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Abstract: Cooperation is a fundamental aspect of well-organized societies and public good games are
a useful metaphor for modeling cooperative behavior in the presence of strong incentives to free ride.
Usually, social agents interact to play a public good game through network structures. Here, we use
social network structures and computational agent rules inspired by recent experimental work
in order to develop models of agent behavior playing public goods games. The results of our
numerical simulations based on a couple of simple models show that agents behave in a manner
qualitatively similar to what has been observed experimentally. Computational models such as
those presented here are very useful to interpret observed behavior and to enhance computationally
the limited variation that is possible in the experimental domain. By assuming a priori reasonable
individual behaviors, the easiness of running simulations could also facilitate exploration prior to
any experimental work in order to vary and estimate a number of key parameters that would be very
difficult, if not impossible, to change during the actual experiment.

Keywords: public goods games; social networks; agent-based models

1. Introduction

Circumstances that require cooperation to be achieved crop up in many places in society.
International challenges such as global climate change and natural resources exploitation clearly
show that cooperation and self-restraint would be the successful strategies to apply but often these
are thwarted by selfish behavior and short-term view, as we can see from the difficulty to establish
quotas and, above all, to respect them, when there is not a clear way to measure who does what, as in
fishing or CO2 emissions. In game theory, this kind of collective-action situation is modeled through
public goods games (PGG) [1–3]. PGGs are multi-player games in which N agents have the choice to
voluntarily contribute to a common pool that will be enjoyed by all and will have an added value for
each agent through a multiplication factor 1 < r < N, i.e., before sharing the total contribution among
the players, the quantity contributed in the common pool is multiplied by r. This represents the fact
that the realization of the public good has an added value for the whole community. In laboratory
work, the surplus is provided by the experimenter. The temptation for an agent is to free-ride on
the contribution of others and give little or nothing to the common pool. Of course, if enough agents
think in this way the public good will not be realized. Indeed, according to game theory based on
rational optimizing agents, the dominant individual strategy in not to contribute and the unique Nash
equilibrium corresponds to zero contribution from each agent implying no public good provision
at all.

However, despite the gloomy predictions of the theory, it appears that people often do contribute
to some extent when faced to situations that can be interpreted as PGGs, both in real-life as well as in
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controlled laboratory experiments, even though this fails to maximize personal income. This has been
seen in a host of experiments that have been performed in the last two decades. The are too many to
be listed, but we mention some references from which further work can be found [3–8]. The common
observation in most experiments is that subjects do contribute about 50% of their endowment at
the beginning. However, contributions go down when play is repeated as people start to free-ride but
they never reach zero on average, final values being around 10–20%. Actually, when devices such as
costly punishment of the free-riders or rewards for contributing are allowed, the contribution level
may raise again to higher levels [4,5]. However, it is also known that punishment can harm efficiency
in the presence of counter-punishment as cooperators are less willing to punish free-riders in this
case [9].

All this is common knowledge by now but there is still disagreement about the interpretation of
the observations. Some researchers think that human behavior is inherently pro-social and that people
take into account the welfare of others, to some extent at least, when making their decisions [4,10].
In this case, some form of conditional cooperation seems to be the main motivation behind the steady
reduction of contributions that is observed when the interaction is repeated. However, other
interpretations are also possible. For instance, in a series of experiments, Burton-Chellew et al. [6–8]
challenged the previous interpretation, suggesting that mere payoff-based learning may also explain
the results. However, this position seems much too simple when information about people’s actions
are available to all members of the group. More sophisticated strategies are likely to be at work in this
case, including other-regarding ones.

Theoretical approaches based on evolutionary game theory using replicator dynamics [11] show
that full defection is the attractor state of the dynamics, similarly to standard Nash equilibrium
approaches, unless there are positive incentives rewarding reputation, or negative ones such as
punishing non-contributors at a cost for the punisher. On the numerical simulation side, there
have been several studies in the last ten years (e.g., see [12–14], and [15,16] for two recent reviews).
Since PGGs take place in groups and thus have a social dimension, most of these computer models
assume that there is a population of agents that interact between them according to a social network of
contacts. The network can be a complex network model (see, e.g., [17]) such a Barábasi–Albert model,
a model of social network as we assume here, or an actual social network. Bipartite networks have
also been suggested in which a set of vertices represents agents and another set of vertices represents
groups. Edges link agents with their respective group but neither agents nor groups possess direct links
between themselves [14,18]. However, we do not discuss the bipartite representation further in this
work. In general, to understand the evolution of the strategies in the network, numerical simulations
of replicator dynamics have been used [15]. However, the results of these studies do confirm that there
is no contribution in the long term and in the average, until a critical value of the multiplication factor
is reached. This critical value is between two and four and depends on the particular micro-update
rule used in the replicator dynamics [13]. Beyond this threshold, full cooperation is obtained at
a rate that depends on the network structure and on the particular payoff-proportional micro update
rule used. These models and the corresponding simulations are very useful to set the stage and to
understand the main aspects of the complex system dynamics. However, the decision rules are
homogeneous and stereotyped and far removed from the behavioral rules that agents actually seem to
use in laboratory experiments. Furthermore, for simplicity and mathematical convenience, the agents
are either full cooperators or full defectors, while in experiments they are usually characterized by
the amount they contribute, which is a continuous or, more frequently, an integer variable between
zero and a maximum value. Because of these simplifications, the results do not show the full range of
behaviors that are seen in experiments with human participants.

On the other hand, experiments may be limited in several ways, especially large-scale ones: they
are expensive to carry out and there can be serious logistic issues if they are performed in an open
web-based platform outside the controlled environment of the laboratory. Moreover, key parameters
must be chosen with care as changing them often requires running a new experiment, which involves
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spending more money and time. Numerical simulation models, used in conjunction with experiments,
are useful in relieving some of these limitations and in suggesting important parameters and settings
without having to test all of them in the laboratory. They can also help in extending the scope of
the experiment itself by exploring larger populations and untried parameter combinations.

As a first step toward an understanding of the behavioral strategies of agents when playing a PGG
in a social network of contacts, in the present work, we would like to start bridging the gap between
models and empirical observations. We do this by exploring a simple model which assumes a minimal
information on the part of the agents in a way that can be set up in a laboratory experiment and that
makes sense from the point of view of the experimenter. The information set can be richer, and one
possible extension corresponding to many common experimental settings is also treated.

The article is organized as follows. We first describe the simpler model in the next section. This is
followed by numerical simulation results and their discussion. Next, we introduce a slightly richer
information set and a behavioral model using this information is numerically simulated. A final
discussion and conclusions end the paper.

2. Payoff Satisfaction Model

In the present work, we chose to simulate a population represented as a social network model
because this is often a natural way of implicitly forming groups of entities in a public goods dilemma
situation. These population structures have attracted a lot of attention in the last decade, especially
in the realm of two-person games, where the PGG is called the Prisoner’s Dilemma (PD). There is
a large literature based on theory and extensive numerical simulations of the PD on networks, which,
on the whole, indicate that significant cooperation levels may be achieved through network reciprocity
that works through positive assortativity between cooperators, i.e., cooperators tend to interact with
cooperators and to avoid defectors (see e.g., [19]). For reviews and further references of this kind of
work, see, e.g., [20,21]. Recent research tested these predictions by means of targeted experiments with
humans in the laboratory, in which the subjects were connected in specific network structures [22–24].
Surprisingly, these studies found that neither homogeneous nor heterogeneous network structures
promote cooperation to a significant extent [23–25]. In spite of these somewhat mixed results, we keep
a social network for the population in the following because it is a natural structure to consider and also
because it makes it easy to add a coevolutionary dynamics of strategy and structure, an extension that
is not explored here but that is left for future work.

Burton-Chellew and coworkers performed a series of laboratory experiments in the last few years
in which they argued that there is no clear evidence for pro-social behavior in PGG games [6–8]. Rather,
they suggested that a simpler interpretation is that subjects are essentially payoff-driven since results
do not change significantly when extra information about other group members is provided, such as
who contributed what and their respective gains. Beyond the fact that the previous explanations may
fall short of the actual strategical behavior when richer information is provided, the first model we
present here is inspired on these considerations and is one of the simplest possible: it assumes that
agents only know their own decisions and their own earnings.

In our model, agents are connected through a social network that is generated according to
the method described in [26], which linearly combines a distance-based component with a preferential
attachment component linearly proportional to node’s degree and independent of space. The model is
a growing one and, for each new incoming node, given a pre-established mean degree, the proportion
of links to existing nodes that are made according to linear preferential attachment or according to
a distance-based criterion is specified by a parameter 0 ≤ α ≤ 1 such that for α = 0 the network is
purely spatial, while α = 1 produces pure preferential attachment networks.

Each agent interacts with its first neighbors, forming a group in which it is the focal element,
and also participates in all the groups that have each neighbor as the focal element (see also explanation
in Figure 1). Thus, if the degree of agent i in the graph is k, then the number of groups in which it
participates is g = k + 1.
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Figure 1. In the example, the node α has four direct neighbors (β, γ, δ, ε) and it thus participates in five
PGGs, i.e. the circle centered in α involving {α, β, γ, δ, ε}, and four other PGGs represented by circles
centered in its neighbors: {α, β}, {α, γ, δ}, {α, γ, δ, ε}, {α, δ, ε, ζ, η}. Note that a node may indirectly
interact with other nodes that are not first neighbors.

The game is a standard linear PGG in which the sum of the contributions is multiplied by
an enhancement factor r > 1 and equally shared among the members of the group, irrespective of their
individual contributions. Individuals are not allowed to punish free-riders or to reward cooperative
individuals, which would be impossible anyway given that they are only informed about their own
payoffs. The payoff πi of individual i is thus:

πi = g(1− ci)− gci +
g

∑
j=1

|Nj |

∑
k=1

rck
|Nj|,

in which it is assumed that individual i’s contribution ci is the same in all g groups in which i
participates. The first term represents the remaining part of the individual’s endowment after
contribution, the second term is the total contribution of i in the g groups of which it is a member,
and the last term is i’s return on investment after applying the enhancement factor r and sharing
the total amount among all the participating agents whose group size is |Nj|.

In the model, all agents set their contribution and compute their payoff in the first phase after
having played in all their groups. The initial contribution is chosen randomly in the set of fractions
{0.0, 0.25, 0.50, 0.75, 1.0}, where 1.0 represents the total endowment contribution. At each round,
a player has the same endowment of 1.0 for each group in which it participates. This choice qualitatively
emulates most experimental settings in which people are given an endowment, typically 20–40 tokens,
and they must decide how many they want to contribute to the common pool. Once players have got
their payoffs, they decide what to do next according to the following behavioral rules: if an agent gets
a payoff at least equal to the total contribution it made in the groups to which it participates, then, with
probability 0.5, it increases its contribution by 0.25, unless it is already at 1, or, with probability 0.5, it
keeps the same contribution at the next stage. The noise on the agent adaptive move helps to avoid
stereotyped behavior of the collection of agents. If the agent is unsatisfied, getting less than what it put
in the common pool, then it will decrease its contribution by 0.25 at the next time step, unless it was
already 0, in which case it does not change. These rules conform a kind of elementary reinforcement
learning process in the sense that decisions that lead to better payoffs are maintained or reinforced
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while those that lead to negative results are weakened. For the sake of clarity, the rules are expressed
in Table 1.

Table 1. In the payoff satisfaction model, the agent decreases its contribution fraction to PGG when
the received payoff πi is less than the contributed amount ci. Otherwise, it increases its contribution or
keeps the previous one with uniform probability. Here, R represents a uniform randomly generated
number in [0,1].

Payoff Satisfaction Model

Previous contribution fraction (ci) 0 0.25 0.5 0.75 1.0

πi ≥ ci
R < 0.5 = = = = =
R ≥ 0.5 + + + + =

πi < ci = − − − −

In a variation of the above setting, satisfied individuals, instead of choosing whether to increase
their contribution or keep the same one at the next stage with equal probability, may have a “personal”
propensity for each action given by a random number between 0 and 1. We discuss results using both
choices in the next section.

Although the behavioral adaptation rules just explained are extremely simple and certainly do
not correspond in detail to the decision made by subjects in the laboratory, we see that they are already
sufficient to induce an average population behavior that is qualitatively similar to what is observed in
experiments in which people have the same amount of information, i.e., only their own contributions
and individual gains.

3. Results

Figure 2 shows the average contribution during 40 interaction rounds for an enhancement factor r
between 1.2 and 4.0 included in steps of 0.2. Some r values are redundant and are not shown for clarity.
Each point of the curves is the average of 40 independent repetitions in each of which the initial random
contributions of the players are re-initialized. The network structure remains the same throughout.
The population size is 500 individuals connected in a social network of mean degree six built according
to the model described in [26], giving a mean group size equal to seven and with an α value of 0.3,
which is known to produce networks that have similar statistical features to those found from empirical
social network measurements [26].

Initially, contributions are chosen randomly in the set {0, 0.25, 0.50, 0.75, 1.0}. Therefore, in all
cases, the average is about 0.5 at time step zero. Here, this is the result of a mechanical process but it is
also in line with results in experiments where subjects contribute about one-half of their endowment
given that they still have no clue as to the consequences of their choices. Up to an r value of about
1.8, contributions decline smoothly, with a faster decay the lower r is. Again, this qualitatively also
follows the trend found in experiments. However, the pseudo-equilibrium value stabilizes around 0.1
and does not go to 0 as theory would tell us. This is fully in line with the experimental results in [6],
which we reproduce in Figure 3 for ease of reference. Their upper image (Figure 3A) corresponds to
a multiplication factor r = 1.6 and the relevant curve is the one labeled “black box”.

Continuing with the numerically simulated results in Figure 2, we observe that above r = 2 there
is a sudden increase in average contribution, and for all r > 2.2 the stable state tends to full contribution
after a short transient. Burton-Chellew and West also published results for an enhancement factor
r = 6.4 (see Figure 3B, curve labeled “black box”). In this case, and after 20 rounds, contributions
have raised to about 0.5 while our model would converge to full contribution for this r value after
about 15 steps. Clearly, we cannot pretend to fully reproduce their experimental results, given
the simplifications that went into our model with respect to the more complicated and heterogeneous
behavior of human subjects, and also the fact that their participants had an endowment of 40 tokens
and could spend any integer quantity between 0 and 40. Moreover, participants formed groups of
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constant size four in [6] while our groups have on average seven members but the size can fluctuate in
the network. Thus, although the goal of our model is not to reproduce any particular set of results,
we can say that it correctly predicts the qualitative observed behavior and trends.

Figure 2. Average individual contribution as a function of round number for several values of
the enhancement factor r as shown in the inset. The average is taken over 40 independent repetitions
of 40 rounds each on a network of size 500 and α = 0.3.

For the sake of completeness, we report in Figure 4 results for a smaller system with N = 20 agents,
which is the typical size of a laboratory experiment, such as the ones performed by [6], 20 rounds
in each repetition, for 20 repetitions. We depict curves for several r values as specified in the inset.
Despite the small size and a number of rounds reduced by half, the behavior is very similar to the larger
system, the only difference being more fluctuations. This is encouraging since, while experiments with
hundreds of participants are becoming possible using Amazon Mechanical Turk [27] or special-purpose
web-based systems [28], they are difficult to carry out for various reasons. Indeed, from the above
we can see that results on small-size systems may generalize to larger ones which is good news for
experimenters. It is also worth mentioning that the “unit” amount of contribution was rather arbitrarily
set to 0.25 in our simulations but using the smaller granularity of 0.1 does not change the nature of
the results. In our tests, we only observed a lower average contribution below r = 2 and a slower
convergence to full contribution for r > 2; otherwise, the phenomena show the same trends.

The results presented in Figure 2 are all for an α value of 0.3 in the building of the agents’
network. This is an average value that was found to lead to social network models with statistical
features similar to those of some observed social networks when the role of geographical space is
taken into account [26]. It is still interesting to study what happens when the extreme values of α = 0
and α = 1 are used in the network construction. A value of α = 0 means that each new node only
makes links to the closest existing nodes in the geographical space, while for α = 1 each new link is
made by preferential attachment, that is, proportional to degree, which leads to space-independent
scale-free networks. The results are shown in the following Figure 5. Figure 5a corresponds to α = 0
and Figure 5b is for α = 1. It is clearly seen that the behavior is very similar for low (less than 1.8)
and high (more than 2.6) values of r. In between, however, it seems that contributions are slightly
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higher is the scale-free case (Figure 5b) where there are a few big groups and many small ones, with
respect to the much more local and homogeneous purely spatial network (Figure 5a).

Figure 3. Results of the experimental study by Burton-Chellew and West; we refer the reader to [6] for
more detailed information.

Another dimension that can be explored to some extent in the present model is the influence
of the group size. This can be done simply by changing the mean degree of the agents’ network.
As an example, Figure 6 shows the group size distribution for α = 0.3 and average degree six. We have
thus studied the cases with an average network degree of four, i.e., mean group size of five, and average
degree 12, i.e., a mean group size of 13, both with α = 0.3. The results shown in Figure 7 are to be
compared with those for average degree six in Figure 2. For average degree 12 cooperation increases
slightly in the region of r = 1.8–2.2 with respect to degree four and six. However, the speed of
convergence is a little slower with degree 12. Otherwise, the differences are minor, which leads us to
conclude that the average group size has little effect, at least for the sizes studied here.
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Figure 4. Average contribution from simulation of a small network of 20 agents as a function of
the round number for the r values shown in the inset. Averages are taken over 20 independent
repetitions of the simulation.

(a) (b)

Figure 5. Average contribution as a function of round number for several values of the enhancement
factor r as shown in the inset: (a) α = 0; and (b) α = 1. The average is over 40 independent repetitions
of 40 rounds each on a network of size 500.

Finally, we comment on the model variation in which each agent has an individual propensity
for keeping the same level of contribution or increasing it when its payoff is at least equal to its total
contribution to all groups in which it is a member. The numerical simulation results are essentially
the same as in the previous case, in which each agent when satisfied chooses with probability
0.5 whether to keep its contribution the same or increment it and thus we do not report them to
save space. The only difference is in the speed of convergence to quasi-equilibrium, which is slightly
slower when agents each have a random chance between zero and one for each action. Since the system
averages are the same in the long run, this explains why the long-run results are also the same.
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Figure 6. Group size distribution for an instance of a network of 500 nodes having an average degree
equals to 6.

(a) (b)

Figure 7. Average contribution as a function of round number for several values of the enhancement
factor r as shown in the inset: (a) mean degree four; and (b) mean degree twelve. The average is over
40 independent repetitions of 40 rounds each on a network of size 500.

4. Group Average-Based Model

In the previous sections, we study a model in which individuals only have access to their own
decisions and earnings and know nothing about the behavior of the other members of the group to
which they belong, nor about the other individuals in the whole social network. This can be a realistic
enough hypothesis in situations in which communication is not direct but rather computer-mediated
as in this case anonymity is often the rule. However, many PGG interactions take place among people
or other entities that each can see who the other members of the group are and what they are doing.
Indeed, in experimental work with human subjects the latter is the customary setting (see, e.g., [4])
and it is usually assumed that participants are aware of the rule games and, besides their own decisions
and earnings, they also know the decisions of the other members of the group. In this case, it becomes
possible to hypothesize that the observed decline in contribution is caused by conditional cooperation,
whereby agents set their contribution in response to their own income and the income of the other
members of the group [4,8].
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Here, following the settings of a recent large-scale PGG experiment [28], we assume something
simpler, i.e., any single player only has access to the mean contribution of her neighbors in the last
run, in which case it is not possible to attribute a decline in contribution to any particular agent in
one’s group. A simple first model can be constructed based on the available information by just
“following the trend”. This kind of conformity has already been found to be an important rule is
some contexts if followed by a portion of the population (see, e.g., [28–31]). We simulate this type
behavior in the following way: if the contribution ci of an agent i is larger than the mean contribution
of its neighbors 〈cN〉, then in the next round the agent lowers its own contribution by a quantity that
is randomly chosen in {0.1, 0.2, 0.3}. Otherwise, if ci is less than 〈cN〉, then the agent increases its
contribution by a random amount in {0.1, 0.2, 0.3}. If ci becomes less than 0 or larger than 1, it is made
equal to 0 and 1, respectively. Finally, if ci = 〈cN〉, the contribution is left unchanged. The rule is
summarized in Table 2.

Table 2. In the payoff group average model, the agent decreases (increases) its contribution when
the latter is larger (smaller) than the average contribution of the group. It remains the same when these
two quantities are equal. The amount of decrease (increase) is a random value chosen in {0.1, 0.2, 0.3}.

Group Average-Based Model

Previous contribution fraction (ci) 0 0.25 0.5 0.75 1.0
ci > 〈cN〉 = − − − −
ci < 〈cN〉 + + + + =
ci = 〈cN〉 = = = = =

In other words, individuals follow the trend of what their neighbors are doing by trying to get
closer to the known average contribution of the latter. However, we do introduce some noise through
the random choice of the correction to be made in order to avoid herd behavior and complete regression
to the mean. This noise may be taken to represent errors or “trembles” in the decision process.

One consequence of this model is that the individual decisions do not take the payoff into account
and are thus independent of the enhancement factor r. Furthermore, it does not make much sense
to take the average value of many runs because, as the number of runs increases, the average gets
closer and closer to the initial average contribution value and thus it hides any interesting behavior.
Instead, in Figure 8, we show the results of a few typical simulations with the parameter set of Figure 2.
In the figure, one can see that contributions in independent repetitions of the simulations fluctuate in
a narrow band around the initial contribution values, thus ensuring a fair amount of cooperation.

Figure 8. Average contribution during time in five independent simulations in which agents are
trend-following according to the rules of the group average-based model (see Table 2).
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Now, assuming that only the mean contribution of the neighbors is provided and not the own
payoff of the individual is not realistic in a laboratory or real-life situation. Therefore, we tried to
set up a model that combines these pieces of information in a simple manner. The model assumes
that any agent, when deciding how much to contribute, randomly chooses between either following
the mean as above, or setting the contribution in the next step as in the payoff satisfaction-based
model of Section 2 with probability 1/2 each. This can be interpreted as having a dynamic population
of players that is a random mix of two behavioral types with percentages equal to 0.5. Obviously,
the fractions in the population could be different, or they could contemplate other types as well, but let
us stick with the simpler model here.

The curves of Figure 9 have been obtained by running the above model and taking the averages
of 40 independent repetitions of 40 interaction rounds each. The social network is of size N = 500,
its mean degree is six, and the α parameter is equal to 0.3 (see Section 2). The resulting behavior
is essentially similar to the one corresponding to the payoff-only model (see Figure 2) for the same
parameter values but cooperation establishes itself at slightly lower r values. Thanks to the presence of
the payoff-based agents, the trend towards more contribution as r increases is respected. While the 50%
of agents in the average that are mean-following do not change the global behavior qualitatively,
because of their noisy decisions, full cooperation is never achieved. A behavior that is qualitatively
similar has been observed in a recent large-scale experiment in which the participants were given
the same information [28].

Figure 9. Average contribution as a function of round number for several values of the enhancement
factor r as shown in the inset for the mixed model. The average is over 40 independent repetitions of
40 rounds each on a network of size 500.

5. Discussion and Conclusions

Our original motivations in developing the models presented in this work were related to
the difficulties in trying to reconcile results of theoretical replicator dynamics based models of
the simple PGG with the large number of observations that have been obtained in experimental work.
Far from rejecting theoretical results, which provide us with a valuable rigorous general framework,
we have argued that more flexible and behavior-inspired models are also needed if we want to reduce
the gap between theoretical models and the results that have accumulated in experimental work.
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Thus, we tried to design simple models of individual behavior that approximately mimic
the actual behavior of subjects playing the PGG in the laboratory. Of course, the downside of this
approach is that there can be a large number of individual behaviors, which also strongly depend
on the amount of information that each agent receives about the members of her group. Inspired by
recent experimental work by Burton-Chellew et al. [6–8], we started with a minimalist design in
which agents are only informed about their own payoff after each round. The micro update rules
thus reflect this situation in our model. Burton-Chellew at al. suggested that such a situation gives
results that do not differ, in the statistical sense, from those in environments in which people are also
informed about the contributions of the other members of the group, thus questioning the relevance
of prosocial preferences or conditional cooperation [4,5]. Although we have a neutral position about
the soundness of this argument, it seems to us a bit too simple outside the “payoff-only” experimental
setting. Albeit, the results of simulating our model with only own’s payoff available fully confirm
that the qualitative behavior of the population of players strongly resembles to what is observed
experimentally and has the right behavior as a function of the enhancement factor, with the added
advantage that large population sizes can be simulated, something that is very difficult to do in
the laboratory or in the real world.

In the second part of our study we experimented with a different information set. Inspired by
recent experimental large-scale work on the linear PGG [28], we designed two different models
based on the fact that subjects know their own payoff after each round of play and also the average
contribution of the other members of the group. It is still impossible for a given individual to know
who did what in the group but the average is provided. In the first model individuals do not know
(or ignore) their own payoff and are only aware of the mean contribution of the other group members
and react to it. Following the observations made in [28], we assumed that people will try to bring their
present contribution probabilistically closer to the mean, in a kind of conformist behavior. The results
of single runs of the model show that a relatively high level of contribution to the common pool can be
maintained. The multiplication factor does not play a role in this case.

In the second and more realistic model, we assumed that, statistically, half of the agents would
choose the payoff-based rule of the payoff satisfaction model, and the other half would act as
the mean-following agents just described. This amounts to having the same fractions of two types of
players, or behaviors, in the population but single players are not hard-wired; they randomly choose
their behavior with probability 1/2 at each decision step. Here, we observe that behavior is similar to
the first model based on own payoff only, with contributions going down (but not to zero) for medium
enhancement factor values and increasing from there on but not to full cooperation due to the presence
of half of the agents noisily following the mean.

Of course, one could imagine several other behavioral models, depending on the information
available to the players. Here, we have tried to keep the system as simple as possible, following relevant
results that have been published in the literature. In fact, experiments do show that, although
heterogeneity in behavior is the rule, one can always abstract a few types whose mean behavior
approximates the observed one. This is important as one cannot go back to completely idiosyncratic
behavior under penalty of loosing any descriptive power.

In conclusion, simple models such as those presented here are very useful to interpret observed
behavior and to enhance computationally the limited variation that is possible in the experimental
domain. Conversely, by assuming a priori reasonable individual behaviors, the easiness by
which simulations such as those described here can be run could also facilitate exploration prior
to any experimental work in order to vary and estimate a number of key parameters that would be
very difficult, if not impossible, to change during the actual experiment. In future work, we plan to
more fully study the influence of the social network topology, including coevolutionary dynamics,
communities of fully connected sets of agents, and other simple rule models based on different
and richer information sets such as the distribution of contributions, reputational profiles and network
structure beyond the first neighbors.
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