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ABSTRACT

Decision-making processes usually involve time-consuming and costly
operations of observation and communication of the state of the environment
and generation and implementation of appropriate actions. Collectively
these activities may be called computational and the procedure required to
carry them out may be called an algorithm. If the environment is changing
stochastically the fixed computational delay involved in operating the
algorithm yields obsolete actions resulting in reduced expected return.

The loss as a function of delay is a measure of efficiency of the algorithm
which depends upon the stochastic properties of the environment. If it is
possible to reduce the loss by employing a faster algorithm at a higher cost,

the algorithm may be optimally designed and selected from a given family.



COMPUTATIONAL DELAYS

1. INTRODUCTION

Consider a decision-maker who has to take real-valued actions in
face of a real-valued environment that is changing stochastically at
discrete points in time, say every day. As a real-valued function of the
environment and the action in effect on a particular day he receives a return.
The main problem is that he can not instantaneously generate an action that
is suitable for the environment on that day. Instead, he has to rely on
a time-consuming algorithm (i.e. a procedure to generate actions) that
requires a fixed number of days to compute an optimal action. We shall
assume that he has enough computing equipment to carry on many computations
simultaneously. However, due to the computational delays his responses are
not perfect; every day the action available is optimal only with respect to
the state of the world that existed a fixed number of days in the past,.
Knowing this, in each computation the decision-maker uses not the actual
environment at the beginning of the computation but his expectation about
the environment at the end of the computation, which the computed action is
actually going to face. (Adjusting estimates for seasonal patterns and
trends is common in forecasting techniques.) Nevertheless, since his
forecasts are imperfect, everyday he suffers an opportunity loss due to a
suboptimal action being in force. Our objective is to determine the loss
due to this computational delay for different discrete as well as continuous
time stochastic processes governing the envornment. In particular, in
Section 3, we determine the loss as a function of delay and environment

assuming quadratic payoff and different Markov processes.
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Each computation involves observation and communication of the state
of the environment and generation and implementation of an action. Each
of these subactivities involves a time delay and a cost as a function of
the delay. We may seek to optimally allocate the fixed total computational
delay among these activities to minimize the total computational cost.
Next, suppose the decision-maker has a family of algorithms available to
him, each requiring a fixed total computational delay (optimally allocated
among its subactivities) and a fixed total (minimum) computational cost. Then
we may combine this operating cost with the loss function yielding an efficiency
criterion for choosing an optimal algorithm from the family, as we shall
see in Section 4.

Section 5 concludes the paper by some observations about the relation-
ship of this paper with other related work. In Section 2 we establish some

notation and give a general formulation.

2. NOTATION AND FORMULATION

In the discrete-time case suppose the environment changes every day
according to a known Markov process {Xn:n = 1,2,...} taking its values
in the (Borel) set X < R and governed by a set of (regular) transition
probabilities {Pi.(']'): j>1i, i,j = 1,2,...}. Thus, given Xi = x,

J

P..(+|+) 1is probability distribution of Xj on (measurable)subsets of X

1]

and, given a (measurable)subset B < X, P,.(B|+) is a (measurable) function

1]

on X. Suppose the corresponding transition densities {pij(-l-):j > 1i,i,j =1,2,...

¢ ') d !
pij(yix)dy. Thus pij(y,x) denotes the

(%

exist, so that Pij(Bﬁx) =

conditional density of X, at y given Xi = x for i < j. These condi-



tional densities satisfy the following Chapman-Kolmogorov identity

_r . .
P (210 = "o 1Py lyddy, 1< 3 <k

Suppose pi(-) denotes the density of Xi’ with E(Xi) =uy and

2
Var(Xi) =0, i = 1,2,... The Markovian property implies that for every
finite collection X, X, ,...X, ) with i, < i, < ... <1 the conditional
il i, in 1= "2 = = "n
density of Xi given (Xi ,...Xi Y 1is the same as 129 i the
n 1 n-1 n-1, n
conditional density of X, given in Xi
“n n-1

The above probabilities and densities are called time homogeneous if

pij(-\-) and pii(-\-) depend only on (j-i); then it suffices to know

only one-step transition probability P(-}-) and density p(-\-). The

. - . (d) :
arbitrary d-step transition density »p (y\x) of Xn+d at y, given

X, = % can be recursively calculated as p(d)(y\x) = fp(d-l)(z\x)p(y[z)dz.

The process {Xn:n = 1,2,...} 1is said to be stationary if the

joint distribution of any finite collection (X is
1

independent of any time shift k. This implies, in particular, that the

i +k’Xi2+k"'°Xi +k)
. n

density pi(-) of Xi is the same for all i and then we let

E(Xi) =1 and Var(Xi) = 02.

Similar notation applies in the continuous-time case (for consistency
we use the same letter n to denote discrete and continuous time instants)
and we call the process {Xn:n e [0,)}] Markovian if for any finite

collection (X, »X_ ,...X, ) with t, <t
1 "2 i
density of Xt given (Xt ,...Xt ) 1s the same as the conditional density
j 1 j-1
of X given Xt . The homogeneous transition probabilities are defined

t. -
1 J=2

7 < e tj the conditional



P(d)(B\x) = Prob [X_

they satisfy the Chapman-Kolmogorov identity

P g1y = T2 ™ ay 2@ sy

We have an algorithm «: X #+ A C R which is a real-valued (measurable)
function on X taking its values in the (Borel) set A of actions. (As
we will see in Section 4, a 1is a composition of functions).

The return function W: X x A+ R is a real-valued (measurable) function,
so that at any given time if the state of the world is x ¢ X and the
action in force is a ¢ A we receive the payoff W(x,a) at that time. For
a given environment x ¢ X, let a%*(x) ¢ A denote the optimal action

(assumed to exist) maximizing W(x,a) over A. Suppose the algorithm

requires a fixed time period of length d to yield an optimal actionm.
(As we will see in Section 4, d 1is the sum of individual delays involved
in the activities required in operation of the algorithm.)

At time n we observe the environment Xn’ the algorithm begins
the computation and the action a(Xn) is generated at time (n*d), to
be put into force at time n+d only. Thus, at each time we have a new
action available and we switch to it instantaneously. We assume that the
algorithm generates a(Xn) which maximizes E[W(Xn+d,a)]Xn] and not
a*(xn), and that the algorithm is not adaptive in the sense that it does
not utilize the information about Xt’ n < t < ntd, the environment

passing by during the computation. We also assume that we have enough



computing equipment to carry out several computations simultaneously. Finally
the total payoff is assumed to be additive in time and there is no dis-
counting.

1f the computations were instantaneous, the optimal payoff we would
expect to receive at time (n+td) given the environment Xn is
E{w[xn+d,a*(xn+d)]lxn}. Because the computation is time-consuming, we expect

to receive at time (n+d) E{W[Xn+d’“(xn)]1xn} = Zi: E[W(Xn+d,a)‘Xn].

Thus, given Xn’ the loss we would expect to suffer at (n+d) due to the

computational delay d is

2.1) Loba &rd) = EWIX L goav (X, DTIKY - B(WIX 0 DT ]]

2.2) L, @ =EL,, & ,d)]

We shall study the explicit form of this loss function with quadratic

payoff and some specific Markov processes in the next section. For now

we have the following general and intuitively plausible

Proposition 1

(a) The loss Ln+d(d) >0
(b) 1If the environment is Markovian, the algorithm with a longer
delay is inferior to one with a shorter delay in terms of loss 1i.e.

d, > d implies Ln(dl) > Ln(d2> for all n > d

1= "2 1’



Proof: (a) E{ Mai W[Xn+d,a]ixn} > Max E{W[Xn+d,a]lxn}
ae a

so that from (2.1) Ln+d(Xn,d) > 0 for almost all Xn
and hence Ln+d(d) > 0. Thus a delayed algorithm is

always inferior to the instantaneous omne.

- w
(b> Ln(xn_d }dl> E[Ln(xn-d }d2>|Xn_d ]
1 2 1
= gf % | R % k!
E(WIX ,akX )X, 3 - B{EIWE ,a*x@X MDIX__ TX ]
1 2 1
+ E{ElY 3 { ! - !
E“E‘d(xn’@(xn-d2>>‘Xn—dz]‘Xn-dl} E{W(xn,a(xn_dl)>§xn_d1}

The first two terms are equal by Markovian assumption and the third term is

E{Max E[W(xn,a)lx

x_ 3
a n-d2 n-d1

fETw ! ! 1
> Max E[E(W(X &)X, )IX_ )
2 1
= Max E{W(Xn,a)lxn_d 1, by Markovian assumption, which is
a 1

the fourth term.

Thus Ln(Xn_dl,dl) - ElL_(X

d,)|X

n-d,’ n-d.] > 0 for almost all X
2 1" = n

>
-dl

so that Ln(dl) - Ln(dz) > 0. Q.E.D.

(Technically, the above result also holds if ‘7(Xn) C;?(Xn+1) for all n,
where ,?(Xn) is the o-field generated by Xn.)
The loss as a function of delay depends upon the return function and

relevant properties of the stochastic environment. For example the greater
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the dependence of the return on the state of the environment the greater is
the loss and similarly the greater the variability (in some sense) in the
stochastic environment the greater will be the loss, or the greater the
uncertainty, as measured by the informational entropy content in the
future given the past, the greater will be the loss. In the next section we
study the loss function assuming a fixed quadratic return function and

different types of Markov processes,

3. THE LOSS FUNCTION

In this section we shall consider the quadratic payoff function (which
has been extensively studied in the literature), W(x,a) =2 x a - qa
with ¢ > 0 for concavity. In the discrete-time case W(x,a) 1is the payoff
at any time if x 1is the environment and a the action then. In the
continuous-time case W(x,a) 1is to be interpreted as the rate of payoff.
Similar interpretations apply to the loss Ln(d)' The next proposition

provides some general bounds.

Proposition 2

If the payoff function is quadratic, W(x,a) =2 x a - qa2, with
q > O then the bounds on the loss function are

2

Cn+d

(3.1) 0 < @) <

1 for an n
“n+d y

so that, in particular, if the environment is stationary the loss function

is bounded for all n.



Xn+d 2+d
Proof: We have *(X = % = B
Proof: a¥*( n+d) and W(Xn+d,a (Xn+d)) p
EX L 1X)
+d 'n
Also «(X ) = —2 0 d E{W! 1 = 2
(x . and E[WIX o@D TIX ] = [BE&_ X))

q

- 2 2,
Thus Lo, ,d) =7 B 41X ) - (B ,41X)17], i.e.

_1
(3.2) Lorg X »d) = q Var(xn+d\xn), so that

(3.3) Log(d = E{Var(xn+d1xn)] >0

Nag o

I f det inisti i \Y X X = =
n case o eterministic environment Var ( n+d] n) 0 so that Ln+d(d) (¢]

as expected and it will be positive in case of uncertainty. Since

Var (X L) = E[Var(xn+d3xn)] + Var [E(xn+d}xn)]

and since variance is nonnegative we have

Var(X )
)]< n+d

= ! —_—
L ,4(d) = ZE[Var(x . Ix )I< -

0 =

with equality holding iff E(Xn+d}Xn) is a constant. (e.g. if the

environments are independent and identically distributed. 1In that case,

any delay is as bad as performing no computation at all and using the same
fixed action maximizing E[W(X,a)].)
With stationary environment Var (Xn) = 02 for all n and the loss

2
Ln+d(d) will be nonnegative, independent of n and bounded from above by %—. Q.E.D.

Intuitively according to (3.2) the expected loss due to the computational

delay is directly proportional to the amount of variability (or uncertainty,
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in some sense,) left in the future environment Xn at the end of the

+d
computation, given the present environment Xn at the beginning of the
computation. Also the loss is inversely proportional to g, because the
larger the g the smaller is the relative weight attached to the uncertain

environment in the payoff function.

Suppose d12d2 and that {Xn} is Markovian. Now we know

| = ! -
Var (xn‘xn_d1) E[Var(anXn_dZXn_d1)1Xn d, 1
1 !
+Var[E(Xnan_d ’Xn-d )‘Xn—d ]
2 1 1
= E[V D¢ ? + |
[Var (X n_dz)‘xn_dl] Var[E(Xn]Xn_dz),Xn_dl] > E[Var(xnlxn_dz)\xn_dl],

where the second equality follows by Markovian assumption.
Then we have

n-d, 4"

Ln(X .

0 =

Var(X 'x )y > 1 E[Var(X ;X
n n-d1 - q n' ' n

! = !
)an-d ] E[Ln(xn—d ’d2)'Xn—d J

-d, 1 2 1

for almost all Xn so. that Ln(dl) > Lp(dz) and, as already noted in proposition 1

-d]_

(b), the slower algorithm is inferior in Markovian environment.

Next, in optimal selection of an algorithm it is important to know
how sensitive the loss function is to the computational delay and the
parameters of the stochastic process governing environments. To study
this aspect we may classify the payoff functions and the stochastic processes
according to the form of the resulting loss function 1in terms of the delay
involved (e.g. increasing, concave, or convex etc.) or in terms of the
parameters of the stochastic process (e.g. transition function, or mean
or variance of Xn etc.) Here we will concentrate on the quadratic payoff

function and Markov processes, classifying the latter according to the
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effect of their parameters on the loss function. Wherever possible we will
indicate the applicability of a given process.
Since with the quadratic payoff the loss Ln+d(Xn,d) is proportional to

the conditional variance Var (Xn+d%xn)’ we may study Markov processes where

the conditional variance Var (X !
nHd

Xn) is independent of Xn or when it is
proportional to Xn (yielding Ln+d(d) proportional to means) or when it is

proportional to an (yielding Ln+d(d) proportional to second moments) etc.

We do this in the remaining section, summarizing the results as Propositioms.

An important class of Markov processes yielding Var(Xn

i .
- ,Xn)lndepen—

dent of Xn is the Markovian normal class. In the discrete-time case

{Xn:n =1,2,...} is called a Markovian normal process if X has normal
n
. . , 2
density with mean O and variance o and if the conditional density of

Xn+d given Xn= X, pn,n+d('ix) is the normal density with mean

On+d

n,ntd ¢
n

. 2 2
x and variance S 4d (1—0n n+d) for d> 0. (Feller [4])

b

Here pije[-l,l] is the correlation coefficient between X, and X. so
i

that E(Xin) = pijoin' As d varies, the behavior of the loss function

is entirely governed by the structure of the covariance matrices. However,

for this process, and only for this process it can be shown (see Feller

[4] p.94) that Ok = oij . Djk whenever i<j<k. Thus dlzd2 implies
P4 o= ° 0 y » SO that pz < 92 again implying
n-d,,n n—dl,n-d2 n—d2 n-dl,n - n-d2,n
2 . . . .
Ln(dl)ZLn[dz . Thus pn 4+g 1s non-increasing in d and thus more distant

J
environment in the future is less predictable (in terms of the correlation
coefficient which is what we intuitively mean by obsolescence due to

delay). Alternative definition of this process may be given recursively
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as an Autoregressive process {Xn:n =1,2,...} with Xl = olzl
“n /
X =op — X + o 2 VA n = 2,3 where
-1 _ " s3,....
n n-l,no 4 'm 1 nT\ 1 n-1,n n
Zn's are 1.i.d. normal with expectation 0 and variance 1. In particular,

s

we may define a discrete Brownian motion {Xn:n = 1,2,...} recursively by

X =X +Z n=2,3,.

where Zn's are independent, each being normally distributed with mean 0
and variance 02. In that case VarO(n+d!Xn)= ozd. Brownian Motion is a
well-known model of certain economic phenomena (e.g. movement of stock
market prices).

Another example of the Markovian normal process is the Normal

decomposable process in which E(Xn) =0 for all n and it has independent

increments, each being normally distributed with zero expectation. Thus

(Xn+d - Xn) is independent of (Xl""xn) and hence E[Xn(Xn+d - Xn)] = 0.
o)
n
. . _ . . - o .

This yields On,n+d n implying pik pij ik for all i<j<k, so that
n+d

1 1 1 '. =

it is a Markovian normal process. Then E(Xn+d,X1,....Xn) pn,n+d

ntd y = x , i.e. {X :n =1,2,....} is a Martingale. (This means, for
c  'n n n

example, that the expected value of tomorrow's price is the same as today's
price; this assumption is reasonable in many situations of economic interest.)

1 2 2 1,2 2 ) 2
q C 44 (l—on,n+d) = q an+d on). Since N <1, the

Then L_,,(d) = ,n+d =

2 . . :
sequence {cn:n =1,2,....} is non decreasing. If there exists M such that

02 <M< o for all n, then a Martingale convergence theorem asserts that
a =
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there exists a random variable Y such that Xﬂ'* Y with probability 1 (see,

for example, Feller [4] p. 236) 1In that case lim Ln+d(d) = 0 independent
mree
of d, so that in the long run a computational delay does not

adversely affect payoff.

5..0 for all

With a stationary normal Markovian process 0,, = ¢,
ik  ij jk

i < 3 €k requires 0y = pii-k; for all i and k, where |p| < 1. Thus

| _ 2 2d
Var (Xn+d.xn) g (1L -0 7).

In the continuous - time case two outstanding examples of Markovian
normal processes are the Brownian Motion and the Ornstein-Uhlenbeck

process. The Brownian Motion {Xnin ¢ [0,»)] 1s specified by

X(0) =0, X_normally distributed with mean 0 for all n > 0 and that

the process has stationary, independent increments. It can be shown

;n Pmp Ppn

=2 - [
that Var (X)) =o'n and for m < n o = (=, so that g
n - m,n -\}n m
for m < p < n and the process {Xn:n ¢ [0,)}] is Normal Markovian.
For this process, given Xn conditional density of Xn+d is normal with
mean Xn and variance ozd.

The Ornstein - Uhlenbeck process is the most general stationary

normal Markovian process with zero expectations. This process arises
when the Brownian environment has built-in equilibrating controls, so
that when Xn = x the adaptive control exercises a linear force of
magnitude ¢ - x towards the origin (e.g. in an economic system, given

a non-equilibrium price, institutional controls and the market mechanism
tend to restore the equilibrium by means of a force proportional to the

discrepancy). Increments are no longer independent and it turns out
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(see Breiman [1]) that, given Xn; Xn+d is normally distributed with mean

- ud 02[1 - e-zud]

. - 4(n-m
e Xn and variance ( )

. Also o =e if m < n,
24 m,n -

s that the process can be secen to be Normal Markovian. Letting 1 - o

yields the Brownian motion. We summarize next.

Proposition 3 Suppose the payoff function is quadratic as above

(a) 1If the enviromment is Markovian normal, then

1 o° 2

.1l c .
B8 LG = Tk (Lo L)

is independent of Xn (hence equals Ln+d(d))' The loss is concave and

non-increasing in |¢ E

In addition, if the process is stationary

n,n+d
then the loss
2
_1lc 2d
(3.5) Ln+d(d) q (1-27)

2
which is concave in d and approaches %— as d » e.

(b) If the environment is normal decomposable, then

_l a2 2
(3.6) L@ = q @q -9 )

(so that, if in addition the process is stationary then Ln+d(d) =0)

Lim
-+ o™

2
f =
T o <M< e for all n thenn Ln+d(d) 0

(¢) If the enviromment is Brownian, then the rate of loss
2

-cd
(3.7) L@ = %

which is linearly increasing in delay without a bound.

(d) In case of the Ornstein - Uhlenbeck process the loss

_C__ - 2ud
(3.8) Ln 1(d) “2nq [1-e ]
2

. , . . . a
which is concave and increasing in d toz——
g
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Next we consider some Markovian environments yielding the loss
proportional to means of the present environments. Two important con-
tinuous time examples are the special cases of the pure birth and the
pure death processes (see Karlin [5]), while we illustrate the discrete-

time process using the Branching process (see Karlin [5]), and the Morse-

Elston process (see Morse and Elston [11]).

The Morse - Elston process has been considered in [11] as a probability
model of obsolescence of library books; it represents an exponential decay
in the average demand for a certain book as its age increases, the action
to be computed might be the optimal inventory policy for that book,
given a fixed lead time. 1If Xn denotes the average demand at time n,

the stationary transition probability is assumed to be Poisson given by
_ . AN
P(jli) = Prob X .4 = j';Xn =i] = e (b+Ci) ﬂ’%)— for i,j = 0,1,2....

where b > 0 and o < € < 1 are constants.

Xy = (1-¢%y [bgl-cd+1) d -J
‘ n

+
Then Var (Xn+d (1-0) (1-22) Cc X
a -7y n-1
» . . . 3 . t - - +
which is linear in Yn Also E(Xnﬁxl) b T -0 C Xl,
where Xl, the 1nitial demand is known and fixed.

In the (discrete - time) Branching process Xn denotes the number of

offsprings at the beginning of the nth period, Yi denotes the number of
new offsprings the ith one gives rise to at the end of the nth period,
where Yi's are independent and identically distributed with mean m and
variance 82. (Here the action might be a design of the educational
system or a child care center for the (n+d)th period, where such a design

Xy

takes d periods starting at n.) Thus Xn+1 = 3 Yi yielding

i=1
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X ) = X ) = g2
E(Xn+l°xn) m Xn and Var (Xn+l=Xn) =S Xn. We may recursively
compute d
E(Xn+d1xn) =m X and
r d-1

. L 2. d-1 k!

: = } Q < :
Var (Xn-!-d‘xn) [ v ‘»{;O " : Xn

which is linear in Xn' With respect to d it increases (decreases)

geometrically if m > 1 (m < 1) and linearly if m = 1.

The Yule process is a (continuous time) pure birth process in which

Xn denotes the population size at time n and each member in the population
has a probability Ah + 0 (h) of giving birth to a new member in an interval
of time length h (A > 0); there are no deaths. The action may refer to
the industrial and agricultural production rates planned for the time

n+d, such planning requiring the time duration d which may be short enough
to assume no deaths. Then, assuming independence and no interaction among

members of the population, it can be shown by induction on j > i that

- s - i1 = (j -1 - ixd 1. o Myj-i whenever
Prob [Xn i ]‘Xn il 5 - i) e ( e )
oS s | _ Ad \ _ M, M
j Z i. Therefore we have E(Xn ian) e Xn and Var (Xn i\Xn) e (e 1)Xn

which is linear in Xn and increasing in d.

Consider a pure death process with a constant death rate Q > o

regardless of the population-size Xn’ so that the probability of a death
during an interval of length h is uh +0(h). Then to find

Prob [X =j'1Xn = {] we note that a member alive at n will live beyond

n+d

(n+d) with probability e ud, so that the Binomial law gives the above
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Thus we have

probability as {;} o Jud (1-e ud)(j-i)
{
: Y

| = o~ ud z - ud
E(Xn+d Xn) e Xn and Var (Xn+d1Xn) = e (1 - e % Xr{ which is
linear in Xn and decreasing in d to zero.
With the above notation we summarize the resulting loss function in

Proposition 4

Suppose the payoff function is quadratic as above.

(a) 1If the environment follows the Morse - Elston process, then

(3.9) Lo =a-c Tea-c®y 4+ @ u:]
n-+d ; > n
at-0 | a-ch

which is linear in b T E(Xq). Also the steady state loss

b(l - czd)

L(d) = 3;: L g(d = .
q(l -¢H A -¢)

which is concave and nondecreasing in d

(b) if the environment follows the {(discrete-time) Branching process,

which is linear in Lo Also it is geometrically increasing (decreasing)

ind ifm> 1 (m <1) and linear ind if m = 1.
(o ifm< 1
)

o _(sfa .o _
L(d) = Lim Ln+d(d) 1 if m 1

o
i oo ifm> 1

(¢) If the environment follows the Yule process, then
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ekd (eAd -1

(3.11) Ln+d(d) = n

0 [

which is linear in v and increasing in d. Also it increases without
bound as n -+ .
(d) With the pure death process the loss rate is

- @d
e

- rd
(3.12) Ly (@ = 55

(1 -e PR
which is linear in L and decreasing in d. Also it decreases to 0O as
n- o,

We conclude this section by considering for illustration two discrete-
time Markov processes which yield the loss function proportional to the
second moments of the environment values. The first process arises

naturally in the theory of random splittings (See Feller [4] p. 207,24).

Here {X_:n=1,2,...}is defined as X_ = Y .Y, ....Y_ where Y,'s are independent
n - n 172 n i
and uniformly distributed on (0,1). We have Xn+1 = Xn : Yn+1’ so that,
Xn+1
given Xn’ X is uniform on (0,1). Then using log transformation it
n

can be shown that the d - step transition density of Xn at y given

+d

1

. . d X, ,d-1 |,
Xn =x, is given by p( ) (yw‘x) = m [10g (;)] if O < y < % and

0 otherwise. From this we may calculate E(X \X ) = 2-d X and
n+td''n n
-d _-2d4._2 2
! - - . .o . .
Var (Xn+d‘xn) (3 2 )Xn which is increasing in Xn and d.

As a second example, consider the Ugaheri process (see Feller[&4])
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{Xn:n =1,2,...} on (0,1) such that, given Xn =x, X is uniformly

n+1
X
distributed on (1-x,1). Then it can be shown that E(X lx ) = o
n+td'' n 2d ana
d-1 d-k-2 ;
| - k 2 d-k-1 N 2

(3.13) Var(Xn+len) ;i (/37 { 1 +1/12 [(-%) Xn + E: (=) 1

k=0 5=0

which is quadratic in Xn. Also it can be shown that the stationary density

is triangular 2x on (0,1) with mean 2/3 and variance 1/18.

Proposition 5

Suppose the payoff function is quadratic as before.
(a) If the environment X =Y,Y.....Y with Y,'s i.i.d. uniform on
n 172 n i
(0,1) the loss

-d_,-2d
L% 2 2
(3.14) L_,q(@ - (o +ud)

which is
proportional to the second moment and increasing in d and

L(d) = 3;: Ln+d(d) =0

(b) 1In case of the Ugaheri process described above
L ,,(d) = i [Var (X_,,1X )]
n+d q ntd' 'n
‘ . .
where Var (Xn+dixn) is given by (3.13).
With this analysis of the loss function for a given algorithm under the

assumptions of different fundamental processes governing the enviromment

we now turn to the question of optimal design and choice of an algorithm,
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4. OPTIMAL DESIGN

In the previous section we studied the undesirable effects of operating
a given time and cost-consuming algorithm in a given stochastic environment
and yielding a return according to a given payoff function. In this section
we consider the problem of designing the decision-making process by choosing
the algorithm that is optimal in some sense.

For any algorithm two related factors, the computational delay and
the computational cost per unit time required for its application, are
specified (at least in principle; empirical information about these factors
is, however rare in most cases.) The complete decision-making algorithmic
function <« may be naturally decomposed into say four subalgorithms
ys%y 0y and @/, so that we may write a(X ) = QA{QB[QZ(al(Xn))]}' Here «

1

is the observation (data collection) subalgorithm. (e.g. lenses or cameras

and observers) which observes the environment Xn’ %, is the communication

subalgorithm (e.g. pigeons or telephones) which transmits the information to

the computing center, g is the computation subalgorithm (e.g. computers

or staff managers) which actually generates an action and &y, is the

implementation subalgorithm (e.g. clerks or line managers) which puts the

generated action into effect. (Clearly, in practice, such a decomposition
of o 1is difficult due to ambiguities in classification and possible over-
laps between classes. Moreover, each subalgorithm may be further decomposed
into its subcomponents and so on, yielding unmanageable sequences of sub-
algorithms from which to choose. For illustrational purposes we adhere to
the simple classification stated above.)

Suppose the algorithm o requires a delay di time units, involves

the operating cost of Ci(d*) per unit time and it can be purchased in the
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market place at a price Pi(di) i =1,...4. Suppose the functions Ci(-)
and Pi(-) are non~increasing and convex in di with infinity as their
limits as di tends to zero (so that it is prohibitively expensive to buy
and operate instantaneous machines.) Thus, for example, having more
expensive and powerful lenses results in quick observations but their use
and care also requires a trained operator and the operating cost is subject

to increasing marginal cost phenomenon. Similarly, using telephones instead

of pigeons or using a large and fast computer instead of a small and slow one
involves a smaller delay but higher purchasing and operating costs. Note that
two algorithms a and a' requiring same total delay d may have it distri-
buted differently among their subalgorithms,yielding different total costs.

For a given total delay d we may design an optimal algorithm requiring
that delay by choosing the subalgorithms (i.e. system components) so as to
minimize the total operating cost per unit time subject to the budget constraint

on total purchasing cost.

Proposition 6. Suppose the algorithm o requiring delay d is decomposed

into algorithms y,...,o where @, can be chosen to require any delay

di > 0. Suppose for the subalgorithm @y the purchasing cost Pi(di) and
operating cost per unit time Ci(di) are convex and nonincreasing differentiable
functions of di with limits infinity as di <+ 0. If M 1is the budget
constraint on the total purchasing price and if costs are additive C(d),

the minimum cost of operating the algorith «, 1is a convex and non-increasing
function of delay d. For a given d if there is no budget-restric¢tion the
optimal algorithm is obtained by choosing the subalgorithm delays in such a

way that each subalgorithm has the same marginal operating cost.
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Proof: The parametric convex program #£(d) for given d, is

n
Minimize 5 C,(d))
. it i
i=1
n
(¢.1) s.t. 7d, =d
. 1
i=1
n
TP .(d.) <M
i
i=1
d, >0
i =
Since Ci(di) + © as di -+ 0 the optimal solution d? >0, i =1,2,... n.

Also, since Ci(-) and Pi(-) are convex functions the following Kuhn-Tucker

conditions are necessary and sufficient for (d%,... d:) to be optimal

(a) (d*,...d:) is feasible

e %
() uw[M- TP, (d)] =0
. iti
i=1
(c) C'(d*) + P'(d*) -A=0 i=1,2 n
iv01) TR e
where u > 0 and * are the multipliers associated with the second and the

first constraints respectively. If we denote the optimal value of (4.1) by

* *
C(d), then C'(d) = A\, while from (c) X Ci(di) + uPi(di) < 0, since

It

c;(+) and P, (*) are nonincreasing and . > 0, so that C'(d) < 0, i.e. C(*)
is nonincreasing.
To show convexity of C(d) let (dl""dn) be an optimal solution to

£(d) and (d',...dé) be an optimal solution to £(d'). Then with B ¢ [0,1]
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]

BC(d) + (1-B)C(d")

n
B.Z1Ci(di) + (1-8)

c.(@dh
i=1 i=1 Lot

3

5 + - ! i .
> 7 Ci(Bdi (1 B)di) by convexity of Ci( )

i=1

> C(Bd + (1-B)d') since the feasible set is convex.
*
With very large M, v = 0, so that (c) yields X = Ci(di), the same

marginal operating cost for all 1. Q.E.D.

Without the budget constraint we have a simple algorithm for determining

* * Y
optimal (dl,...dn), namely: choose some A < 0, find d; by solving
n n

* %
c;(di) = x for all i, if 7 d, >d decrease N, 1if Z d, < d increase
- i=1 no, i=1 *
A and repeat until we find A giving 3 d, = d.
i=1

Thus, for any given delay d, we can choose optimal subalgorithms giving
the best algorithm requiring that delay and the operating cost C(d) per unit
time. Now suppose we can choose the total delay d e D C Rf by selecting
among a class of algorithms each of which is optimally designed. Then assuming
the utility function linear in payoff the natural selection criterion is to
choose the algorithm requiring that d which minimizes the sum of the
operating cost C(d) and the long-run average loss L(d) = (Lim Ln(d)) due

=S
to obsolescence. i

If 1(d) and C(d) are differentiable then the optimal d , if in the

interior of D, satisfies

4.2) L@ +¢' @) =0 and L") +c"@H) > 0
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i.e. when the marginal increment in the operating cost just equals the

- .
marginal loss due to delay. (Also note thet C'(d ) = X(d“), the LaGrange

%*
multiplier in #(d ).) If L(d) is also convex in d (we already know

g
3

C(d) is) then (4.2) can be solved for optimal dj. For example, if

2 L
the environment is Brownian, L(d) = ggg by (3.7), so that optimal da’

2

(e} e
is determined as a solution of —E - X(d ). Since AN(d) is non-decreasing

1l

in d, it follows that the greater the 02 (representing greater variability and
and thus resulting in greater obsolescence) or the greater the value of q,
the smaller is the optimal d*, as might be expected.

If L(d) + C(d) is unimodal on D, efficient search procedures such
as the Fibonacci search technique may be employed to determine an optimal
algorithm. More realistically the set D may be discrete (in fact finite)
due to discontinuities in the (limited) technologies available. 1If
D = {dl,...dk} and if k is small enough then the optimal delay d* e D can
be found simply by exhaustive search. Consider, for example, two algorithms
o and o' respectively requiring d and (d-1) days at costs C and C' (with
C' > C) to compute an optimal action with the quadratic payoff function

and the stationary normal Markovian environment as in Section 3. Then,

from (3.5), thelr respective losses will be

2 24 2
L (@) = g—iélﬁ——l and L_,(d-1) =2 (112

2(d-1),

Hence the relative advantage of using o' instead of « is

2
AL = L@(d) - L, (1) = gE_DZ(d-l) (1-92) so that the larger the !p]

(i.e. more predictable the environment) or the value of q the lesser
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important is the distinction between the algorithms. The simple strategy
is then to choose a' if and only if AL > C' - C.

In general with an arbitrary form of the function L(d) + C(d) and
the set D we may have to resort to some ad hoc procedure to solve the

one-dimensional minimization problem of finding an optimal algorithm.

5. CONCLUSION

Our purpose has been to explicitly take into account the repurcussions of the
fact that decision processes involve activities that are both time-consuming
and costly. The final objective is to choose an optimal decision procedure
by balancing higher costs of obsolescence due to longer delays against
higher computational costs due to employing procedures yielding shorter delays.
Given the payoff function and the stochastic process governing the environment,
obsolescence due to delay, as measured by loss in the expected payoff seems
quantifiable without much difficulty, as in Sections 2 and 3. However,
in Section 4 we have asumed that for any (sub)algorithm the information
about delays and costs of purchasing and operating alternative procedures
are known. The present state of knowledge of human and mechanical technologies
involved falls considerably short of providing such information in required
details. Economists, engineers and management scientists working together
can contribute substantially to this important and difficult issue.

In optimal control theory literature some authors (e.g. see Oguztoreli
[1]] Kharastishville [6], Mirza and Womack [10] and references therein) in
the context of deterministic control problems have included delays in the

state and control variables in the objective function and the law of motion
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of the system. Most of the work is deterministic and relates to either modifi-
cation of the maximum principle for optimality or derivation of sufficient
conditions for controllability of the system, rather than economic considera-
tions of obsolescence due to delays in uncertain environments and choice of
procedures for computing controls. Our main source of motivation for the
latter has been Marschak [7], Marschak and Radner [8], and essays in

McGuire and Radner [9].

In this paper our basic assumption has been that an algorithm is completely
characterized by the computational delay and the costs it incurs, these
being fixed for a given algorithm. In another paper (Deshmukh and Chikte [3])
we consider the problem of optimally utilizing a given algorithm by
choosing, in each computation, the optimal delay for that computationm.
Typically, if the environment doesnot change stochastically, the effectiveness
of generated actions improves with the amount of time spent in the computation.
On the other hand, with stochastically changing environment the generated
actions will become more obsolete with longer delays. The optimal stopping
problem of choosing optimal delays by balancing improvement against

obsolescence is treated in [2,3].
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