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ABSTRACT

Variations on the traditional exterior penalty functions are

presented to allow for the possibility of finite convergence.



In discussions about nonlinear programeing algorithms, penalty
function algorithms are considered inelegant in part because an infinite
number of iterations are necessary to find an optimal solution to a
nonlinear program. We should look for ways to take advantage of the
parallels between Lagrangians and penalty functions io allow for the
possibility of finitely convergent penalty functionsT/ Here we are

concerned with differentiable exterior penalty function.

Consider the nonlinear program (NLP)

(1) maximize £(x)

subject to

(2) gi(x) S 0’

where we assume for now f(x) 1is strictly concave and differentiable and
gi(x) is convex and differentiable for 1 =1,...,m. We also assume Stater's
constraint qualification holds, which means there exists an X with
gi(x ) < 0; and the feasible region defined by (2) 1is compact. Let

o

ﬂl""’ﬂm be optimal Lagrange multipliers for NLP. Then the unique
*
maximum of x of

(3 f£x) - ﬂigi(x)

W~ B

i=1

is an optimal solution to NLP [ 5 1.

*/ )
T I am indebted to Professor Robert Mifflin of Yale University for
suggesting this approach.
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Let Ak(') be a differentiable exterior penalty function at iteration k.
That is, A, (g;(x)) = 0 for g (x) < 0 and A (g, (x)) » = as

k* o for gi(x) > 0. The penalty function takes the form
m
@ £ -z a0

*
at iteration k. Letting xk maximize (4) we have xk X as k-4 o, If the

*
unconstrained maximum of f£(x) 1is infeasible, vf(x ) # 0. Taking the

gradient of (4) we have

m
(5)  vE(X) - IA (g (%)) vg (x) = VvE(x) - = Aﬂ(si(X))vgi(X)
{ile; x)>0} i=1

since Aﬁ (gi(x)) = 0 for gi(x) < 0. For x feasible in NLP (5) becomes

v£(x) again because Aﬁ(gi(x)) is zero for all feasible x. Since the
gradient of (5) at any feasible x 18 never zero, xk is always infeasible,
one of the major complaints with exterior pemalty functions, and convergence

can never take place in a finite number of {iterations.

The first step in constructing a penalty function with the potential of
convergence within a finite number of iterations is to convert the exterior
penalty function into an exponential penalty function [ 2 ] and [ 6 1,

a penalty function where xk can be either feasible or infeasible. Let

T > 0 be a sequence of real numbers where " 0. Then clearly

m
(6) f(x) - E A (g (x) + 1)
i=1
is a convergent penalty function. In other words, letting X maximize (6),

given the same conditions on f(x) and gl(x),...,gm(x) as needed for

convergent subsequences of xk to converge to optimal solutions on NLP [ &4 ],



convergent subsequences of X, converge to optimal solutions of NLP.

We now show that the xk's can be either feasible or infeasible in
NLP. First, if T, = 0, we have our original penalty function (4)
again, x, = xk, and X is infeasible at every iteration. We can ensure
a subsequence of feasible solutions by starting with an ry > 0 and
setting r 4 = Ty if X, is infeasible or setting Tt % T, if Xy is
feasible. The rk's change infinitely often. To see this, assume the
value of 1, is reduced only a finite number of times, and let a be
the smallest value of 1y, which means a > 0. For k sufficiently
large % is arbitrarily close to the x that maximizes £(x) subject

to the constraints gi(x) < -a for 1 =1,...,m. By the continuity of

the constraints, for k sufficiently large,
a
€D gi(xk) <-3 for i1 = 1,...,m

and x  is feasible in (2). This means r, is reduced infinitely often.

The penalty function (6) retains the desired property of exterior penalty

functions that after a finite number of iterations Ak(gi(xk) + rk) =0 for
gi(x) a nonbinding constraint at any optimal solution to NLP.

For convenience choose Ty so that
' =
(8) Ak(rk) 1.

2 2
As an example, with Ak(gi(x)) = k{max[O,gi(x)]} , Ak(rk) = krk , setting
I ' -
r, = o Ve have Ak(rk) = 1.
We now state and prove the theorem that allows the possibility of finite

convergence.



A
Theorem 1 If £(x) 1is strictly concave and differentiable and
gl(x),...,gm(x) are convex and differentiable, and if strict complementarity
holds, (i.e., gi(x*) = 0 implies my> 0), then there exists a set of
real numbers Pyr-e+sPp and a § > O where Py 2 § fori=1,...,m such

*
that after a finite number of iterations x is the unique maximum of

m
(9 £(x) - 2

. piAk(gi(x) + rk).

1

Proof: Let

(10) & = min {m | n, >0 for L = 1,...,m}.

Let
U if ﬁi >0
(11) Py = for i = 1,...,m.
§ 1f ™y = (
The gradient of (9) 1is
m
- 1
(12) vf(x) i;Sl_lnit‘-k(gi(x) + 1) ve (x).

*
Let M index the set of constraints that are binding at x . After a finite
*
number of iterations, Ak(gi(x ) + rk) = 0 for constraints that are not
*
indexed by M, that is, there exists a K where for k > K, Ak(gi(x ) + rk) = 0

*
for i ¢ M. Evaluating (12) at x for k > K we have

m
(13) vEG") - P Al (g, ) + 1) vg, (x)
* b *
= Vf(x ) - b Pi A.l'((rk) VSi(x )
1=1

* *
=vf(x) - 2 Py vgi(x ).
ieM
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*
The first equality holds because gi(x ) =0 forifieM and
* *
Ak(gi(x )y + rk) =0 for i ¢ M implies Ai(gi(x ) + rk) = 0 since Ak(-) is
a continuously differentiable penalty function. The second equality holds

by our choice of r,. But (13) 1is just

m

(14) vE&) -z e, ) =0

i=1

because x*,nl,...,nm form a saddle point of the Lagrangian. By (14)
we know x* maximizes (9).

If we were to set Py = m for £ =1,...,m, on maximizing (9) we
would find x* in the first iteration. However, we never know the
optimal Lagrange multipliers at the first iteration and using a set of
trial multipliers with some equal to zero would mean that (9) 1is no
longer a convergent penalty function. In other words if a guess is made
of the optimal multipliers at every iteration and the multiplier for some
constraint is set to zero infinitely often (i.e., no upper bound is placed
on the number of iterations this is dome), then the possibility of a
convergent subsequence of xk's with a 1imit infeasible in NLP exists.
Although the assumptions of strict concavity and strict complimentarity are hard
to test for, we can comnstruct penalty function algorithms that converge
without the necessity of these conditions, yet incorporate a search for
the Lagrange multipliers.

The most naive approach is to perform a Lagrange multiplier search as
in Everett [ 3 ] while ensuring convergence as a penalty function algorithm,
Let s be a sequence of real numbers where Sk 4 0 and SkAk(') is a

convergent penalty function., For example, if
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(15) & (g, (®)) = k{max[0,g, (01},

s, = k%

letting Kk , we have

(16) s A = ké{max[O,gi(X)]}z

which is still a convergent penalty function.

Taking the Everett search technique presented in Fiacco and McCormick

we can construct the following algorithm.

1
1]
Let di > O,...,dm > 0 and uy

1
2 Sysecesu > 8

1

be fixed positive

real numbers. Letting p?,...,p; be our trial values for Lagrange

1 1 1
multipliers at iteration k, we set p; = UgseeesPp = Yo

1

We adjust

our trial values for the Lagrange multipliers in the following manner.

At {iteration k, 1if

(A7) g (%) > 02 g, (x,_p)» &y 1=

(18) g, (x_p) > 8, (x) > 0, 85

(19) g (g) > 8, (e, 1) > 0, &5 "

20) 0> g (x) > g (x ), 85 =

(1) 0> g (x,_)) > g, (x), &5

k+1

(22) 8 (5. 2028, m, 8 =

1

(23) g () =0, gt -

)
S ka

k k _ kt+1
1-361) ui = (1+£i

)

ktl

Yy

k
251 y U

k

= 1 +8

ketl

)P

k

g = 28 py

k k+1 k+1
1-3 81, ui (1 - ai
k  kt+l k+1, k
dk
i k+1 k+1, k
Zi sug = (=8 Tpy
k
fi uk+1 -k
z ? Y4 Py

k
i

k
i

(4]



bt uk+l if uk+1 >
k+1 1 i = Sk
(24%) p; = :
sk otherwise
We then maximize
m
k1l
= 3
(@) £60 = T T A (g OO rgy).

Another approach is to use the trial Lagrange multipliers as they
naturally appear in penalty function algorithms. Let Pyse-sP be real

mumbers greater than zero; let Xy maximize
m
@6) £ - 7y (8, () + 7).

Then

m
(27) vi(x)) - iilpiAﬂ (g, () + 1) v g (x) =0,

1
and piAk(gi(xk) + rk) forms a trial Lagrange multiplier for constraint 1 at
iteration k. We can now comnstruct our algorithm. Let p),...,p' be
1 m
fixed real numbers greater than zero. At iteration k we maximize

m
(28) £ - Zpf A (8, (x) + 1)
i=1

With X the solution to (27), for i = 1,...,m set

k,, k.,
K+l PyA (g, (¥)) 1 p AL (8, (x)) 2 s8¢
29) py " =

sk otherwise.

Note that the above algorithms converge under the normal conditions for

convergence of exterior penalty function algorithms [ 4 ] while having
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the added feature of the potential finite convergence. We now present
an algorithm where concavity of the objective function and convexity of

the constraints is required. Also we assume there is. an X with gi(xo) <0

for i = 1,...,m. The algorithm is a variant of the Generalized Programming
algorithm of Dantzig and Wolfe [ 1 ].

At iteration k we have a linear program (RM) known as the restricted
master,

(30) maximize f(xo)wo + ... + f(x ho

L (k)7L (k)

subject to
(31) gi(xo)wo + ... + gi(xl(k))wz(k) <0 fori=1,...,m
(32) v + ... + Yo (k) =1

(33) w,>0 for i =0,...,8(k),

3

where (k) + 1 1is the number of columns at iteration k.

Let Wi,...,wf(k) be an optimal solution to RM, and let

kK ok k
(34) x = xoWo + ...+ xz(k)wz(k)'

Let
(35) 1 = {1 | g, (x )Wk + ...+ g, (x ) Wk > - ¢}
e+l i*"o’ "o 172 (k)7 "o (k) ’
k+1
where ¢ > 0 1s fixed for all iterations. For 1 ¢ Ik+1 set P, = 0,

for 1 e Ik+1 set
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u% if ut > 8

k+1 * k

(36) p

Sy otherwise,

k
where ug is the optimal solution to the dual of RM corresponding to

k Wk We then,

LEERREPLIPR

(37) maximize f£(x) - z p§+1 Ak+1(gi(x))

ieIk+1

for x ¢ X, a compact set containing the feasible region. In RM we

consider basic solutions [ 8 ] only. We drop all nonbasic columns,

except the column associated with X, We then add the columm

G, ) ]

81(xz(k+1))
(38) :

to form a new RM; with at most ﬁ+3 nonslack columns, and continue.

Convergence of this algorithm is proved in a more general context in [ 7 1].
It has been known for a while that trial values for the Lagrange

multipliers can be generated from the penalty function at each iterationm.

Yet this information was never used to aid in determining the penalty

function for the next iteration. With the three algorithms above, we are in

a position to take advantage of this information in the next iteration.

At the moment, there are no computational results to compare the effectiveness

of these algorithms and the original exterior penalty functions. This work

is in the planning stages.
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