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RESUMO

Os modelos de regressdo com parametros variando no espago Sao uma
generalizacdo dos modelos lineares em que é permitido aos coeficientes da
regressdo mudarem ao longo do espaco. A estrutura espacial € especificada por
uma extensdo multivariada de uma distribuigiopriori que considera as
diferencas entre os coeficientes de regides vizinhas. Isso permite a incorporacao
da informacgao da vizinhanca espacial.

Para estimar o modelo utilizamos a abordagem bayesiana e o algoritmo do
MCMC considerando diferentes esquemas de amostragem. Esses esquemas foram
comparados em termos da autocorrelagcdo da cadeia de Markov, e em termos dos
resultados obtidos.

Foram discutidas diferentes especificac@griori que admitem estruturas
espaciais semelhantes. Os resultados séo ilustrados com dados simulados e com
um conjunto real de informagdes.
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Abstract

Space-varying regression models are generalizations of standard linear models
where the regression coefficients are allowed to change in space. The spatial
structure is specified by a multivariate extension of pairwise difference pri-
ors thus enabling incorporation of neighboring structures and easy sampling
schemes. Different sampling schemes are available and may be used in an
MCMC algorithm. These schemes are compared in terms of chain autocor-
relation and resulting inference. We also discuss different prior specifications
that accommodate the spatial structure. Results are illustrated with simulated
data and applied to a real dataset.

Key words: Bayesian; Hyperparameters; Gibbs sampling; Markov chain Monte
Carlo; Markov random fields; Metropolis-Hastings algorithm; Sampling schemes.

1 Introduction

Consider initially the multiple linear regression model where independent ob-
servations yi, ..., y, follow the distribution y; ~ N(u;,0?), for i = 1,...,n. In
standard regression, the means p; are described by a linear relation 3 where
x; is the r-dimensional vector of explanatory variables for the ith observational
unit (¢ = 1,...,n) and G is the vector of regression coefficients. Inference about
0 informs about the strength of the x’s in terms of explaining the variability of
the observations .

The extensions we consider below allow the regression coefficients to change
with the observation unit. Hence, we will have p; = x}83;, for i = 1,...,n and
unknown quantities (5, ¢) where § = vec(B), the column vectorization of the
n X r matrix B given by

B Pz - Bir B
B_ Ba1 o Bor _ 52 d:ef( 51 52 BT )
5n1 5n2 Tt 6nr 5’;1



and ¢ = 1/02. The likelihood is

(CIRSH

n
(B3, 0) = (27) "2¢™/% exp {— Z(yz - fﬁgﬁi)Q} : (1)
i=1
Under a Bayesian formulation, the model must be completed by a prior for
(8, ¢), where assumptions about the relation between the components of 3 are
made. Note also that this prior may also depend on other unknown quantities.
They are typically variance parameters and are denoted by W. Priors for these
hyperparameters must also be specified. In general, these are taken as reason-
ably vague, reflecting the difficulty in the incorporation of substantial knowledge
about them.

There are many possible routes to be taken from here. These different routes
are associated with qualitatively different assumptions about the relationship
between the §;’s. They are in general based on weak quantitative assumptions,
generally through vague prior on hyperparameters. These models can only lead
to precise posterior inference if the dimension r of the 3;’s is substantially smaller
than the number n of observational units.

One possibility is to allow the regression coefficients to vary across units
without any particular structure. Hierarchical models introduced by Lindley
and Smith (1972) suggest in their simplest forms that the §;’s should be al-
lowed to vary as a random sample from a given distribution, indexed by ¥. The
most common example is to have 8;’s as hypothetical draws from a N(p, X) dis-
tribution and in this case ¥ = (i, 3). Another possibility popularized by West
and Harrison (1997) is to use a dynamic model whereby regression coefficients
form a generalized random walk 8; = G;3;_1 + w; for random inputs w;’s. This
formulation is particularly useful when the units are sequentially observed and
a lagged effect between successive regression coeflicients is expected.

For spatially distributed data, a number of possibilites are available. One can
use the geostatistical approach (Cressie, 1991, ch. 2-5) where the regression er-
rors y; — p4; are spatially correlated or the discrete approach of pairwise different
priors (Besag et al., 1991) where unit-specific random effects have their distri-
bution specified according to the neighbouring arrangement of the units. Both
cases however can be accommodated in the above form by taking x}3; = 2z +v;
with v = (v1,...,v,) having a joint n-variate normal distribution, =; = (z;,1)
and 3; = (6, vi), ¢ = 1,...n. Usually the mean of the normal distribution is 0 and
the aproaches differ by directly specifying the variance or precison matrix, re-
spectively. In this paper, we will pursue the second route through a multivariate
generalization.

Even though the likelihood does not depend on ¥, the posterior distribution
for all model parameters must be evaluated. This is given by

(8,6, Vly) < 1B, ¢) f(Bld, ¥)p(¢)p(¥) (2)
where it was assumed that the joint prior density f for 3 depends on ¥ and ¢



and ¢ and ¥ are prior independent. In the sequel, it will be sometimes useful
to define 8 = (¢, V).

The observational precision ¢ is generally given a Gamma prior with density
pe/2)—1 exp{—v4S5¢/2}, denoted G(vy/2,145,/2), and, when ¥ is a preci-
sion matrix, it is generally given a Wishart prior with density |\I/|(”“/ 2)—(r+1)/2
exp{—tr(vySy¥)/2}, denoted W(vy /2,145y /2).

The rest of the paper is organized as follows. The next section introduced
the spatial model used in the regression context and derives the posterior dis-
tribution. Section 3 presents 4 different schemes to undertake sampling-based
inference using MCMC. Section 4 presents other forms of prior specification.
Section 5 provides some results from application to simulation studies and a
real dataset and Section 6 draws some concluding comments.

2 Model definition

A suitable model to represent spatial situations is provided by Markov random
fields (MRF). In very simple terms, a collection X = (Xj,..., X,,) of random
quantities is said to form a MRF if the joint distribution of X satisfies the
property that (X;|X_;) ~ (X;|Xg;) where 0i = {j : j is a neighbour of i}, for
i =1,...,n. When the regions are ordered, 0i = {i — 1, ¢+ 1} and the condition
reduces to (X;| X _;) ~ (X;| X1, Xiq1), for all ¢ £ 1, n.

There are many possible prior models for 3 that can follow a MRF. An
interesting example is provided by the pairwise difference prior

Fpa(Ble, ) oc ¢"/2 |W["/2 exp { —

I RSN

n
> wig(B: = 6;)" ¥ (6i = 5)) (3)
i,j=1
where w;; are weights associated with the neighboring structure. For example,

1 ,ifi~jg
wij{o ) (4)

, otherwise

where i ~ j means that regions ¢ and j are neighbors. Of course, the matrix
¥ need not be scaled by ¢ but this can be useful. Removal of the dependence
of (3) on ¢ implies trivial changes on calculation. The form (3) was proposed
independently by Moreira and Migon (1999) and Assuncao et al. (1999), without
scaling on ¢. It is basically a generalization of the univariate pairwise difference
prior used by Besag et al. (1991). The idea of using pairwise differences as
a model for regression coefficients was first considered in a paper by Assuncao
et al. (1998). Models based on (1) and (3) will be called pure space-varying
regression models (pure SVRM), because all r regression coefficients are subject
to a spatial structure imposed by the prior.



This prior basically attributes larger probability to regions of the 8 space
that have similar values for neighboring 3;’s. It is an improper prior because
the variance of 3 is ¢ 1W 1 @ U1 where W = (k;;) and

Wit if i = ]
kij = —Wi; if 4 Nj and Wiy = wa
0 , otherwise jvi
Consequently, the rows of the n x n matrix W add up to zero. However, this is
a useful prior representation of spatial structure and leads to proper posteriors

and sensible results, provided proper priors are specified for ¢ and W.
Simple calculations show that (3) can also be rewritten as

Fpa(B16. %) x 072 01 2 exp { - S0(5) |

where Q(8) can be written in many different ways. The most useful ones are

QB = Y kBB = B (W © W) 8 = tr[Q,(5)¥],
ij=1
where Qs(8) = BWB = 320", ki; 3i8; = >0,y wij (B — B;)(Bi — B;)
It can also be shown that the full prior conditional distribution of 3; is given
by

6i|67i7 (/)7 v~ 6i|66i7 (/)7 ¥~N (631'7 ! \II_1> where Bai = ! Zwljﬁj (5)

Pwi Wit

jrvi
is the average of the w;; neighboring &’s, for i =1, ..., n.
Combination of all model assumptions gives

2 2

i=1

756, ly)ox 62 eXp{_f S (i - x;w} 0% W% e - (W 0 w) 5}
x e/ exp {— %u/)S(/)(/)} [w|0/2) 7" exp {—%tr(w&,\l/)}
x exp{—g Sy + 5 (X' X + W & ¥) 3 — 26" X"y + y’y]}
x plretntnn)/2=1 | (o tn) /2 =r oy, {%tr(l/wsw\lf)} (6)

where the design matrix X = diag(z},...,2},) is in a slightly unusual block

diagonal form. If ¥ is not scaled by ¢ in (3) then the posterior becomes
1
(8,6, ¥ly) « exp{—g eSy + 3 X'XB—-26'X"y+ vyl — 55/ (W& \I/)ﬁ}

. . 1
K petn) /A1 (ot /2= {5”(’“’ Swg[;)} )



These distributions are not easily summarized and special approximating
schemes are needed. We shall concentrate here on Markov chain Monte Carlo
(MCMC) methodology where samples are repeatedly taken from Markov chain
kernels to reproduce a stationary trajectory towards chain equilibrium (Gamer-
man, 1997). A central issue is the determination of fast sampling schemes based
on full conditionals. Several such schemes are detailed in the next section.

3 Sampling schemes

It should be noted that many possibilities are available for sampling from (6).
We shall deal with each one of them in detail, commenting where possible on the
anticipated advantages and disadvantages of each scheme. Broadly speaking, we
will be considering with the following sampling scheme:

A. sampling from Gy, ... , On, ¢ and ¥;
B. sampling from (3, ¢) and ¥;

C. sampling from 3', ... , 4P, ¢ and 0.
D. sampling from (¢, ¥) only;

A few comments are needed before detailing each of the sampling schemes
above. First, comparison between schemes should be based on overall cost that
includes cost of a single draw and convergence rate. Secondly, for complicated
posterior forms multimodality is very likely to occur. The priors used in the
models here are known to have convergence problems (Knorr-Held and Rue,
2000). Tt is important that sampling schemes reliably converge to the more
relevant regions of the parameter space.

Note that, for scheme (D), samples must be drawn from the marginal pos-
terior of ¥ly. Samples from 8 and ¢ are then obtained by noting that

(B, ¢, Wly) = 7(B, |V, y)m(V]y).

Draws from (3, ¢) are obtained by drawing a value ¥* from the marginal pos-
terior 7(¥]y) and then sampling from the tractable distribution 7 (3, ¢|¥*, y).
Therefore, scheme D is actually sampling all model parameters jointly.

For schemes A to C, the full posterior conditionals for ¢ and for precision
matrices ¥ are trivially obtained from (6) as G{(v, + n + nr)/2,[3' (X'X +
W @ W) 5 — 26/ X'y + y'y]/2} and W{(vy +n)/2 v S + 6Q.(8)]/2} distrib-
utions, respectively. We therefore shall concentrate on sampling from the re-
gression coefficients 3. The case when ¥ is not a full precision matrix is dealt
with in the next section but note that it is always true that 7(¥|3, ¢, y) x
PO)W vy/2,6Q4(8) /2]

When the pairwise difference precision ¥ is not scaled by ¢, the full con-
ditionals for ¢ and ¥ are G{(vy + n)/2,[' X'X 3 — 20'X'y + ¥'y]|/2} and
W{{vy +n)/2, vy Sy + Qs(5)]/2} distributions, respectively.



3.1 Scheme A

The full posterior conditional of 3; is easily obtained as

Tr(ﬁi|ﬁ—iv d)a \Ilv y) X l(ﬁz)fpd(ﬁz‘ﬁ—u QS: \Ij)

The likelihood term is simply exp{ —¢(y; —2/3;)?/2} and the prior term is given
by (5). Combination of these results gives (8;|8_s, ¢, ¥, y) ~ (5i|Ba:i, ¢, ¥, y) ~
N(a;, 7' R;) where a; = R;(z;y; + wiy ¥Bs;) and R; = (z;2}, + w; U)~L, for
i =1,...,n. When ¥ is not scaled by ¢, the expression of a; and R; change to
a; = Ri(pxiy; +wiy ¥Bs;) and Ry = (a2} + w;  W)~L, for i = 1,...,n. These
distributions are easily sampled from and the most computationally demanding
task is the inversion of r x r variance matrices.

Therefore, sampling cost is not an issue here as r is usually rather small (in
the order of 10') but convergence rate may be. Neighbouring (3;’s are expected
to be highly correlated due to their prior form and if this correlation is large
this may cause considerable delay is reaching chain equilibrium. This problem
may be severe since there may be many ;s (typically in the order of 103 to
10%).

One could also consider yet another sampling scheme where each (3;; is sam-
pled univariately. Given the ease of operation of scheme (A), this scheme does
not seem necessary. Note also that scheme A is sometimes preferred (with re-
spect to the other schemes in this paper) in the literature now available when
pairwise difference priors are used.

3.2 Scheme B

Let us first define R = (XX + W @ ¥)~! and a = R X'y. The full posterior
conditional of (3, ¢) is obtained from (6) as

(3 o10.0) o oo e L8 [ 0 20 a1 ]
wolermii il SlE-ari-0+8)} ®

where Uy = vy + n and S(/) = v4Sy + (y — Xa)'(y — Xa). It is clear from
(8) that (67 (/)‘\117 y) ~ NG(CL, R, ﬁfb/27 ‘§¢/2)7 ie (6|(757 v, y) ~ N(a7 (f)_lR) and
(¥, y) ~ G(ﬁ</)/2a St/)/2)

When ¥ is not scaled by ¢, the full posterior conditional of (3,¢) is no
longer in closed NG form. Nevertheless, it is straightforward to obtain the full
conditional of @ for (7) as (8|¢, ¥,y) ~ N(a, R), where the expression of the
moments are changed to R = (¢X'X + W @ ¥)~! and a = R X'y.

These distributions are also simple to generate values from but now the
computational demand has been substantially increased by the need to invert
nr X nr dimensional matrices to obtain R. Fortunately, this is not required



here. Rue (2001) showed that substantial computational savings are obtained
by appropriately exploring MRF properties of R~!.

A summary of Rue’s strategy follows below. The structure of R~! is typi-
cally very sparse with many null elements due to the MRF form of W and the
block diagonal form of X’X. Therefore, R~! can be rearranged without any
loss in a band diagonal form with smallest possible bands. There are known
permutation schemes that allows this operation to be performed (Saad, 1996).
Substantial gains are obtained and the Cholesky decomposition R~! = LI’ is
easily performed, where the lower triangular matrix L will also be band diag-
onal. Therefore, U = L'G — L’'a will have N(0,I) full posterior conditional
and can be quickly generated. To obtain a draw from 3, let ¢ = L’a. Then,
c =LRX'y = L7'X'y or X'y = Lc. This allows easy calculation of ¢ by
working downwardly along the rows of L. With the value of ¢ and the drawn
value of U, 3 is obtained from '3 = U + ¢ by working upwardly along the
rows of L'. Full details and generating codes are available in Rue (2000). In our
computations, the algorithm described in Golub (1996) was used.

The main advantage of this approach (over scheme A) is the ability to per-
form block sampling over the possibly highly correlated components 3;. The
main disadvantage is the computational cost involved in the permutations and
Cholesky decomposition. Note that no inversion operations are required and
that the permutations do not require splitting any of the 3;’s. This scheme was
used by Besag and Higdon (1999).

3.3 Scheme C

Let us first define for any m x r matrix (or 1 xr vector) A, the m x (r—1) matrix
(or 1 x (r—1) vector) A=J as the matrix (vector) A without its jth column and
X7 = diag(@1j, ..., Tnj), j = 1,...,7. Scheme C can be easily obtained by noting

that given the value of B—7, the model for the observations ij; = y; — :Z:i_jlﬁi_j,
i=1,..,nis g~ N(XIB ¢~1I).
The full prior conditional for 37 induced from (3) is

Fpa@157.09) xexp { - L W )

where ;; is the jth diagonal element of ¥, j = 1,...,p. Combining with the
likelihood above gives

RPI5 0w e -G XY (G- 00 e { LW |
o axp{ = [ 0w+ X009~ 290x74)}.

Defining R/ = (wijJer/Xj)*l and o/ = R X7'5j, gives that (B89, ¢,0,y) ~
N(a?, R7), for j = 1,...,7. Once again, when ¥ is not scaled by ¢ in (3), the



expression of the moments above are changed to R7 = (¢;, W + (]SXj/Xj)_l and
Py Xj/g, for j=1,..,r.

Scheme C requires r generations of n-dimensional normal variates, in com-
parison with the nr generations required for scheme B. Note that as in scheme
B, inversion of R’ is not required and that R’ also shares the nice band diagonal
form due to the diagonal form of X7 and the sparse nature of W induced by the
MRF prior. Therefore, drawing from the 37’s follows exactly the same strategy
described for scheme B.

The main disadvantage over scheme B is the possible slow mixing due to
the correlation between the 37’s. This effect may be alleviated by linear repara-
metrization via centering of the explanatory variables. In standard linear re-
gression, this helps to orthogonalize the design matrix and hence leads to less
correlated parameters. Sampling may be performed for these transformed pa-
rameters and the 37’s are easily recovered. The main advantage over scheme C
may be speed of computations. Cholesky decompositions for scheme B requires
operations of order O(n?r?) whereas for scheme they only require order O(n?)
operations. Computational savings may be substantial even for very small n
because n is typically large.

3.4 Scheme D

It is easy to see from (8) that the proportionality constant required to complete
the expression of the full posterior conditional density of (G, ¢) is

(Sp/2)7/?
[(0y/2)

Note, however, that #(¥|y) = 7(5, ¢, ¥|y)/7(3, ¢|¥,y). Combining the above
result with (6) and (8) and discarding constants gives

T(Wly) o |RIVE(Sy) 7" 02 p(w)

(27T)nT/2‘R|71/2

NNy
o W(S@ */2 p(¥)
\I/n/2 N
Lo (872 0(w) 0
i=1tii

where we made use of the facts that |[R™!| = |L|? = ([];”, l;)* and R™'a = X'y.
Note that S(/) depends on V.

When ¥ is not scaled by ¢ in (3), only § can be integrated out in (7). Using
again the results obtained for scheme B, it is not difficult to obtain that

e 0l5) o 10 xpf D8 67X 1 o w2

1) /e 1
x [@|(retn=r=1/2 oy {§tT(V¢S¢\I/)} . (10)



In this case, ¢ cannot be integrated out analytically as before.

Although it is possible to analytically obtain (9) or (10) up to a proportional-
ity constant, it is not easy to devise direct sampling schemes. Indirect sampling
schemes such as SIR (Rubin, 1988) or adaptive SIR (Schmidt et al., 1999) may
be applied here if the dimensions involved are not large. As a general purpose
scheme, MCMC with Metropolis-Hastings proposals will be used here. Two
possible proposal forms are random walks and sampling from an approximating
density such as the Wishart for ¥ and Gamma for ¢, where applicable.

For example, if a W(vy/2,1,,8,/2) prior and a WDy /2, (vySy + ¥'y)/2]
proposal are used for ¥ in (9), the acceptance probability becomes

nr (o) / o xr\ 2

a(\y(c)7 \I;(P)) _ 1/\H ZZ(‘i exp {ltl‘[y’y(\:[/(p) . \I/(C))]} (I/(/)S(/) +yy— al )/X y)

i 1Y) 2 vySy +y'y —alP) X'y

where the superscripts (¢) and (p) stand for current and proposed, respectively.
Another possibility is to use Wishart (and Gamma) forms for ¥ (and ¢)

centered around the previous chain values and number of degrees of freedom

(d.o.f.) v tuned to achieve reasonable rates of chain moves. This form of chain

is very similar to random walk forms. This is more easily seen in the scalar case

where one can rewrite the proposal as log#(©) = log ¢(P) + 1 where €7 ~ G(v,v).

In the applications of this paper, this form of proposal was used.

4 Extensions

There are many interesting extensions to the basic model described above. In
this section, we consider some of them, namely, mixed SVRM, other forms of
prior specification for 8 and special forms for the hyperparameter V.

4.1 Mixed SVRM

In the pure form, SVRM have all regression coefficients subject to a spatial
structure. This may be unrealistic and in practice there may be effects that do
not vary with space. These effects cause the model to include effects of different
natures. In general, these effects can have other influences form a variety of
sources due to an unstructured hierarchical form or a temporal element to them.
In this paper, however, we restrain ourselves to spatial effects and static effects.

Therefore, the mean responses of the observations are now given by p; =
zip 4+ 24 B;. The f3;’s are still related by the spatial structure (3) but the static
regression coeflicient i is not. There are no restrictions to variables that enter
the vectors of explanatory variables z; and x;. In fact, they can even be the
same. Identifiability conditions require that whenever a covariate enters both z
and z then the associated component of the 3;’s must have a fixed sum. Usually,



one imposes that Y ; 0;; = 0 so that the corresponding component of ;1 can
be interpreted as an overall basic effect.

Typically but not necessarily the model is completed with an independent
prior pl¢p ~ N(m,¢ 'M), for some vector m and positive definite matrix
M. This causes the parameter vector to increase but componentwise MCMC
analysis remains virtually unchanged. When p is known, new observations
Ui = yi — 2z, can be formed, very much like in scheme C, and they restore
the likelihood (1). Sampling for the other model parameters remains as before
with observation vector ¢ replacing y.

Sampling p given the other parameters is trivial as the likelihood is based
on observations §; = y; — x,8; ~ N(zip,¢~!). Combining it with the prior
gives the full posterior conditional (u|3,®,¥,y) ~ N(m, dfl./ff) where M =
(Z2'Z+ MY = M(Z'y+M'm) and Z is the (static) design matrix with
TOWS 27, ..., 2

’
"

4.2 Proper prior specifications

One of the (theoretical) disadvantages of (3) is that it is improper. The im-
propriety stems from the fact that the prior is only informing about distances
between (;’s and not informing about the 3;’s themselves. One simple way to
correct that is to pin the §;’s down to some point in their space of variation. A
simple extension is provided by the prior

F(Bl, W, A) ox ¢77/2 W]/ exp { % [Q(ﬁ) +AY (B )W (B; m)] } , (11)
i=1

where Q(F) is as in (3) and the additional parameter A controls the relative
weight attached to the pinning down part of the prior. The proportionality
constant is now finite and can be analytically obtained. Useful choices for the
b;’s are 0 or the MLE obtained in the static (or some local) regression. Needless
to say, genuine prior mean specifications should be used whenever they are
available. A special case of this form is used as a prior for spatial effects by
Fernandez (1999).

This prior is equivalent to (3|¢, ¥, \) ~ N[C™YAI ® ¥)u,C] where u =
(), oy i) and C=1 = (AT + W) 0 ¥. As a consequence, the full prior condi-
tional of §3; is

_ 1 1
6i|6—i7 (/)7 \117 A ﬁi|68i7 (f)7 \117 A~ N (wzﬁaz + (1 - wz),uu mqj )

where w; = wii /(wir +A), i=1,..,n
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4.3 Special forms for the hyperparameter

One special case of ¥ considers a diagonal form with diagonal entries ¥4, ..., ¥,..

Then, Q(8) = >27_, Q; (37) where

Qi) = > wis; (Biy — Biy)* = ;87 W (12)

il=1

Sampling schemes for § do not suffer any change although scheme C may have
beneficial mixing properties due to lack of prior correlation. Also, scheme D
does not benefit from further computational simplifications to (9). If prior
independence is assumed for the ;’s then (12) ensures that their joint full
conditional distributions will consist on a product of independent densities. For
example, if independent G(vy /2, v4.S,,/2) priors are specified for the 1;’s, their
full posterior conditional will be a product of G[(vy +n)/2, (1S + 687" W37) /2]
distributions.

Another interesting special case is when the precision matrix (for r = 2) is

given by
_ T 4
V=1 ( o 12 ) :

The hyperparameter 1, informs about the magnitude of the dispersion and ¥
informs about the possible correlation between the components of the 3;’s. In
this case, a prior for the pair ¢ = (1, 12)" must be specified. No simplification
is achieved for any of the sampling schemes and now even sampling from the
components of ¢ is non standard and possibly indirect methods or Metropolis-
Hastings steps may be applied.

Similar comments follow for the case when the weightsw;;’s in the expression
of (3) depend on further hyperparameters. An example is given by continuous,
geostatistical methods where the weights typically depend on the distance be-
tween the regions (i.e., w;; = exp(—bd;;), where d;; is the distance between
sites ¢ and j). In any case, the above calculations are easily adapted. A prior
for the distance attenuation parameter b must be specified and a sampling step
for b must be included in the MCMC scheme. This is an advantage of MCMC
schemes: introduction of a further unknown quantity only implies an extra step
in each iteration with steps associated with the other parameters remaining the
same.

5 Applications

In order to study the performance of the schemes and the ability of the posterior
to estimate the model parameters, a simulated dataset was generated. The first
difficulty appears as the improper form of (3) prevents direct generation from
the model. An approximating alternative must necessarily be used. We have
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chosen an approximating device inspired by the spatial structure used by Anselin
(1988). Also, we opted for not scaling ¥ by ¢.

The spatial structure used is that given by the 558 homogeneous microregions
of Brazil, as defined by the official Brazilian Statistics Institute IBGE, and
illustrated in figure 1. The neighbouring structure is defined by the existence of
a common border of any length and w;; = 1 for such pairs and 0, otherwise. We
used r = 2 explanatory variables that were uniformly generated. The algorithm
was run with 2 parallel chains. Initial points were provided by values generated
from the hyperparameters’ prior distribution for all sampling schemes. Given
that this prior was proper but had very large variances, these values provide
reasonable reassurance of exploration of different regions of the parameter space.
It should be unlikely for both chains of the same scheme to converge to the
same local mode. Convergence was diagnosed according to Geweke’s (1992)
test within chains and the Gelman and Rubin (1992) shrinkage factor.

The analyses report results obtained from the last 1000 values from each
chain totalling 2000 values for all model parameter. Scheme D was run with
the random walk form for the proposal described before and d.o.f. tuned to
acceptance rates around 40%. In general, iterations from scheme A are around
6 times faster than scheme C that is around 3 times faster than schemes B
and D. In addition, the burn-in period seems to be unaffected by changes to
the hyperparameters’ prior and indicate faster convergence for schemes A and
B (after around 400 iterations) than for schemes B and D (after around 800
iterations). We have opted to allocate the same CPU time to all schemes. Since
iterations of scheme A are the fastest ones, each chain was allowed to run for a
further iterations and only when time limit was reached values were stored.

Table 1 below shows the mean value of logw(3,0) where 6§ = (¢, V) for
schemes B and D and a number of prior value specifications for vy, = vy = v
and Sy = S,1 = SI, for the simulated dataset. The prior means are, therefore,
given by E(¢) = E(W;;) =S, fori=1,...,r.

The results show that for a wide range of prior specifications schemes B and D
lead ot the same posterior values, indicating convergence to the same parameter
region. It is worth stressing here that entries on table 1 were compiled after
the chains were diagnosed to be stationary according to the criteria mentioned
above.

Table 1. Joint posterior density (in log)

prior Scheme

d.of. (v) | mean (1/5) B D
10 1 -2297 -2296
100 -2103 -2103

50 1 -2579 -2579
100 -1912 -1912

100 1 -2746 -2746
100 -1671 -1669
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5.1 Simulated dataset

Anselin (1988) proposed the study of spatial regression model by introduction
of spatial correlation into the observational error structure. His idea can be
adapted to the construction of spatially correlated parameters. Specifically, the
B’s can be generated from the model where

_ 1
Bi =pBai+e;, e ~N (07 ‘I’_1> (13)
Wiy
independently, for i = 1, ..., n. In matrix notation, this means that B = pW*B+
e with vec(e) ~ N(0, ¥~ ! © K ') where vec(X) is the column vectorization of
the matrix X, W* given by

g . 0 ifi=j
W* = (k;;) where k;; = { wii Jwiy i~ ]
and K = diag(wiy,...,wn+). The spatial correlation is induced by the neigh-
bouring matrix W* and it is not difficult to check that W* and W are closely
related through W = K (I — W™).

The independence imposed by the right variance K means that the prior for
G is given by f(8) o [1i—, fi(B:;8—;) where each f; is given by (13). When
p = 1, these are the full prior conditionals in (5). This prior can therefore be
seen as an approximation to the prior in (3) in the same spirit as the pseudo-
likelihood suggested by Besag (1975) approximates the true likelihood arising
with observations from a Markov random field (Qian and Titterington, 1991).

Parameter generation was carried out with p = 0.999. The dataset genera-
tion is completed with observations drawn from model (1) withr = 2, a diagonal
matrix ¥ = diag((0.03)2,(0.15)2) and ¢ = 0.25. Results must be interpreted
with care since there is no clear correspondence between this spatial structure
and (3). Note that prior (13) also becomes improper when p = 1 since I — W*
is rank defficient.

Figures 1, 2 and 3 shows the results of the estimation in space (fig. 1)
and over the line (figs. 2 and 3), respectively, of the spatially varying regression
coefficients along with uncertainty bounds for the prior with v = 10 and mean 1.
The strong spatial pattern of the process is clear from the figures. The estimates
appear to reproduce well the true spatial pattern. Important differences in
estimation appear when the schemes are summarized. Squared deviations can
be defined as (5; *Bz‘)2 where Bi is the posterior mean of 3;. These quantities can
be summed up over all regions to provide an overall measure of fit named here
SSD;. These figures, provided in table 2, are substantially larger for scheme
C whereas no apparent difference seems to exist between scheme A, B and D.
This provide indication of convergence of scheme C to a different region of the
parameter space. The priors used in table 2 show a variety of opinions ranging
from strong to weak prior information, as measured by the number of degrees
of feeedom, and from small to large expected values for the hyperparameters.
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Convergence of scheme C seems to worsen with change of prior means. For
the other schemes, the SSD figures change very little as the parameters of the
prior distribution are changed. This indicates that there is strong information
in the likelihood for spatially varying regression coeflficients: they are reliably
estimated and the results are not changed even after substantial changes in the
prior. The same is not true for the hyperparameters.

The estimated chain autocorrelation for the hyperparameters is depicted in
Figure 4. The scheme with smaller autocorrelations is scheme B followed by
schemes A and D and then followed by scheme C. We also present below the
results from point estimation of hyperparameters in Table 3. Posterior estimates
tend to concentrate around prior means indicating scarcity of information in the
likelihood. Credibility intervals are not shown for brevity but indicate similarity
between schemes A, B and D and their lengths decrease with increasing prior
d.o.f. as expected. None of the regions found by the schemes include the
generated value but it is unwise here to require correct estimation since we are
using different models for simulation and estimation and even ¥ has different
meanings in these models. Diferences between the estimated posterior means
with schemes A, B and D are well within their Monte Carlo uncertainty. Figure 5
confirms these findings with the scatterplot of pairs of hyperparameters sampled
from the posterior showing the same pattern, except for scheme C.

Table 2. Estimation for simulated dataset: SSD

prior Scheme
d.of. (v) | mean (1/5) A B C D
10 1 0.042 | 0.041 0.050 | 0.041
100 0.039 | 0.039 0.398 | 0.039
51 50 1 0.052 | 0.052 0.059 | 0.052
100 0.039 | 0.039 0.281 | 0.039
100 1 0.055 | 0.055 0.076 | 0.055
100 0.039 | 0.039 0.212 | 0.039
10 1 0.073 | 0.073 0.080 | 0.073
100 0.071 | 0.071 0.383 | 0.071
B2 50 1 0.081 | 0.081 0.085 | 0.081
100 0.071 | 0.071 0.306 | 0.070
100 1 0.083 | 0.083 0.096 | 0.083
100 0.071 | 0.071 0.222 | 0.071
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Table 3. Point estimation for simulated dataset: 6

prior Scheme
d.of. (v) | mean (1/5) A B C D
10 1 1.93 | 1.66 1.96 | 1.49
¢ 100 160.3 | 120.8 | 150.6 | 121.4
(true= 50 1 114 ] 1.14 1.10 | 1.13
0.25) 100 103.9 | 104.0 | 101.4 | 104.2
100 1 1.04 | 1.09 1.05 | 1.09
100 100.4 | 104.7 | 101.9 | 104.7
10 1 21.73 | 22.05 | 24.78 | 23.12
Wy, 100 160.3 | 120.8 | 150.6 | 121.4
(true= 50 1 591 | 5.90 6.64 | 6.12
1111) 100 779 | 7771 | 14.20 | 81.67
100 1 3.58 | 3.58 390 | 3.69
100 82.26 | 82.16 | 8.82 | 86.80
10 1 5.54 | 5.48 3.19 | 5.31
D) 100 10.08 | 994 | 299 | 9.25
(true= 50 1 1.82 ] 1.81 1.33 | 1.82
0) 100 8.74 | 8.76 549 | 8.35
100 1 1.06 | 1.06 0.80 | 1.05
100 778 | 7.75 398 | 7.37
10 1 10.05 | 10.01 | 10.90 | 10.51
Yoo 100 1297 | 12.89 | 4.28 | 13.39
(true= 50 1 4.71 | 4.69 521 | 4.93
44.44) 100 13.93 | 13.87 | 9.39 | 14.46
100 1 313 314 343 3.29
100 15.20 | 15.24 | 6.31 | 15.71

5.2 Real dataset

The Amazon region is a vast area in the North of Brazil that is recently be-
coming an agricultural frontier. A question of interest is to determine the pace
with which land use is changing. Andersen, Granger and Reis (1997) (AGR,
hereafter) proposed a VAR-like model to land usage that enables projection into
the future. Denoting by y;: the proportion of land in county j used for purpose
k in time ¢ and xj, the proportion of land in county j still covered by forest
(k= 1), the model proposed is

K
Ykt = BikoAyj1e + Z BikmYjm,t—1 + €jrt

m=2

where j=1,...J, k=1,..., K, t=1,...,T and A is the time lag opetator. The
authors acknowledge the presence of heterogeneity between counties by adding
an extra layer to the model where, the regression coeflicients 3;.m, vary across
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counties. They did not, however, consider the spatial location of the counties in
this variation. Spatially determined variation seems a more reasonable assump-
tion to account for the similarity between neighboring counties due to stage of
land ocupation by settlers or proximity to large cities.

In this application, data from J = 228 administrative counties in the Amazon
region of Brazil depicted in Figure 6, with K = 4 land usages: forest, crop
land, pasture and fallow land, collected at years 1970, 1975, 1980 and 1985
(T = 4) was used. Variation of coefficients across counties was modelled with
the spatial prior (3) and only data for pasture (k = 2) was used. A more
complete analysis of this dataset will be reported elsewhere. Note, however,
that the data strucutre contain many observations per county and therefore,
the likelihood must be adapted accordingly.

The main results of the analysis are reported in Table 4 and Figures 6 and
7. Table 4 presents a comparative analysis of the results obtained by AGR
with those from the models with fixed and spatially varying vector of regression
coeficients. For the AGR and spatial models, where regression coeflicients vary
across counties, the mean value of the average is reported in the Table. There is
reasonable agreement between these averages across models even though data
used by AGR was different due to minor data adjustments. We have also caried
out a comparison between the fixed and the spatial models using the predictive
fit statistic D proposed by Gelfand and Ghosh (1998). Their statistic measures
goodness of fit but combines it with a penalization for model complexity using
decision theoretic justifications. The values obtained where Dy = 0.035 >
0.016 = Dspatial, showing a preference for the more complex and more realistic
model with spatial variation.

Table 4. Estimated values of 3

coefficient AGR Fixed Spatial
Bo 0.2919 0.1384 0.1420
61 -0.0440 -0.0176  0.2760
[ 1.1543  1.2771  1.0230
03 0.1114  0.0545 0.0730

Figure 6 shows the spatial distribution of the posterior mean of the 3;21s.
These coeflicents measure the effect of change from agriculture in the previous
time to proportion of land used for pasture in each county. The results show a
clear pattern of change as one moves in the North-South direction. The effect
of change from agriculture to pasture is more intense in the South of the region.
This area is known to be the main entrance to the region. Human occupation in
the region is typically characterized by low technology agriculture which quickly
exhausts the land resources and leads to pasture use of the land. Our findings
seem to confirm this prior indication.

Figure 7 shows the spatial variation arranged over a line for all regression
coeflicients along with corresponding credibility limits. The coefficients B;90’s
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are marginally significant and all the other coefficients are clearly significant
with the 8j21’s and B;23’s showing a similar spatial behaviour.

6 Concluding remarks

We have considered analyses of different sampling schemes with a spatial re-
gression model. The results obtained with our simulations must be interpreted
with care since they are all based on empirical evidence. Given that we have
emulated a few different prior forms we are reasonably confident that results
hold for a wider class of spatial processes. The analyses were performed on
software that is freely available on http://www.ipea.gov.br. This software
provides a useful tool for analyses of regression models with the presence of a
spatial pattern infuencing the effect of the explanatory variables.

Empirical results suggest that scheme D where advantage of the analytic
integrability of state parameters is taken has a good performance. This in not
an entirely surprising result and confirms those obtained in state space models by
Gamerman and Moreira (1998). It is also important to stress that convergence
speed of scheme D may be crucially dependent on the form the hyperparameters
are sampled.

Similarities between spatial and time series models are known although not
heavily explored in the literature. It is well known that joint sampling of state
parameters improves convergence in state space models (Shephard, 1994). The
results obtained here seem to point at that direction but with less importance
than in the state space context. Nevertheless, we would still recommend joint
sampling of state parameters as our first choice. Given that state space models
are a special, limiting case of the spatial models considered here, this assertion
indicate an interesting area of investigation.

All simulations and models considered here assume normal observations. An
obvious next step is to consider these models under different observational sam-
pling schemes. There are many instances where regional observations arise in
the form of counts or proportions. Unfortunately, scheme D is no longer avail-
able here and schemes A, B and C must be adapted to incorporate Metropolis
acceptance steps. This poses another challenging problem of practical relevance.
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