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Abstract: Decomposition principles are developed
those (generalized) geometric programming problems

for

whose matrices have a certain type of block diagonal
structure and whose functions are (at least partially)

separable (in a certain compatible way).
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THE DECCAPOSITION OF LARGE (GENERALIZED) GEOHUETIRIC
PROGRANMIING PREDLENS BY TLARIXNG

EI$OR L. PETERSON
Department of Industrial tngincoring/ilanagement Sciences,
and Department of Mathematics
Northuestern University, LCvanston, Illinois, 60201, U.S.A.

yecomposition principles are developed for those

arming oroblems wiose matrices

conoraiized) tric proj
have o i of nlock diagonal structure and vhose
functions arc (ut least particlly) sepavable (in a certain
compativle way).

1. 1INTRODUCTIOCXN

iny in its ”ost general form provides a mechanism for re-
pt‘qluﬁthn problems as separable (gen-

Geometric prc:r;ri
formulating
eralized)

o0
oo

o .

The key to such refermulations is the nvp101taulon of the linearities that
. .

are present icn problem, uch lincarities frequently appear
as linear ¢ negualities, but they can also appear in much more
subtle guises as matrice S¢ ciated with noniinearities.

g nroblems that result from such reformulations are
(at leact ﬁ';tirlly) separable, and many that arice from the modeling of large
systoms have Spirse matrices, loveowver, such roparadility and sparsity can fre-
quently be exploitcd by using the decomposition principles to be developed hcre.

but only for & :geClal cypc of uuuonstraln;d ”p;:ynomlal” problcm that occurs in
the desigzn of heat exchangers. tliowever, subscquent extensions and generalizations
to various types of CO“Sthin“d posynomnial problems have been made by Heymann

and Avriel (1959), Ecker (1972), and Rijckaert (1973).

This poper presents two geometric programming decomposition principles that
transcend tlie spccial class of constrzined posynomial problems. The first prin-
ciple is the most basic and forms an integral part of the second principle. The
second principle can be viewed as primarily another manifestation of the general
method of "diaxkopcics'" as introduced by Kron (19533). (Diazkoptics is a term that
stems from the Greck word '"kopto' meaning to break or tear apart and the Greek
prefix "dia" which reiniorces the word that it precedes). The second principle
can further be viewed as a nonlinear generalization of the "dualiplex method" of
Gass (1966), which{according to Dantzig (1970)) is related to the "partition pro-
gramming'of Rosen (1964) in dual form.

The author suspects that the second principle also generalizes and/or
unifies many nonlinear programming decomposition principles that appear in
diverse disciplines and fields of application. In fact, the author hopes that
this paper will stimulate and racilitate a unification and further development
of such principles. '

With that goal in mind this paper has been made as self-contained as pos-
sible, with a mininum of detailed technical developments. In particular, the
geometric programming approach is introduced in section 2 in the simplest pos-
sible setting - prograrming without explicit ceonstraints. Two decomposable pro-
blem types are then described in section 3 and are subsequently decomposed in
section 4. The first type is decomposed simply by inspection, and the second
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type is reduced to the first type by the method of tearing (i.e. diakoptics),
guided in some cases by zeomrtric programaing duality. The resulting decomposi-

tion principl.es ave then specizlized in section 5> to the seemingly wore general
setting of prograaming ssith omplicit constraints. -

2. THE GEGHEZINIC PROGRAIDING APPRCACH

Classical optimization theory and ordinary mathematical programming are con-

cerned with the miniwizetion (or maximization) of an arbitrary real-valued func-
tion ¢ over some -iven subsct 5 0F the fuinctions nonenoty domain C.  For pedagog-
ical siuplicity we ghall vesorict our attention to the finite-dimensional case in

which & is ditsell 2 subsct ol 7-dimensional Euclidean space Ep

In (geoneralized) g jSpalel ving, as defined by Peterson (1970), the
subset § is requirzod to be tho inteors ;t 0f C with an arbitrary cone 1z Ene.
zci heor asons, tiils problem of miniwmizing
first embeodded in the family d of
are generatod by simply trans-
displacements -UZEp while keep-
naking a sketch of a typical case
In most knowa cases of practical
of En.) The problem of minimizing
@{0) and is studied in relation to
tion given to those problems ¢ () that
(the norm orf) ¢ is small.

liswever, for
Jover ¥INC is
closcly related =
lating (the domain
].I'l'-‘ ‘] fl‘\d.
in which T is
significance

o over I ﬁ(,
all other pr

cris with szecial
are close to &KO) in the s<ase that

zormetric proxrasmina problem, and the

Each problem @(u) is said to a
for fiuned g:C and 1) is termoe a zoometric pro-
T e

i

t
family ¢ of all such preblems (
)

gramring fanile, Tor purposcs ea3y refercence and mathematical precision,
problem ¢/{u) is now ziven the following formal definition in terms of classical

terminolozy and notation.

PROBLEM ¢7(u). Usinz the "feasible solution' set
SW)y A1 (C-u),

"

calculate both the Yeoreblem infinum

Py e G(x+u)

gf
X S(u)
and the "ontimal solution" set
sx () 3 {#28wW | g(x+u) =0 ).
For a given U, probleri () is either "consistent'" or "inconsistent', de-
pending on whether the feasible solution set &(X) is nonempty or empty. It is
of course obvious that the family & contains infinitely many consistent problems

d(¥). The domain of the infimum function © is taken to be the corresponding non-
empty set

119 [uEEn ] problem (&) is consistent}.

Thus, the range of ® may contain the point - ®; but if ¢(u) = - @, then the op-

=

timal solution set 3%(u) is clearly  empty.

Each optimization problem can generally be put into the form of the geo-
metric prograrming problem ¢(0) in more than one way by suitably choosing the
function 7 and the cone L, For example, one can always let & be the "objective
function” for the given optimization problem simply by choosing I to be E,,
but we shall soon sce that such a choice is generally not the best possible choice
for most important optimization problems. The reason is that most such problems
involve a certain amount of linearity (due to the presence of linecar equations,
lincar incqualities, matrices, etc,), which can be conveniently handled through
the introduction of an appropriate nontrivial subcone LTEpn. The presence of



such a subconce L is onc of the distinguishing features of the geometric program-
ming point of view,

Pue to the pre-wvminence of problem 4(0) we shall find it useful to interpret
problen (W) as a porturhcﬂ version of ¢700), so we term the set 4 the feasible
for problenm @0). Actuvally, a rather elementary argument
rson (1970)) shows that

perturhation s
iven essoentia
(&

v e

lvsis is intimately related to the geometric
wdied by Peterson (1970), and it is the only

This kind of

programming

ingredicont ith cur Lirst decompesition principle to obtain
our sccond vinle, Ta Fact, for & given problem @{0) that is of
& certain devomnosadle cooe 2 vhe infimunm

beone! TFST turns out to be the

problem' when the donain ul is
]

b
mnction @1 ul that results from re-

placing & B
objective icn for 2 corresvonding Mmas
restrictes its intorsect with an appronriate 'coupling subcone
sum with Tt is (.

1o =1 whose

[l
[
o

turbation 2nalveis is also of direct practical interest. 1In
] I problem classes indicate that the
of optimality on actual external

This kirnd of pe
particular, o}
functions ¢:

influences, on roduirements, materiel costs,
and the data teoi Dtim 2 wimated in linear regression analysis.
Examnle 1, Perhops the nost striking example of the utility of the geo-
netric prozro.ming approach comes from using it to study the mininmization of
"signomials" Thi st ener (1961, 1962} and buifin (1962), and
served as tbe initi well as the main stimulus for subsequent

A signomi: 'seneralized polynomial) is any function

with the form

r.
P(t) =.E, c.t

where the cocfficients cj and the exponents ajj are arbitrary real constants but
the indcpendent variables t4 are restricted to be positive. After much experi-
ence in the physical sciences and engineering Zener clearly recognized that
many optimization problems of practical importance can be accurately modeled
with such functions. 1In many cases they come directly from the laws of nature
and/or the laws of cconomics. In other cases this functional form gives a good
fit to empirical data over a wide range of the variables tye
The presence of the "exponent matrix (ajj) (which is of course associated
with algebraic nonlinearities) is the key to applying geometric programming to
signomial optimization., To effectively place the problem of minimizing P(t)
in the format of problem (0), simply make the change of variables

m
X = i = mn.
i jglaij log tj’ i 1,2,...,7%

-

and then use the laws of exponents to infer that minimizing P(t) is equivalent
to solving problem Z(0) when

~and

X A column space of (aij).

The advantages of studying this problem Z(0) rather than its signomial pre-
decesso; come mainly from the fact that, unlike the signomial P; the exponential
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function 4 is comnletely separable (in that it is the sum of terms, each of which

s

depends on only o gingle independent vavizble X3). Notice also that the par-
ameter Yy is a lesarithadce perturbation of the tc. |, gencrally a very useful
type of pfrtkth'L1ov to consider because the coefiicicnts c; are typically
costn puor unir cuontvity of wateriel and bence tend to vary somewhat. The ex-

poncnts o arve usually zeometrical constants or are fixed by the laws of nature

J . . . .
and/ or ocone sics: o aoy do rot tend ro vary, and hence there is little lost
in not studviag thelr poevturbariens,

Cur sccond examnle comes from the minimization of quadratic

)

2> 4+ <h,z>,
and b i1s an arbitrary constant vector,

B (vhich is of course associated
ey to eifcctively applyving geometric
More specifically, linecar algebra is used

with gualdratic
prozrarming to =
to compute motrices D and J such th

where U indicates the transpose coperation. In terms of D and 2 the quadratic
function

Q(z) = (1/2)(<nz,Dz> - <%z,52>) + <h,z>.
on <

Of course, the expre
definite; and tho ex
semidefinite (i.e. a ¢

Dz,Dz> is not
a ~<5z,5:> 1is
nction).

nt wvhen Q(2z) is negative seni-
resent wnen Q(z) is positive

(1

From elementary iincar cebra ve now infer that minimizing Q(z) is
equivalent to solving problem &(0) wihen

X% 1/2 R C
70 & A/ GEF - kn® ) F o
and D
Y 8 column space of |z} .
h

Notice that, unlike the quadratic function Q, the quadratic function § is com-
pletely scparable, a fact that can be exploited both theoretically and comput-
ationally.

It is useful to introduce some additional parameters into the preceding
function ¢ so that a much broader class of optimization problems can be studied.
In particular, we redefine ¢ so that

m . 27 -1

Q(x)g.ipfl % - b, [PF o v - b

> - b
i=1Py My 7%y io1Pi T 5y 2l T C2ml

where b and P ‘are arbitrary constants. Notice that the function g is still

comnlet ly separable and can be specialized to the quadratic case by choosing
bj = 0 and py = 2 for each i.

Another interesting specialization is obtained by choosing pj = p for each
i, while choosing £ =0 and h = 0. The resulting problem consists essentially
of finding thc_tbcst_lp-norm approxiration'" to the fixed vector (bl,...,bw) by
vectors in the column space of the matrix D, a fundamental problem in linear
regression analysis. Finally, it is probably worth noting that the parameter
U is then a perturbation of the vector (by,...,by) of data being optimally
approximated, a rather useful type of perturbation to consider.

Other important examples that can be effectively treated by geometric pro-
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gramming (but bove veu2lly been studioed without explicitly mentioning the subject)
are: generalized ' at are of ccentral importance in location
theory, discrete entiral centrol prethiems with lincar dynamics (sometimes called
dynamic progrow-ive nrohlens with liucar transitien functions), and various non-
lincar network {low problems that arise in the analysis of electrical networks
and the analvsis of certain (nulticenrodity) transportation networks.

Jeher problems' o
1

For tho: xsmples the funccions @:U a 5 :U show the dependence of op-
timality on tho i L1 xte influcaces: existing facility locations in
locaticn theory well as the initial state and final
target sogs in oo . sut currents and the input potontial dif-
ferences in oloctilical network theory, and the travel demands in transportation

networts theory.
examples, see the recent expository
s cited therein,

paper

~ion of ilisportant cuamples it is probably

worth 12t the wodeli~t of cortain tronsportation networks that con-
tain ‘1¢ one-wav autcermnbile artery gives rise to cones { that are
generally not subspaces,  Consegquently, the added generality built into this
presontation orf gecnetric progranmming 1s not without practical signiiicance.

3. TWO DECOITOSALLE PROBLEM TYPES

proprorming problems ((0) known to the author to be of
the cone L is polyhedral and hence finitely generated.
vithout amy tanowm loss of practical significance that there

matrix 7 with a correspounding index set & & {1,2,...,m}

In all g«
practical si
We therofor
is at leas
for which

cr

o

L={ x€ E. | =72 for at lcast one z¢ £, for which 23206, j€& }.
5

The index set can o course be taken to be the empty set when X is in fact a

subspace of E -

We also suppose that it has been possible to choose the matrix representa-
tion 77 and its corresponding index set & so that 7 is sparse with a block diag-
onal structure that is one of the two types illustrated in Figure 1.

7 ‘ f

"

A ]

i 7
Mo
lkod,

—
>a,

g
—t

N

AN

2
3
A

Type 1 Type 2

)
W\
N\

\\
[}

9
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il

LN

y74

SN

Figure 1. Two Tvoes of block diaconal scructure for 7.
The enumerated submatrices 7, are of course the only submatrices of 7 that need
not be zero matrices. We assume in general that 7~ such submatrices 7, mb,..., W@
with 722 are arranged diagonally. (In particular, 7 is 4 for both of the
examples illustrated in Figure 1.) Matrices 7 cf type 1 can then be characterized
as those that have no additional rnonzero submatrices, and matrices 77 of type 2
are those that have a single additional nonzero submatrix Wb consisting of entire

columns of 7.

Both types of block diagonal structure induce a partitioning of the rows of
M and hence the components of ¥ in such a way that

x = @l x? :cr),



vhere the comvoncents of the vector variable xK are enumerated exactly the same as

thosc rows of “1 that coatain rows of the submatrix 7.
Similarly, cach of the two types of block diagonal structure induces a
partitioning of the columns cf »i and hence the components of = in such a way that

2 oL )
24,:?,...;& ) for problems of type 1

N
I

while

2 r B
== 64%29395“,...;: for problems of type 2,

vherc the comoneats of the vector variable =X are enumerated exactly the same

as thoze coluns of 7 columns of submatrix .. The components of the
additionsl v ovor carvd ziven problen of type 2 are of course the
"eoupling varinnlos” contended with in reducing such a problem to

an cquivaion prablen

To rendor bhoth problen tvpes amznable to decomposition, we further suppose
that the fuuction §:C is af least néa eparable and that its partial
separability is coupotible with the preceding partitioning of the components of
X . 1In particular then, we assunme that there are functions ukick, k=1,2,...,7,
such that

1l

C = C’I and £ 1 o2 (Yx\)

0

This assumption is of course automatically sati

. v T
isfied when ¢:% is completely sep-
arable, a condition that holds Zor cramples 1 and 2

! in secton 2.

I

It is important to note that the preceding assumptions about problem &(0)
are inherited by all problems (u) in the geomotric programming femily &, In
particular, the cone { and thLQ the block diagenal structure of its matrix re-
nd the separebility of the function ¢:C
(- + Uy (& - wy. Consequentiy, the
d in the context of treating problem d(0)
blems g{u) in the family 4.

S
decomposition principles to be deveicp
are just as applicable to all other p

In treating such problems ((y) we shall nced to partition the components of
U in the same way that the components of X have been partitioned, namely,

r
= (ul, 12 yesesd ),
where the components of the vector variable uK are enumerated exactly the same as
those rows of 77 that contain rows of the submatrix 7.
4, DECOMPOSITION BY TEARING
The decomposition principles to be developed here utilize the cones

Xy & {xke Er,k K = 7/‘[1(%“ for at least onezX€ E”!k for which 2:‘3( >0, j€91}.

There are of course 7 such cones Iy, k = 1,2,...,” for a problem of type 1, and
.7 + 1 such cones Xy, k =0,1,2,...,” for a problem of type 2. Only the extra
(coupling) cone Xy for a probleﬁ of type 2 1s a subcone of I,

Problems of type 1. We begin by observing that the cone X is separable, in
that

x €Y if and only if xX€Yy, k = 1,2,...,7.

This separation of the cone I into the direct sum of the cones Xy, k = 1,2,...,f,
‘and the separation of the rfunction g:£ into a sum of the functions

gk: Ck, & 1,2,...,r, immediately imply that problem &(0), now dQSLgnated pro-
blem ad(o),can be solved by solving the smaller geometric programming problems
ar (0) that are constructed from the respective functions £3.:C . and the respec-
tive cones Yk, k = 1,2,...7 . 1In partlcular, the (desired)infimum 01(0) for
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problem 61(0) can c¢learly be determined from the infima @) (0) for the respective
problems < (0), k = 1,2,...,7 by the forwula

e

@1(0) = kzl v (0.

. . . 1= 3
Morcover, thc (desired) eptimal solution set & 7 (0) for problem &d(O) can ob-
viouslyv be determined from the optimal solution sets 5 (0) for the respective
problceas &1 (0), k = 1,2,..., by the formula

r .
al® ~ X o™ -
S 0y =,72 3 (0) .
( ) k:]. Uk( )
. - . ) . . )
This direct decompositicon of problona - (0) into ™ smaller problems
G0), ko= 3.2, 000, sonorally increases comnutational efficiency and can in fact
139 B ~, - . 3 _ -

be a necessity when & 70) is itsels too large for comnultor storage,

Using thoe orovicusiv petoed fact that the same decomposition principle can be

applicd to cach nrobicr J{uw) in o ziven family &) we infer that the (desired)
functions <*: u’ ol uir:bi are detormined by the corresponding functions ¥p: Wy
and g0 Lo that ave azsgociated with the geometric pregramaing families dk (that

are of eoursc consiructed Iron tne lCQDP tive functions {i: :Cy. and the respective

.

cones ¥, k¥ = 1,2,.,., r).This direct decomposition of the family &l into
smaller families &3, k = 1,2,,..,7 can be concisely described by the formulas
1. ¥
u ) \LK,
r
) = Tooo (UK
( ) kzl ( ))
and 1% I ok
where
=C = T =
\Lk i X k=1,2,..., r.

Consequently, the functions =1l and &1%:Ul can be studied by studying the

A

functions ¢p:ly, and Soily, k= 1,2, ..., 7,

In particular, given that the (ore-sided) directional derivative Dd k 4y, O
of the function Ck:txk\ﬂ' a point ' ‘<Elu in the directicn a“::qzk) 0‘1sts for
k=1,2,..., ", and given that both U (1 ,Uz,...,JP) and 4 = (dl,7 ,...,d ),
the (one sided) dirccticnal derivative Dz Ll(,) of the function ¥l: zl(at the point
¥ €Ul in the direction @ € Ex) clearly exlsts and is given by the formula

ey = & oy (X
Dy @ () =  Z;Dgk @k ().

It is only on rare occasions that the functions wp:Uy, k = 1,2,...,” can be
obtained in terms of elecmentary formulas. Consequently, the directional deriv-
atives Djy ck(uK), k = 1,2,...,r usually have to be determined by numerical
differentiation or cther numerical methods.

If a given function 2y :Ui is convex, then the "comvex analvsis'" of Fenchel
(1949, 1951) and Rockafellar (1970) shows thaL for almost every uk :1ik the directional
derivative Dy vb(WK)QYlStS for all the "feasible directions" 2K €Epyp (L.e.
all the directions GK€ E~, for which % K4 sak€1Jk for sufficiently small s>0).

On the other haad, the paper by Peterson (1970) shows that 2p:ly is in fact

convex if the function gy:Cy is assumed to be convex, an assumption that seems
much less rostrictive wien viewed in the light of some recent work of Duffin

and Peterson (1%73, 1972), In any event, the paper by Peterson (1970) also shows
that this assumption and other relatively mild assumptions actually guarantee that

'kQ (J’k) = ma;f <dk:yk >’
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wvhere . 1\O,u ) is the optimal scolution set for the "geometric dual” A 05K of
problem ¢ (XY, Since the paper by Peterson (1970) alsc provides "e: chﬂa]Lty
(Onult]U“'” that sroquently Lend to a relatively simple computation of u.(O k)

- « . 1:
from the knowledae of only a single eopuimal solution ¥ € T 2K), and since
S0 By is fregueatly polyhedral (and sowetimes a singlcton), the directional
derivatives D@L(L) can often be determined by the preceding two displayed for-

mulas by little wore than llﬂglr srogramaing (and sometimes much less). This
weans of course that f{irst-ordoer metnods can often be used in conjunction with
the preceding decowpositicn principlc to minimize Ui(w) ovaer a given subset of

Wl - a fuendonconval tochnicue to be employed in developing a decomposition prin-
ciple for preblasz of type 2.

Probia e 2. V¢ benin by observing that a °1veﬂ problem Z(0) of type

2, now dosi- . d*(0), recuces to a problem &'(u) of type 1 when the
coupliv: vecoor vov jput is (tomporariliv) fixed end 4 is chosen to bc310~

Using vors olcsonn: arzunents, we then infer that the (desired) inrimum @2 (0)
for prosicm d-(0) can in fact be determined by the formule

“"‘2 = ¥ - r,]_ ’
¢4(0) = inf ).
weX a aul

The mirinizati aqwla is cbviously a geometric
i c

progr: 1 is termed t! "m. 1ts objcctive function
oloul alrcﬁdy been (particil irated into a sum of infima
functions @k:uha wo=1,2,...,/7 by the deco:pos tion principle previously devel-
oped for probilims of type 1. That decompeosition princ 1“1“ is of course to bte
used hore net only to calculfte the functional values ¢! () but also to calculate
any directional c:rlvatlfes Qiﬁ {t.) that are needed to implement an appropriate
algorithm for solving the waster preblem. Once the master problem's optimal so-
Jution set .

ue b lw€ry nul el = 2@

has been obtainoed, the (desired) optimal solution set gz*(O),for problem &Q(O) can
clearly be determined by the formula
. - r 2
2% _ t) [, % . sk
(O) 107 ey L +k:1 O'\ ("‘c
In the process of determining a »™ €U™ with the aid of this tearing proce-
dure, one can of ;ourbe expect to deterwine an ZKFEaT ARy, k= 1,2,...,7; in
which event .™ + Gl 2% 0.,c7F) is one of the desired optimal solutions to
problem Z°(C). This dSoUmES of course that such optimal solutions exist.

)3

In summary, problem JZ(O) has been torn into ™ smaller problems
dk(u Y, k =1,2,...,” that are judiciously selected by the master problem, with
the possible help of geouetric programming duality in the convex case. This
tearing mav increase cemputational efficiency but can in fact be a necessity when
a2(0) is itself too large for computer storage.

As previously noted, the same decomposition principle can be applied to each
problem () in a given family . The obvious result of such an application here
is notationally . somewhat cumbersome to describe and is left to the imagination of
the interested reader.

Although developed in the context of problems without explicit constraints,
the preceding decomposition principles apply equally well to problems with explic-
it constraints - by virtue of the relations to be given in the next section.

5. PROBLENS WITiI EXPLICIT CONSTRAINTS

To keep track of the explicit constraints, we introduce two nonintersecting
(possibly empty) positive-integer index sets I and J with finite cardinality o(TI)
and o(J) respectively., e also introduce the following notation and hypotheses:

(1) For each k&€ {0} UTU T suppose that gy ic a functicn wi
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. 2 v r - s 2 o P (3
domain Cy 7 Iy, and for each j<J suppose that Dj is a noncmpty subset of Enj-

(2) For cach k€10
and let ¢ be an indepondent vector paramcter with compeonents tj for cach 1 I.

10T let u¥ be an lndL>Lndcnt vector parameter 1n En

(3) Dounote the cartesian produect of the vector parameters ul, i €I, by the
symrol ul. md dencte the cartasicn product of the vector parﬂtgrcrr ul, §&7,

. U N
by the sz 1wt ihien the CJLLLS]?J product u & (u l,uJ) of the vector para-
' ) i 7 - . -
ricters, uJ,uL, and u” is an indeponadimt vector p*raﬁet<r in E,, where

Zn; +Zng .
i
1 J
1- . . . ~
¢t x% be an independent vector variable in Ep,
vror variable with componecnts #; for each j& J.
-

{3) sroduczt of the vector variables xi i'EI, by the
symbol xl d d sian product of the vector varia bICs %, 57,
by the =yoo x> - reesion product x A (:U,xI):J) of the vector
variables x“,xl, and 7 is an indcpendent vector variable in En.

(6) Suppose that ¥ is a cene in Ej.

metric prearaTming fanilv A of geometric
Iirst investigatea by Peterson (1973, 1974).

Now, considc )
b
prozvatrin: nrodleme Adu, )

PROBLUM Alu,io)s Consider tiic chinctive function G(- 4 u, x) whose domain

. ~ . . o
C) # LGy | s+ o 2e, kefol U, and (J + Wl €cy, 3807,
and wvhose fUﬂ:“lonsl valypo2
) A . 0 + 9 3
Gl + u,n) L gy +u”) +Z go(x” +ud, %),
B ]
where
CT & {(zj,x-) l either »:=0 an gup <<zJ,dj> <42, or #:>0 and zjé;t-C-}
j= i == Y == 2T T 2= 3%3
dJ'—Dj
and
sup  <zJ,aJ> ifx; =0and sup <zl,di><+e
dJ< b, di€p.
+ . . J J
gj(z'])’l-']) é
e (2d /s if . Jei.c.
thJ(z/J) if %3 > 0 and 2zJ €ityCy.

Using the feasible solution set

S(u,u) 4 [,y s , x€ X, and gi(xi + ul) +u;<0, i€1},

calculate both the problem infimum .

inf
D) & 3% s,

and the optimal solution set

§#%(u,u) A {(xJO Es(u,u)! G(x + u,n) =ou,r)!?

In defining the feasible solution set S(u,:), it is important to make a
sharg distinction between the cone condition x€ X and the constraints
gi(x* + ul) + i 20, 1 €I, both of which restrict the vector variable (x,it).
The cone X is frequently finitely generated, and hence the cone condition can’
frequently be eliminated by a linear transformation of the vector variable x;
but the (generally nonlinear) constraints usually can not be eliminated by even
-a nonlinecar transformation., Nevertheless, we never explicitly eliminate the
cone conditicn because such a linear transformation would introduce a cormon
vector variablec into the arguments of gg,gi, and g+ Such a common vector
variable would of course only tend to camouflage tge separability that is built
into problem A(u,u).



Analosous to the unceastraioned casce introduced in section 2, we shall fing
it useful to interprec proviea au,r) as a perturbed version of 4(0,0),s0 we term
the sct

{ (u,u) l prondlan A(u,ue) is consistent)}

the feas: for problen 4(0,0). It is important to note that
there are oo i Towieh variables :; the reason is that
such pcrLu“ no cf . Note alsc that the special
perturbaticne @ ¢ const ts and hence have no counterpart
in tha wA\y“:trxTA - ine unconstrained case can of course be obtained from
the prosent constrainad »7 sinply letting both index sets I and J be the

empty sct.

The extrons fle:ibilicy of the present geomelric programming formulation is
- t = o o
1
1 o

clearly illustracca by the tollowing cxumples of important problen classes
Euirnle G, Lin pro be vicwed as a special case of geometric

Prosraiiiin., it wLrUiis TaTi. : the wost direct way is to let J be the
empty sct and cheose the functions g:Cy, k€ f01'I by letting

Co & F1 with g59(0) 3 X0,
and

Ci & By with gi(xi) 3 xI - by, 161,

witere the numbers b; are components of a given vector b, In addition, choose the
cone X by letting

0 1. - \ - .
X AfG,xYye2 &8 X =<a,z> and xI = Mz for at least one z £ E., for which
= W\ 4 n 4 ul

z;20, j€P},

vhere a iu a given vector, M is a given matrix, and P is a given subset of
{1 ,o..,m

Irobler A(G,0) then Pl»urlj consists of minimizing the linear functicen

<a,z> subxegt to Loth ng linear constraints >z = b and the nonegativity con-
ditions z320, j=PF. 1is 1is of course the t general lincar programming pro-

o8
blem, and it is worth ﬁothg that while the ffect oif the parameter u" is obvious
the parameters vl and ¢ 2i both perturb the constraint upper bound bj.

Other ways of viewing linear prograrming as a special case of geometric pro-
grarmming ar. given in the expository paper by Peterson (1973).

Example 0+. To view ordinary mathematical programming as a special case of
geometric prograrming, let I be the set {l,h,..o,p} and let J be the empty set.
Then, choose the cone X to be the column space of a specially structured matrix,
namely,

X A column space of

I ene 4y &

where the m X m identity matrix J appears in a total of 1 + p positions.
1

=
o]
ho 3
13

P

rly congictg
i cenels

oblem A{C,C pinimizing go(7z) subject to both the
ints

T lear im
constra gi(z2) <0, i = 1,2,...,p and the domain condition z€{ C . It is
k=0

worth noting that the vector parameter uK perturbs the domain Cp by translation
while the parameter ui perturbs the constraint upper bound 0. The subfamily of
A that results from choosing the vector parameters u™ = 0 has been termed the
"ordinary mathematical prograrming' family by Rockafellar (1970), because its
problem A(0,0) and its vector parameter & have been the focus of most of the past
work in mathematical programing.
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Actually, there my be advantoges ia refermulating the erdinary machematical

. .
7 . )
progranming problein as the following gecaetric programming problan.

Minimize gu(xo) subject to

g1 (=) <0, 8y (x%) 50, ..., gp(P)s0
¥0 - xl =0
xl - x* . =0

. xp_1 - xP=0

0 A, -

X ‘ECO, x :(_,1’ - . . ., ngcp,
In this geermivic 2reoraaning formulatison the ordinary prograrmming problem is
at least pariially scolratlo,

In any c¢vent, mast Important imization problems have much more structure
than that which is preozoent in the ordinary programmaing problem. Moreover, that
:

extra struciure can cntiy be ownlolited by choosing the cone X differently
frow the way it Los beoen chosen in thls ewxample. Tihis fact is clearly illustra-
ted by the followinz emivonsions of exnmples 1 and 2 from section 2.

© L. ¢ minimization of signomials subjcct to signomial
inecuality constrzints, let I Lo the set ‘1,_,...,p, and let J be the empty set,
(G, ko= 0,1,2,...,p by letting
' SRy s R

- by,

witere the numbers c; and by are given constants and the index set
[k:] é {m_,, my + 1""’“1{}

with the understanding that

lémﬂﬁno, n0+1ém1£nl, . e e . np_1+lgmp£np=n.

Finally, choose the cone X by letting
X A column space of (aij)’
wiiere (aij) is an arbitrary n X m real matrix.

Making the change of variables

m
Xj =j§1 ajj log tj vhere tj2>0, j=1,2,...,mand i = 1,2,...,n,
we easily infer that problem A(0,0) consists essentially of minimizing the signomial
m
as s
t. aij subject to the signomial inequality constraints _Z_c; [T, t.1J<b |
ro1 3% 5 d W] T35 % %

k=1,2,...,p (gnd of course the conditions tj?>0, j=12,...,m). It is worth
noting that the parameter uj perturbs the coefficient c; (actually, the logarithm
of the I cil) while the parameter uy perturbs the constraint upper bound by.

Of course, the main reason for studying the preceding geometric programming
formulation of signomial optimization is the complete separability that is intro-
duced. For a more thorcugh discussion of this topic see the recent papers by
Duffin and Peterson (1973, 1972), and the references cited therein. Parts of
those papers show that all "algebraic programming' problems can actually be re-
duced to the "posyncmial' case in which all cocfficients <; are positive and each
posynomial has at most two terms. To avoid possible confusion, it should also be
mentioned that in those papers, as well as the predecessors by Duffin and
Peterson (1966) and Duffin, Peterson, and Zener (1967), it has been advantageous
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. Lo he . B s :
to replace the separable functions &~ ¢; e™t with the (technically) inseparable

Lk
functions leg (% Ciexi ) for the stuly of geometric pregramming duality.,

[k}

2, To Lrext both cuadrotic programning with quadratic constraints
) 1

and ZD rosression prodlems with () - norm constraints, let I be the set
{1,2,...,r aad jer J ie the cuniy scet., Then, choose the functions €1 Cps
k =0,1,2,...v by letting i
: -1 pi 1 ps
: . Loy A o - . i T2 ; i
Coo B Fo wvith oo (5 & 2o = 1wy by | PEo T %. =bs | Plabxqr ~bar,
FEOTK o AT . (W-ei TF7 7 L
vhere the nunbers by, b2, 7, and p; are givea censtants and the index sets are
SR O A MBI S R - | =) and K[ A
Lky ootry, mok b eee,ng Dty 8 e, mk4 yeeen D 5o a@nd KL 8 N,
with the undorsteonding that
Vae s, et elanTal, a4 14 + 1A sl 41
y Ty S n. -+ A S n. - A n n 11 M,,se0,0 n.
=0 0’ 0 =0 g’ 0 =0’ 0 E | 1’ *r =
Finaily, choose the cone X by letting
grmn <7y . +
Dq vhere D, is an (np ~ ng.3) X m
ﬁO
ce 5 s - +, .
hO real matrix, . is an (ngx - ng) Xm
X A column space of .
D, real matrix, and hp is
ﬁr
h, al x m real matrix,.

where M denotes the preceding partiticned matrix, we obtain quadratic programming
and Zp - regressicn analysis with the following two specializations.

To obtain all quadratic prograrming problems, let bj =0 and pj =2 for
ielkltulei. Then, problem A(0,0) consists essentially of minimizing the
quadratic function (1/2)‘<z,HOzt>+«:hO,zt> - b]or subject to the quadratic con-

straints (1/2) < z,Hpz> + <hk’2>$b1k[’ k=1,2,.,..,r, where HkQDf{'Dk-.BE.Bk.

Although the effect of the parameter u; is rather uninteresting and complicated,

the parameter vy perturbs the constraint upper bound bjkf'

o

To obtain all 7p - regression problems, take pi==pk for iE[jk]+Ll[k]-; let
bWO =0 and b; =0 for i€ 7k]; and choose 5k==0 and hx =0. Then, problem A(0,0) pO
consists essentially of minimizing the £ 0- norm function (1/p0) (|| Doz-bk||p0)

. : k
subject to the Zpk-norm constraints (1/pk) (]| Dkz--bk Ilpk)P 5§b]k[,1§= 1,2,000,1
where || °|lpk denotes the Zpk- norm and bk:é(bmf,...,bnt). While the vector

parameter uk-g(umt,...,unt) perturbs the vector bK, both the parameters Ul and
iy perturb the constraint upper bound b]kr'

Of course, the main reason for studying the preceding geometric programming
formulation of both quadratic programing and 2p - regression analysis is the com-
plete separability that is introduced. For a more thorough discussion of this
topic in the convex case (in which & =0 for k =0,1,2,...,r) see the papers by
Pcterson and Ecker (1968, 1970, 1949, 1970),
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Cther important examples that can be coffectively treated by geomctric pro-
gracming (but have usually been studied without explicitly mentioning the subject)

are discusscd in the recent expository paper by Peterson (1973), and the refer-
¢nces cited therein. In one of thwse examples, the ”"Cnbr3114ﬂd chenmical equi-
1ibriuve problen, the index sct J is nolt the ampty set. That example and an al-
ternative wav of vicwving linesy prouramming as a special case of geometric pro-
grawmiine are at this time the only practical justifications for including the
index set J {aud hence its rosulting covplicatrions) in the present formulation
of voomety] SRt v, "zeeoumetric programming duality' 2s developed
by Petcrson an cesthetic justification for doing so.

We now show hoiwr cemmetric pronranming with explicit constraints can be
viewed as a spocial case of goecmetric prozramming without explicit constraints.,
In doing @5, we sue bt wposition principles developed in section
4 to the probl.xs dis. ion,

Introducing an additional indipendent vector variable « with components @
for each 1 €1, we let theo functional domain

0 I J = 0. i, i
c,é{(x ,u L%, % ) € Eq b ox S CO; X £ Ci,JjG El’ and gi(x Y +

. i +
o,<0, i1€1; (xJ,?(.)EC., j€J};
i ] J

and we let the Lunbllcnwl value

I J. \ N + ., 3.
(X X Sy X )’l') ) go ("‘ ) - 5 gj (X )'l‘j) é G(X,V,),
We also let the cone
! ‘.O ,,I ~ J -, . O "I ,J Ve ~ = . u
I é {(‘\ 3 !J)'- )‘-) ( E”; (X PRIGEPI ) ‘:\y & Oy LR EO(J)}

Then, problem A(0,0) is clearly idontical to problem Z(0). In fact, it is easy to
sce that problem a(u,u) is identiccl to prebleam &(w), with the parameter pj being
identified with the parameter w; that corresponds to @j. OI course, the para-
meter ¥j that corresponds to iy "has no effcct and can be set equal to zero.

)

It is important to realize thatthe components of v (K xI ,O, XY ,.) can be
placed in any order to achicve a bleck dizzonal structure for some matrix re-
presentation 77 of L. loreover, it is clear from the definition of L that the
possibility of achieving such a block diagonal structure for some 7 depends en-
tirely on the possibility of ordering the components of % = (x9,xI,x7) in such
a way that a block diagenal structure is achieved for some matrix representation
M of

It is equally important to realize that the function 5:2 inherits any sep-
arability that is present in the functions gp:Cp and 9T Ct, Unfortunately, 5:C
clearly does not generally inherit any of the separability that is present in
the functions gy:Cj; unless there are corresponding Kuhn-Tucker (Lagrange)
multipliers \i, in which case the constraints g; (xi Y+%; <0, i€1 in the de-
fining equation for C can be deleted, provided that the expresilon
§ Ay Leg (b)) +og i is added to the defining equation for g(x9,xl,z,xJ,). 1If de-

sired, thismanipulation can of course_ be limited to only some of the constraints
for wuich there are correspouding Kulin-Tucker multipliers.

Other ramifications of the preceding relation between constrained and un-
constrained geometric programming are given in the recent work of Peterson (1974).

6. CONCLUDING REMARKS
Decomposition principles can of coursec be developed for geometric program-

ming problems (7(0) that possess miatrix representations 7 of 1 with block struc-
tures that are not one orf the two types treated here. In fact, a future paper
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will be devoted to deoveloping deceomposition principles for those problems d(0)
for which 77 hog one of rie two additicnal types of block diagonal structure il-

ceed in Fieute 7 r
lustrated in Figurce 2, F :;4 ’L
‘1 / /i -
75 T/
) oF
p P4 _// 7z .
" Y P
TYE’C: 3 Jos L/O ..'(J)n Type 4
(24 /// 4.,
1.7’,::‘ / 7’,2/1
t"/}' ] /- ’
_--_{_...'" /.
S E . 7 - arg
i /// I ‘
'3 e i / yd Y
L L
_Ficneve 2.0 Two actiticntl tvres of block diczeonal structure for M.
Geosmotrice protvand ays a wuch wore fundemontal role in the
treatt;lt oj nrolia nan 1k has plaved nere in the treatment of
probl:: of s 7(0) of type 4 are of course a com-
bination of prw%] : . tvees 2 and 3. In fact, problems &(0) of type 4 can
be trestved by ocombining tho decouposition principles that have been developed
here i j 2 with those to be developed elscwhere for

in which the principles are to be combined
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