all leaf nodes of T.

A play in the game T starts by placing a token on s0 and proceeds as follows: at any stage, if the
token is at a position s and pλpsq “ i, then player i picks an action which is enabled for her at s, and the
token is moved to s1 where s

a
ñs1. Formally, a play in T is simply a path ρ : s0a0s1 ¨ ¨ ¨ in T such that for

all j ą 0, sj´1
aj´1
ñ sj. Let PlayspTq denote the set of all plays in the game tree T.

2.1.3. Strategies

A strategy for player i is a function µi which specifies a move at every game position of the player,
i.e., µi : Si Ñ Σ. For i P N, the notation µi is used to denote strategies of player i and τı to denote
strategies of player ı. By abuse of notation, the superscripts are dropped when the context is clear and
the convention that µ represents strategies of player i and τ represents strategies of player ı is followed.
A strategy µ can also be viewed as a subtree of T where for each node belonging to player i, there is a
unique outgoing edge and for nodes belonging to player ı, every enabled move is included. Formally,
the strategy tree is defined as follows: For i P N and a player i’s strategy µ : Si Ñ Σ, the strategy tree
Tµ “ pSµ,ñµ, s0, pλµq associated with µ is the least subtree of T satisfying the following property:

• s0 P Sµ.
• For any node s P Sµ,

– if pλpsq “ i then there exists a unique s1 P Sµ and action a such that s
a
ñµs1, where µpsq “ a

and s
a
ñs1.

– if pλpsq ‰ i then for all s1 such that s
a
ñs1, we have s

a
ñµs1.

• pλµ “
pλ |{ Sµ

.

Let ΩipTq denote the set of all strategies for player i in the extensive form game tree T. A play
ρ : s0a0s1 ¨ ¨ ¨ is said to be consistent with µ if for all j ě 0 we have that sj P Si implies µpsjq “ aj.
A strategy profile pµ, τq consists of a pair of strategies, one for each player.

2.1.4. Partial Strategies

A partial strategy for player i is a partial function σi which specifies a move at some (but not
necessarily all) game positions of the player, i.e., σi : Si á Σ. Let Dσi denote the domain of the partial
function σi. For i P N, the notation σi is used to denote partial strategies of player i and πı to denote
partial strategies of player ı. When the context is clear, the superscripts are not used. A partial strategy
σ can also be viewed as a subtree of T where for some nodes belonging to player i, there is a unique
outgoing edge and for other nodes belonging to player i as well as nodes belonging to player ı, every
enabled move is included.

Formally, a partial strategy tree is defined as follows: For i P N and a player i (partial) strategy
σ : Si á Σ the strategy tree Tσ “ pSσ,ñσ, s0, pλσq associated with σ is the least subtree of T satisfying
the following property:

• s0 P Sµ

• For any node s P Sµ,

– if pλpsq “ i and s P Dσ then there exists a unique s1 P Sµ and action a such that s
a
ñµs1.

– if (pλpsq “ i and s R Dσ) or pλpsq ‰ i then for all s1 such that s
a
ñs1, we have s

a
ñµs1.
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A partial strategy can be viewed as a set of total strategies. Given a partial strategy tree
Tσ “ pSσ,ñσ, s0, pλσq for a partial strategy σ for player i, a set of trees xTσ of total strategies can be
defined as follows. A tree T “ pS,ñ, s0, pλq P xTσ if and only if

• if s P S then for all s1 P
Ñ
s , s1 P S implies s1 P Sσ

• if pλpsq “ i then there exists a unique s1 P S and action a such that s
a
ñs1.

Note that xTσ is the set of all total strategy trees for player i that are subtrees of the partial strategy
tree Tσ for i. Any total strategy can also be viewed as a partial strategy, where the corresponding set of
total strategies becomes a singleton set.

2.1.5. Syntax for Extensive Form Game Trees

Let us now build a syntax for game trees (cf. [5,7]). This syntax is used to parameterize the belief
operators given below to distinguish between belief operators for players at each node of a finite
extensive form game. Let N denote a finite set of players and let Σ be a finite set of action symbols
representing moves of players; let a, b range over Σ. Let Nodes be a finite set. The syntax for specifying
finite extensive form game trees is given by:

GpNodesq ::“ pi, xq | ΣamPJppi, xq, am, tamq

where i P N, x P Nodes, Jpfiniteq Ď Σ, and tam P GpNodesq.
Given z P GpNodesq, define the tree Tz generated by z inductively as follows (see Figure 4 for

an example):

• z “ pi, xq: Tz “ pSz,ñz, pλz, sxqwhere Sz “ tsxu, pλzpsxq “ i.

(If z is of the form pi, xq, then z represents a node, and Tz represents a tree with a single node sx

with i being the player playing at sx.)

• z “ ppi, xq, a1, ta1q ` ¨ ¨ ¨ ` ppi, xq, ak, takq: Inductively we have trees T1, . . . Tk where for j : 1 ď j ď k,
Tj “ pSj,ñj, pλj, sj,0q.
Define Tz “ pSz,ñz, pλz, sxqwhere

– Sz “ tsxu Y ST1 Y . . .Y STk ;
– pλzpsxq “ i and for all j, for all s P STj ,

pλzpsq “ pλjpsq;
– ñz “

Ť

j:1ďjďkptpsx, aj, sj,0qu Yñjq.

(If z is of the form ppi, xq, a1, ta1q ` ¨ ¨ ¨ ` ppi, xq, ak, takq, then z represents a tree with root node
pi, xq, and Tz represents a tree with the root node sx with i being the player playing at sx, actions
a1, . . . , ak connecting the root node with trees T1, . . . Tk, respectively, where Ti represents tai for
each i.)

Given z P GpNodesq, let Nodespzq denote the set of distinct pairs pi, xq that occur in the expression
of z.

1

a

}}

b

!!

x0

2

c1

��

d1

��

x1 2

c2

��

d2

��

x2

y1 y2 y3 y4

Figure 4. Extensive form game tree. The nodes are labeled with turns of players
(Players 1 and 2) and the edges with the actions. The syntactic representation of this tree can be
given by: z “ pp1, x0q, a, t1q ` pp1, x0q, b, t2q, where t1 “ pp2, x1q, c1, p2, y1qq ` pp2, x1q, d1, p2, y2qq;
t2 “ pp2, x2q, c2, p2, y3qq ` pp2, x2q, d2, p2, y4qq.
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2.2. Strategy Specifications

The syntax of Section 2.1 has been used in [20] to describe empirical reasoning of participants
involved in a simpler game experiment using “Marble Drop with Rational Opponent” [25–27].
The| main case specifies, for a player, which conditions she tests before making a move. In what follows,
the pre-condition for a move depends on observables that hold at the current game position, some belief
conditions, as well as some simple finite past-time conditions and some finite look-ahead that each
player can perform in terms of the structure of the game tree. Both the past-time and future conditions
may involve some strategies that were or could be enforced by the players. These pre-conditions are
given by the syntax defined below.

For any countable set X, let BPFpXq (the boolean, past and future combinations of the members
of X) be sets of formulas given by the following syntax:

BPFpXq ::“ x P X |  ψ | ψ1 _ ψ2 | xa`yψ | xa´yψ,

where a P Σ, a countable set of actions.
Formulas in BPFpXq can be read as usual in a dynamic logic framework and are interpreted at game

positions. The formula xa`yψ (respectively, xa´yψ) refers to one step in the future (respectively, past).
It asserts the existence of an a edge after (respectively, before) which ψ holds. Note that future (past)
time assertions up to any bounded depth can be coded by iteration of the corresponding constructs.
The “time free” fragment of BPFpXq is formed by the boolean formulas over X. This fragment is
denoted by BoolpXq.

For each z P GpNodesq and pi, xq P Nodespzq, a new operator Bpi,xqz is added to the syntax of BPFpXq
to form the set of formulas BPFbpXq. The formula Bpi,xqz ψ can be read as “in the game tree z, player
i believes at node x that ψ holds”. One might feel that it is not elegant that the belief operator is
parametrized by the nodes of the tree. However, our main aim is not to propose a logic for the
sake of its nice properties, but to have a logical language that can be used suitably for constructing
computational cognitive models corresponding to participants’ strategic reasoning.

2.2.1. Syntax

Let Pi “ tpi
0, pi

1, . . .u be a countable set of observables for i P N and P “
Ť

iPN Pi. To this set
of observables, two kinds of propositional variables pui “ qiq are added to denote “player i’s utility
(or payoff) is qi” and pr ď qq to denote that “the rational number r is less than or equal to the rational
number q”2. The syntax of strategy specifications is given by:

StratipPiq ::“ rψ ÞÑ asi | η1 ` η2 | η1 ¨ η2,

where ψ P BPFbpPiq. For a detailed explanation, see [20]. The basic idea is to use the above constructs
to specify properties of strategies as well as to combine them to describe a play of the game. For
instance, the interpretation of a player i’s specification rp ÞÑ asi where p P Pi, is to choose move a
at every game position belonging to player i where p holds. At positions where p does not hold,
the strategy is allowed to choose any enabled move. The strategy specification η1 ` η2 says that the
strategy of player i conforms to the specification η1 or η2. The construct η1 ¨ η2 says that the strategy
conforms to specifications η1 and η2.

2.2.2. Semantics

Perfect-information games with belief structures are considered as models. The idea is very
similar to that of temporal belief revision frames presented in [28]. Let M “ pT, tÝÑx

i u, Vq with
T “ pS,ñ, s0, pλ,Uq, where pS,ñ, s0, pλq is an extensive form game tree, U : frontierpTq ˆ N Ñ Q is a
utility function. For each sx P S with pλpsxq “ i, there is already a binary relation ÝÑx

i over S (cf. the

2 As in [20] and inspired by Bonanno [28].
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connection between z and Tz presented above). Finally, V : S Ñ 2P is a valuation function. The truth
value of a formula ψ P BPFbpPq at the state s, denoted M, s |ù ψ, is defined as follows:

• M, s |ù p iff p P Vpsq.
• M, s |ù  ψ iff M, s |ù ψ.
• M, s |ù ψ1 _ ψ2 iff M, s |ù ψ1 or M, s |ù ψ2.
• M, s |ù xa`yψ iff there exists an s1 such that s

a
ñs1 and M, s1 |ù ψ.

• M, s |ù xa´yψ iff there exists an s1 such that s1
a
ñs and M, s1 |ù ψ.

• M, s |ù Bpi,xqz ψ iff the underlying game tree of TM is the same as Tz and for all s1 such that s ÝÑx
i s1,

M, s1 |ù ψ.

The truth definitions for the new propositions are as follows:

• M, s |ù pui “ qiq iff Ups, iq “ qi.
• M, s |ù pr ď qq iff r ď q, where r, q are rational numbers.

Strategy specifications are interpreted on strategy trees of T. There are also two special propositions
turn1 and turn2 that specify which player’s turn it is to move, i.e., the valuation function satisfies
the property

• for all i P N, turni P Vpsq iff pλpsq “ i.

One more special proposition root is assumed to indicate the root of the game tree, that is the
starting node of the game. The valuation function satisfies the property

• root P Vpsq iff s “ s0.

Recall that a strategy for player i is a function µi which specifies a move at every game position
of the player, i.e., µi : Si Ñ Σ. A strategy µ can also be viewed as a subtree of T where for each node
belonging to the opponent player i, there is a unique outgoing edge and for nodes belonging to player ı,
every enabled move is included. A partial strategy for player i is a partial function σi which specifies a
move at some (but not necessarily all) game positions of the player, i.e., σi : Si á Σ. A partial strategy
can be viewed as a set of total strategies of the player [20].

The semantics of the strategy specifications are given as follows. Given a model M and a partial
strategy specification η P StratipPiq, define a semantic function v¨wM : StratipPiq Ñ 2ΩipTMq, where each
partial strategy specification is associated with a set of total strategy trees and ΩipTq denotes the set of
all player i strategies in the game tree T.

For any η P StratipPiq, the semantic function vηwM is defined inductively:

• vrψ ÞÑ asiwM “ Υ P 2ΩipTMq satisfying: µ P Υ iff µ satisfies the condition that, if s P Sµ is a player i
node then M, s |ù ψ implies outµpsq “ a.

• vη1` η2wM “ vη1wM Yvη2wM
• vη1 ¨ η2wM “ vη1wM Xvη2wM

Above, outµpsq is the unique outgoing edge in µ at s. Recall that s is a player i node and therefore
by definition of a strategy for player i, there is a unique outgoing edge at s.

Before describing specific strategies found in the empirical study, let us focus on the new operator
of belief, Bpi,xqz proposed above. Note that this operator is considered for each node in each game.
The idea is that the same player might have different beliefs at different nodes of the game. The syntax
of extensive form game trees had to be introduced to make this definition sound, otherwise one would
have had to restrict the discussion to single game trees.

Before ending this section, let us give an example regarding what can be expressed by the strategy
specification language in terms of reasoning of the players. Letting nj refer to the j’th decision node,
the formula rpxb´yroot^Bn2,P

gk xd`y f q ÞÑ dsP describes the following strategy specification for player
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P in any of the games gk, with k varying from 1 to 4, mentioned in Figure 2: If the current node is
accessible from the root node by the move b and P believes at node n2 in the game gk that after the
action d from the current node action f will be played, then play d. We note here that in the subformula
xd`y f , the action symbol f is taken as a formula—one can do so by adding all the action symbols as
special propositions with their semantics given in an appropriate way.

3. Translation to Cognitive Models

In Section 2, we explain the logic from [21] that we use to express strategies in centipede-like games.
Our translation system uses this logic to generate cognitive models in the PRIMs cognitive architecture.
Before we explain this translation process and the behavior of these cognitive models, we give a brief
overview of the PRIMs cognitive architecture [29].

3.1. The PRIMs Cognitive Architecture

PRIMs, short for “primitive information processing elements”, is a cognitive architecture that arose
from the ACT-R cognitive architecture [19,30]. PRIMs is used to build computational cognitive models
that simulate and predict human behavior in behavioral tasks. PRIMs models can be used to generate
response times, decisions, eye movements, and activation in the brain. PRIMs is a modular architecture,
consisting of five modules: a task control, manual, visual, declarative memory, and working memory
module. These modules can be found in Figure 5. Each of these modules corresponds to an area in the
brain, and all modules can work in parallel. Communication between these modules is performed
using primitive elements, which either move or compare small pieces of information. Models in PRIMs
are composed entirely of these primitive elements.

Figure 5. The PRIMs cognitive architecture, from [29]. Reprinted with permission from the author.
In our work, PRIMs models of strategic reasoning can be used as “virtual participants” that play
centipede-like games.

The manual module is used to perform actions, such as playing a move in a centipede-like game.
The visual module is used to perform eye movements, retrieve information from a display, as well as
to compare such information. Working memory is used for short-term storage of information, and
declarative memory is used for long-term storage of information. The cognitive model’s declarative
memory also contains how primitive elements have to be “chained together” to perform a task.
Information is retrieved from declarative memory using a “retrieval request”. Partial information
is sent to declarative memory, and, if it is present, a complete package of information is “retrieved”.
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The declarative memory of a cognitive model starts empty, unless otherwise specified. The task control
module determines which sequences of primitive elements are relevant in the current stage of a task.

Models in the PRIMs cognitive architecture act as “virtual participants” and can play
centipede-like games such as Game 1 in Figure 2. For example, a cognitive model can move its
visual attention across edges in the game tree to look at payoffs, store these payoffs in working memory
to remember them, or make comparisons between these payoffs by sending them to declarative
memory and retrieving whether one is bigger or smaller, as our cognitive models’ declarative memory
contains basic information about order relations of natural numbers.

Packages of information in declarative memory are called “chunks”, and each chunk has an
activation value. This activation corresponds to how well it is remembered. A chunk’s activation
decreases over time, and increases with usage of the chunk. When the activation of a chunk falls below
the activation threshold, it can no longer be retrieved, and is forgotten. The implementation of activation
in PRIMs corresponds to the findings of [31].

3.2. Representations

Our new translation system automatically generates a model in the PRIMs cognitive architecture
from a formal strategy and the game it corresponds to. Within our system, centipede-like games are
represented using the same tree structure shown in Figure 2. In this representation, games consist
of nodes and edges. Nodes can be leaf nodes (ending locations) and non-leaf nodes (player turns).
For leaf nodes, both players’ payoffs are specified. For non-leaf nodes, the player who has a turn at the
node is specified. Edges specify the two nodes they connect. All finite centipede-like games can be
stored in this manner.

Formal strategies, as represented in our system, differ in several ways from those in Section 2.
Belief operators Bpi,xqz no longer specify which game they correspond to, as the game itself is
already part of the system’s input. For readability, we still include the game in any formula.
Furthermore, a comparison pr ď qq does not specify which payoffs are being compared, only which
two natural numbers (including zero) are being compared. A game containing identical payoffs at
different nodes poses a problem for a translation system. Although humans can intuitively determine
which comparison would “make sense”, a translation system cannot. Because of this, we use a
modified version of the formal logic where each payoff is marked, and each comparison refers to
two specific payoffs. This allows a translation system to know precisely which two payoffs it has to
pull from working memory to perform a comparison. We do not consider negated formulas in the
translation system. This could be done by utilizing an exhaustive list of strategy formulas for each
game. We were able to find such an exhaustive list of strategies thanks to the finiteness of the games.
In addition, because all games considered here are binary, not choosing one alternative is equivalent to
choosing the other one.

3.3. Low-Level Cognitive Model Behavior

Formal strategies, as represented in our system, consist of a player, an action, and a conjunction
of conditions, stored in a list. Each of these conditions consists of a list of zero or more operators
(such as xa`y), and a proposition (such as puC “ 4q). These operators and propositions are represented
in our system the same way they are in the logic: operators of the type xa`y consist of an edge and
a boolean specifying their direction, and a belief operator Bpi,xqz contains a player name and a node.
The proposition root contains no further information; turni contains a player; a utility pui “ qiq specifies
a player and the value q; and a comparison pr ď qq refers to two existing utilities. Edges in the game
tree are used for actions, which are required both by the strategies and to formulate beliefs such as
BpC,n1q

g1 xb`yc (Player C’s belief at the first decision node n1 in Game 1 of Figure 2). An exhaustive
strategy formula for a game is simply a list of all possible strategies for the game.
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Given a centipede-like game and an exhaustive strategy formula, our system generates a model
in the PRIMs cognitive architecture. We explain these cognitive models by first explaining what they
will do given a single operator or proposition.

xa`y and xa´y

Sequences of these operators specify the location in the game tree where a proposition should be
verified. A translated PRIMs model moves its visual attention towards this location, across the edges
in the game tree, whenever it has to verify the proposition that follows them.

root

The PRIMs model will visually inspect the specified node to determine whether it is the root of the tree.

turni

The PRIMs model will read the player name of the player whose turn it is from the specified node in
the game tree, and compare it to i.

pui “ qiq

The PRIMs model will compare qi to a value in its visual input when looking at the specified node.
Because this value may be required for future comparisons, it is also stored in an empty slot of
working memory.

pr ď qq

A PRIMs model cannot instantly access each value in a visual display: it has to move its visual attention
to them and remember them by placing them in working or declarative memory before it can compare
them. A proposition pui “ qiq causes such a value to be stored in working memory. A proposition
pr ď qq then sends two of these values from working memory to declarative memory, to try and
remember which one is bigger. When a cognitive model is created, its declarative memory is filled
with facts about single-digit comparisons, such as p0 ď 3q and p2 ď 2q.

Bpi,xqz and a

The operator Bpi,xqz and proposition a are used to construct beliefs about the opponent’s strategy.
To verify a belief formula such as BpC,n1q

g1 xb`yc, a cognitive model employs a strategy similar to the ones
used by cognitive models in [32]. When a cognitive model is created, it contains several strategies in its
declarative memory, both for Player P and Player C. When a cognitive model verifies a belief, it sends
a partial (or empty) sequence of actions to declarative memory, corresponding to the assumptions
of the belief, in an attempt to retrieve a full sequence of actions, which is a strategy. In the formula
BpC,n1q

g1 xb`yc, Player C at node n1 in Game 1 of Figure 2 believes that Player P will play c after its
playing b, so a strategy for Player P will be retrieved. The formula assumes that Player C has played b,
but makes no assumptions about Player P, because P has not yet played any action at this point in the
game. Because no assumptions are made about Player P, no constraints are placed on the strategy that
may be retrieved for Player P, so an empty strategy for P is sent to declarative memory. The sequences
that could be retrieved based on these constraints depend on the game and strategy. For example,
for BI in Game 1, the sequences c;g and c;h can be retrieved, as those are the BI strategies in Game 1
according to Table 1. Both of these sequences will verify BpC,n1q

g1 xb`yc, as both contain the action c that
the formula is trying to verify.

The declarative memory of our PRIMs models can contain action sequences corresponding to
the backward induction (BI) and extensive-form rationalizable (EFR) strategies, generated using the
procedure from [33], as well as sequences corresponding to the own-payoff strategy, which simply



Games 2018, 9, 44 13 of 28

specifies that you should play the actions along a path that leads to your highest payoff. These strategies
can be found in Table 1.

Table 1. BI, EFR and own-payoff strategies for both players in Games 1–4. For example, P’s EFR
strategy d; g in Game 1 stands for: “if the game were to get to P’s first decision point, go right (d); if it
were to get to P’s second decision point, go down (g)”.

BI Strategies EFR Strategies Own-Payoff Strategies

Game 1
C: a;e, a;f
P: c;g, c;h

C: a;e, a;f
P: d;g

C: b;f
P: d;g

Game 2
C: a;e, a;f
P: c;g, c;h

C: a;e, a;f
P: c;g, c;h

C: b;f
P: d;g

Game 3
C: a;e, a;f, b;f
P: c;g, c;h, d;g, d;h

C: a;e, a;f, b;f
P: d;g, d;h

C: b;f
P: d;g, d;h

Game 4
C: a;e, a;f, b;e, b;f
P: c;g, c;h, d;g, d;h

C: a;e, a;f, b;e, b;f
P: c;g, c;h, d;g, d;h

C: b;f
P: d;g, d;h

3.4. High-Level Cognitive Model Behavior

We now explain the cognitive model behavior for a strategy formula. The strategy formulas
we use as input for our system take the form of a Horn clause, such as a^ b^ c^ d Ñ p. Here, p is
true if all propositions in the conjunction are true. Given a strategy formula, a PRIMs model tries
to verify each proposition in the conjunction sequentially, using the behavior described earlier for
each proposition. If it encounters a proposition it cannot verify, it “jumps out of” this verification
process and does not play the action prescribed by the formula (what it does we describe later). If the
cognitive model has verified all the propositions in the conjunction, it plays the action prescribed by
the strategy formula.

Conjunctions in formal logic are unordered, whereas models in PRIMs solve problems sequentially.
Therefore, we need to order the conjunctions in formal logic, such that the corresponding PRIMs model
has an order to verify them in. Fortunately, each proposition has to be verified at a specific location.
For example, xa`ypuC “ 4q, in Game 1 found in Figure 2, has to be verified at the ending location
reached by playing a. Eye-tracking data from [34] tells us that human participants tend to look through
a game tree by following the edges along the shortest path. Therefore, we compute the shortest
path through the game tree. Our PRIMs models verify propositions as they occur along this path.
Another solution would be to use a non-commutative logic, for example, to use the non-commutative
conjunction d proposed in [35]. Our present paper’s main focus lies on our translation system and not
on an in-depth analysis of the logic we use, so it remains a possibility for future work to provide a
logical syntax better suited for the translation system.

Exhaustive strategy formulas consist of one or more of such strategies, which are represented in
our translation system as a list of multiple strategy formulas. A PRIMs model generated from this list
tries to verify each formula in it, using the behavior described in the Section 3.3, until it finds one it can
verify, and plays the action prescribed by the formula it verified. If it fails to verify each formula in the
list, it will randomly play one of the available actions. Exhaustive strategy formulas are also unordered.
Because of this, we take care that each possible order of the list of strategy formulas occurs the same
number of times whenever we generate cognitive models or run cognitive models to obtain data.

4. Experiments and Results

To investigate our translation system, we run two sets of experiments: a set of verification
experiments, and a set of exploratory experiments. In Section 4.1, we explain the models and experiments
we use to verify our system, and present their results. In Section 4.2, we explain the methods used to run
our exploratory experiments, and then present the results of each set of formulas separately.
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4.1. Verification Experiments

We begin by running a set of verification experiments designed to compare cognitive models
generated by our translation system to cognitive models made by hand. We perform our verification
experiments using the so-called “myopic” and “own-payoff” strategies (see [21]). A player using the
myopic strategy only looks at her own payoffs at the current and next leaf nodes, and moves towards
the highest one. A player using the own-payoff strategy only looks at her own payoffs at her current
and any future leaf nodes, and moves towards the highest one.

4.1.1. Methods

We create myopic and own-payoff cognitive models by hand, which perform the above strategy,
and we also let our translation system generate a myopic and own-payoff cognitive model. The myopic
and own-payoff models will only play Game 5 (cf. Figure 2). It is a truncated version of Games 1 and 2.
We use this game for these strategies because the participant moves first here, instead of the computer.
Indeed, when using the myopic or the own-payoff strategy, a participant does not take the computer’s
first move into account at all.

We run each of these four models 48 times, to simulate 48 virtual participants. For the automatically
generated models, we also run a separate batch of 1000 virtual participants, so we can investigate the
models’ robustness. Each of these “participants” will play Game 5 for 48 times. Each model plays as
Player P, and will only perform Player P’s first move in Game 5. Each trial ends when the model has
played a move. We record response times and decisions made.

The formulas our myopic and own-payoff cognitive models are generated from are based on the
myopic and own-payoff strategies. These formulas are for Game 5 only. They are as follows:

‚ Myopic, Game 5

My5
P : rpxc`ypuP “ 2q ^ xd`yxe`ypuP “ 1q ^ p1 ď 2q ^ rootq ÞÑ csP

‚ Own-payoff, Game 5

Op5
P : rpxc`ypuP “ 2q ^ xd`yxe`ypuP “ 1q ^ xd`yx f`yxg`ypuP “ 4q ^ xd`yx f`yxh`ypuP “ 3q^

p1 ď 2q ^ p2 ď 4q ^ p2 ď 3q ^ p1 ď 4q ^ p1 ď 3q ^ p3 ď 4q ^ rootq ÞÑ csP

Note that these formulas are based on the myopic and own-payoff strategies, and not on the
handmade myopic and own-payoff models. We feed these formulas to our translation system, which
uses them to automatically generate new myopic and own-payoff models. These are the models we
compare to our handmade models.

4.1.2. Results

We now present and discuss the results of our verification experiment. We begin by looking at the
cognitive model’s decisions, and then look at the cognitive model’s response times.

Cognitive Model Behavior

The proportions that our myopic and own-payoff cognitive models play down, or c, can be found
in Table 2. The automatically generated myopic and own-payoff cognitive models play according
to the behavior described in Section 3. The handmade myopic and own-payoff cognitive models
play according to the intuitive strategies described at the beginning of this Section 4.1: they use
eye movements and declarative memory retrievals to find their highest payoff, either in the current
and next leaf node when using the myopic strategy, or the current and every leaf node when using
the own-payoff strategy. Both the strategies and the formulas prescribe that you should play down
when using the myopic strategy, and right when using the own-payoff strategy. In short, the models’
behavior corresponds to the strategies they are using, and the correspondence between our handmade
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and generated models serves as verification for our translation system. There is no difference between
the 48- and 1000-participant runs of the automatically generated models.

Table 2. Proportions c played for myopic and own-payoff cognitive models in Game 5.

Myopic Own-Payoff

Handmade 1 0
Generated (48 virtual participants) 1 0
Generated (1000 virtual participants) 1 0

Response Times

Reaction times for the myopic and own-payoff cognitive models in Game 5 can be found in
Figure 6. It can be seen that the own-payoff models have a bit under twice the response times of the
corresponding myopic models. This is probably caused by the own-payoff models looking at two more
payoffs in the game tree, and performing five more declarative memory retrievals when comparing
payoff values. Both the handmade and generated models show the same difference between the
myopic and own-payoff models, which serves as verification for our translation system. However, the
generated models are faster than our handmade models. We believe this is because our handmade
models are general to any centipede-like game, whereas the generated models are specific to Game 5:
our generated models operate under the assumption that they are playing Game 5, so do not have to
perform extra checks to adapt to the game they are playing. There is little difference between the 48-
and 1000-participant runs of the automatically generated models, except that the error bars are larger
for the 48-participant runs, which is to be expected.

Figure 6. Reaction times in milliseconds for the automatically generated and handmade myopic and
own-payoff cognitive models in Game 5. For generated models, the number between brackets indicates
the number of virtual participants.

4.2. Exploratory Experiments

In Section 4.1, we have verified our translation system by showing that the results of our
handmade myopic and own-payoff cognitive models are very similar to myopic and own-payoff
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cognitive models that were automatically generated using our translation system. In the present
section, we first describe a general method we use for our exploratory experiments, after which we
alternate between presenting the formulas we use to generate cognitive models and the results we
obtain from those cognitive models.

Almost all of the cognitive models in our exploratory experiments play Games 1–4 as found in
Figure 2. There is one model for each game, for each strategy. We run each of these models 48 times, to
simulate 48 virtual participants. Each of these “participants” plays their game 48 times. Each model
plays as Player P, and will only perform Player P’s first move in their respective game, where Player C
has already played b. Each trial ends when the model has played a move. We record response times
and decisions made.

We now generate the cognitive models for the exploratory experiments from strategy formulas
based on BI, EFR, theory-of-mind, and risk-aversiveness. We also create a cognitive model by hand
which uses the BI procedure for games with and without payoff ties [33,36]. For theory-of-mind, we
create cognitive models using zero-, first- and second-order theory-of-mind. The risk-based cognitive
models attribute risk-aversiveness and risk-seeking to either Player P or C, for four risk-based cognitive
models in total. The BI and EFR formulas are based on formal strategies, whereas the theory-of-mind
and risk-based models are formulas based on types of behavior. For each of these strategies and types,
we give one or more example formulas. The remainder of these formulas can be found in Appendix A.

All cognitive models start with comparison facts between the natural numbers one and six
in their declarative memory, as these are the numbers relevant to the games under consideration.
An example of such a fact is “one is smaller than four”. All cognitive models play as Player P, in a
game where Player C has already played b. They do not play P’s second action. Each cognitive model
is counterbalanced in terms of the order of strategy formulas within the exhaustive strategy formula it
was generated from.

Because almost all of the formulas we use contain the conjunction ϕ ^ ψP ^ ψC ^ xb´yroot,
we abbreviate this conjunction as χ. Here, ϕ is defined as ϕ :“ α ^ β ^ γ ^ δ ^ ζ (adapted
from [10]), where

α :“ xdyx f yxhyppuC “ pCq ^ puP “ pPqq

(from the current node, a d move followed by an f move followed by an h move lead to the
payoff ppC, pPq )

β :“ xdyx f yxgyppuC “ qCq ^ puP “ qPqq

(from the current node, a d move followed by an f move followed by a g move lead to the
payoff pqC, qPq)

γ :“ xdyxeyppuC “ rCq ^ puP “ rPqq

(from the current node, a d move followed by an e move lead to the payoff prC, rPq)

δ :“ xcyppuC “ sCq ^ puP “ sPqq

(from the current node, a c move leads to the payoff psC, sPq)

ζ :“ xb´yxayppuC “ tCq ^ puP “ tPqq

(the current node can be accessed from another node by a b move from where an a move
leads to the payoff ptC, tPq)

and ψi is used to denote the conjunction of all the order relations of the rational payoffs for player
i P tP, Cu given in the game (from [21]). Since this description applies to Games 1–4, and our cognitive
models play as Player P in her first move, the “current node” refers to the second node in the game
tree, with outgoing edges c and d. For the ease of reading, in the formulas above and those in the rest of
the paper, we have used the operator symbol xxy to mean the operator xx`y, for any action symbol x.
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In the remainder of this section, we alternate between providing strategy formulas used to
generate cognitive models, and presenting the results of those models when used in the experiment
described above. We begin with the strategies BI and EFR.

4.2.1. Backward Induction and Extensive-Form Rationalizability

Models

Our first batch of cognitive models are based on the BI and EFR strategies. Apart from the BI
and EFR cognitive models that we generate from their strategy formulas, we also create a BI cognitive
models by hand, which uses the BI procedure as presented in [20]. The BI formulas we use to generate
cognitive models are based on the BI strategies as found in Table 1. We give example formulas for
Games 1 and 3 as found in Figure 2. In Game 1, there is one BI solution, so the exhaustive strategy
formula consists of one formula. In Game 3, there are two BI solutions, so the exhaustive strategy
formula consists of two formulas. The BI cognitive models only have BI beliefs in their declarative
memory, corresponding to the first column of Table 1. The exhaustive strategy formulas for BI in
Games 1 and 3 are as follows:

‚ Backward induction, Game 1

BI1
P : rpχ^Bpn2,Pq

g1 xdye^Bpn2,Pq
g1 xdyx f ygq ÞÑ csP

‚ Backward induction, Game 3

BI3
P : rpχ^Bpn2,Pq

g3 xdye^Bpn2,Pq
g3 xdyx f ygq ÞÑ csP

BI3
P : rpχ^Bpn2,Pq

g3 xdy f ^Bpn2,Pq
g3 xdyx f yhq ÞÑ dsP

The cognitive models generated from the BI formulas only have BI beliefs in their declarative
memory. The exhaustive EFR formulas are constructed in the same manner as the BI formulas. The EFR
cognitive models only have EFR beliefs in their declarative memory. The EFR formulas for Games 1
and 3 are as follows:

‚ Extensive-form rationalizability, Game 1

EFR1
P : rpχ^Bpn2,Pq

g1 xdy f ^Bpn2,Pq
g1 xdyx f ygq ÞÑ dsP

‚ Extensive-form rationalizability, Game 3

EFR3
P : rpχ^Bpn2,Pq

g3 xdy f ^Bpn2,Pq
g3 xdyx f ygq ÞÑ dsP

EFR3
P : rpχ^Bpn2,Pq

g3 xdy f ^Bpn2,Pq
g3 xdyx f yhq ÞÑ dsP

The results we obtain when running the BI and EFR models, as described above, using the
methods described at the start of this section, can be found in the next two paragraphs.

Results: Cognitive Model Behavior

The proportions that our BI and EFR cognitive models play down, or c, can be found in Table 3.

Table 3. Proportions c played for BI and EFR in Games 1–4.

BI EFR Handmade BI

Game 1 0.542 0.417 1
Game 2 0.438 0.604 1
Game 3 0.409 0.109 0.488
Game 4 0.543 0.596 0.503
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It can be seen that the handmade BI cognitive model always plays down in Games 1 and 2, and
plays down about half the time in Games 3 and 4. This is because using the BI procedure, there is only
one BI solution in Games 1 and 2, which is playing down, and because of the payoff ties in Games 3
and 4, there are two BI solutions, one prescribing to play down, while the other prescribes right.

The proportions down played in Games 1 and 2, for both BI and EFR, are all close to 0.5.
As mentioned, the cognitive models sequentially try to verify each of the propositions in the strategy
formulas they were generated from. We assume cognitive models will always be able to verify χ,
because χ only contains true facts about the game tree. Because of this, the cognitive model behavior is
mostly dependent on the beliefs it has to verify. As mentioned, the cognitive model plays as Player P,
after Player C has already played b. When verifying beliefs about C, this knowledge is used in trying
to retrieve a strategy for Player C. Thus, every time a belief concerning C is verified in these cognitive
models, the incomplete strategy b-? is sent to declarative memory, and either b-e or b-f is retrieved,
or the cognitive model fails at retrieving a strategy because neither b-e or b-f are among its strategies
in memory. As one can see in Table 1, no BI or EFR strategy in Games 1 and 2 starts with C playing b.
Because of this, the cognitive models cannot verify their beliefs when playing Games 1 and 2, so they
select randomly from down and right, which is why the proportions are all close to 0.5.

In more behavioral terms, the cognitive models for BI and EFR in Games 1 and 2 are trying
to verify their corresponding strategies. However, the fact that C has already played b does not
correspond to these strategies. The cognitive models are trying to play a strategy in a situation that
contradicts this strategy, and hence cannot play corresponding to this strategy.

The proportions of down played in Game 4, for both BI and EFR, are also close to 0.5.
However, since the BI and EFR strategies include strategies such as b;f and d;g, the cognitive
models do have the opportunity to verify the beliefs in the formulas they were generated from.
However, the strategy formulas for BI and EFR in Game 4 are symmetric with regard to the action
that is prescribed: within the exhaustive strategy formula, there is an equal number of strategies that
prescribe c as there are that prescribe d. Because of this, the proportions are close to 0.5.

Perhaps the most interesting game with regard to the strategy table (Table 1) is Game 3, because
not all strategies are BI or EFR strategies, but there are strategies present such that the cognitive models
can verify their beliefs. For example, in Game 3, b;e is not a BI strategy. Because of this, the belief
that C will play e cannot be verified by the BI cognitive model. However, b;f is a BI strategy, so it can
be verified. In Section 4.2.1, we have seen that there are two BI solutions in Game 3: in one, you always
play down, but in the other, you always play right. According to the previous explanation, a cognitive
model cannot verify the one where you always play down, because C has already played right in the
current situation, so only one of these solutions corresponds to the current situation. Because of this,
the cognitive model will play right more often than down.

The EFR cognitive models in Game 3 mostly play right. This is because both strategy formulas
prescribe that the cognitive model should play right. The cognitive model first tries to verify the
first formula. If it succeeds, it plays right. If it does not, it tries to verify the second formula. If it
succeeds, it plays right. If it does not, it plays randomly, giving it a 0.5 probability to play right.
Because of this, it is very unlikely that the EFR cognitive models in Game 3 play down, which we see
in the proportions of playing down in Table 3.

Results: Response Times

Reaction times for the BI and EFR cognitive models, as well as the handmade BI cognitive model,
in Games 1–4 can be found in Figure 7. For all BI and EFR cognitive models, there is no difference
between Games 1 and 2 in terms of the strategy formulas as well as the BI procedure, which explains
the lack of differences between Games 1 and 2. The handmade BI cognitive model does not look at
the first leaf node, which is where Games 3 and 4 differ. This explains the lack of difference between
Games 3 and 4 for the handmade BI cognitive model.
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Figure 7. Reaction times in milliseconds for the automatically generated BI and EFR cognitive models
and the handmade BI cognitive model in Games 1–4.

The handmade BI cognitive model is slightly faster at Games 3 and 4 than at Games 1 and 2.
This is because of the payoff ties in Games 3 and 4: the cognitive model first compares values in the
game tree by checking whether they are equal, and if they are not, it will send a retrieval request to
declarative memory to determine which one is bigger. In short, the handmade BI cognitive models
perform one less retrieval request in Games 3 and 4.

The BI and EFR cognitive models in Games 1 and 2 are faster than those in Games 3 and 4. This is
because the BI and EFR cognitive models in Games 1 and 2 are generated from only one strategy
formula: if this formula fails to verify, the cognitive model stops and plays randomly. As for Games
3 and 4, if the first formula fails, the corresponding cognitive models will move to the next formula.
There seems to be a “ceiling” where response times do not increase much anymore. The EFR cognitive
model in Game 4 is slower than the one in Game 3 because it consists of more formulas, but not
by much.

Therefore, we believe that these cognitive models will, on average, succeed at verifying a formula
approximately “two formulas in to the list”. This could be why response times are not a direct function
of the number of formulas a cognitive model was generated from. The difference between the BI
cognitive models in Games 3 and 4 have a different explanation: in Game 3, one of the BI formulas is
impossible to verify, whereas, in Game 4, it is not. Because of this, the cognitive models playing BI in
Game 3 will play down earlier more often.
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4.2.2. Theory-of-Mind

Models

For the theory-of-mind cognitive models, the formulas we generate our cognitive models from
are based on what order of theory-of-mind one is using. Zero-order theory-of-mind users do not
consider the other player’s beliefs, whereas first-order theory-of-mind players consider the other
player’s beliefs. Since any such beliefs correspond to theory-of-mind, the theory-of-mind formulas
are the same for all Games 1–4. Because of this, we only show the exhaustive strategy formulas for
theory-of-mind in Game 1. The theory-of-mind cognitive models have beliefs corresponding to the BI,
EFR, and own-payoff strategies in their declarative memory.

‚ Zero-order theory-of-mind, Game 1

ToM-01
P : rpϕ^ ψP ^ xb´yroot ÞÑ csP

ToM-01
P : rpϕ^ ψP ^ xb´yroot ÞÑ dsP

‚ First-order theory-of-mind, Game 1

ToM-11
P : rpχ^Bpn2,Pq

g1 xdyeq ÞÑ csP

ToM-11
P : rpχ^Bpn2,Pq

g1 xdyeq ÞÑ dsP

ToM-11
P : rpχ^Bpn2,Pq

g1 xdy f q ÞÑ csP

ToM-11
P : rpχ^Bpn2,Pq

g1 xdy f q ÞÑ dsP

‚ Second-order theory-of-mind, Game 1

ToM-21
P : rpχ^Bpn2,Pq

g1 xdye^Bpn2,Pq
g1 xdyx f ygq ÞÑ csP

ToM-21
P : rpχ^Bpn2,Pq

g1 xdye^Bpn2,Pq
g1 xdyx f ygq ÞÑ dsP

ToM-21
P : rpχ^Bpn2,Pq

g1 xdy f ^Bpn2,Pq
g1 xdyx f ygq ÞÑ csP

ToM-21
P : rpχ^Bpn2,Pq

g1 xdy f ^Bpn2,Pq
g1 xdyx f ygq ÞÑ dsP

ToM-21
P : rpχ^Bpn2,Pq

g1 xdye^Bpn2,Pq
g1 xdyx f yhq ÞÑ csP

ToM-21
P : rpχ^Bpn2,Pq

g1 xdye^Bpn2,Pq
g1 xdyx f yhq ÞÑ dsP

ToM-21
P : rpχ^Bpn2,Pq

g1 xdy f ^Bpn2,Pq
g1 xdyx f yhq ÞÑ csP

ToM-21
P : rpχ^Bpn2,Pq

g1 xdy f ^Bpn2,Pq
g1 xdyx f yhq ÞÑ dsP

We generate cognitive models from these formulas, and run them using the methods described
at the beginning of Section 4.2. Our results are described in the next paragraph. Unlike in the
other experiments, we do not look at cognitive model behavior for the theory-of-mind models, as all
exhaustive strategy formulas are symmetric with regard to the action which is prescribed.

Results: Response Times

Response times for the automatically generated zero- to second-order theory-of-mind cognitive
models in Games 1–4 can be found in Figure 8.
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Figure 8. Reaction times in milliseconds for the automatically generated theory-of-mind cognitive
models in Games 1–4. Zero-order theory-of-mind agents (ToM0) do not take the opponent’s goals and
beliefs into account; first-order agents (ToM1) take the opponent’s goals and beliefs about world facts
into account; second-order agents (ToM2) in addition take the opponent’s beliefs about the focal agent’s
mental states into account.

The theory-of-mind cognitive models are the same across Games 1–4, which explains why there is
little difference among Games 1–4 within each order of theory-of-mind. The zero-order theory-of-mind
cognitive models are much faster than the first- and second-order cognitive models. This is because
the zero-order theory-of-mind cognitive models’ formulas only contains payoffs, comparisons, and
root, and no beliefs. Because these propositions are about true facts about the game tree, verifying
them will always succeed, so the zero-order theory-of-mind cognitive models will always play an
action after successfully verifying their first formula.

There are two factors that explain the difference between the first- and second-order
theory-of-mind cognitive models. First, first-order theory-of-mind cognitive models have to verify
one belief per formula, whereas second-order theory-of-mind cognitive models have to verify two
beliefs per formula. Secondly, exhaustive first-order theory-of-mind formulas consist of four formulas,
whereas exhaustive second-order theory-of-mind formulas consist of eight formulas. However, as
we have seen in the BI and EFR cognitive models, we believe the first- and second-order succeed at
verifying a formula in the exhaustive strategy formulas approximately “the same number of formulas
in”, which is why response times are not a function of number of formulas.

4.2.3. Risk-Based Models

Models

Our risk-based cognitive models only play Game 4. Their declarative memory is filled with
strategies corresponding to BI, EFR, and own-payoff. There are four risk-based cognitive models:
two where the cognitive model itself is risk-seeking or risk-averse, and two where the cognitive model
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attributes risk-seeking or risk-aversiveness to the other player, Player C. For example, if the cognitive
model itself is risk-averse, it will play d if it believes Player C will play e.

‚ Risk-averse, P, Game 4

RaP4
P : rpχ^Bpn2,Pq

g4 xdyeq ÞÑ csP

‚ Risk-seeking, P, Game 4

RsP4
P : rpχ^Bpn2,Pq

g4 xdy f ^Bpn2,Pq
g4 xdyx f ygq ÞÑ dsP

RsP4
P : rpχ^Bpn2,Pq

g4 xdy f ^Bpn2,Pq
g4 xdyx f yhq ÞÑ dsP

‚ Risk-averse, attributed to C, Game 4

RaC4
P : rpχ^Bpn2,Pq

g4 xdye^Bpn2,Pq
g4 Bpn3,Cq

g4 x f ygq ÞÑ csP

‚ Risk-seeking, attributed to C, Game 4

RsC4
P : rpχ^Bpn2,Pq

g4 xdy f ^Bpn2,Pq
g4 Bpn3,Cq

g4 x f yhq ÞÑ dsP

Unlike the BI, EFR, and theory-of-mind models, the risk-based models will only play Game 4,
using the methods described at the beginning of Section 4.2. Their results can be found below.

Results: Cognitive Model Behavior

The proportions that our risk-based cognitive models play down, or c, can be found in Table 4.
The behavior of the risk-based cognitive models corresponds to the actions that are prescribed in
the corresponding formulas. For example, in the risk-averse formula for P, the formula prescribes
playing c, or down. The proportion close to 0.7 corresponds to this. However, perhaps the best way to
explain the cognitive model behavior in the risk-based formulas is using probabilities. Consider the
risk-averse cognitive models for P, which plays in Game 4. The formula it was generated from is
rχ^Bpn2,Pq

g4 xdyeq ÞÑ csP. Since χ describes true facts about the game tree, we assume the probability of
successfully verifying χ is 1. Because of this, what the cognitive model plays depends on the belief
Bpn2,Pq

g4 xdye. To verify whether C will play e, the cognitive model will send the sequence of actions C has
played before the current situation to declarative memory in an attempt to find a strategy where C plays
e. This sequence is b-?, because C has played b. The declarative memory of the risk-based cognitive
models contain BI, EFR, and own-payoff beliefs. Because the risk-based cognitive models play Game 4,
the beliefs are simply the row corresponding to Game 4 in Table 1. Beliefs concerning P are not relevant
for verifying Bpn2,Pq

g4 xdye, and beliefs starting with a are not retrieved because the cognitive model
searches for a belief that starts with b. Because of all this, the list of beliefs it may retrieve consists of
b;f, three times, and b;e, two times. Retrieving b;e will verify the cognitive model’s beliefs, retrieving
b;f will falsify them. Therefore, the probability of verifying these beliefs is 2{5 “ 0.4, so there is a 0.4
probability of successfully verifying the formula and playing c, the action it prescribes. On the other
hand, there is a 0.6 probability the formula is falsified, in which case an action is played randomly.
Thus, within this 0.6 probability, there is a 0.3 probability that c is played, and a 0.3 probability d is
played. Add the probabilities that c will be played and you get 0.7, which is very close to the observed
proportion of playing down by the risk-averse cognitive model for P, in Table 4 (recall that we round
off to three digits).

Table 4. Proportions c played for our risk-based cognitive models in Game 4.

Risk-Averse, P Risk-Taker, P Risk-Averse, C Risk-Taker, C

0.7 0.163 0.581 0.338
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Results: Response Times

Response times for the automatically generated risk-based cognitive models in Game 4 can be
found in Figure 9. The response times for the risk-based cognitive models follow the same general
tendencies we have seen in those for other automatically generated cognitive models. The “participant,
risk-averse” cognitive model is fastest, probably because it only has to verify one belief. All other
cognitive models have to verify two beliefs per formula. The “participant, risk-taker” cognitive model
is slowest, probably because it consists of two formulas where all other exhaustive formulas consist
of one formula. The risk-averse cognitive model for C could be slightly faster than the risk-taking
cognitive model for C, because verifying Bpn2,Pq

g4 xdye is less likely than verifying Bpn2,Pq
g4 xdy f , but this

difference could also be coincidental.

Figure 9. Reaction times in milliseconds for the automatically generated risk-based cognitive
models in Game 4. “Computer-Averse”: the participant believes the computer is risk-averse in
its decisions; “Computer-taker”: the participant believes the computer takes risks in its decisions;
“Participant-Averse”: the participant says he/she avoids risks; and “Participant-Taker”: the participant
says he/she takes risks.

4.3. General Findings

To explain the cognitive model behavior for the risk-based models, we used a method where we
calculate the probability that a cognitive model will play a certain action, based on the strategy formulas
it was generated from. In fact, most of the probabilities of playing c, obtained using this method,
correspond rather nicely to the observed proportions of playing down. There are two important
exceptions: EFR in Game 3, and the “risk-taker, P” cognitive model in Game 4. These cognitive
models are generated from the same formulas, but have different beliefs. These formulas are η4

P :

rpχ^Bpn2,Pq
g4 xdy f ^Bpn2,Pq

g4 xdyx f ygq ÞÑ dsP and η4
P : rpχ^Bpn2,Pq

g4 xdy f ^Bpn2,Pq
g4 xdyx f yhq ÞÑ dsP. What we

found is that failing to verify the first formula “sets the cognitive model up” for succeeding in verifying
the second one, in some cases. If Bpn2,Pq

g4 xdy f is verified, then the chunk b-f would have been retrieved
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from memory, which increases this chunk’s activation. If Bpn2,Pq
g4 xdyx f yg fails, then d-h would have

been retrieved instead of d-g, which increases the activation of d-h. Because the first formula fails,
the cognitive model will try to verify the second one. With the activation of b-f and d-h increased, it
is more likely it will retrieve these strategies, which are exactly the strategies required to verify the
second formula. The same holds if the order of both formulas is exchanged.

Note that, although we ran a total of 48ˆ 48 “ 2304 trials, we ran 48 “virtual participants” who
played 48 trials each. The behavior on later trials is influenced by earlier trials. If on the first trial, a
certain chunk is retrieved, or a certain action is played, this chunk or action will receive activation,
which makes it much more likely to be used on later trials. Because of this, it is highly likely that within
all 48 trials of a single virtual participant, when all other things are equal, the same behavior will occur.
The mean response of 48 “different” observations is much more likely to deviate from an expected
value, such as 0.5, than the mean response of 2304 observations. In short, if a BI cognitive model in
Game 1 plays down on its first trial, it is very likely it will always play down in its 47 subsequent trials.

There are several tendencies we see in all cognitive models generated from the strategy formulas.
For example, response times seem to increase as the number of strategy formulas within an exhaustive
strategy formula increase. Response times also seem to increase as the number of beliefs within each
strategy formula increase. Cognitive models are more likely to play the strategy prescribed by the
strategy formulas they were generated from, except when the current state of the game—that is, Player
C has played b—contradicts the strategy they are attempting to play. We elaborate on some of these
findings in the next section.

5. Discussion and Conclusions

Logicians have long studied reasoning mainly from a prescriptive perspective, concentrating on
questions such as which inferences are logically valid. Similarly, game theorists have long been mostly
interested in the perspective of modeling strategies under the condition of commonly known rationality
of the players. In the meantime, psychologists have performed many experiments showing that people
often do not appear to reason correctly by the laws of classical logic [37]; and behavioral economists
have shown that people do not play according to the Nash equilibrium [38]. Fortunately, over the last
decade, more and more researchers from both the formal sciences and the behavioral sciences have
attempted to combine forces to better explain reasoning and strategizing, realizing that facts matter
to logic and game theory, and, on the other hand, that logic and game theory can help explain the
facts [13,39–43]. The current study aimed to strengthen the bridge between these areas.

This article has as a starting point the logical language expressing strategies that people can
apply when reasoning about their opponent and making decisions in turn-based games, such as
the game Marble Drop with Surprising Opponent that we use here as an example. The language can
express different possible strategies as well as reasoning types reflected in participants’ behavior and,
in addition to referring to players’ actions, it can also represent their (higher-order) beliefs [21]. Similar
to other logical approaches to strategies, the strategy logic cannot directly be used to model human
strategic reasoning in turn-based games. After all, the logic does not explicitly say anything about
aspects that have been found to be very useful in cognitive research on human strategic reasoning,
such as eye movements (reflecting dynamic attention shifts during reasoning), reaction times, and
active areas of the brain.

However, the logical language becomes very useful when the formulas are used to construct
computational cognitive models, in our case in the cognitive architecture PRIMs. An important
advantage of using PRIMs, rather than a computational model constructed from scratch, is that
PRIMs implements precise, experimentally validated theories about human memory and cognitive
bounds on reasoning processes. The logical strategy language of [21] helps to delineate a number of
plausible reasoning strategies in a systematic manner, which can then be translated into computational
models in PRIMs. The formulas are implemented as production rules, which handle visual
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processing (a participant gazing through the game tree), intermediate problem state updates, and
motor processing.

Our translation system of Section 3 generates computational cognitive models from strategy
formulas, without human intervention, in a generic way. This has the potential to greatly speed up
cognitive research on strategic reasoning, because cognitive models have so far usually been created
by hand, one by one. Our computational cognitive models can be run as a kind of virtual experimental
participants, to obtain reaction times, as shown in our results, as well as other data, such as decisions,
gazing behavior, and neural activity. The results in Section 4 show the feasibility of our system as a
proof-of-concept.

5.1. Verification of the Automated Translation Method and Exploratory Experiments

Our verification experiment in Section 4 shows that, between the handmade and generated
models, the proportion of reaction times between the myopic and own-payoff strategies are highly
similar, indicating similarity in their decision-making processes. For example, in both the handmade
and the automatically translated myopic model, the model looks at two payoffs in the game tree, stores
them in memory, and compares them to make its decision. The difference in reaction times could be
due to the fact that the automatically generated models are specific models for their respective games,
each one geared to a specific payoff structure, whereas the handmade models are general models.
Because of this, the handmade models have to perform extra tests to verify whether certain operations
are possible in the current game, and they have to remember what they have already done. In contrast,
the generated models are generated from a strategy formula designed for a particular game, so they
can simply perform a sequence of actions.

The main problem that we encounter in our verification experiment is that the reaction times for
the automatically translated cognitive models are too slow to resemble human reaction times, especially
knowing that human participants probably use a more complex strategy than the own-payoff strategy,
requiring even more processing steps. We believe that this is because of the relatively slow speed with
which our models move their visual attention through the game tree, visiting each decision point and
leaf from the root on to the right. The problem of being much slower than human participants does not
occur in the simplistic handmade PRIMs models in [21], which are unrealistic in the sense that those
“virtual participants” do no gazing whatsoever. The current exhaustive models do move their focus
back to the root if one of the formulas from he exhaustive list fails to check the next one if available.

Focus actions are a relatively novel addition to PRIMs, having been added for [44], where response
times are unused. This suggests that apart from “finding the strategy formula that best corresponds to
human strategic reasoning”, we also need to further develop focus actions in PRIMs to be reminiscent
of human gazing. Nonetheless, our verification experiment shows that our system can be used to
make predictions.

In addition, we have performed simulation experiments based on computational cognitive PRIMs
models, where we looked at both decisions and reaction times and compared different models on
these aspects. We compared these aspects between a handmade model for BI to the automatically
generated one; BI versus EFR; players that are risk-taking or risk-averse and players that assign these
tendencies to their opponent; and players reasoning according to several levels of theory of mind.
In each case, the exploratory analysis of the simulation results is informative about the intricacies of
strategic reasoning and can lead to precise predictions for new experiments with human participants.
Here follow some example predictions:

1. Participants who use second-order theory of mind according to a questionnaire make their
decisions more slowly than those using first-order theory of mind; the fastest are the zero-order
theory of mind participants. This is indeed what we found in centipede-like games similar to the
ones presented here [10].

2. Participants who are risk-taking according to a questionnaire make their decisions faster than
those who are risk-averse.
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3. When making their own decisions for a next action, participants give more weight to their own
stance towards risk (risk-aversive or risk-taking) than to the risk stance that they ascribe to
their opponent.

4. If participants do not have slower decision times in the game items with payoff ties than in those
with the same tree structure but without payoff ties, then they are not using either the BI or the
EFR strategy.

5.2. Future Research

The logical side of the story can be further developed in the future, including questions of
axiomatization, decidability, soundness and completeness (cf. [45]). As to the automated translation
method, the next step is to extend it from trees with at most binary choices to all game trees for
perfect-information games.

To better understand human strategic reasoning, we aim to translate different sets of specifications
of reasoning strategies in computational cognitive PRIMs models, inspired by the 39-model study
of [46]. The aim is to simulate repeated game play to determine which participants in a new experiment
most closely fit which reasoning strategy. The advantage of constructing PRIMs models, instead of
only logical formulas, is that the models generate quantitative predictions concerning reaction times,
loci of attention and activity of brain regions, which can then be tested in further experiments, using
an eye-tracker or even an fMRI scanner.
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Appendix A. Exhaustive Strategy Formulas for BI and EFR

In Section 4.2, we give the exhaustive strategy formulas for theory-of-mind, risk-aversiveness, BI,
and EFR. For brevity, in Section 4.2, we only provide the formulas for Games 1 and 3 when BI and EFR
are concerned. In the present section, we also provide the formulas for BI and EFR for Games 2 and 4.
The exhaustive strategy formulas for BI in Games 2 and 4 are as follows:

‚ Backward induction, Game 2

BI2
P : rpχ^Bpn2,Pq

g2 xdye^Bpn2,Pq
g2 xdyx f ygq ÞÑ csP

‚ Backward induction, Game 4

BI4
P : rpχ^Bpn2,Pq

g4 xdye^Bpn2,Pq
g4 xdyx f ygq ÞÑ csP

BI4
P : rpχ^Bpn2,Pq

g4 xdy f ^Bpn2,Pq
g4 xdyx f yhq ÞÑ dsP

The exhaustive strategy formulas for extensive-form rationalizability in Games 2 and 4 are
as follows:

‚ Extensive-form rationalizability, Game 2

EFR2
P : rpχ^Bpn2,Pq

g2 xdye^Bpn2,Pq
g2 xdyx f ygq ÞÑ csP

‚ Extensive-form rationalizability, Game 4

EFR4
P : rpχ^Bpn2,Pq

g4 xdye^Bpn2,Pq
g4 xdyx f ygq ÞÑ csP
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EFR4
P : rpχ^Bpn2,Pq

g4 xdye^Bpn2,Pq
g4 xdyx f yhq ÞÑ csP

EFR4
P : rpχ^Bpn2,Pq

g4 xdy f ^Bpn2,Pq
g4 xdyx f ygq ÞÑ dsP

EFR4
P : rpχ^Bpn2,Pq

g4 xdy f ^Bpn2,Pq
g4 xdyx f yhq ÞÑ dsP
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