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GENERALIZATION AND SYMMETRIZATION OF DUALITY IN GEOMETRIC PROGRAMMING*

Elmor L. Peterson**

Abstract: The first completely symmetric formulation of duality for general com-
vex programming with explicit constraints is achieved by further extending the
author's recent symmetric formulation of duality for generalized unconstrained geo=
metric programming. This extended formulation of duality is completely symmetric
only in the convex case but is actually studied for the most part without convexity
hypotheses. This study includes a domonstration of the equivalence of the ex-
tended formulation and the (seemingly) more special formulation that results

from deleting all explicit constraints. This equivalence provides an efficient
mechanism for generalizing to the extended formulation many important theorems

that were previously established in the context of the more special formulation.
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1. Introduction. To illuminate and extend Zener's work [27,28] on optimal

engineering design, Duffin [3] formulated a new duality theory for differentiable
convex programming problems; and he applied it to the special but important class
of "posynomial'" minimization problems. The resulting specialized theory was
then strengthened by Duffin [4]; and that strengthened theory was eventually
extended by Duffin and Peterson [5] to the much larger class of posynomial-
constrained posynomial minimization problems with which the subject of "geometric
programming" [9,29] has subsequently been mainly concerned.

More recently, Peterson [13] generalized and completely symmetrized Duffin’s
original duality theory [3]; and he established new theorems that provide both
a theoretical basis for certain important parametric analyses and an economic
interpretation of the geometric dual problem. Some of those theorems were also
used to help strengthen the original duality theory without imposing the special
posynomial structure; and that strengthened duality theory was then related to
both Fenchel's duality theory [11] and Rockafellar's duality theory [23,24,25].

This paper generalizes all previous formulations of duality in geometric
programming by introducing explicit constraints in such a way that the duality
symmetry achieved in [13] is not destroyed. (To date this is the only way to
obtain a completely symmetric formulation of duality in general convex programming
with explicit constraints.) The resulting formulation of duality actually turns
out to be equivalent to the (seemingly) more special formulation in which all
explicit constraints are deleted; and the demonstration of this fact provides
an efficient mechanism through which the theory established in [13] can be
applied to generalized geometric programming problems with explicit constraints.

This paper is actually rather self-contained in that the theory to be
developed here depends only on the rather elementary properties of the ''conjugate

transformation' and the '"geometric inequality' that are reviewed in section 3.



The theory that also depends on the results established in [13] will be in-

cluded in a future paper.

2. Geometric Programming Families., Classical optimization theory and ordinary

mathematical programming are concerned with the minimization (or maximization)
of an arbitrary real-valued function G over some given subset S of the functions
nonempty domain C, For pedagogical simplicity we shall restrict our attention
to the finite-dimensional case in which C is itself a subset of N-dimensional
Euclidean space EN.

In the geometric programming format to be studied here both the given
function G with domain C and the given subset S of C are required to have very
specific (though very general) mathematical properties. In particular, G must
be the sum of (at least) one arbitrary function 8, with (possibly) other functions
gT of a certain type; and C must be the cartesian product of (at least) the domain

J
of 8 with (possibly) other function domains Ci and (possibly) the domains Cj

C

0
. + . . . . +

of the functions gj (if any such function domains Ci or functions gj are present).

Moreover, S must be determined not only in terms of the (possible) presence of

arbitrary constraint functions 8; with the domains Ci’ but also in terms of a

certain cone X in the cartesian product of (at least) the Euclidean space En

containing CO with (possibly) the Euclidean spaces E,.

containing Ci and
i

+
(possibly) the Euclidean spaces En containing Cj (if any such domains Ci or

A+l
+ ]
Cj are present)., Both the arbitrary constraint functions 8 and the special func-
) + . . . . + i
tions gj along with their respective domains Ci and Cj are not present in the
geometric programming format studied in [13].
For both practical and theoretical reasons a given geometric programming

problem should not be studied entirely in isolation but should also be embedded

in a certain parameterized family A of c¢losely related geometric programming



problems A(u,t). The given problem then appears in the parameterized family A
as problem A(0,0) and should be studied in relation to all other problems A(u,u),
with special attention given to those problems A(u,s) that are close to A(0,0)
in the sense that (the norm of) the vector (u,u) is small.

To give a precise definition of the most general geometric programming
family A to be considered here it is convenient for bookkeeping purposes to
introduce two nonintersecting (possibly empty) positive-integer index sets I and
J with finite cardinality o(I) and o(J) respectively. In terms of these index

sets I and J we introduce the following notation and hypotheses:

(Ia) For each k.G{O}lJILJJ suppose that gk:Ck is a function 8 with a non-

empty domain C 91%1, and for each j€J let Dj be a nonempty subset of En whose
k b
precise nature will be specified at the beginning of section 4.

k

(I1a) For each k.E{O]lJILJJ let uk be an independent vector parameter in En ’
k
and let u be an independent vector parameter with components ui for each 1 €1.

(II1a) Denote the cartesian product of the vector parameters ul, i €1 by the

J

I
symbol u”, and denote the cartesian product of the vector parameters u”, j<€J

J 0
by the symbol u . Then the cartesian product (u ,uI,uJ) of the vector parameters

0 I J . . 3
, u , and u 1is an independent vector parameter u in En, where

ndn +§i n, +§; n,.
=0 i 4.7]
I J

u

(IVa) For each k€{0}UIUJ let xk be an independent vector variable in En ,
k
and let % be an independent vector variable with components Mj for each j€J.

(Va) Denote the cartesian product of the vector variables xl, i €I by the
I .
symbol x°, and denote the cartesian product of the vector variables xJ, j€J by

I .
the symbol xJ. Then the cartesian product (xo,x ,xJ) of the vector variables

0 I J . . :
X , X, and x 1is an independent vector variable x in En.



(VIa) Assume that X is a cone in En'

Now, consider the following (parameterized) geometric programming family A

of geometric programmimg problems A(u,it).

PROBLEM A(u,t). Consider the objective function G( .+ u, x):C(u) whose domain

c(u) & {(x, | xk+ukECk, k€{0}UI, and (x’ +u #5) 603.', j €3},

and whose functional value

G(x+u,n ggo(x0 +u0) +2 g; (x? +uJ,V~j),
J
where

ctaf{(cd,ny | either ., =0 and sup <cJ,d9><+w, or #,>0 and ¢ €x C )}
j= i/ =] = i3
d3 €,

and
sup <cJ,dJ> if ©,=0 and sup <cJ,dJ><+°°
dj €p, J al €,
J J
+,.J
L(c”,n,) A
gJ( J) a
n.g,(c/n,) if x,>0 and ¢’ €x,C,.
3] J - 1] " J ]

Using the feasible solution set

S (u,i) é{(x,%) €C) ‘xEX, and gi(xl+u1) +p.iSO, i€1},

calculate both the problem infimum

@(u,u)é\; inf G(x+u,h)
(x,%) €5(u,u)

and the optimal solution set

s¥(u,u) & {(x,%) €5@uu) | Glx+u,n) =@(u,u)l.



For a given vector (u,t) problem A(u,u) is either "inconsistent"” or "~on-
sistent', depending on whether the feasible solution set S(u,t) is empty or
nonempty. It is generally useful to interpret A(u,u) as a perturbed version of
A(0,0), so the set

Llé{(u,u) IS(u,u) is nonempty}

is termed the feasible perturbation set. Note that there are no perturbation

parameters associated with the variables Mj; the reason is that such perturbations
would clearly influence only the optimal value of Kj and hence would essentially
be superfluous.

The feasible perturbation set U generally consists of infinitely many vectors
(u,l) and is taken to be the domain of the infimum function ®¥. Thus the range of
®:U may contain the point - ®; but if ©(u,u) =- = for some (u,u) €U, the corresponding
optimal solution set S*(u,n) is clearly empty.

It is important to make a sharp distinction between the cone condition x ¢ X

and the constraints gi(xi~+ui) +uif50, i €I, both of which restrict the vector
variable (x,%). In many cases the cone X is polyhedral (and hence finitely gen-
erated); and in most examples of practical significance X is actually a subspace

(and hence has a finite basis). Consequently, the cone condition x € X can frequently
be automatically satisfied and therefore explicitly eliminated by a linear trans-
formation of the vector variable x through the introduction of generating vectors

or basis vectors for X; but the (generally nonlinear)constraintsgi(xi4-ui)+p&_30,i.EI
usually can not be explicitly eliminated by even a nonlinear transformation. Never-
theless, even when it is possible to do so, we do not explicitly eliminate the

cone condition x € X, because such a linear transformation would clearly introduce

a common vector variable into the arguments of 8g° g;> and 8;- Such a common vector
variable would only tend to camouflage one of the extremely useful characteristics

possessed by the geometric programming point of view - its (partial) separability.



A given mathematical programming problem can generally be put into the form
of the geometric programming problem A(0,0) in many different ways by suitably
choosing the functions 8,.:Cpo k €{0}JUIUJ and the cone X. Actually, one very
important aspect of applied geometric programming is the choosing of the functions
gk:Ck, k €{0}UIUJ and the cone X so that a given inseparaﬁle programming problem
is formulated as an equivalent geometric programming problem with as much separability
as possible,

The key to such a formulation is usually the introduction of an appropriate
nontrivial cone X to handle the linearities that are present in a given program-
ming problem. Such linearities frequently appear as linear equations or linear
inequalities, but they can also appear in rather subtle guises as matrices associated
with nonlinearities.

In "signomial" programming L5,9,6,7,8] (formerly called "generalized polynomial"
programming) the linearities appear in the rather subtle guise of "exponent matrices"
for (nonlinear) generalized polynomials; and in quadratic programming (with quad-
ratic constraints) [19,20,21,22] the linearities appear not only as coefficient
vectors for linear functions but also in the more subtle guise of coefficient
matrices for (nonlinear) quadratic functions. In both cases the inseparable pro-
gramming problems can be formulated as equivalent geometric programming problems
in which even the functions gk:Ck, k €{0} UTUJ are separable; in fact, each such
function gk:Ck is completely separable in that it can be written as a sum of terms,
each of which is itself a function of only a single scalar variable.

The perturbation parameters ui, i €1 perturb the constraint upper bounds O,
and the perturbation parameters uk, k €{0} UTUJ translate and hence perturb the
k €{0}UIUJ. These perturbations of the sets C

sets C actually amount to

k’ k

perturbations of (parameters that specify) the objective and constraint functions,

by virtue of the invariant nature of the cone X. For example, in signomial pro-



gramming they perturb (the logarithm of the absolute value of) the signomial
coefficients - a type of perturbation that is generally of great interest in each
of the many contexts in which signomial programming arises.

More detailed surveys and treatments of several important classes of pro-
gramming problems that can be effectively formulated and studied within the pre-
sent geometric programming format are given in [14j and the references cited therein.
Decomposition principles that exploit the separability induced by geometric pro-
gramming are given in [15,16] and the references cited therein. The fundamental
relations between geometric programming and "ordinary programming' are given in [17];
and the fundamental relations between geometric programming and Rockafellar's
"generalized programming' are given in [18] and the references cited therein.

To introduce the extremely important concept of duality into the present geo-
metric programming format, we need the (more fundamental) "conjugate transformation”

and the resulting '"geometric inequality" that are described in the following section.

3. The Conjugate Transformation and the Geometric Inequality. The conjugate trans-

formation evolved from the classical '"Legendre transformation' but was first studied
in great detail only rather recently by Fenchel [10,11]. For a very thorough
and modern treatment of both transformations see Rockafellar's recent book [25].
We now briefly review only those of their properties that are needed here. All
such properties are quite plausible when viewed geometrically in the context of
two and three dimensions.
The conjugate transformation maps functions into functions in such a way that

the "conjugate transform'” h:D of a given function g:C has functional values

h(y) & sup{<y,x>-gx}.
=x€cC



Of course, the domain D of h is defined to be the set of all those vectors y
for which this supremum is finite, and the conjugate transform h:D exists only
when D is not empty.

Geometrical insight into the conjugate transformation can be obtained by con-

sidering the '"'subgradient'" set for g at x, namely,

dg(x) Q{y EET] | g(x) +<y,x' -x><g(x') for each x' €cl.

Subgradients are related to, but considerably different from, the more familiar
gradient. The gradient provides a "tangent hyperplane'" while a subgradient provides
a "supporting hyperplane'" (in that the defining inequality obviously states that
the hyperplane with equation g' =g(x) +<y,x' - x> intersects the ''graph'" of g at
the point (x,g(x)) and lies entirely "on or below" it). It is, of course, clear
that a subgradient may exist and not be unique even when the gradient does not
exist, On the other hand it is also clear that a subgradient may not exist even
when the gradient exists. There is, however, an important class of functions whose
gradients are also subgradients - the class of convex functions. 1In fact, the
notions of gradient and subgradient coincide for the class of differentiable convex
functions defined on open sets, a class that arises in many geometric programming
applications.

To relate the conjugate transform to subgradients, observe that if y €3g(x)
then

<y,x'>-g(x')s<y,x>-g(x) for each x'€C,

which in turn clearly implies that y €D and that
h(y) =- {g(x) +<y,-x>}.

Hence, h(y) is simply the negative of the intercept of the corresponding supporting

hyperplane with the g' - axis, Consequently, the conjugate transform h always



exists when g has at least one subgradient y, a condition that is known to be ful-
filled when g is convex. Actually, the conjugate transform h restricted (in the
set-theoretic sense) to the domain tgcag(x) is termed the '"Legendre transform'
X
of g and has been a major tool in the study [1] of classical mechanics, thermo-
dynamics, and differential equations. Generally, the domain D of the conjugate
transform h consists of both éﬂ}ag(x) and some of its limit points.
X
Each function g and its conjugate transform h give rise to an important in-

equality

<x,y><g(x) +h(y)

that is clearly valid for every point x €C and every point y €D (as can be seen
from the defining equation for h(y)). Moreover, we have just shown that equality
holds if

y €0g(x),

a condition that actually characterizes equality by virtue of another elementary
computation. This '"conjugate inequality" (including the characterization of
equality) has been used to establish many of the important classical inequalities
[12] and has been of fundamental importance in the study [3,13] of geometric pro-
gramming duality when explicit constraints are not present.

To study geometric programming duality when explicit constraints are present,
the conjugate inequality has been extended in a very special way by Peterson [14]°
The resulting "geometric inequality' (which removes certain undesireable restrictions
required in the forerunners of Duffin and Peterson [5], and Duffin, Peterson, and
Zener [9, Chapter VII]) can be derived directly from the conjugate inequality by
introducing a scalar variable A 20. To do so, first suppose that A>0 and that
y/A is in D so that y/A can be substituted for y in the preceding conjugate in-
equality, Then, multiply the resulting inequality by A to establish the nontrivial

part of the geometric inequality
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+
<x,y>S)\g(x)+h+(y,)\) for x€C and (y,A) €D,

where

D+é{(y,)\) EE”]+1 | either A\=0 and sup<c,y><+®, or A>0 and y €AD}

c€C
and
SUP<C,Y>if )\':0 and Sup<c’y><+m
+ c€C c€C
h (y,A) A

Ah(y/\) if A>0 and y €\D.

Of course, the trivial part of this geometric inequality is an immediate consequence
s e + R .
of the definition of h (y,A) for A=0. Moreover, it is clear from the equality

characterization of the conjugate inequality that equality holds if and only if

either A =0 and <x,y>= sup <¢,y>, or A>0 and y €Adg(x).
c€C

Of course, another geometric inequality can be derived from the same conjugate in-
equality simply by introducing another scalar variable # >0 and substituting x/x«
for x in the conjugate inequality. The details of that inequality are left to the
reader.

“hen it exists, the conjugate transform is known to be both convex and "closed",
in that its "epigraph'" (which consists of all those points in En4-1 that are '"on
or above" its graph) is both convex and (topologically) closed. 1In fact, Fenchel
[10,11,25] has shown that the conjugate transformation provides a one-to-one map-
ping of the family of all closed convex functions onto itself in symmetric fashion
(i.e. the mapping is its own inverse). Two such functions are said to be
"conjugate functions'" when they are the conjugate transform of one another,

If g is convex and closed, the preceding symmetry clearly implies that the

condition x € Sh(y) can replace the condition y €9dg(x) in the characterization

of equality for the conjugate inequality; in which case the relations x € doh(y)

and y €3g(x) are equivalent and hence "solve' one another. Likewise, the con-
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dition x €dh(y/A) can replace the condition y €\dg(x) in the characterization of
equality for the geometric inequality; in which case the relations x €3h(y/\) and
y €A3g(x) solve one another when A >0,

In our study of geometric programming we must deal with both the arbitrary

cone X and its "dual
Y;'\{}'E’E.qi03<x,y> for each x €X 1},

which is clearly itself a cone. Now, it is obvious that the conjugate transform
of the zero function with domain X is just the zero function with domain - Y.
Consequently, the theory of the conjugate transformation implies that Y is always
convex and closed (a fact that can of course be established by more elementary
considerations)., Furthermore, if the cone X is also convex and closed, the symmetry
of the conjugate transformation readily implies that the dual of Y is just X. If,
in particular, X is a (vector) subspace of En, this symmetry readily implies the
better-known symmetry between orthogonal complementary subspaces X and Y.

This completes our prerequisites for introducing the extremely important

concept of duality into the present geometric programming format.

4. Geometric Programming Dual Families. Closely related to the given geometric

programming family A is its geometric programming dual family B. To obtain B

from A, we need the following additional notation and hypotheses:

(Ib) For each k£{0}UIUJ suppose that the function gk:Ck has a conjugate
transform hk:Dk° Then hk:Dk is a closed convex function with a nonempty domain

DkQZEn . Moreover, for each j€J let the function domain Dj determine the non-
k

empty subset Dj of En- hypothesized in (Ia).
J
k
(IIb) For each k €{0}UIUJ let v be an independent vector parameter in Enk,

and let v be an independent vector parameter with components v, for each j€J.
J



-12-

i
(IIIb) Denote the cartesian product of the vector parameters v , 1 €I by the
symbol VI, and denote the cartesian product of the vector parameters VJ, j€J by
J . 0.1 J 0
the symbol v . Then the cartesian product (v ,v ,v ) of the vector parameters v ,
I J
v and v is an independent vector parameter v in En, where

)
+ + .
neng LR LT
T 7

(IVb) For each k€{0}UTUJ let yk be an independent vector variable in Enk,
and let A be an independent vector variable with components Xi for each i €1,

(Vb) Denote the cartesian product of the vector variables yl, i €1 by the
symbol yI, and denote the cartesian product of the vector variables yJ, j€J by

J . 0 1 J . 0

the symbol y . Then the cartesian product (y ,y ,y ) of the vector variables y ,
yI and yJ is an independent vector variable y in E -

(VIb) Let Y be the dual of the cone X in En. Then Y is a closed convex cone

in E .
n

Now, consider the following (parameterized) geometric programming family B

of geometric programming problems B(v,V).

PROBLEM B(v,V). Consider the objective function H(+ +v,x):D(v) whose domain

D(v)g{(y,)\) ka+vk€Dk, ke€f{oluy, and (yi+vi,>\i) EDI, i€1},

and whose functional value

P
Ry +v,0) ah 6%+ +) nf et evia.
I

where

Dfé{(dik.)‘ either A, =0 and sup <cl,d1><+°°, or A\, >0 and d" €X,D,}
i= i’ —= 1 = Jdcc — i - i’i
i

and
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sup <C1’dl> if A.=0 and sup <cl,d1:><+m
ct €, L clec,
i i
+ .1
A)yD

Ah (di/A) ifA.>0 and d" €X.D,.
11 1 - 1 _ 11

Using the feasible solution set

(v, AL (y.0) €D(v) | y €Y, and hj<yj+vj)+vj <0,j€31,

calculate both the problem infimum

V(v,vya  inf H(y +v,M)
v,\) €T(v,V)

and the optimal solution set

(v, & L (y,0) €T,V [ uEy +v,0) =¥ (v, v ].

Families A and B are clearly of the same type, so the observations made
about A are equally valid for B. Notice how B is obtained from A: the functions
gk:Ck, k £{0}UIUJ are replaced by their respective conjugate transforms

h k€ {0} UIUJ; the cone X is replaced by its dual Y in En; and the roles

1 D
played by the two index sets I and J are interchanged. Consequently, if the given
functions gk:Ck, k.E{O}\JI\JJ and the given cone X are convex and closed, the
symmetry in these three operations implies that the family obtained by applying

the same transformation to B is again aA. Because of this symmetry in the closed

convex case, A and B are termed geometric dual families.

To compute the geometric dual B of a given family A, only the corresponding

conjugate transforms h k“{0}UIUJ and the corresponding dual cone Y need

k:Dk,
to be computed. In all the important cases known to the author the given functions

gk:Ck, k €{0} UTUJ are so separable and elementary that the former computations

are rather easy exercises in the differential calculus. 1In all such cases the

given cone X is polyhedral, and hence the latter computation can be performed with
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a certain linear algebraic algorithm devised by Uzawa [26]. Actually, in all such
cases except one the latter computation involves only the well-known linear algebra
of orthogonal complementary subspaces. For detailed descriptions of such
cases see [14] and the references cited therein.

Each of the geometric dual families A and B contains a problem of special
interest, namely, the unperturbed problems A(0,0) and B(0,0). Due to the apparent
symmetry between them in the closed convex case, A(0,0) and B(0,0) are termed

geometric dual problems. To avoid confusion, it is important to bear in mind that

problems A(u,t) and B(v,V) are termed geometric dual problems only when (u,u) and

(v,v) are zero.

Unlike the usual min-max formulations of duality in mathematical programming,
both problem A(0,0) and its geometric dual problem B(0,0) are minimization problems.
The relative simplicity of this min-min formulation will become clear in succeeding
sections, but the reader who is accustomed to the usual min-max formulation must
bear in mind that a given duality theorem will generally have slightly different
statements depending on the formulation in use. In particular, a theorem that
asserts the equality of the min and max in the usual formulation will assert
that the sum of the mins is zero (i.e. ©(0,0) +V¥(0,0) =0)in the present formulation.

In the closed convex case the symmetry between the geometric dual families
A and B induces a symmetry on the theory that relates A to B, in that each math-
ematical statement about A and B automatically produces an equally valid "'dual
statement" about B and A. To be concise, our attention will be focused on the
family A, and each dual statement will be left to the reader's imagination.

In the next section we temporarily focus our attention on the unperturbed

problem A(0,0) and its geometric dual problem B(0,0).

5. Duality Gaps and the Extremality Conditions. The theory to be established in

this section brings to light some of the most important properties of the geo-
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metric dual problems A(0,0) and B(0,0). This theory is a direct consequence of
the conjugate and geometric inequalities. 1In fact, we need only make repeated
use of the following fundamental lemma that results from those inequalities.

Lemma 5a. If (x,#) is in the domain

c 8 {0 | ec, kel0) U, and o)) €cT, j€3)

of the objective function G(*,x) for problem A(0,0), and if (y,A) is in the domain

p© 8[|y en, kelo}uy, and 5,0 €p), i€1)

of the objective function H(*,*) for problem B(0,0), then

\_I . \‘-\ s
<x,y><G(x,H) +/ )\igi(xl) +H(y,\) +) ”jhj ),

I

with equality holding if and only if

either A, =0 and <x',y > = sup <cl,y'>, or A, >0 and ylEXiBgi(xl), i€1,

either #, =0 and <xJ,yJ>= sup <xJ,dJ>,£ #,>0 and yJ Gagj(xj/nj), jed.

J alenp, ]
j

Moreover, if y also satisfies the constraints

hj(yJ)so, jeg,

of problem B(0,0), then

- . . .
6x,) +), gy D) +RON) +) wh () =60, +), gy (h) 41,0,
I J I

with equality holding if and only if
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i\ = .
“wh, =0 €3,
; J(y) h|

Furthermore, if x also satisfies the constraints

gi(xl)SO, i€1,
of problem A(0,0), then

G(x,n) +2 Xigi(xi) +H(y,\) € G(x,n) +H(y,\),
I

with equality holding if and only if

" i, _ L CT.
igi(x Y =0 icl
Proof. From the conjugate inequality we know that
0.0 0 0
with equality holding if and only if

0 0
From the geometric inequality we know that
<xlytrsne h +nT A0
? i7i i M
with equality holding if and only if

either A, =0 and <xl,yl> = sup <cl,yl>, or A, >0 and ylé)\,ag.(xl), i€rI.
i e, i i7°i
i

From the geometric inequality we also know that

. . + . .

with equality holding if and only if

either », =0 and <xJ,yJ>= sup <xJ,dJ>, or ©,>0 and yJ EBg,(xJ/n,), jeJ.
i 43 €. 3 3 3
J
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Adding all 1+4+0(I)+0(J) of these inequalities and taking account of the defining
equations for X, ¥y, G, and H proves the first assertion of Lemma 5a. The second
assertion is an immediate consequence of the fact that %jE:O when (xj,%j) EC?, j€J.
Similarly, the third assertion is an immediate consequence of the fact that Xia 0

when (yl,Xi) GDI, i €I. This completes our proof of Lemma 5a.

We now begin with the most basic and easily proved duality theorem, which
leads directly to both the duality gap concept and the extremality conditions.

Theorem 5A. If (x,#) and (y,\) are feasible solutions to the geometric dual pro-

blems A(0,0) and B(0,0) respectively, then

0=G(x,n) +H(y,),

with equality holding if and only if

0=<x,y>,

0 0
y €38y (x),

=R

either Xi=0 and <xl,yl>= sup <cl,yl>, or A,>0 an ylé)\iagi(xl), icI,

ClECi

either #, =0 and <xJ,yJ>= sup <xJ,dJ>, or »,~>0 and yJ Eag.(xJ/%,), j€J,
R al e, 3T v
J

o (1Y 20 Jyon s
igi(x )=0, i€ and njhj(y y=0, j€J.

Proof. The fact that x and y are in the cone X and its dual Y respectively com-

bined with a sequential application of all three assertions of Lemma 5a shows that

AN i b i
0<<x,y><G(x,n) +/_f kigi(x ) +H(y,\) +Z njhj(y ) SG(x,n) +Z xigi(x )+H(y,X)
J

SG(x,n) +H(y,\),
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with equality holding in all four of these inequalities if and only if the

equality conditions stated in the theorem are satisfied. q.e.d.

It is worth recalling that if X is in fact a subspace of En’ then Y=X&, 1In
that event the equality condition 0 =<x,y> is automatically satisfied by arbitrary
feasible solutions (x,#) and (y,\), and hence it can be deleted from Theorem 5A
and everywhere that Theorem 5A is used.

The basic inequality provided by Theorem 5A implies important properties of
the dual infima ©(0,0) and ¥(0,0),

Corollary 5Al1. 1If the geometric dual problems A(0,0) and B(0,0) are_both consistent,

then

0<9(0,0) +H(y,N)

for each feasible solution (y,A) to problem B(0,0),

(ii) the_infimum ¥(0,0) for problem B(0,0) is finite, and

0<92(0,0) +V(0,0).

The proof of this corollary is, of course, a trivial application of Theorem 5A.

Consistent geometric dual problems A(0,0) and B(0,0) for which 0<®(0,0) 4+ V¥ (0,0)
are said to have a duality gap of ©(0,0) +9(0,0). It is well-known that duality
gaps do not occur in finite linear programming, but they do occasionally occur in
infinite linear programming where this phenomenon was first encountered by Duffin
[2]. Although duality gaps occur very frequently in the present (generally
nonconvex) formulation of geometric programming, we shall eventually see that

they can occur only very rarely in the convex case, in that they can then be ex-
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cluded by very weak conditions on the geometric dual problems A(0,0) and B(0,0).
Yet, they do occur in the convex case, even when I and J are both empty and gO:C0
is closed; and examples (originally set forth by J.J. Stoer within the equivalent
Fenchel formulation [11] of duality) are given in Appendix C of [13].

Geometric programming problems A(0,0) that are convex are usually much more
amenable to study than those that are nonconvex, mainly because of the relative
lack of duality gaps in the convex case. Duality gaps are undesirable from a
theoretical point of view because we shall see that relatively little can be
said about the corresponding geometric dual problems. They are also undesirable
from a computational point of view because they usually destroy the possibility
of using the inequality 0 <G(x,%) + H(y,\) to provide an algorithm stopping criterion.

Such a criterion results from specifying a positive tolerance € so that the
numerical algorithms being used to minimize both G(x,#) and H(y,)) are terminated

when they produce a pair of feasible solutions (xT,KT) and (yT,Xf) for which

G(XT,HT) +H(yT,XT) <2e¢.

Because conclusion (i) to Corollary 5Al and the defining property for ©(0,0) show
that

iyt oty <000,0) < et Ty,

we conclude from the preceding tolerance inequality that

| o0y -cloh-n6Toh |

Hence, ©(0,0) can be approximated by [G(xT,>T) -H(yT,XT)]/Z with an error no
greater than 4¢€; and, dually, {(0,0) can be approximated by [H(yT,XT)-G(xT,KT)]/2,
also with an error no greater than +¢€.

Note, however, that the defining properties for ©(0,0) and ¥ (0,0) imply that
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©(0,0) +V (0,0) < G(x,n) +H(y,A)

for each pair of feasible solutions (x,7) and (y,\). Now, suppose that the geo-
metric dual problems A(0,0) and B(0,0) have a duality gap, and let the positive

tolerance € be chosen so small that
2¢ < (0,0) + ¥(0,0).

(Of course, such a choice for ¢ is possible only if the dual problems A(0,0) and
B(0,0) actually have a duality gap.) From the preceding two inequalities we easily

infer that there are no feasible solutions (xT,ﬁT) and (yT,X*) for which
Gl by + T Ty < 26

so the numerical algorithms being used to minimize both G(x,#) and H(y,}) will
never be terminated., Consequently, this algorithm stopping criterion may not
be very useful for solving geometric dual problems A(0,0) and B(0,0) that have a
duality gap, especially if the gap is rather large,

For those geometric dual problems A(0,0) and B(0,0) that do not have a duality
gap, Theorem 5A provides a useful characterization of dual optimal solutions

(x*,/*) and (y*,A*) in terms of the following extremality conditions:

(I) x ¢X and yE€Y,
(I1) gi(xl)\ZO, i€1 and hj(yJ)€0, jed,
(111) 0=<x,y>,
0 0
(1) y €93g,(x7),
) either A. =0 and <xl,yl>= sup <Cl,}’l>,
1 clcc,
i

\.>0 and y& €) i i €
or i 0 and y iagi(x ), i€1,
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(V1) either #, =0 and <xJ,yJ>= sup <xJ,dJ >,
J dj ¢p,
J . 3
or »,>0 and yJ ¢dg_ (x7/n.), jeyJ,
] ] J
i . i\ = .
(VII) A8, (x) =0, 1€1, and %jhj(y )=0, j€J,

We formalize this characterization as the following corollary.

Corollary 5A2. 1If the extremality conditions (I-VII) have at least one solution

(x',#') and (y',\"), then
L) (x',n') €5%(0,0) and (y',A") €T%(0,0),

(ii) s*(0,0) ={(x,n)l (x,#) and (y',\') solve the extremality conditions (I-VII)},

and

T*(0,0) ={(y,X)‘ (x',#') and (y,\) solve the extremality conditions (I-VII)},

(iii) 0=9(0,0) + 1¥(0,0).

On the other hand, if the geometric dual problems A(0,0) and B(0,0) are both con-

sistent and if 0=9(0,0) + ¥(0,0), then arbitrary vectors (x,*) and (y,\) are optimal

solutions to problems A(0,0) and B(0,0) respectively if and only if (x,#) and

(y,\) satisfy the extremality conditions (I-VII).

The proof of this corollary is an immediate consequence of Theorem 5A and the con-

jugate transform relation agk(xk)€§D k {0} UTI that was given in section 3.

k)

The extremality conditions (I) are simply the '"cone conditions' for problems
A(0,0) and B(0,0); and the extremality conditions (II) are simply the ''constraints'
for problems A(0,0) and B(0,0). The extremality condition (III) is termed the

orthogonality condition; the extremality conditions (IV-VI) are termed the sub-

gradient conditions; and the extremality conditions (VII) are, of course, termed

the complementary slackness conditions.

In the closed convex case the subgradient conditions (IV-VI) have several
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equivalent formulations that result from the symmetry of the conjugate transfor~
mation. In particular, the condition y0€ ago(xo) can be replaced by the equivalent
condition xO eaho (yo); the conditions yi€ )\iagi (xi), 1 €1 can be replaced by the
equivalent conditions xiE 8hi(yi/Xi), i €1I; and the conditions ij ng(xj/nj), j€J
can be replaced by the equivalent conditions xjeﬁﬁahj(yj), j&gJ..

In the closed convex case the second part of Corollary 5A2 and its (unstated)
dual are very useful when 0 =¢(0,0) +V (0,0) and both S$*(0,0) and T*(0,0) are known
to be nonempty; because they then provide a method for calculating all optimal
solutions from the knowledge of only a single optimal solution. For example, if

(x*,n%) €S*(0,0) is a known optimal solution to problem A(0,0), then

T*(0,0) ={(y,X)| (x*,n*) and (y,\) solve the extremality conditions (I-VII)},
and
$%(0,0) ?{(x,%)l (x,4) and (y*,A*) solve the dual of the extremality conditions (I-VII)}
for each (y*,A*) €T%(0,0).

We have just seen that problem A(0,0) need not always be solved directly. Un-
der appropriate conditions it can actually be solved indirectly by solving either
the extremality conditions (I-VII) or problem B(0,0). In some cases it may be
advantageous to solve the extremality conditions (I-VII), especially when they
turn out to be linear. 1In other cases it may be advantageous to solve problem B(0,0),
espécially when the index set I is nonempty while the index set J is empty; in which
event problem A(0,0) has constraints while problem B(0,0) has no constraints. For a
more thorough discussion of these aspects of geometric programming see [14] and the
references cited therein.

In our fundamental Lemma 5a the reader probably noticed the appearance of the
(ordinary) '"Lagrangians" G(x,u)-+§zxigi(xi) and H(y,X)-+§:%jhj(yj) for problems A(0,0)
and B(0,0) respectively. Indeed,Isuch Lagrangians play an important role in geo-

metric programming, as shown in [17]. However, geometric programming is not
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nearly as dependent on the classical theory of such Lagrangians as is ordinary
programming., In fact, the remaining section of this paper shows that a very large
and important part of geometric programming has essentially nothing to do with

the presence of explicit constraints (and hence such Lagrangians).

6., Equivalence of the Constrained and Unconstrained Formulations. The present

constrained formulation of geometric programming can of course be specialized to
its corresponding unconstrained formulation, simply by letting both index sets I
and J be empty. 1In doing so we drop the (now unnecessary) subscript 0 from the
symbol gO:C0 for the objective function and its domain; and we also replace all
remaining geometric programming symbols with their script counterparts in order
to avoid ambiguous notation when reversing this specialization.

We suppose then that g:C is a function § with a nonempty domain CM;En, and

we assume that X is a cone in E,. The (parameterized) geometric programming

family ¢ being considered then consists of the following geometric programming

problems ¢/ (1),

PROBLEM ¢ (). Using the feasible solution set

calculate both the problem infimum

P@)4s inf g(x+u)
TX ES(U)

and the optimal solution set

Sr(u) sl €l(u) | g(r+u) =o(uw)].

1f the function g:C has a conjugate transform 7:5, then the geometric dual &
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of the family & (as constructed in section 4) clearly exists and is of course
defined in terms of A:f and the dual % of the cone %. 1In particular then, &

clearly consists of the following geometric programming problems 3( V).

PROBLEM Z(»). Using the feasible solution set

T(2) YN (B -2y,

calculate both the problem infimum

V()a inf A(y+v)
Ty ET ()

and the optimal solution set

T@) oLy €7(V) | A(y+v) =4 (],

In contrast with the constrained formulation of geometric programming given in
sections 2 and 4 notice the innate simplicity of the preceding unconstrained formu-
lation. That simplicity was a great aid in uncovering most of the theorems
established in [13]. The somewhat surprising fact is that such theorems can
actually be applied to the {(seemingly) more general constrained formulation. The
mechanism for doing so is the following specialization of the unconstrained formu-

lation.,

Introducing an additional independent vector variable « with components di

for each 1 €I, we let the functional domain

n 01 J 0 i
vg{(x y X ,0,X ,M)EEnlx €C ; x ECi, O!iEEl, and

0
g. (x ) +a, <0, i €I; (,n.) €c, j€I};
i i 3 j ‘

and we let the functional value
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0 0 +, ]
260wy 8 60y +) g6 n ) peGn).
J
We also let the cone
01 J 0 1 J ..
Zé{(x ,X ,0,X ,n)éEn' (x ,x ,x YEX; o =0; KGEO(J)L

Then, problem&(0) is clearly identical to problem A(0,0). In fact, it is

easy to see that problem @(u) is identical to problem A(u,u) when:
0 I J . 0 I J .

(la) the parameters ¥ , U~ , and U~ corresponding to x , X , and x Trespectively

. . s . 0 I J .
are identified with the parameters u , u, and u respectively,

(2a) the parameter ui corresponding to o is identified with the parameter
by for each i €1,

(32a) the parameter uj corresponding to )'tj is set equal to zero for each j€J.
Of course, the parameter uj corresponding to nj clearly influences only the optimal
value of Kj’ 50 setting uj equal to zero deletes from the family & only problems
& (u) that are essentially superfluous. Consequently, the family & is essentially
identical to the family A.

The crucial question now is whether the family & is essentially identical
to the family B. To obtain the answer, we need to compute both the conjugate

transform 2.8 of the given function 7:C and the dual % of the given cone Z.

To compute h:8, first note that

0 .. ..
h(y ,YI,)*,YJ,B)= o 15 ; {<y0,x0>+ <y1,xl>+z<y3,x3>+
(x ,x ,0,x" ,n) €C I J

0 +, ]
Ao, +z B.n, - x -z L (x7 0,
Z 1% 55 8y (x) _gJ( J)
1 J J
which is clearly finite only if XiZO, i €I; in which case we readily see that

this expression
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= sup [<y°,:°

x0 €¢

>-g (xo)]+z sup [<yh,x*>-hg N+
0 ieg i1
O I X C .

Z sup [<yj,xj>+ﬁ.".-g-*.-(xj,“.)]-
- (xj’}tj)“}— 33073 3
Consequently, (yo,yI,X,yJ,B) €5 if and only if both XiZEO,i €I and each term on the
right-hand side of the preceding equation is finite. Of course, the first term is
finite if and only if yoffDO, in which case the first term is equal to ho(yo).
The finiteness of the remaining terms can be conveniently characterized with two
lemmas.
The following lemma characterizes the finiteness of the terms involving the

index set I,

Lemma 6a. Given that xiz:o, the sup [<ﬁyl,x1t>- Xigi(xl)] is finite if and only
anma biven that = %
Xx- &£ C,.
i

if (yl,Xi) EDI, in which case

sup [<yl,xl>-k.g.(xl)]=hf(yl,l.)a
xt €cC. B * *
1

Proof., Simply observe that

sup <yl,xl> if )\i=0

x- &C
sup  [<yh,x'>-hg . (xD)]= A h,(y"/A.) if X\, >0 and y' €X.D,
iee. i®i ii i i i’i
X i
+ @ if . >0 and ylf)\_D.,
i i’i
.. + +
and then use the defining formula for h,:D; q.e.d.

The next lemma characterizes the finiteness of the terms involving the index

set J.

Lemma 6b., The _sup [<1yJ,xJ'>4—B.%.-gf(xJ,M,)] is finite if and only if
= T (xd “')CCEL JJ 7] ]
’J ~

both y? enj and h, (yJ')+Bj <0, in which case
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Cosup [eydd s - gtad 0] <o
(x3, A.)GC J J J

Proof. First, observe that

; sup L =y T, x3 >+B " —g(x, )]

HC J
(J 1) €5

+.j j +
sup [sup {<y’ x >+s - gl (x,n) LG, n,) €cT]
1520 xd i "3 ] it i

] +,.3 . j +
su B.n, +sup {<y xJ>- C(x7,n, x?,n.) €C.}
p [B.x, +sup g, (,n) | ?, ) €cil]

i
KJ 0 xJ
sup {<yJ,xJ>- Sup <xJ,dJ>l sup <xJ,dJ><+m}if n, =0
xJ dJ €p, di €p. b
J J
= sup [B.n,+
wez0 3 3
J
sup {<y xJ>-kg(xJ/k)'xJ/n GC} if n,>0
<3 j h|
0 if #, =0 and yJ €D,
J J
+ > if »,=0 and yJ f—ﬁ.
= sup [B.«, + J I,
MJ.ZO 1] .
4+ if #,>0 and yJ €D,
J J
n,h,(yj) if w,>0 and ijD.
J 3] J J

wnere the final step makes use of the fact that the zero function with domain Bj
(the topological closure of Dj) is the conjugate transform of the conjugate
transform of the zero function with domain Dj' Now, note that the last expression
is finite only if yj EDJ., in which case the last expression clearly

= sup [8*‘ +Kh(y)]
ns20 i3

J
But this expression is obviously finite if and only if hj (yJ) +Bj <0, in which case

this expression is clearly =zero. q.e.d,

We have now shown that the functional domain
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¢, 0 T, 7 0, . (i N
B={( .y A,y ,8) €E |y €Dy; (v »hy) €Dy, 1 €15y~ €Dy, B, €Ey, and

h,(y)) +8.<0, j€3};
] ]
and we have also shown that the functional value

0 Y + -
h(yo,yI,X,yJ,B) =h, (y )+>‘ hi(yl,Xi) A H(y,\).
1

Moreover, elementary considerations show that the cone

I
¥=16 v 0y 8) €k, | Gy € MEE) 1y B=0}.

Therefore, problem 7(0) is clearly identical to problem B(0,0). In fact, it
is easy to see that problem Z(v) is identical to problem B(v,V) when:

(1b) the parameters UO, UI, and UJ corresponding to yo, yI, and erespectively
are identified with the parameters VO, vI, and vJ respectively,

(2b) the parameter Uj corresponding to Bj is identified with the parameter
Vj for each j€J,

(3b) the parameter Di corresponding to Xi is set equal to zero for each i €T1.
Of course, the parameter Ui corresponding to Xi clearly influences only the optimal
value of Xi, so setting Ui equal to zero deletes from the family 5 only problems
B(v) that are essentially superfluous. Consequently, the family 5 is essentially

identical to the family B.

Many theorems concerning the present constrained formulation of geometric
programming can now be readily obtained from comparable theorems concerning the
present unconstrained formulation. The mechanism for doing so is twofold: (1)
using the definition of the function g:C in terms of the functions gO:CO, gi:Ci,
and g+'C+ find hypotheses about g :C , g.:C,, and g+:C+ that imply the

i*3? 0°0 i" 71 i'73
required hypotheses about §:C; and (2) using the definition of the cone X in terms

of the cone X, find hypotheses about X that imply the required hypotheses about X%,
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An inspection of the definitions of 7:2 and % indicates that a knowledge of
the algebraic and topological properties of cartesian products is one major
prerequisite for exploiting this mechanism. The only other major prerequisite
for doing so is of course a knowledge of the theorems concerning the present un-
constrained formulation of geometric programming., Many such theorems have al-
ready been given in [13], but only for the case in which ¢g:C is a closed convex
function and Z is a subspace of E,. (Actually, script notation is not used in
[13], and A and B are designated by A1 and B1 respectively.)

The most powerful theorems definitely require at least some convexity
hypothesis in one form or another on 7:2. Yet, in view of some recent work of
Duffin and Peterson [6,7,8] such convexity hypotheses are not nearly as restrictive
as they may seem. Closedness hypotheses are even less restricetive in that the
properties of a given convex programming problem with at least one nonclosed convex
function can usually be obtained from the preperties of the convex programming pro-
blem that results from replacing all nonclosed convex functions with their respective
"closures",

On the other hand, the most powerful theorems definitely do not require that
X be a subspace of E . In fact, the note added in proof at the end of [13] indi-
cates that Z need only be a closed convex cone in E., a rather unrestrictive
hypothesis in view of the real-world applications known to the author.

A weakening of the hypotheses used in [13] will be included in a future
paper. The resulting theorems will then be applied to the present constrained
formulation of geometric programming.

An equally important source of theorems for the present constrained formu-

lation of geometric programming is the work of Rockafellar [25]. The mechanism

for exploiting that source of theorems is provided in [18]o
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