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Abstract: We study the emergence of cooperation in structured populations with any arrangement of
cooperators and defectors on the evolutionary graph. In a computational approach using structure
coefficients defined for configurations describing such arrangements of any number of mutants,
we provide results for weak selection to favor cooperation over defection on any regular graph with
N ≤ 14 vertices. Furthermore, the properties of graphs that particularly promote cooperation are
analyzed. It is shown that the number of graph cycles of a certain length is a good predictor for the
values of the structure coefficient, and thus a tendency to favor cooperation. Another property of
particularly cooperation-promoting regular graphs with a low degree is that they are structured to
have blocks with clusters of mutants that are connected by cut vertices and/or hinge vertices.

Keywords: evolutionary game theory; fixation properties; structure coefficients; regular graphs;
graph–theoretical properties; graph cycles

1. Introduction

Describing conditions for the emergence of cooperation in structured populations is a fundamental
problem in evolutionary game theory [1–5]. In structured populations, the network describing which
players interact with each other may be crucial for the fixation of a strategy. Recently, several attempts
have been made to explore the universe of interaction graphs in order to link graph properties to
fixation. For a single cooperator, this question has been studied intensively and recently relationships
have been mapped for a large variety of different interaction graphs connecting which strategy is
favored with the fixation probabilities and the fixation times [6–9]. These results clarify for a single
mutant the relationships between the graph structure, on the one hand, and fixation probability and
fixation time, on the other. The main findings are that generally fixation probability and fixation time
is correlated such that a higher fixation probability comes with a higher fixation time. Within this
general rule, it has further been shown that generalized stars maximize fixation probability while
minimizing fixation time, while comet-kites minimize fixation probability while maximizing fixation
time [7]. Furthermore, if we allow self-loops and weighted links, we may construct arbitrarily strong
amplifiers of selection [8]. Compared with these findings, the problem of multiple cooperators (or
more than one mutant) is far less studied. One approach uses configurations [10,11] and structure
coefficients [12] and has shown that cooperation is favored over defection under conditions that can be
linked to spectral graphs measures and cooperator path length [13,14].

This paper gives a computational study and uses structure coefficients defined for configurations
describing any arrangement of any number of mutants. It consequently deals with strategy selection
for multiple mutants on evolutionary graphs and addresses two central questions. The first is to find
out which interaction network modeled as a regular graph yields the largest structure coefficient and
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therefore is most suited to promote the evolution of cooperation. This is reported for all regular graphs
with N ≤ 14 vertices (=players). This question is studied subject to three parameters, the number of
players, coplayers, and cooperators. Answering this question may inform the design of interaction
networks with prescribed abilities to promote or suppress cooperation. As there are some trends
over varying these three parameters, it appears possible to conjecture for beyond the considered
parameters. The second question studied takes up the observation that there are differences in the
values of the structure coefficients over regular interaction graphs and asks what makes some graphs
different from others in terms of promoting the evolution of cooperation. Our main interest is what
these differences are from a graph–theoretical point of view. This goes along with identifying certain
properties of regular cooperation-promoting graphs. The main result is that the number of graph
cycles of a certain length is a good predictor of a large value of the structure coefficient. Especially for
a smaller number of coplayer, graphs that particularly promote cooperation have cycles with a small
length. Furthermore, these graphs are structured to have blocks that are connected by cut vertices
and/or hinge vertices. Cooperators cluster on these blocks and serve as a mutant family that may
invade the remaining graph. The study presented here uses structure coefficients, which have been
derived for birth–death and death–birth processes [12]. However, as the structure coefficients solely
depend on the distribution of cooperators and defectors on the evolutionary graph, they could, at least
in principle, also be calculated for other strategy updating processes as long as these processes are not
completely random. Thus, the methodology reported here may also be applicable for other types of
evolutionary dynamics, for instance, non-imitative dynamics.

The paper is structured as follows. In Section 2, the main results are given. In particular, upper and
lower bounds on the structure coefficients are presented for DB updating and all interaction networks
modeled as regular graphs with N ≤ 14 players. Furthermore, it is shown that between maximal
structure coefficients (and thus conditions favoring the prevalence of cooperation) and the count of
cycles with a certain length, there is an approximately linear relationship. The results are discussed
in Section 3, while the Appendices review the methodological framework of configurations, regular
graphs, and structure coefficients, discuss graph isomorphism, and give a collection of graphs with
maximal structure coefficients.

2. Evolution of Cooperation

2.1. Upper and Lower Bounds on the Structure Coefficients

The structure coefficient σ(π,G) introduced by Chen et al. [12] (see [13,14] for further analysis) is
a measure of whether or not cooperation is favored over defection in games with any arrangement of
cooperators and defectors on regular evolutionary graphs. More strictly speaking, in an evolutionary
game with weak selection and a payoff matrix (A1), the fixation probability of cooperation is larger
than the fixation probability of defection if

σ(π,G)(a− d) > (c− b), (1)

see also Appendix A. This condition connects the values of the payoff matrix, the structure of the
evolutionary graph G and the arrangement of cooperators and defectors on this graph expressed
by the configuration π with long-term prevalence of cooperation. The structure coefficient σ(π,G)
generalizes the structure coefficient σ introduced by Tarnita et al. [15] which yields the same condition
for favoring cooperation, σ(a− d) > (c− b), but applies to a single cooperator (or a single mutant).
By contrast, σ(π,G) is valid for any arrangement of cooperators and defectors on the evolutionary
graph and specifically for several cooperators (or multiple mutants).

As the structure coefficient varies over configurations π and graphs G, it is natural to ask about
upper and lower bounds of σ(π,G). In this paper, we approach this question by checking all σ(π,G),
which appears feasible for a small number of players N ≤ 14 and all regular graphs with up to
14 vertices. We classify the structure coefficients and graphs with respect to the number of players N.
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Furthermore, the configurations π are also grouped according to the number of cooperators c(π),
2 ≤ c(π) ≤ N− 2, while the graphs G are sorted according to the number of coplayers k (which equals
the degree of the graph). As the structure coefficients σ(π,G) vary over configurations and graphs G,
we may define two bounds. A first bound is over all 2N − 2 non-absorbing configurations, which is
called σmaxi . Thus, we obtain for each graph Gi, i = 1, 2, . . .Lk(N), the quantity σmaxi = max

π
σ(π,Gi).

A second bound, called σmax, is derived from the first bound and additionally collects over all Lk(N)

regular graphs with a given N and k according to Table A1. Thus, we get σmax = max
i

σmaxi . For the

minimum, the bounds are defined like-wise.
Figure 1 shows the maximal structure coefficient σmax and the maximal difference

∆σ = σmax − σmin over players N and coplayers k for DB updating, see Equation (A3). As discussed
in Appendix B these results apply to any instance of a regular graph, for example to random regular
graphs. It can be seen that the maximal structure coefficient σmax is the largest for k = 3, which is
cubic graphs. For k > 3, the values of σmax get gradually smaller. In other words, the more coplayers
there are, the smaller is σmax. For a constant number of coplayers, σmax increases with N, which is
the number of players. The increase, however, gets gradually smaller and converges for N → ∞ to
a constant, which is σ(π,G) → σ = (k + 1)/(k − 1) [12,16]. For instance, for k = 3, the structure
coefficients converge to σ(π,G)→ σ = 2.

(a) (b)

Figure 1. The maximal structure coefficient σmax (a) and the maximal difference ∆σ = σmax − σmin (b)
over the number of players N and coplayers k for all regular interaction graphs with 6 ≤ N ≤ 14 and
3 ≤ k ≤ N − 3 according to Table A1.

In other words, for the thermodynamic limit with an infinite population, the prevalence of
cooperation only depends on the number of coplayers k of a regular graph, but not on the graph
structure or the number and arrangement of cooperators on the graph. The largest difference between
maximal and minimal structure coefficient ∆σ = σmax − σmin we also get for k = 3. Here, ∆σ increase
to a largest values (for instance for k = 3 this happens for N = 10) before falling for N getting even
larger, converging to ∆σ = 0 for N → ∞.

We next analyze the maximal structure coefficients depending on the number of cooperators c(π).
Thus, the maximum is over all #c(π) =

(
N

c(π)

)
configurations with the same number of cooperators

2 ≤ c(π) ≤ N− 2 and all regular graphs according to Table A1. The maximal values of σmax and ∆σ are
obtained for c(π) = N/2 for N even and for both (N + 1)/2 and (N − 1)/2 for N odd. An exception
is N = 12 and k = 3, where σmax is obtained for c(π) = 5 and c(π) = 7. Furthermore, we get the
following results, see Figure 2 as examples for N = 12 and N = 14. The value σmax and ∆σ are
symmetric with the number of cooperators c(π) and generally higher for the number of cooperators
and defectors exactly or approximately the same as for a small number of cooperators or a small
number of defectors. For the number of coplayers k getting larger, the differences over the number of
cooperators c(π) for both σmax and ∆σ are leveled.
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(a) N = 12 (b) N = 12

(c) N = 14 (d) N = 14

Figure 2. The maximal structure coefficient σmax and the maximal difference ∆σ = σmax − σmin over
the number of coplayers k and cooperators c(π) for all regular interaction graphs with N = 12 and
N = 14 according to Table A1.

Apart from the numerical values of the maximal structure coefficients σmax and their relations to
the number of players N, coplayers k and cooperators c(π), it is also interesting to know for which
of the Lk(N) graphs the maximal values occurs. We call the graphs for which this happens the
σmax-graphs. Their number is #σmax . Table 1 gives the number of σmax-graphs, #σmax , for all N and k
considered here, see also Appendix C for some examples of σmax–graphs. If we compare these numbers
with the total number Lk(N) of k-regular graphs on N vertices, see Table A1, we observe that Lk(N)

grows much faster than #σmax . In other words, the σmax-graphs become rare as N increases. Figure 3
shows the quantity

#log = − 1
N2 log

(
#σmax

(4k− 1/4k2)Lk(N)

)
(2)

over N and k (Figure 3a), and over c(π) and k for N = 14 (Figure 3b). We may conclude that as a
rough approximation the ratio #σmax

Lk(N)
falls exponentially in N and polynomially in k for k ≈ N/2 and

N getting larger. Furthermore, observe from Figure 3b that for small and large values of the number of
cooperators c(π) there is a larger number of graphs that are σmax-graphs. The σmax-graphs become
rarer for c(π) ≈ N/2, for which σmax is largest as well.



Games 2020, 11, 12 5 of 18

(a) (b)

Figure 3. The quantity #log according to Equation (2) relating the number of σmax-graphs, #σmax , to the
number of regular graphs Lk(N) for players N, coplayers k, and cooperators c(π): (a) over N and k
and (b) over k and c(π) for N = 14.

Table 1. The numbers #σmax of graphs with maximal σmax for all regular graphs with Lk(N) > 1 and
6 ≤ N ≤ 14.

k \ N 6 7 8 9 10 11 12 13 14

3 1 0 1 0 1 0 4 0 10
4 0 2 1 1 1 1 2 10 14
5 0 0 2 0 1 0 1 0 1
6 0 0 0 3 2 5 1 2 1
7 0 0 0 0 2 0 4 0 1
8 0 0 0 0 0 5 6 49 4
9 0 0 0 0 0 0 4 0 14

10 0 0 0 0 0 0 0 7 14
11 0 0 0 0 0 0 0 0 4

2.2. Relationships between Structure Coefficients and Graph Cycles

Recently, Giscard et al. [17] proposed an algorithm to count efficiently the number of cycles with
length ` in a graph: C`(N, k) with 3 ≤ ` ≤ N. Thus, it is feasible to count C`(N, k) for all Lk(N) regular
graphs with N ≤ 14, as given in Table A1. As an example see Figure A1 with the count C`(6, 3),
` = {3, 4, 5, 6}, for the L3(6) = 2 graphs with N = 6 and k = 3. The following discussion is based on
taking into account these numerical results.

In the previous section, it was shown that the maximal structure coefficients vary over interaction
networks modeled as regular graphs, even if the number of players, coplayers, and cooperators is
constant. Thus, it appears reasonable to assume that some features of the graphs may be associated
with these differences. In the following, results are presented in support of an approximately linear
relationship between the number of graph cycles with a certain length and the maximal structure
coefficients. Two previous results can be interpreted as to point at the validity of such a relationship
between the number of graph cycles and fixation properties. A first is from evolutionary games on
lattice grids [18–21]. For these games, it has been shown that clusters of cooperators have a higher
fixation probability than cooperators that are widely distributed on the grid. The location of the cluster
on the grid does not matter. As lattice grids can be described by regular graphs (a Von Neumann
neighborhood is a 4-regular graph and a Moore neighborhood is a 8-regular graph) clusters imply
short and closed paths between the nodes of the grid. Furthermore, the grid means an abundance of
cycles with even cycle length. A second result is that between the structure coefficients and the path
length between the cooperators there is a strong negative correlation [14]. Cooperator path length is
defined as the path length averaged over all pairs of cooperators on the evolutionary graph. If there are
more than two cooperators, the cooperator path length has particularly small values if the cooperators
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cluster next to each other and are linked by loops. Thus, small values of the cooperator path length
correspond with the abundance of cycles of a certain length.

As there are Lk(N) regular graphs for a given N and k, we obtain Lk(N) maximal structure
coefficients σmaxi , i = 1, 2, . . .Lk(N) together with the same count of cycle length C`i

(N, k).
Thus, we may assume for each i a linear relationship σmaxi = C`i

(N, k)x + εi for some variables
x with an error term εi. To test the validity of this linear relationship, we calculate the residual error

res =
1

Lk(N)
‖C`x∗ − σmax‖, (3)

where C` comprises all Lk(N) cycle length C`i
(N, k) and σmax contains all Lk(N) structure coefficients

σmaxi for a given N and k. The variable x∗ is the solution of the non-negative least square problem

x∗ = arg min
x
‖C`x− σmax‖. (4)

As the length of x∗ varies with varying Lk(N), the residual error in (3) is weighted by Lk(N)

to make it comparable over all N and k. Note that the residual error (3) gives equivalent results to
the root–mean–square deviation, which is also sometimes used to measure the accuracy of a (linear)
model. The results are given in Figure 4. We see that the residual error res is small for all 6 ≤ N ≤ 14,
3 ≤ k ≤ N − 3 and gets even smaller for N getting larger. Generally, the error res is slightly larger
for k = 3 and k = N − 3 than for intermediate values of k. This is also true for calculating res for
each number of cooperators c(π), see Figure 4b,c, which shows the results for N = 12 and N = 14.
For N = 14 the values of res are generally smaller than for N = 12 and the largest values of res
are obtained for small and large k for all c(π). To conclude, we can observe that the results for the
residual error res are generally very small, which is equivalent to saying that the error term εi in the
assumed linear relationship σmaxi = C`i

(N, k)x + εi has an expected value E(εi) ≈ 0. Thus, there is
some justification to observe that between the maximal structure coefficients σmaxi and the cycle count
C`i

(N, k) there is an approximately linear relationship.

(a)

(b) N = 12 (c) N = 14

Figure 4. Residual error res according to Equation (3) over N, k, and c(π): (a) over N and k, (b) over k
and c(π) for N = 12, and (c) over k and c(π) for N = 14.
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Finally, another aspect of the interplay between the graph structure and fixation properties should
be highlighted. To begin with, we analyze the cycle count C`(N, k) of σmax-graphs, which are those
graphs among the Lk(N) regular graphs that have maximal structure coefficients. Consider the
example N = 12 and k = 3. There are L3(12) = 85 graphs of which #σmax = 4 are σmax-graphs,
compare Table 1 with Table A1. For these 4 graphs, we analyze how the count C`(12, 3) is distributed
over ` = 3, 4, . . . , 12. A possible way to visualize such an analysis is based on schemaballs [13,22],
see Figure 5a. In such a schemaball, we draw Bezier curves connecting the count C`(N, k) in the upper
half of the ball with the associated cycle length ` in the lower half. The actual values of both ` and
C`(N, k) are written on the ball. The curves are colored in such a way that equal values of the cycle
length ` have the same (and specific) color, no matter to which cycle count C`(N, k) they are belonging.
The colors are selected equidistant from an RGB color wheel. If there are several σmax-graphs, as there
are #σmax = 4 for N = 12, k = 3 in Figure 5a, each graph has its own set of curves between ` and C`.
The schemaball thus contains all of them, which means there may be curves between the same value
of ` and several C` (and vice versa). For instance, in Figure 5a showing the schemaball for N = 12 and
k = 3, we see that for ` = 3, which is cycles of length 3, also known as triangles, we find connections
to C3(13, 3) = (2, 3, 4, 5). This means each of the #σmax = 4 graphs has triangles, one has 2 of them,
another one has 3, still another one has 4 and the last one has 5 triangles.

(a) N = 12, k = 3 (b) N = 12, k = 8

(c) N = 14, k = 3 (d) N = 14, k = 10

Figure 5. Examples of schemaballs of σmax-graphs.

From the visualization using a schemaball it can be immediately seen that for N = 12 and k = 3
small cycles lengths, that is ` = {3, 4, . . . , 7}, have generally a count C`(12, 3) > 0. For large cycle
lengths, that is ` = {8, 9, . . . , 12}, we have C`(12, 3) = 0. For N = 14 and k = 3, see Figure 5c, we get
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very similar results. By contrast, for larger k, not only the cycle count C`(N, k) is much higher than
for lower k, but also the distribution over cycles lengths ` is quite different, see the examples N = 12,
k = 8, Figure 5b and N = 14, k = 10, Figure 5d. Here, small as well as large cycle lengths ` have a
substantial count C`(N, k). Moreover, every cycle length ` is connected to a distinct interval of C`(N, k).
This means that the σmax-graphs have very similar counts C`(N, k) for each `. These properties become
even more clear if we additionally consider the schemaballs for σmin-graphs, which are the graphs with
minimal structure coefficients see Figure 6 for the same examples as Figure 5. Not only there are more
σmin-graphs than σmax-graphs, (for instance 77 vs. 4 for N = 12, k = 3, or 359 vs. 6 for N = 12, k = 8),
the balls for small k look very different, compare Figure 6a,c with Figure 5a,c. For the σmin-graphs and
small k even large cycle length ` have a substantial count C`(N, k). The count is actually much higher,
which means that σmin-graphs have generally more cycles of a given length than σmax-graphs. On the
other hand, for large k the differences are rather marginal. The only difference is that the schemaballs
are more dense, which means that σmin-graphs have more different counts for a given cycle length than
σmax-graphs. For the other tested numbers of players, N ≤ 14 similar results are obtained as shown in
Figures 5 and 6. We next discuss some implications of these results for the evolution of cooperation on
regular evolutionary graphs.

(a) N = 12, k = 3 (b) N = 12, k = 8

(c) N = 14, k = 3 (d) N = 14, k = 10

Figure 6. Examples of schemaball of σmin-graphs.

3. Discussion and Conclusions

In this paper, structure coefficients σ(π,G) introduced by Chen et al. [12] (see [13,14] for further
analysis) are studied for DB updating and all regular interaction graphs with N ≤ 14 players and
3 ≤ k ≤ N− 3 coplayers. These structure coefficients provide a simple condition connecting long-term
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prevalence of cooperation with the values of the payoff matrix (A1), the structure of the evolutionary
graph G, and the arrangement of any number of cooperators and defectors on this graph, which is
expressed by the configuration π. Cooperation is favored for weak selection and a configuration π on
a graph G if

σ(π,G) > c− b
a− d

. (5)

For σ(π,G) < 1, the game favors the evolution of spite, which can be seen as a sharp opposite to
cooperation. For σ(π,G) = 1, the condition (5) matches the standard condition of risk–dominance.
For σ(π,G) > 1, the diagonal elements of the payoff matrix (A1), a and d, are more critical than the
off-diagonal elements, b and c, for determining which strategy is favored. For instance, cooperation
can be favored in the Prisoner’s Dilemma game, which is specified by c > a > d > b. The condition (5)
implies that a larger value of σ(π,G) still allows cooperation to emerge if a− d is small (or c− b is
large). For the Stag Hunt game (Coordination game), characterized by a > c ≥ d > b, the condition
σ(π,G) > 1 means to favor a Pareto–efficient strategy (a > d) over a risk–dominant strategy (a + b <

c + d). Again, a larger value of σ(π,G) tolerates a smaller Pareto–efficiency a − d. Put differently,
cooperation is favored even if the difference between reward and punishment is rather low. A
generalization of these discussions can be achieved by the universal scaling approach for payoff
matrices that facilitates studying a continuum of social dilemmas [23]. According to this approach, a
larger value of σ(π,G) implies a larger section of the parameter space spanned by gamble-intending
and risk-averting dilemma strength [24]. Based on this interpretation of the structure coefficient
σ(π,G), we may review the following major results of the computational experiments presented in
Section 2 and draw conclusions.

a. There is an approximately linear relationship between maximal structure coefficients and the
count of cycles of the interaction graph with a certain length. Moreover, the number of σmax-graphs
grows much slower for a rising number of players than the number of k-regular graphs on N
vertices. Thus, graphs with maximal structure coefficients get rare for the number of players N
getting large.

b. The values of the structure coefficients are larger for a small number of coplayers (that is for
graphs with a small degree) than for larger numbers of coplayers. It is maximal for k = 3, which
is cubic graphs. This is also the case for the largest difference between maximal and minimal
structure coefficients. Thus, for regular evolutionary graphs describing the interactions between
players, the results for N ≤ 14 players suggest that a smaller number of coplayers is particularly
prone to promote cooperation if a favorable graph is selected. The selection of graphs does matter
less for a larger number of coplayers. The σmax-graphs with small numbers of coplayers k not
only have the largest maximal structure coefficients, they are also characterized by the absence
of cycles with a length above a certain limit, see examples in the collection of σmax-graphs in
Appendix C.

c. There are not only no long cycles in σmax-graphs with small k. The graphs are also structured
into blocks that are connected by cut vertices and/or hinge vertices. A cut vertex is a vertex
whose removal disconnects the graph, while a hinge vertex is a vertex whose removal makes the
distance longer between at least two other vertices of the graphs [25,26]. For instance, for N = 12
and k = 3, the vertices occupied by the players I3 and I9, see Figure A5, are cut vertices, while
for N = 10 and k = 4, see Figure A4b, the vertices occupied by the players I5 and I6 are hinge
vertices as their removal would make the distance between I4 and I7 longer. The blocks are
occupied by clusters of cooperators. The clusters can be seen to serve as a mutant family that
invades the remaining graph. As vertices with players of opposing strategies are connected by cut
and/or hinge vertices there is only a small number of migration paths (or even just a single path)
for the cooperators and/or defectors. A similar observation has been reported for evolutionary
games on lattice grids [18,20], see also the discussion in Section 2.2. To summarize: the results
suggest that σmax-graphs for small numbers of coplayers have some distinct graph–theoretical
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properties. Searching for these properties in a given graph may inform the design of interactions
graphs that are either particularly prone to cooperation or particularly opposed to it.

d. The property of missing long cycles is also a possible explanation as to why regular graphs
with a small degree differ substantially from graphs with a larger degree in terms of promoting
cooperation in evolutionary games. A larger degree makes it impossible to have blocks that are
connected by only a few edges. As the number of edges increases linearly with the degree by
kN/2 and each vertex has the same number of edges, there is an ample supply on connections.
These results imply that the connectivity properties of the interaction graph play an important
role in the emergence of cooperation. It may be interesting to see if these connectivity issues may
possibly also show in algebraic graph measures, for instance, algebraic connectivity expressed by
the Fiedler vector.

e. The paper discusses the evolution of cooperation for all regular graphs with N ≤ 14 players
with death–birth (DB) updating and weak selection. Thus, it may be interesting to hypothesize
about the relevance of the results for non-regular graphs, stronger levels of selection and other
types of strategy updating. Recently, the relationships between the graph structure and fixation
properties have been clarified substantially for a single mutant [6–9]. These results suggest that
regular graphs have some similarities to Erdös–Rényi graphs, whereas other types of graphs,
for instance, cycles, trees, stars or comet-kites are much more different. Thus, it might be possible
that the results given in this paper for regular graphs may similarly apply to Erdös–Rényi graphs.
Particularly interesting in this context may be the relationships between the connectivity of the
graphs and the promotion of cooperation. Furthermore, it has been shown that extrapolating
results from weak to intermediate and strong selection is not always possible and depends
highly on game characteristics, population size and spatial heterogeneity of the network [5,27,28].
However, a comparison between fixation probabilities is rather robust for varying intensity of
selection and a single cooperator [27]. Thus, the results obtained using structure coefficients may
still be valid beyond weak selection. Finally, for weak selection, many fitness-based updating
schemes and pairwise comparison with a Fermi function have similar fixation properties if the
fitness can be approximated as a positive constant [29,30]. Thus, the results obtained for DB given
in this paper might also have relevance to pairwise comparisons. On the other hand, it has also
been shown that for an increasing level of selection intensity fitness-based models and pairwise
comparison models of evolutionary games are typically different [31]. These brief comments
about the relevance of the results for non-regular graphs, stronger levels of selection and other
types of strategy updating must be treated with due caution as they are informed by results for a
single mutant. Thus, further work is needed to clarify these relationships and see if they are also
valid for multiple mutants (or any arrangement of cooperators and defectors).

f. The results are given in this paper show a clear dependency between the long-term prevalence
of cooperation in evolutionary games on regular graphs and some of their graph–theoretical
properties, which generally confirm previous findings on clusters of cooperators in games on
lattice grids [18–21], on pairs of mutants on a circle graph (k = 2) [32], and on short cooperator
path lengths on some selected regular graphs with N = 12 and k = 3, among them the Frucht,
the Tietze and the Franklin graph [14]. However, apart from statements about the prevalence of
cooperation, there are also other quantifiers of evolutionary dynamics that are highly relevant.
In other words, some of the difficulty in the given approach for evaluating the emergence of
cooperation in evolutionary games on graphs arises from structure coefficients merely treating
a comparison of fixation probabilities. The condition indicates that the fixation probability of
cooperation is higher than the fixation probability of defection. This, however, does not entail the
values of these probabilities. However, structure coefficients can be calculated with polynomial
time complexity [12], while computing fixation probabilities is generally intractable due to an
exponential time complexity [33–35]. In other words, by using the approach involving structure
coefficients, we exchange computational tractability for obtaining just a comparison of fixation
probabilities instead of their exact values. Moreover, the difference in the descriptive power
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of the structure coefficients as compared to the fixation probabilities is salient in another way.
Most likely, there is a rather complex relationship between structure coefficients and fixation
probability, which is illustrated by the example of a single cooperator for which the structure
coefficient does precisely not imply unique values of the fixation probability of cooperation. For a
single cooperator, we get a single value of the structure coefficient, but fixation probabilities vary
over initial configurations as shown for the Frucht and for the Tietze graph [36].

The discussion shows that calculating fixation probabilities and fixation times for multiple mutant
configurations is not only computationally expensive, but also has a huge number of possible setups,
for instance, which one of the considerable number of graphs to analyze, or where to place cooperators
on the evolutionary graph and how many. There are various experimental parameters to be taken
into account, which might be why so far systematically conducted computational studies are sparse.
In this sense, another contribution of this paper might be seen in pointing at interesting settings for
computational experiments calculating fixation probabilities and fixation times. The results given in
this paper show that among all the regular interaction graphs with N ≤ 14 players and 3 ≤ k ≤ N − 3
coplayers, there is a comparably small number of graphs (as given in Table 1) which favor cooperation
more than others. It may be interesting to see if these graphs also stand out in terms of fixation
probability and fixation time.
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The following abbreviations are used in this manuscript:

BD Birth Death updating
DB Death Birth updating

Appendix A. Configurations, Regular Graphs, and Structure Coefficients

The coevolutionary games we consider here have N players I = {Ii}, i = 1, 2, . . . , N, that each
uses either of two strategies πi ∈ {C, D}, which we may interpret as cooperating or defecting. Each
player Ii, while interacting with a coplayer Ij, receives a payoff according to the 2× 2 payoff matrix

(i \ j C D
C a b
D c d

)
. (A1)

Which player interacts with whom is described by the interaction graph G = (V, E), where the vertices
vi ∈ V represent the players and the edges eij ∈ E indicate that the players Ii and Ij interact as mutual
coplayers [11,38,39]. Which strategy is used by which player at a given point of time is specified
by a configuration π = (π1, π2, . . . , πN) with πi ∈ {C, D}. If we represent the two strategies by a
binary code {C, D} → {1, 0}, a configuration appears as a binary string the Hamming weight of which
denotes the number of cooperators c(π). For games with N players, there are 2N configurations with 2
configurations (π = (00 . . . 0) and π = (11 . . . 1)) absorbing. Players may update their strategies in an
updating process, for instance death–birth (DB) or birth–death (BD) updating [40,41]. Recently, it was
shown by Chen et al. [12] that strategy πi = 1 = C is favored over πi = 0 = D if

σ(π,G)(a− d) > (c− b). (A2)
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These results apply to weak selection and 2 × 2 games with N players, payoff matrix (A1),
any configuration π of cooperators and defectors and any interaction network modeled by a simple,
connected, k-regular graph. The quantity σ(π,G) in Equation (A2) is the structure coefficient of the
configuration π and the graph G. It may not have the same value for different arrangements of
cooperators and defectors described by the configuration π and the same graph G, but also for the
same configuration π and different interaction networks modeled by a regular graph G. In particular,
it was shown that for weak selection and the graph G describing interaction as well as replacement
graph, the structure coefficient σ(π,G) can be calculated with time complexity O(k2N) for DB and BD
updating [12]. For DB updating there is

σ(π,G) = N (1 + 1/k)ω1 ·ω0 − 2ω10 −ω1ω0

N (1− 1/k)ω1 ·ω0 + ω1ω0
, (A3)

with 4 local frequencies (ω1, ω0, ω10 and ω1ω0), which depend on π and G, see [12–14] for a
probabilistic interpretation of these frequencies. Our focus here is on DB updating as it has been
shown that BD updating never favors cooperation [12].

Appendix B. Isomorphic Graphs, Isomorphic Configurations, and Cycle Counts

The structure coefficient σ(π,G), as for instance defined for DB updating by Equation (A3),
may vary over configurations π and graphs G. This suggests the question of upper and lower bounds
of σ(π,G). For a rather low number of players, it appears feasible to check all σ(π,G), as demonstrated
in the paper for N ≤ 14 and all regular graphs with up to 14 vertices. For a 2× 2 game with N players,
there are 2N − 2 non-absorbing configurations π. These configurations can be grouped according to
the number of cooperators c(π), 2 ≤ c(π) ≤ N − 2. The number of simple, connected regular graphs
is known for small numbers of vertices, e.g., [37], see Table A1. Note that these numbers apply to
graphs that are all not isomorphic with each isomorphism class being represented by exactly one
graph. In other words, Table A1 also gives the number of isomorphism classes for all 6 ≤ N ≤ 14 and
3 ≤ k ≤ N − 1. Isomorphism refers to the property that two graphs are structurally alike and merely
differ in how the vertices and edges are named. More precisely, two graphs are isomorphic if there is a
bijective mapping θ between their vertices which preserves adjacency [42], pp. 12–14.

Table A1. The numbers Lk(N) of simple connected k-regular graphs on N vertices see e.g., [37], which
corresponds to the number of regular interaction graphs with N players and k coplayers for 6 ≤ N ≤ 14
and 3 ≤ k ≤ N − 1. Note that only for k ≤ N − 3 there is more than one graph: Lk(N) > 1.

k \ N 6 7 8 9 10 11 12 13 14

3 2 0 5 0 19 0 85 0 509
4 1 2 6 16 59 265 1.544 10.778 88.168
5 1 0 3 0 60 0 7.848 0 3.459.383
6 0 1 1 4 21 266 7.849 367.860 21.609.300
7 0 0 1 0 5 0 1.547 0 21.609.301
8 0 0 0 1 1 6 94 10.786 3.459.386
9 0 0 0 0 1 0 9 0 88.193
10 0 0 0 0 0 1 1 10 540
11 0 0 0 0 0 0 1 0 13
12 0 0 0 0 0 0 0 1 1
13 0 0 0 0 0 0 0 0 1

Consider, for example, the L3(6) = 2 interaction graphs with N = 6 players, each with k = 3
coplayers, see Figure A1. For the graph in Figure A1a we get the maximal structure coefficient
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σmax = 1.1818 for 2 configurations, π = (111000) as shown in Figure A1a and π = (000111).
By the isomorphism

θ =
( v1 v2 v3 v4 v5 v6

1 2 3 4 5 6
6 1 2 3 4 5

)
we obtain an isomorphic graph as shown in Figure A1b. For this graph, the configuration π = (111000)
has σ = 1.0000, but π = (110001) and π = (001110) have σmax = 1.1818. Note that between the
configurations with σmax the same isomorphic mapping θ applies. In other words, the structure
coefficients are invariant under isomorphic mappings. For each pair of isomorphic graphs, there are
isomorphic configurations that have the same value of the structure coefficient. For the graph in
Figure A1c, we obtain the result that the structure coefficient is constant over all configurations (except
the absorbing configurations). Thus, isomorphic transformations do not alter the values of σ(π,G).

I6 0

I1 1

I4 0

I3 1

I2 1

I5 0

1

I5 0

I6 0

I3 1

I2 1

I1 1

I4 0

1

I6 0

I1 1

I4 0

I3 1

I2 1

I5 0

1

(a) (b) (c)

Figure A1. The L3(6) = 2 interaction graphs with N = 6 players, each with k = 3 coplayers.
All are vertex-transitive and (c) is even symmetric (edge-transitive). The graph in (a) has a maximal
structure coefficient σmax = 1.1818, which is obtained for two configurations with c(π) = 3 cooperators:
π = (111000) (as shown in (a)) and π = (000111). For the isomorphic graph in (b), we get σmax = 1.1818
for the isomorphic configurations π = (110001) and π = (001110). The graph in (c) has the same
structure coefficient σ = 1.0000 for all configurations. Regarding the count of cycles with length `,
we see that the graphs in (a) and (b) have C`1

(6, 3) = (2, 3, 6, 2), while for the graph in (c) there is
C`2 (6, 3) = (0, 9, 0, 6).

These results apply generally to structure coefficients σ(π,G) of regular graphs. The local
frequencies in Equation (A3) solely depend on counting two types of paths on the interaction
graph [12–14]. The quantities ω1, ω0, and ω1ω0 relate to the number of paths with length 1 that
connect any vertex with adjacent vertices that hold a cooperator (or defector). The quantity ω10 relates
to the number of paths with length 2 from any vertex to adjacent vertices on which the first vertex of
the path holds a cooperator and the second vertex holds a defector. As an isomorphic reshuffling of
vertices preserves adjacency, these numbers stay the same if the isomorphism acts on both the vertices
and the configurations. Thus, suppose two graphs Gi and Gj are isomorphic with isomorphism θ.
Then, it follows σ(π,Gi) = σ(θ(π),Gj). Consequently, the maximal structure coefficient is invariant
as well, that is for isomorphic graphs Gi and Gj there is σmaxi = max

π
σ(π,Gi) = σmaxj = max

π
σ(π,Gj).

Any regular graph belongs to one of the isomorphism classes and can be obtained by isomorphic
transformations by any member of this class. Regular interaction graphs that are isomorphic
have the same distribution of structure coefficients σ(π,G) over the number of cooperators c(π).
Thus, by considering one representative of each isomorphism class, we can make statements about
structure coefficients for all regular graphs.

For each graph, there is a specific count C`(N, k) of cycles with length `, 3 ≤ ` ≤ N. There are
efficient algorithms to count these cycles [17]. Consider again the L3(6) = 2 graphs with N = 6 players
and k = 3 coplayers, see Figure A1. We find the graph in Figure A1a,b has C`1(6, 3) = (2, 3, 6, 2) with
` = {3, 4, 5, 6} (there are 2 cycles of length ` = 3, 3 cycles of length ` = 4, 6 cycles of length ` = 5, 2
cycles of length ` = 6), while the graph in Figure A1c has C`2(6, 3) = (0, 9, 0, 6). It generally applies that
isomorphic graphs have the same C`(N, k). Graphs that are not isomorphic have frequently a distinct
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count C`(N, k), but there are also cases, particularly for N getting larger, where 2 not isomorphic
graphs have the same count C`(N, k).

Appendix C. Collection of σmax-Graphs with N ≤ 14

We here give a collection of selected σmax-graphs with N ≤ 14. The graphs are shown to illustrate
some graph–theoretical properties associated with the prevalence of cooperation. The single σmax-graph
with N = 6 is already shown in Figure A1a. For N = 7, there are L4(7) = 2 regular graphs, which
both have the same maximal structure coefficients. In other words, the count of graphs equals the
count of σmax-graph, which is why they are not included in the collection.

Figures A2–A4 show all σmax-graphs for N = 8, 9, 10 and 3 ≤ k ≤ N − 3 together with the
values of σmax and the associated configurations. For N = 12 and N = 14, only some examples of
σmax-graphs are given in Figures A5–A7 due to brevity. A full list of all σmax-graphs for 11 ≤ N ≤ 14
and 3 ≤ k ≤ N − 3 is made available here [43]. It is particularly noticeable that the σmax-graphs
are structured to have blocks with clusters of mutants. For instance, we see such a block with
(I1, I2, I3, I4) for the graph with N = 8 and k = 3 in Figure A2a and for N = 9 and k = 4 in
Figure A3a, or for N = 10 and k = 3, Figure A4a and for the cubic graphs (k = 3) with N = 12 and
N = 14 as well, see Figures A5 and A7. The σmax-graphs with a larger degree (= coplayers) still
somewhat retain a “blockish” appearance (for instance (I1, I2, I3, I4, I5) in Figure A4c) but to a far
lesser degree. In addition, σmax-graphs with larger degree are frequently vertex-transitive (for instance
Figures A3d and A4e,g) which is not the case for cubic (k = 3) and quartic (k = 4) σmax-graphs with
N ≤ 14, with the exception of N = 6 and k = 3, see Figure A1a. Furthermore, it can be observed that
the blocks are occupied by clusters of cooperators, which are frequently connected by cut vertices
and/or hinge vertices. For instance, for N = 12 and k = 3, the vertices occupied by the players I3 and
I9, see Figure A5, are cut vertices, while for N = 10 and k = 4, see Figure A4b, the vertices occupied
by the players I5 and I6 are hinge vertices as their removal would make the distance between I4 and
I7 longer. As discussed above, the clusters can be seen to serve as a mutant family that invades the
remaining graph. As vertices with players of opposing strategies are connected by cut and/or hinge
vertices there is only a small number of migration paths (or even just a single path) for the cooperators
and/or defectors.

I8 0

I1 1

I5 0

I4 1

I2 1 I3 1

I7 0 I6 0

1

I8 0

I1 1

I5 0

I4 1

I2 1 I3 1

I7 0 I6 0

1

I8 0

I1 1

I5 0

I4 1

I2 1 I3 1

I7 0 I6 0

1

I8 0

I1 1

I5 0

I4 1

I2 1 I3 1

I7 0 I6 0

1

(a) k = 3 (b) k = 4 (c) k = 5 (d) k = 5

Figure A2. The σmax-graphs for N = 8 and k = 3, 4, 5. We get σmax = 1.6538 for k = 3, (a),
σmax = 1.2222 for k = 2, (b), and σmax = 0.9565 for the 2 σmax-graphs with k = 5, (c,d), each for the
configuration π = (1111 0000). In addition, the same structure coefficient is obtained also for the
configuration π = (0000 1111), and only for (d) additionally for π = (1100 0011) and π = (0011 1100).
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I9 0

I1 1

I6 0

I5 0
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I2 1 I3 1

I8 0 I7 0

1

I9 0

I1 1

I6 0

I5 0

I4 1

I2 1 I3 1

I8 0 I7 0

1

I9 0

I1 1

I6 0

I5 0
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I2 1 I3 1

I8 0 I7 0

1

I9 0

I1 1

I6 0

I5 0

I4 1

I2 1 I3 1

I8 0 I7 0

1

(a) k = 4 (b) k = 6 (c) k = 6 (d) k = 6

Figure A3. The σmax-graphs for N = 9 and k = 4, 6. We get σmax = 1.3206 for k = 4 (a) and
the configuration π = (11110 0000), but also for π = (11111 0000), π = (00000 1111) and π =

(00001 1111). For k = 6, there are 3 σmax-graphs, (b–d), each with σmax = 0.9115 for the configuration
π = (11110 0000). There are several more configurations that have the same σmax due to the symmetry
properties of these 3 graphs.
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(a) k = 3 (b) k = 4 (c) k = 5
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(d) k = 6 (e) k = 6 (f) k = 7 (g) k = 7

Figure A4. The σmax-graphs for N = 10 and k = 3, 4, . . . , 7. We get σmax = 1.8831 for k = 3 (a),
σmax = 1.5128 for k = 4 (b), σmax = 1.2222 for k = 5 (c), σmax = 1.0241 for k = 6 (d,e) and σmax = 0.9145
for k = 7 (f,g), all for the configuration π = (11111 00000), and also for π = (00000 11111). For one
graph with k = 7, (f) the maximal structure coefficient is also obtained for 2 more configurations.
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(a) (b) (c) (d)

Figure A5. The 4 different σmax-graphs (a–d) for N = 12 and k = 3, each with σmax = 1.9159 for the
configuration π = (1111 1000 0000) (and also for π = (0000 0111 1111)) .
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(a) k = 4 (b) k = 4 (c) k = 6

Figure A6. The σmax-graphs for N = 12 and k = 4, 6. We have σmax = 1.5701 for k = 4 (a,b)
and σmax = 1.2105 for k = 6 (c), each for the configuration π = (1111 1100 0000) (and also for
π = (0000 0011 1111)).
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(e) (f) (g) (h)

Figure A7. The σmax-graphs for N = 14 and k = 3, each with σmax = 1.9396 for the configuration
π = (1111 1110 0000 00) (and also for π = (0000 0001 1111 11)). Only 8 out of #sigmamax = 10 σmax-graphs
according to Table 1 are depicted. The remaining 2 graphs arise from the blocks depicted in the figures.
If we call the upper half of the graphs in (a–d) the A–block, then the lower half of these graphs consists
of blocks A, B, C, and D. The blocks are joined by the edge connecting I4 and I11. The graphs in (e–h)
also are block-like with blocks B–B, B–C, B–D, and C–C. The 2 remaining graphs (not depicted) are
formed by connecting the blocks C–D and D–D.
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