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Traffic Equilibria Analysed via Geometric- Programming 1,2,3

by

Michael A. Hall4 and Elmor L. Peterson5

Abstract. The "traffic-assignment problem' consists of predicting "Wardrop-
equilibrium flows" on a roadway network when origin-to-destination "input flows"
are specified. The "demand-equilibrium problem" consists of predicting those
input flows that place the network in a state of "economic equilibrium" when

the input flows are related via given travel-demand (feedback) curves to the
resulting Wardrop-equilibrium origin-to-destination "travel costs'.

The traffic-assignment problem is treated as a special case of the demand-
equilibrium problem (the case in which the travel-demand curves are graphs of
constant functions); and the demand-equilibrium problem is formulated and
studied in the con#ext of (generalized) "geometric programming'. In particular,
existence, uniqueness and characterization theorems are obtained via the "duality
theory" of géometric programming by introducing appropriate "extremality con-
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ditions'" and their corresponding '"dual variational principles’” (sometimes

called "complementary variational principles'). These dual variational prin-
ciples and extrémality conditions also lead to-new computational algorithms that
show promise in the analysis of relatively large networks (such as those in
relatively large urban or metropolitan areas).

All of this is done for a relatively flexible model in which (1) each
"commodity" is permitted to preselect the only feasible "paths" (from its given
origin to its given destination) on which some of its input flow can be
assigned, (2) each link travel cost need only be nondecreasing and unbounded
from above as a function of the total traffic flow on the link, and (3) each
commodity input flow, as specified by the given commodity'’s travel-demand
(feedback) curve, need only be nonincreééing and not approach 4= without'its cor-
responding Wardrop-equilibrium origin-to-destination travel cost approaching -w.
Moreover, analogies are drawn with "monotone network problems” (which arise in
various physical contexts, sucﬁ:as the analysis of e€lectric and hyraulic net-
works; but invélve only a single commodity).

No prior knowledge of traffic equilibria, geometric programming, or monotone

network theory is required.
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1. Introduction. In studying the traffic-assignment problem we consider

“nulticommodity networks" (i.e. roadway networks) on which each commodity
(i.e. each traffic type as distinguished by origin, destination, and per-
haps other criteria, such as vehicle class) distributes its own input flow
(specified by its own travel demand) over certain preselected'fgasible nek-
work paths (subject of course to any capacity constraints) in such a way
that a Wardrop-equilibrium [41] is achieved. A Wardrop-equilibrium occurs
when the total origin-to-destination travel cost per unit of flow (e.g.

the total origin~-to-destination travel time [per unit of flow]) is the same
on each path used by a given commodity and is not greater than that on each
patﬁ feasible for but unused by the given commedity. In particular, we
suppose that éach network link contributes to each such cost per unit of
flow a term that (due to traffic congestion) is actually a nondecreasing
function of fhe total flow on that link and approaches: plus infinity at
the link's total capacity flow (which may itself be plus infinity).

This ‘multicommodity problem of prediéting Wardrop-equilibrium flows
(i.e. the traffic-assignment problem) is somewhat similar to, but more
complicated than, the single-commodity problem of predicting "equilibrium
flows on monotone networks” (e.g. "Kirchoff-Ohm equilibrium flows' on non -~
linear electric or hydraulic networks). -In fact, Charnes and Cooper [6]
have attempted to make appropriate extensions of the claésical variatioﬁal prin-
ciples [$9,10,3,21,2,34] that reduce such”single-commodity equilibrium pro-
blems to equivalent optimization problems: However, their exteﬁsions are at
best imprecise (e.g. vague assertions about how Wardrop-equilibria can be
treated as a special case of "Nash-equilibria'" are made without a definition
of the "game" under consideration). Moreover, the models treated are extremely

unrealistic (e.g. one-way streets are not included, and traffic on a given

two-way street must always experience the same flow "resistance" in both

directions). Although Dafermos and Sparrow [7,8] have made such extensions
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preciise and more realistic (without relying on game-theoretic COmGepts), a
more thorough study of the Wardrop-equilibrium problem is possible. However,
to carry out such a study with maximal simplicity and ease, the theory of
monotone networks should be generalized by replacing certain vector spaces
with (more general) polyhedral cones. Actually, the required generalization
is already available in the form of (generalized) geometric programming [25,26,
28,29,32].

In addition to relaxing some of the assumptions made by previous workers,
our approach to the Wardrop~equilibrium problem provides extra.insight and
additional algorithms via the modern duality theory ([14,25,26,28,29,32,35,36]
of mathematical pfogramming. In doing so, it also subsumes both the work of
Murchland [22] and the very recent work of Evans [12] by providing the first
reasonably definitive treatment of the most fundamental questions having to do
with the existence, uniqueness and properties of Wardrop-equilibria. Finally,
it should be noted that our approach is fundamentally different from that
taken By Rosenthal [37], which_emphasizes the game-theoretic aspécts of discrete
_iulticommodity networks on which each player céntrols an indivisible unit of flow. ”'?

In discussing the demand-equilibrium éroﬂlém Qe'éssumé iﬂ thé éongext of
the preceding Wardrop=-equilibrium problem that the input flow-of a given com-
modity (given by its own travel demand) is actually related via a given nonincreasing
travel-demand (feedback) curve to the resulting origin-to-destination travel
cost per unit of flow experienced by the given'commodity when the network is in
a state of Wardrop-equilibrium. In particular then, a demand-equilibrium occurs
when the network is in a state of Wardrop-equilibrium and the resulting origin-

to-destination travel cost per unit of flow experienced by a given commodity

produces via its own travel-demand curve the samé'iﬁﬁﬁfifldﬁ"éiféé&§»é§ecified
for the given commodity. It is, of course, clear that this demand-equilibrium
problem is far more complicated than the corresponding Wardrop-equilibrium pro-
blem; in fact, it is obvious that this demand-equilibtium problem reduces to

just the corresponding Wardrop-equilibrium problem when the travel-demand curves




are the graphs of constant functions.thaﬁ are identical to the specified input
flows. Nevertheless, the mathematics required to treat the demand-equilibfium
problem is no more sophisticated than that required to tkeat'the Wardrop-
equilibrium problem. Geometric programming does both jobs with eqmal ease.

It seems that the demand-equilibrium problem was first identified as
essentially a mathematical programming problem by Beckmann [1]. Although
Beckmann's work has spawned numerous papers on the algorithmic treatment of
more realistic models (as reviewed by Nguyen [23]), it seems that there has been
relatively little progress of a more fundamental nature. In fact, it secems
that this paper provides the first reasonably definitive treatment of the more
fundaméntal questions having to do with the existence, uniqueness and properties
of demand-equilibria -- a task that is carried out for even more realistic and
flexible models. In doing so, this paper also subsumes both the work of
Murchland [22] and the very recent work of Evans [12] by providing a more direct
and simple mechanism through which modern duality theory can be applied to the
sFudy of demand-equilibria. In addition to providing considerably more insigh;,
this mechanism also serves as the basis for a variety of new algorithms, somew
of which may be especially suited to the analysis of relatively large networks
(such as those in relatively large urban or metropolitan areas) when used in
conjunction with appropriate geometric programming "decomposition principles"
[27;28,31]. Finally, it should be noted that there are alternative:(nonprogramming)
approaches to the study of demand-equilibria -- the earliest ones having been ‘

summarized by Potts and Oliver [33], with the more recent ones having been sur-

veyed by Ruiter {38].

2. The Model. A roadway network can be conveniently representéduﬁ;ra-"directed
graph"” (consisting of "nodes"” and "directed links") on which there is multi-
commodity flow.

Each commodity (i.e. each traffic type) is associated with a (fictitious)

“retﬁrp link" over which only that particular commodity flows. Such a return

Y
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flow takes place only in the prescribed return link direction, which is of

course from the commodity's given destination (node) back to its given origin
(node). For the example network shown in Figure 1, there are a total of three
commodities: a single commodity with origin-fo-destination pair (1,5) has
return link 1, and tﬁo commodities with the same origin-to-destination pair

(2,5) have return links 2 and 3 .

Figure 1.

We show the return links of the network with broken lines and the "real 1links"
with unbroken lines. Each real link represents a collection of unidirectional
lanes over which any of the given commodities might flow from a certain inter-
section (node) to an adjacent intersection (node). Such a (multicommodity)
flow can take place only in the prescribed real link direction, whi¢h is of
course dictated by local trafficlregulafions. For the example network shown
in Figuré 1, flow can take place on real link 5 only from node 1 to node 3;
etc. Thus, two-way streets are represented by at least two real links.

In the most general model to be studied here, we consider a directed graph

with a.total of n links. In particular,

the return links are numbered 1,2,...,r,

and

the real links are numbered r+1, r+2,...,n.

.

Hence, there are a total of r commodities and a total of (n-1r) real links
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over which the r commodities can flow. For convenience we number the r com-

modities so that
commodity i has return link i for i=1,2,...,r.

With each commodity i is associated the family of all possible "paths" over
which that.particular commodity might conceivably flow (over real links from
its given origin to its given destination). TFor the example network shown in
Figure 1, the family of all possible paths over which commodity 2 might con-
ceivably flow consists of: the path over links 4,5, and 10; the path over links 4,
" 75 and 11; the path over links 4,7,9, and 10; the path over links 8,9, and 10; and
the path over links 8 and 1l1l. Note, however, that links 8,9,6,8, and 11 do not
constitute such a path; the reason is that a path (by definition) can not "cross"
itself, This rejection of such possible 'routes! is realistic because a commodity

‘would obviously be foolhardy to follow one of them. Moreover, it is clear that a

given commodity's possible route family is finite if and only if it includes

only paths, in which event it is of course identical to the given commodity's

possible path family. Since a possible path family is obviously always finite,

and since a possible route. family is clearly almost always infinite, this
rejection of possible routes that are not paths is also a mathematical nicety.

Needless to say, we assume that the network is sufficiently "connected” to

guarantee that the possible path family for each commodity i is not empty.

It is obvious that two or more different commodities exhibit the same
possible path family if and only if they have the same origin and destination.
For the example network shown in Figure 1, commodities 2 and 3 (and only com-
modities 2 and 3) exhibit the same possible path family (the one enumerated in
the preceding paragraph). To eliminate this ambiguity, each possible path is
extended into a possible "circuit" by appending to each such path the given

commodity's return link. For the example network shown in Figure 1, the
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possible path over links 8 and 11 is extended into the possible circuit around
links 8, 11, and 2 when it is to be associated with commodity 2, but is extended
into the possible circuit around links 8, 11, and 3 when it is to be associated
with commodity 3. Naturally, the family of all circuits obtained Sy appending

a given commodity's return link to the end of each of its possible paths is

termed the commodity's possible circuit family.

There are numerous reasons why a given commodity usually eliminates from
consideration some of the paths (circuits) in its possible path (circuit)
family. For example, a complete scanning of them all might be unrealistic for
even moderate sized networks (as found in moderate sized urban or metropolitan
areas); in which event only those that seem to show the most promise of being
reasonably "short! can actually be considered. Moreover, local traffic reg-
ulations may not pergit a given commodity (i.e. a given traffic type, such as
trucks) on certain real links; in which event only those of its possible paths
that do not include such real links can actoally be coﬁsidered. .Finally, other
factors (such as personal safety, driving pleasure, etc.) may cause a given
commodity to eliminate some of its possible paths from further condideration.

In any event, we assume that each commodity i selects at least one of its pos-

sible paths for further consideration; and we term the resulting (not necessarily

proper) subfamily of its possible path family its feasible path family. Need-

less to say, we also term the corresponding subfamily of its possible circuit

family its feasible circuit family.

For our purposes, the most convenient way to represent a path (circuit)
is to first associate each network link k with the k'th component of the vectors
in n-dimensional Euclidean space En. Then, a given path (circuit) can be
represented by the vector whose k'th component is either 1 or 0, depending
respectively on whether link k is or is not part of the given path (circuit).

For the example network shown in Figure 1, the possible path over links 8 and
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11 is represented by the vector (0,0,0,0,0,0,0,1,0,0,1) in E Moreover,

11°

its extension to the corresponding possible circuit around links 8, 11, and 2

for commodity 2 is represented by the vector (0,1,0,0,0,0,0,1,0,0,1) in Ell’

while 1its extension to the corresponding possible circuit around links 8, 11,
and 3 for commodity 3 is represented by the vector (0,0,1,0,0,0,0,1,0,0,1) in
E11.

In the most general model to be studied here, we suppose that commodity

i has a nonempty feasible circuit (path) family that is enumerated by the integer

index set
[i]é{mi,mi'l-l,...,ni} for i=1,2,...,r,
where

= = . = A
1 mlsnl, n1+1 mzsnz, ceey nr_1+1 mrsnr=m.

Thus, there fs a total of m feasible circults over which traffic can flow; and
given a feasible circuit j (namely, an integer in the circuit index set
{1,2,...,m}) there is a unique commodity i (in the commodity index set {1,2,...,r})
such that j € [i], which means that commodity i f{and only commodity i) flows

over the feasible circuit j. Moreover, the vector 5 representing a given

feasible circuit j has components

1 when k =that i for which j € [i]
0 when k # that i for which j€ [i] but 1sk<sr
1 when r4#1<ks<n and real link k is part of circuit j

0 when r+1<k<n and real link k is not part of circuit j

Now, a _possible circuit flow is just a vector

z€EE
m

whose j'th component z:,| is simply the input flow on circuit j of that commodity

i for which j € [i]. Since each commodity can flow only in the given link
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directions, it is obvious that each possible circuit flow z must also satisfy

the (vector) inequality

z20, @

Of course, each such z generates a possible total flow

m
>:é 2 z.5
j=1 4

Jeg )
n

whose k'th component X is clearly the resulting total flow of all commodities
on link k for k=1,2,...,n.
Given that
di is the total (non-negative) input flow of commodity i

and that

bk is the total capacity of real link k (which may be+e),

a feasible circuit flow is just ‘2 possible circuit flow z that generates a feasible

total flow x, namely, a pogsible total flow x such that

x, =d for k=1,2,...,r 3
while

Osxk<bk for k=r+1l,r+2,...,n. @)

(Even though conditions (1) and {2) clearly imply that the inequality 0<x in
condition (4) is redundant, it is explicitly included to indicate the interval
over which certain cost functions N of X, are to be defined.) Although a

given feasible circuit flow z generates a unique feasible total flow x, it is
obvious that a given feasible total flow x can generally be generated by more
than a unique feasible circuit flow z; in fact, the set of all such feasible
circuit flows z is clearly identical to the set of all solutions z to (the linear)
-conditions (1-2).

It is worth noting that the preceding definition of feasible flows (as



-95

well as all definitions and theorems to follow) does not invoke "'nodal con-
servation laws" -- though it is easy t6~see that such laws are in fact im-
plicitly satisfied. Actually, all roadway network mddels that are explicitly
based on nodal conservation laws (in fact, many previous roadway net-

work models) are erroneous in a very fundamental way . For example, although
a flow (0,0,0,1,1,1,0,0,0,0,0) of commoditf 1 on the network shown in Figure 1
obviously satisfies the nodal conwervation laws, it is clearly in no real
sense a feasible commodity flow. It is fortunate though that such extraneous
flows are automatigally eliminated by certain Wardrop-equilibrium solution
techniques when the travel cost per unit of flow on each real link is strictly

positive -- as demonstrated in [18].

On each real link k we suppose that the travel cost per unit of flow
(e,g. the link's node-to-node travel time [per unit of flow]) perceived by each
commodity i is & positive nondecreasing function Sy (of only the total flow xk)

that is continuous at. 0 and approaches += at bk; that is,

(1-511) ck(x.k)Sck(xl'{) when Os.xk5x1'<<bk for - k=r+l,r+2,...;n,

(Hz) 0<ck(0)= 1i-1)no+ck(xk) for k=r+l,r+2,...,n,
(H3) li?b_ ck(xk)==+m for k=r+l,r+2,...,n.
k

Needless to say, none of these hypotheses (H) are very restrictive in the con-

text of roadway networks.

2.1. Wardrop-equilibria. We assume that the (real link) capacities bk are
sufficiently large to handle the commodity input flows dk; that is, we assume

that there exists at least one feasible circuit flow z. Actually, for non-

trivial roadway networks of practical interest, there are usually infinitely
many feasible circuit flows z.
By definition, the only feasible circuit flows z that place a given roadway

network in a state of Wardrop-equilibrium are those z that generate a feasible
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, . 7 .
- total flow x for which there ate both (fictitious) return link travel revenues

per unit of flow

EEl for k=1,2,0c04,T (5a)

and real link travel costs per unit of flow

yk=ck(xk) for k=r+l,r+2,...,n (5b)

such that the resulting revenue-cost per unit of flow vector

y = (Yl:yz, bl -,Yn)

satisfies the following “inner product" conditions

. =0 if z,>0
(s7,v) . for 5=1,2,...,m. - (6)

=20 if zj=0
To properly interpret the preceding definition, note from the defining
formula for the feasible circuit vectors 6j that condition (6) simply asserts
the following traffic situation: for each of the feasible ciréuits actually
used by a given commodity i (namely, each circuit j €[i] for which zj>>0) the
total origin-to-destination travel cost per unit of flow is the same, in fact,

just -y (the negative of the corresponding "return link travel revenue per

unit of flow" yi), which in turn does not exceed the total origin-to-destination

travel cost per unit of flow for each of the feasible circuits not used by the
given commodity i (namely, each circuit j € [i] for which zj==0).

Each vector z that satisfies conditions (1-6) is termed a Wardrop-

~equilibrium circuit flow, and each such flow z generates a Wardrop-equilibrium

total flow x via equation (2). Although a given Wardrop-equilibrium circuit
flow z generates a unique Wérdrop-equilibrium total. flow x it is obvious
that'a given Wardrop-equilibrium total flow X can generally be generated

by more than a unique Wardrop-equilibrium eircuit fléw z; in fact, the

set of all such Wardrop-equilibrium circuit flows z is clearly identical to
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the set of all solutions z to both ,(the linear) conditioms. (1-2) and the

"complementary slackness™ conditions

e e S U
o e

ol oY e ! Sy

either (GJ,y> =0 -or zj =0 for ji=1,2,...,m. V)

There are roadway networks that satisfy our basic hypotheses (H) and for

which there are feasible circuit flows z but for which.there are no Wardrop-

equilibria. A simple example is described by Figure 2,

-2 ~
>—

6 for Osx2<1

d. =4 c2(x2) = 7 for 15x2<5 c3(x3) =

6.5 for OSx3<5

: o 1.5+x3 for -53x3
_2-5"x2 for S'S'x_z : - :

Figure 2.

at x, =1 seems to cause the lack

Note that the lack of continuity of <, 2

of Wardrop-equilibria for the preceding example., Actually, continuity of all

cost per unit of flow functions c, is, in general, sufficient to guarantee the

k
existence of Wardrop-equilibria -- a fact that turns out to be a corollary to
a more general existence theorem.

The more general existence theorem is concerned with (Wardrop) "quasi-
equilibria”, which seem relevant to the prediction of traffic on roadway networks
with discontinuous cost per unit of flow functions Cyo and which coincide with

Wardrop-equilibria in the case of roadway networks with continuous c Although

K
.all models known (by us) to be in usc by traffic scientists and engineers

involve continuous Cyo we wsuspect that in many cases more accuracy could be

obtained by modeling with discontinuous c For instance, link 2 of the net-

ka

work described by Figure 2 may model a roadway artery with two traffic control

e g o o e
- i
i

————— g



=12~

lights that are syn‘chfonized and timed relative to the speed limit in such a
way that: when x2<1 each vehicle moves at the speed limit and is stopped by
only one of the lights; when x2>1 each vehicle moves at less than the speed
limit (due to congestion) and is stopped by both lights; when x2=1 some

vehicles are stopped by only one of the lights while other vehicles are stopped

by both lights.

2.2, Quasi-equilibria. To define quasi-equilibria, we first imitate the

theory of monotone networks [21},2,34] by embedding the graph of each cost per
unit of flow function ¢, in a {continuous)- "complete nondecreasing curve’
A . _ s
I"k= {(xk,yk) |e1ther X 0 and Vi S lim + ck(Xk)’ or

Xk-'O' ‘

0<x <b, and lim _ ¢ (x) < ¥, $ lim ck(Xk)} for k=r+l,r+2,...,n.
X~ ¥k e ¥y

Each curve 1"k is "nondecreasing” in the sen.se that, for each (xk,yk) ef‘k, and
ea,.chl"(x.;c,yl't)e I"k, either x.ksx.k'c and yksyll’ or xl'csx_k and yi{s;rk. Each
nondecreasing curve Fk is "complete" in the sense that it cannot be embedded in
a (properly) larger nondecreasing curve. {(In general,‘ a complete nondecreasing
curve [' can be described geometrically as an infinite continuous curve that crosses
each of the lines with slope -1 exactly once.)

It is natural to treat each 1"k as a multivalued or point~to-set function

v, on [0,b,) with functional values

A
vy () = {yk | (x,,7,) erk} for each x € [0,b,) - for k=r+l,r+2,...,n,

each of which is a nonempty closed interval. For a given xkE (O’bk) the set
yk(xk) is a singleton {yk} if and only if the cost per unit of flow function Cx

is continuous at Xy in which case yk=ck(xk). Thus, 1if N is continuous on [O,bk)
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then R differs from Vi only in that yk(O) ={y sck(O)}, a mathematical dif-

k
ference that turns out to be inconsequential in the determination of Wardrop-
equilibria from quasi-equilibria.

By definition, the only feasible circuit flows z that place a given roadway

network in a state of quasi-equilibrium are those z that generate a feasible

total flow x for which there are both (fictitious) return link quasi-revenues

per unit of flow

Vi EEl for k=1,2,.0.,T (5a'")

and real link quasi-costs per unit of flow

ykGyk(x.k) for k=r+l,r+2,...,n (5b")

such that the resulting quasi-revenue-cost per unit of flow vector

Y=y sTgseeesy)
SAtisfies the following inner product conditions
=0 if z,>0
(éj,y> ’ for j=1,2,...,m (D)
20 ifzj=0
To properly interpret the preceding definition, note from the defining for-
mula for the feasible circuit vectors 5j that condition (6') simply asserts the
following traffic situation: for each of the fleasible circuits actually used by
a given commodity i (namely, each circuit j € [i] for which zj:>0) the total
origin-to-destination guasi-cost per unit of flow is the same, in fact just -y:,L
(the negative of the corresponding "return link quasi-revenue per unit of flow"
yi), which in turn does not exceed the total origin-to-destination duasi-cost
per unit of flow for each of the feasible circuits not used by the given com-

modity i (namely, each circuit j € [i] for which zj =0).
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Each vector z that satisfies conditions (1-4,5',6') is termed

a quasi-equilibrium circuit flow, and each such flow z generates a quasi-equilibrium

total flow x via equation (2). Although a given quasi-equilibrium circuit flow

z generates a unique quasi-equilibrium total flow x, it is obvious that a given qﬁasi-
equilibrium total flow x along with the corresponding quasi-revenue-cost per unit

of flow vector y can generally be generated by more than a unique quasi-equil{brium
circuit flow z; in fact, the set of all such quasi-equilibrium circuit flows z

is clearly identical to the set of all solutions z to both (the linear) conditions

(1-2) and the complementary slackness conditions

either (éj,y) =0 or zj*=0 for 5=1,2,¢00,m. a")

It is easy to show that each Wardrop-equilibrium flow is a quasi-equilibrium

flow and that, when all cost per unit of flow functions ¢, are continuous, each

k

quasi-equilibrium flow is a Wardrop-equilibrium flow. However, if at least one

¢, 1s discontinuous, there can be quasi-equilibrium flows that are not Wardrop-

k

equilibrium flows. For instance, the roadway network described by Figure 2

clearly has a (unique) quasi-equilibrium flow x* =z* = (4,1,3) even though we
have already—noted that it has no Wardrop-equilibrium flow. Actually, in view

of our previous interpretation of the discontinuity of c, in terms of traffic-

2

control lights, it certainly seems reasonable to expect that (4,1,3) constitutes

a (stable) traffic equilibrium. 1In any event, we shall henceforth be concerned

(without any loss of generality) with the existence and properties of quasi-

equilibria,

2.3. - Demand-equilibria. We now suppose that the input flow di of a given

commodity i is not necessarily fixed, but is instead related via a given complete
nonnegative nonincreasing (feedback) curve to the origin-to-destination quasi-
cost per unit of flow Y experienced by the given commodity i when the net-

work is in a state of quasi-equilibrium. In essence then, we suppose that
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each d. is related via a complete nonnegative nondecreasing curve to its cor-

responding return link quasi-revenue per unit of flow y; . Since it is not
difficult to see that each complete nondecreasing curve has an "inverse"

that is also a complete nondecreasing curve, we can equivalently suppose that

each Yi is related via a complete nondecreasing curve

(H,) é
fi to its corresponding di’ -
where
the "domain" of each such Iy is a (not necessarily proper) sub-
(He)
5

interval Ii of the interval of all nonnegative real numbers.
Moreover, we also suppose that

the "range" of each such [} consists of all real numbers
¢:! {equivalently, a given dg does not approach += without its

corresponding ¥y approaching +w)

Needless to say, none of these hypotheses (H) are very restrictive in the con-
gext of roadway networks.

As with each real link curve Fi, it is natural to treat each return link
curve I as a multivalued or point-to-set function \f on Ii with function-

values

Yy (d )__{y l(d.,y ) €T, } for each d EI for i=1,2,.40,T,

each of which is a nonempty closed interval. For a given di.EIi the set yi(di)
is a singleton {yi} if and only if the "travel demand” from commodity i results
in the given input flow di for only a single origin-to-destination quasi-

cost per unit of flow Vi

By definition, the only feasible circuit flows z that place a given road~

way network in a state of (qua314)deman&wequnllbrlmm are those z. that generate.a

e e ~ - [

feasible total flow x with correspondlng fea51b1e 1ngut flgg

xk=dk€1k for k=1,2,...,r

e A e e e R o Ce mrm s TR
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for which there are both (fictitious) return 1ink quasi-revenues per unit’ of &

.

fiow

yk(-'yk(dk) for k=1,2,...,T (5a"}

and real link quasi-costs per unit of flow

¥y €v, () for k=r+l,r+2,...,n (5p")

such that the resulting quasi-revenue-cost per unit Oof flow vector

Y = (yl3Y23 LI ':Yn)

satisfies the following.innexr product conditions

0 if zj:>0 .
.<6J,y> for i=1,2,...,m, 6"
>0 1if zj=0

To properly interpret the preceding definition, note that it differs from

the definition of quasi~equilibria only in that the input flows d., can now vary
i

over Ii’ and the symbol E, in condition (5a') has been replaced by the symbol

1

(di) in condition' (5a"). Consequently, a demand-equilibrium occurs when the

network is in a state of quasi-equilibrium and the input flow di of a given com-
modity i is related via its own travel-demand curve I to the resulting origin-
i

to-destination quasi-cost per unit of flow -y, experienced by the given commodity
i

le
Each vector z that satisfies conditions (1,2,3",4,5",6") is termed

.a demand-equilibrium circuit flow, and each such flow z generates a éemand-equilibrium

b

totap flow x via equation (2). Although a given demand-equilibrium circuit flow
z generates a uniqué~ﬂemand-equilibrium tetal.fIOW‘x, it 1s obvious that a given

demand-egulllhrvnm total flow x along w1th the correspondlng quaSL-reve“ue-

cost per unit of flow vector y can generally be generated by more than a unique
demand-equilibrium circuit flow z; in fact, the set of all such demand-equilibrium :
circuit flows z is clearly identical to the set of all solutions z to both (the linear)

conditions (1-2) and the complementary slackness conditions -
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either (67,y) =0 or 2,20 for  j=1,2,...,m. "

It is, of course, clear that the problem of predicting those guasi-eguilibriurﬁ'
flows that result from fixed input flows dk is a _special case of the problem of

predicting demand-equilibrium flows -- the case in which each return link function

vy Simply has a singleton domain {dk} and a single function value vy, (d,) =E,

for k=1,2,...,r. Consequently, we shall henceforth concentrate (without any

v

loss qf generality) on the existence and properties of demand-equilibria.

3. The Key Characterization. First, we consider the irreducible commodity

. +
Ié{i |1<is<r and I, contains at least ome number di>0}

and the (resulting) irreducible circuit (path) family

s8u1i].
1

If I (and hence J) is empty, it is clear that the only feasible circuit flow
z;O places the given network in a state of demand-equilibrium (with a feasible
total flow x=0 and a [rather meaningless nonunique] corresponding quasi-revenue-
cost per unit of flow vector y with components yk=1 for k=1,2,...,r,. and

yk=ck(0) for k=r+1l, r+2,...,0). Consequently, we shall henceforth assume

(without any real loss of generality) that I (and henc® J) is not empty.

Now, we incorporate the feasibility conditions (1,2) into a set
Xé{x=2 z,57 | z, 20 for j€J}, (8)
7 3 j
which is obviously a "convex polyhedral cone generated by" the irreducible circuit

(path) vectors 6J, j€J. We also introduce its '""dual cone'"

Yé{y EEn |0 <{x,y) for each x €X}, (9a)
which clearly has the representation formula

Y={y €5_|0<(s7,y) for each j€J}. (96)
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This representation formula (9b) shows that Y is also a convex polyhedral cone:®
(whose generators can be computed in any given situation with the aid of a
linear-algebraic algorithm due to Uzawa [40]).

By définition, the network-equilibriuw conditions (for the general

demand-equilibrium problem) are:

(1) x €X and v €Y
(11 0 ={x,y)
(111) Vi Eyk(xk? for k=1,2,...,n.

Each vector (x,y) that satisfies these conditions is termed a network-equilibrium

vector.

The following theorem is the key to almost everything that follows.

Theorem 1. Each demand-eguilibrium total flow x along with the corresponding

quasi-revenue-cost per unit of flow vector y produces a network-equilibrium vector

(x,y). Conversely, each network-equilibrium vector (x,y) produces a demand-

equilibrium total flow x along with a corresponding quasi-revenue-cost per unit

of flow vector y.

Proof. First, note from the defining equation €8) for X that conditiomns (1,2,3",4,5")
are equivalent to thg firs;,ggg;,of‘cdndition (I) and all of condition (III).
Consequently, we <¢an- complete our proof by showing that éondition (6") is equivalent
to the second part of conditibn.(I) and condition (II).

Toward that end, simply note from the defining equation (8) for X that
<X,Y> = 2 Zj <6J,Y> for x €X. (10)
J

It is then an immediate consequence of this identity (10) that condition {(6")
implies the second part of condition (I) and condition (II). On the other hand,
it is an immediate consequence of the representation formula (9b) for Y and this
identity (10) that condition (6") is also implied by the second part of conditioﬁ

(I) and condition (II).




-19-

It is, of course, a consequence of (the key) Theorem 1 that we can hence-

forth concentrate (without any loss of generality) on the existence and properties

of network-equilibrium vectors {(x,y). There are at least two reasons why such

a concentration pays extremely high dividends: 1. the network-equilibrium
conditions (I-II1) are mathematically simpler than the demand-equilibrium con-
ditions (1,2,3",4,5",6"), in that the latter also explicitly involve demand-
equilibrium circuit flows z; and 2. the network-equilibrium conditions (I-III)
turn out to be essentially the "extremality conditions" for (generalized) geometric
programming and hence provide a mechanism through which the powerful theory of
(generalized) geometric programming can be applied to the study of traffic
equilibria.

The next section is devoted to actually constructing those geometric pro-
gramming *"dual problems" whose corresponding extremality conditions coincide

with the network-equilibrium conditions (I-III).

4., Dual Variational Principles. Imitating the theory of monotone networks, we

first "integrate'" each complete nondecreasing point-to-set function Yie* We
do so by computing the (Riemann) integral of any real-valued (point-to-point)
function C, whose domain coincides with the domain of vy, and whose function

values Ck(xk) EYk(xk). Of course, for k=r+l,r+2,...,n, the given real link

travel cost per unit of flow function ¢, is a legitimate choice for ¢ In any

k k’
event, our monotonicity hypotheses (Hl) and (H4) along with monotone function

theory guarantee that such integrals exist and do not depend on the particular
functione-value choices Ok(xk) Gyk(xk). Consequently, we denote such integrals
by the symbol yk(s)ds even though Yy is generally not a real-valued functiom.

Our monotonicity hypotheses (Hl) and (H4) along with monotone function

theory also guarantee that each such integral kayk(s) ds gives a "convex function”

gk whose domain
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]
i

the (interval) domain of Vi
along with any endpoint e not in
the domain of Vi but for which the (11a)

) ) ®k
improper integral yk(s)ds converges,

and whose function-values
A l.k
gk(xk)' (yk(s)ds (11b)

where
o is any convenient point in the domain of Yi
for which O Eyk(ak) (the existence of such an
% being guaranteed by hypotheses (HZ) and (H6), (11c)
with hypothesis (Hz) actually implying that

ka=0 for k=r+l,r+2,...,n).

Each such convex function g, is known to be '"closed" in that its "epigraph"
. A
(epi gy) = {(xk,}'k) EE2 [ X, ECk and gk(xk) syk}

is a (topologically) closed subset of E2.
On the other hand, each closed convex function 8y with domain Ck:;E1 has

a (point-to-set) "subderivative'" function 08, with function-values

38, () & {y, |8, (x) +y, (x - x) g, () for each x! €C 1,

at least one of which is nonempty. Needless to say, subderivatives are actually
generalized derivatives -- in that a convex function = with domain CkEZE1 is
differentiable at a point xk_GCk if and only if agk(xk) is a singleton {yk},

in which case the derivative gﬁ(xk)==yk. However, for our purposes, the key

fact is that the subderivative function agk for an arbitrary closed convex

function 81 with domain CkS:E1 is a complete nondecreasing point-to-set function
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(corresponding to a complete nondecreasing curve) -- whose integral is just
8 (plus, of course, an arbitrary "constant of integration"). In particular

then, the defining equations (11) for our functioms gy imply that

the domain of v, is identical to the set of all
k
(12a)
points x_ for which.agk(xk) is not empty,

and

-yk(xk)==agk(xk) for each X, in the domain of Vic* (12b)

The reader is probably already familiar with the more special relation
between (complete) nondecreasing continuous real-valued functions Y and their
{closed) convex differentiable integrals 8y Although a proof for the more
general relation just described herein is not difficult, it is omitted because
of its lengthiness and the fact that it can be found in [34]. However, as a
simple (but important) example of the more general relation, note that when
yk_has a singleton domain {dk} and a single function-value yk(dk)==El, the integral
8y also has the singleton domain {dk} but the single function-value gk(dk) =0;
from which it is obvious that agk(dk)==El.

The optimization problem that serves as thebbasis for one of our dual

variational principles involves the functions 8y in the guise of a function g

whose domain

ne>
X3
[@

(13a)
and whose function-values

n R
gx) 2 T g (x). (13b)
1

For obvious reasons this function g is said to be "separable"” into the functions

Moreover, it is not difficult to show that g inherits the convexity and

gk.
closedness of the 8y -

From the cone X and the function g we now construct the following
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optimization problem.

Problem A. Using the "feasible solution” set
sfxne,
calculate both the "problem infimum'
= inf g(x)
x €S

and the "optimal solution" set

S*Q{xes [8=g(x)].

The fact that X is a cone means that problem A is a (generalized) "geometric

programming problem”. (Justification for this terminology is given in [28,29,32]).

Moreover,-the fact that X is actually a convex polyhedral cone and the fact that

g is a closed convex separable function imply that problem A is a closed convex

separable programming problem with {essentially) linear constraints.

It is, of course, obvious that each feasible total flow x is also a feasible

solution to problem A. On the other hand, it is clear that problem A can have

a feasible solution x that is not a feasible total flow only if C., is actually

k

larger than the domain of v, for at least one k.

Imitating the theory of monotone networks, we also integrate each complete

nondecreasing point-to-set "inverse function" y;l, whose function-values
v ) 8% | (x,,y,) €T} for each y, €E for  k=1,2 n
Yo Yid = el Sk k-1 23 0 m ool

each of which is a nonempty closed interval. 1In particular, each integral

Jyky;l(t) dt gives a closed convex function hk whose domain

D, =E
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and whose function-values

Y
Ak -1
b ) 2 [ Syt (orae. (14b)
0
Naturally, each such hk has the property that
ylzl (yk) =ahk(yk) for each Vi in El. (15)

As a simple (but important) example, note that when Yic has a singleton domain
- . . - . . -1 .
{dk} and a single function-value yk(dk) El’ its inverse Yy has domain E1 and
. -1
a constant function-value vy, (yk) E{dk}, so Dk=E1 and hk(yk) =dy,; from which it
is obvious that dh, (y,) = {hf{(yk)} = {dk}.
The optimization problem that serves as the basis for our other dual

variational principle involves the functions hk in the guise of a function h

whose domain

>
= X3
=~

k | (16a)
anﬁ whose function-values

4

h(y) hk(yk) . (16b)

~ s

Of course, this function h is separable, and h inherits the convexity and

closedness of the hk.

From the cone Y and the function h we now construct the following optimization

problem.

Problem B. Using the feasible solution set

12yno,

calculate both the problem infimum

Y2 inf n(yy
y €T
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and the optimal solution set

T*8(y €T | ¥ =h(y) ).

The fact that Y is a cone means that problem B is a (generalized) geometric

programming problem, Moreover, the fact that Y is actually a convex polyhedral

cone and the fact that h is a closed convex separable function imply that problem

B is a closed convex separable programming. problem with (essentially) linear constraints.

Problem B has important features not possessed by problem A. In particular,

note that relations (14a) and (16a)- imply that .
D=En, a7n

which in turn clearly implies that

T=Y.

Since each cone Y contains at least the zero vector, we infer that problem B has

at least one feasible solution (even when problem A has no feasible éolutions).

We shall eventually see that "geometric programming duality theory" re-
duces the study of traffic equilibria to a study of either problem A or problem
B. Actually, we shall then see that probléms A and B should be studied simultaneously
in order to provide the most insight into traffic equilibria., In essence,
problem A describes traffic equilibria entirely in terms of total flows x, while
problem B describes traffic equilibria entirely in terms of quasi-revenue-cost
per unit of flow vectors y.

An important ingredient in our simultaneous study of problems A and B is

the fact that the cones X and Y defined by equations (8) and (9), respectively,

constitute a pair of (convex polyhedral) "dual cones'; that is

t={y €E_|0<(x,y) for each x €X}, (18)
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while

X={x ezn'} 0 <(x,y) for each y €Y}. (193

Of course, equation (18)'is just a repetition of the defining equation (9a) for

Y; ané it is obvious from equation (18) that X is a subset of the right=hand

side of eqﬁation (19). To show in turn that the right-hand side of equation (19)
is a subset of X, and hence establish equation (19), simply use the representation
1formu1a (9b) for Y in conjunction with both the "Fafkas lemma" [11] and the

defining equation (8) for X.

Another important ingredient in our simultaneous study of problems A and

B is the fact that the functions 8 and hk defined by equations (11) and (14),

respectively, constitute a pair of (closed convex) “conjugate functions"; that is,

Dk=={yk [ sup [ykxk-gk(xk)] is finite} (20a)
X ECk .
and-
h &)= sw [yx -g (x)], (20b)
x €Cy
while
Ck=={xk | sup [xkyk-hk(yk)] is finite} (21a)
Vi € Dk
and
g (%) = swp [xy, -h )], (21b)
Yy € Dk

It is obvious from the defining equation (14a) for Dk that equation (20a) can be
established simply by showing that Dk(i.e. El) is a subset of the right-hand
side of equation (20a). To do so, first observe from our hypotheses (H3) and (H6)

along with the defining formulas for Yi that for a given Vi in Dk (i.e. El) there



-26~

exists at least one X, in the domain of Yy such that Vi is in yk(xk). Now,
observe from equation (12b) that such a Vi must also be in agk(xk), which in

turn implies via an elementary manipulation of the defining inequality for

38, (x,) that

sup [y, %, -g (x)] ={y, % -2, ()]
x €€
In addition to showing that Yy is in the right-hand side of equation (20a) and
hence establishing equation (20a), the preceding displayed equation also

establishes equation (20b). The reason is that the defining equations (11) and

(14) for gk(xk) and hk(yk), respectively, imply that

(i.e. the [signed] area XY of the rectangle with sides [O,Xk] and [O,yk] is
the sum of the [signed] areas gk(xk) and hk(yk) w#en i Eyk(xk)).A Similar,
though somewhat more complicated, steps can be used to establish equations (21a)
and (21b). However, for complete proefs of both equations (20) and equations
(21) in increasing degrees of generality see [4,9,34].

It is also important to know that the functions g and h defined by equations

(13) and (16}, respectively, inherit the conjugacy of the 8 and_hk; that is,

D={y €E_ | sup [(y,x) -g(x)] is finite} (22a)
x €C
and
hiy) = sup [({y,x) -g(x)], (22h)
x €C
while
c={x €E_ | sup [{x,y) -h{y)] is finite } (23a)
vy €D :

and
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g(x) = sup [{x,y) -h(@]. (23b)
y €ED. :

In fact, it is easy to see that equations (13), (16), (20) and (21) imply
equations (22) and (23).
The most fundamental properties of problems A and B are not induced by
the special nature of readway networks -- only by the (conical) duality of X
and Y and the (functional). conjugacy of g and h. We henceforth concentrate on
such properties [28,29], ;ome of which also depend on the separability of g and h.
Notice how probtem B can be obtained directly from problem A: simply
replace the convex polyhedral come X with its {convex polyhedral) "dual" Y,
and replace the closed convex separable function g with its (closed convex
separable) '"conjugate transform” h. The symmetry of (conical) duality demon-
strated by equations (18) and (19) together with the symmetry of (functional)
conjugacy demonstrated by equations (22) and (23) imply that the prgblgn
obtained by applying the same transformation to B is again A. This symmetry
justifies the terminology "({geometric) dual.problems" for problems A and B Need-
less to say, it also induces a symmetry on the theory that relates A to B -- in

that each statement about A and B (whose proof uses only the duality of X and

Y together with the conjugacy of g and h) automatically produces an equally

valid "dual statement! about B and A (obtained by interchanging the symbols X

and Y, the symbols € and D, and the symbols g and h). However, to be concise,

each dual statement will be left to the reader's imagination.

Unlike the usual min-max formuiations of duality in mathematical pro-
gramming (e.g. in linear programming), both problem A and its dual problem B are
minimization problems. The relative simplicity of this min-min formulation
will soon become clear, but the reader who is accustomed to the usual min-max

formulation must bear in mind that a given duality theorem generally has slightly

different statements depending on the formulation in use. In particular, a
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theorem that asserts the equality of the min and max in the usual formulation
asserts that the sum of the mins is zero (i.e. #+Y=0) in the present for-
mulation. (The reader interested in the precise connections between the various
formulations c;f duality in mathematical programming should consult [26] and
the references cited therein).

By definition, the "extremality conditions" (for separable geometric pro-

gramming) are:

(69) x€X and vyEY
(I1) ' 0 ={x,y)
(I11) ykeagk(xk) for k=1,2,¢..,0

Each vector (x,y) that satisfies these conditions is termed an extremal vector.

From equations (12) we immediately see that each network-equilibrium vector

(x,y) is an extremal vector, and each extremal vector (x,y) is a network-

equilibrium vector. Consequently, we can henceforth concentrate (without any

loss of generality) on the existence and properties of extremal vectors (x,y).

The main reason for doing so is that the following powerful theory of (generalized)

geometric programming is particularly suited to the study of extremal vectors.

5. Duality Theory. Proofs for the most fundamental dualit}:f theorems actually

exploit the conjugacy of g and h indirectly via the following (Young-Fenchel)

"conjugate fnequality"”
(x,y) <g(x) +h(y) for each x€C and each y €D.

This inequality is an immediate consequence of either equations (22) or equations
(23); and its equality state can be conveniently characterized in terms of the

"subgradient"” set

dg(x) Sfy € E |g&) +{y,x' -x) <g(x') for each x'€C].
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In particular, elementary (algebraic) manipulations of the defining inequality
for dg (x) show that y €D and (x,y) =g(x) +h(y) when y€3g(x). On the other

hand, equally elementary (algebraic) manipulations show that y € dg(x) when

{x,y) =g (x) +h(y). Hence,
(x,9) =gx) +h(y) if and only if y€3g(x);
from which it follows via the symmetry of (functional) conjugacy that
y€3g(x) if and only if x€3h(y).

Finally, in the event that g and h are separable (e.g. in the present road-

way network case), it is clear that
y€3g(x) 1f and only ;’.f ykéagk(xk) for each k=1,2,...,n;
and it is, of course, equally clear that
yk_Eagk(xk) if and only if XkEBhk(yk) for k=1,2,...,n.

The following duality theorem relates the dual problems A and B directly
to the extremality conditions (I-III) -- and hence to traffic equilibria.

This theorem is also basic to all succeeding duality theorems.

Theorem 2. If x and y are feasible solutions to the dual problems A and B

respectively (in which case the extremality conditions (I) are satisfied), then

0<g(x)+h(y),

with equality holding if and only if the extremality conditions (II) and

(I11) are satisfied; in which case x and y are optimal solutions to problems

A and B respectively.
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Proof. The defining inequality for Y and the conjugate inequality for h show
that 0 s{(x,y) <g(x) +h(y), with equality holding in both of these inequalities
if and only if the extremality conditions (II) and (III) are satisfied; in
which case a subtraction of the resulting equality 0 =g(x) +h(y) from each

of the inequalities 0 <g(x')+h(y) and 0<g(x) +h(y") (which are valid for
arbitrary feasible solﬁtions x' and y') shows that x and y are actually

optimal solutionms. q.e.d.

The fundamental inequality given by Theorem 2 implies important properties

of the dual infima $ - and VY.

Corollary 2A. If the dual problems A and B both have feasible solutions, then

(i) the infimum & for problem A is finite, and

0 s.é +h(y) for each y€T,

(ii) the infimum Y for problem B is finite, and

O0<d+ YV

The proof of this corotlary is, of course, a trivial application of Theorem 2.

The strictness of the inequality 0 < $+ Y in conclusion (ii) plays a crucial
role in almost all that follows. In fact, dual problems A and B that have
feasible solutions and for which 0<% + ¥ are said to have a "duality gap" of
§+Y¥. Although doality gaps do occur in (generalized) geometric programming,
we shall eventually see that they do not occur in the present context of traffic
equilibria, This lack of duality gaps is extremely fortunate bécause of their
highly undesirable properties. In particular, we shall soon see that they weaken

the bond between the dual problems A and B and imply that the extremality con-
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ditions have no solutions (i.e. there are no "extremal vectors” even though
problems A and B may have optimal solutions). They also tend to destroy the
possibility of using the inequality 0 <g(x) +h(y) to provide an "algorithmic
stopping criterion"”.

Such a criterion results from specifying a positive tolerance ¢ so that
the numerical algorithmsvbeing used to minimize both g(x) and h(y) are terminated

when they produce a pair df feasible solutions xT and yT for which
1-
g(x ) +h(y) <e.

Because conclusion (i) to Corollary 2A along with the definition of § shows
that

.r
by ) s dsgx),
we conclude from the preceding tolerance inequality that
.f-
fcgx) <d+e.

Hence, & can be approximated by g(xf) with an error no greater than ¢ (and,
dually, Y ‘can be approximated by h(yf) with an error no greater than e). This
stopping criterion can be useful even though it does not estimate the proximiﬁy
of xT to an optimal solution x* (and, dually, even though it does not estimate
the proximity of yT to an optimal solution y*). 1In any event, it is clear
that the algorithms being used need not terminate unless $ +¥ < ¢, a situation
that is guaranteed for each tolerance ¢ only if 0 =&+ ¥ (i.e. there is no
duality gap).

The equality characterization of the fundamental inequality given by Theorem
2 implies the key relations between extremal vectors (x,y) and optimal solutions

x € 8* and y € T*.

+ +
Corollary 2B. If (x ,y ) is an extremal vector (i.e. if (x+,j+) is a solution

to the extremality conditions (I-III)}, then
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+ +
(1) x €8%* and y €T*,
i * = = (x5 €3h, (D) for kx=1,2 }
(ii) s¥={x€X[0=(x,y ), and x €3h, (v for k=1,2,...,n
(1ii) T*={y €Y |0=(x,y), 2 €3g, (x) for k=1,2,...,n)
iii y X ,y7, and y, €38, k)__ 325 00ny
(iv) 0=8+Y.

On_the other hand, if the dual problems A and B both have feasible solutions

and if 0=%+Y, then (x,y) is an extremal vector if and only if x€ S* and y € T*,

The proof of this corollary comes from a trivial application of Theorem 2 along
with the (previously mentioned and easily established) conjugate transform

relations agk (xk) = Dk and ahk(yk) = Ck.

Corollary 2B readily yields certain basic (nontrivial) information about
" traffic equilibria. 1In particular, the first part of Corollary 2B asserts

: s + + .
that if there is at least one network-equilibrium vector (x ,y ), then there is

no duality gap. On the other hand, the secord part of Corollary 2B clearly

implies that if there is no duality gap, then the set E of all network equilibrium

vectors (x,y) is just the cartesian product S* x T* of the optimal solution sets
S* and T*, Consequently, when network equilibria exist, each demand-equilibrium

total flow x* (namely, each x*€ S*) can be paired with each equilibrium gquasi-

revenue-cost per unit of flow vector y* (namely, each y*€ T%) togroduce a

network equilibrium vector (x*,y*) € E. Moreover, network equ:[!ibrxa exist if

and only if hxp_otheses (H) )are sufficiently strong tO'guarantee the absence

of a duality gap along with the existence of optimal solutions x* € S* and

y* € T*, Actually, the existence of network equilibria is established in
section 9 by using the network classification and reduction given in section

7 to show that 0 =8+ Y and nelther §* nor T* is empty.

= e — —— o - - . . o

Computationally, it is 1mportant to note that conclusions (i-iii) of

Corollary 2B provide methods for palculating all network-equilibrium

vectors (x,y) € E from the knowledge of a singlka .network-écuilibrium vector

'.‘u

) -
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(x+;yﬂ3 €E (or even from just the knowledge of a single optimal solution

x* € 8%, or a single optimal solution y*€ T*)., Of course, the (nonempty) set Z(x,y)

of all demand-equilibrium circuit flows z that generate a given network-equilibrium

vector (X,¥) € E can be calculated simply by calculating the set of all

solutions z to the feasibility conditions (1,2) and the complementary slackness

conditions (7") -- as explained in the next-to-last paragraph of subsection 2.3. .

It is also important to note that conclusions (ii-iii) of Corollary 2B

imply that both the set S* (of all demand-equilibrium total flows x*) and

the set T* (of all equilibrium quasi-revenue-cost per unit of flow vectors

y*) are convex polyhedral sets, and hence so is the set

E=8*% x T*®

(of 2ll network-equilibrium vectors (x*,y*)). The reason is that ahk(y;) and

+ . .
agk(xk) are closed intervals (as previously observed); and convex polyhedralness

is preserved under cartesian products. Of course, the set Z of all demand-

equilibrium circuit flows z has.the representation formula

Z= U z2{xy)
(x,y) €E

where each set

Z{x,y) S{ZGEEm | conditions (1,2) and (7") are satisfied}

is clearly a bounded convex polvhedral set.

, T
6. Uniqueness Theorems. It is worth noting that various uniqueness theorems result

from the representation formula:E=S* x T* by imposing strict monotonicity and/or
continuity hypotheses on the travel cost per unit of flow functioms Cpt In partic-

utar, if there is a demand-equilibrium total flow x* such that a given Cy is strictly

increasing on a (relative) neighborhood of xﬁ, then every other demand-equilibrium

total flow x** exhibits the same unique total flow x*§==x§ on link k. The reason

on a (relative) neighbothood of x¥* implies

is that strict monotonicity of c¢ ¥

k

.
e SR I, Sl
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that Yk(xi) and yk(x*i) do not intersect when xiiéx**; so a given yﬁ can not be

in both yk(xﬁ) and Yk(x*ﬁ) unless x§==x*§. On the other hand, if there is a

demand~equilibrium total flow x* for which x§>>0 and such that the given x is

continuous at xﬁ, then each equilibrium quasi-revenue-cost per unit of flow

vector y* exhibits the same unique quasi-cost per unit of flow yﬁ’=ck(xﬁ) for

link k. The reason is that continuity of i at,xﬁ implies that yk(xﬁ) contains

a unique element ck(xi) when x§>>0. Finally, if there is a unique quasi-cost

per unit of flow yﬁ for each (real) link k for which there is at least one

demand~equilibrium total flow x* such that x§>>0 (e.g. if each ) is continuous

on its domain [O,bk)), then each equilibrium quasi-revenue-cost per unit of flow

vector y* exhibits the same unique quasi-revenue per unit of flow yf for a given

(return) link i if xfﬁ>0 for each demand-equilibrium total flow x* {(e.g. 1f O

does not belong to the domain Ii of vys 28 is the case when Ii==§di} and di>>0).

The reason is that the preceding observation along with conditions (6") and the
finmiteness of tbe feasible circuit family [i] clearly imply that y; can have at
most a finite number bf.valués;.ﬁhile the convexity of T* clearly implies that
yf'can have infinitely maﬁy values if it has more than one value.

Other uniqueness theorems result from the representation formula E= §* x T*
by imposing comparable hypotheses on the travel demand curves Fi. In particular,

if there is a demand-equilibrium total flow x* and a (return) link i such that

yi(xf) and Yi(x*f) do not intersect when xfiéx*f, then every other demand-

equilibrium total flow x** clearly exhibits the same unique total (input) flow

x*I==xf on (return) link i. On the other hand, if there is a demand-equilibrium

total flow x* and a (return) link i such that yi(x;) contains a unique element

y?, then each equilibrium quasi-revenue-cost per unit of flow vector y* clearly

exhibits the same unique quasi-revenue per unit of flow y; for (return) link i.

Even when there is a unique network-equilibrium vector (x*,y*), there can
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obviously be infinitely many demand-equilibrium circuit flows z*. 1In fact,
uniqueness of z* in that case clearly requifes a positive independence of those cir-
cuit vectors éj for which <5j,y*>==0 and z§>>0. It .1s clear that such circuit.vectors
5j are less likely to beApositively independent, the more the corresponding.cir-
cuits "overlap" (i.e. the more possibility there is for congestion). In any event,
it is easy to construct simple examples where meither x*,sy* nor z* have any unique

components. Such constructions are, however, left to the reader's imagination.

7. Network Classification and Reduction. In this section the family of all (roadway)
networks is partitioned into a family of '"canonical networks" and a family of “degen-
erate networks'. Each degenerate network has a "reduced_form" that is canonical,
and each canonical network is its own reduced form.

This mapping of all networks onto canonical networks induces another partitioning
of the family of all networks, namely, a partitioning into an infinite collection
of "equivalence classes'". This collection of equivalence classes is in one-to-one
correspondence with the family of all canonical networks. Corresponding to a
given canonical network is the equivalence class that consists of the given canonical
network and all degenerate networks that have the given canonical network as a
reduced form.

Networks can be classified as canonical or degemerate simply by inspection.

I1f a network is degenerate, the inspection yields its reduced form, which is just

a "spbnetwork" of the given degenerate network. Moreover, the geometric programming
problems A and & associated with a nétwork N and its reduced form 7 , respectively,
have the same infima ¢ and ¢ « Likewise, the geometric programming problems B

and,B' associated with a network N and its reduced form 77 , respectively, have the
same infima Y and ¢ . Furthermore, the optimal solution set S*(T*) for problem A

(B) can be generated from the optimal solution set S*(*) for problem 7(5);

and hence the extremal vector set E = S* ¥T* for network N can be generated from»éhe'
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extremal vector set & =% xJ* for network 7Z.. Thus, the family of all reduced
forms {canonical networks) is the most important family from a computational poir;t
of view. It is also the most impbrtant family from a theoretical point of vieﬁ,
because the absence of duality gaps and the existence of dual optimal solutions can

readily be proved for all networks N once they are established for all canonical

networks 7. ) . _ 3 LT

Roughly speaking, a network N is canonical if each commodity i has

at least one feaéible ini)ut flow d:>d and if each link k .in_v.the néfwork N ié part
of at least one circuit j (for some comnodify i for which jE[i]). In essence then,
a network N is canonical if it is impossible to infer from the feasible input
flows and the feasible circuit families alome thatj some link k (possibly a return link)
is unusable: (i.e. xk=0 for each feasible total flow x). Naturally, a degenerate
network N is then a network that contains unusable links k (some of which may be
return links), each of which is to be pruned away {along with the corresponding com-
modity k in the case of an unusable return link k) when constructing its reduced
form 77 .

To give a precise classification of the most general network N (corresponding to
the demand-equilibrium problem describe& in section 2), use the "irreducibte-circuit

- fatily" J introduced at the beginning of section 3 to define the irreducible link set

Ké {k | l<k<n and there exists-a j €J f.br wwhich 6i]<= 1}.

Then, network N is said to be canonical if K= {1,2,...,n}, and degenerate if
KC {1,2, . .,n}.

Since we have already assumed (at the beginning of section 3) that the
"jrreducible commodity set' I (and hence J) is not empty, we immediately see

that K is not empty. Consequently, deleting those links k# K from network N

produces a (nonempty) subnetwork 77 of N, which is termed the reduced form of N.

Naturally, the only commodities that flow on 77 (over the links k€ K) are those

commodities i €I; but the feasible circuit family for such a commodity i is
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clearly still [i]. Needless to say, each link k€K retains the same characteristic

functions" Y2 and hence 7 inherits from N all of the hypotheses (H) along with

all of the properties previously derived therefrom. In addition, 7] has

properties not generally possessed by N -- the most important ones stemming

from the obvious fact that 7] is canonical and its own reduced form.

Two simple observations are crucial to ultimately showing that essentially
nothing is lost in replacing network N with its reduced form 7. The first
observation is that the defining equation (8) for X along with the defining

equation for K clearly implies that

each vector x€ X has components X, =0 for k¢K. (24)

The second observation is that identity (10) for X along with the defining

equation for K clearly implies that

the vector y- in En with components
0 for k€K
: -1 for k¢K '

is orthogonal to each vector x€ X,

and hence y €Y.

In replacing network N>with its reduéed form 7 it is helpfu"l to employ the

linear transformation
:Z:En—En,

defined so that the image v==£".(v) is obtained from v simply by deleting the k'th
component of v for each k¢ K. Thus, n is equal to the number of links in 77; and,
unless otherwise stated, a vector represented by a script symbol v resides in the
image space En of £. However, it is convenient not to relabel the indices on the
components of V; consequently, the j'th component of » may be vk=vk where j<k.

It is clear that the geometric programming problem <7 associated with the re-

duced network 77 is constructed from the cone
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o % =Z(X) (26)
and the function g whose domain
CC=xX Ck (27a)
K
and whose function-values
g ) =§ g, (x) . | (27b)

Problem 7. Using the feasible solution set
s2%ne,

calculate both the problem infimum

®A inf gr)
Tx €

and the optimal solution set
J*é{xEJIcp=g(x)}.

It is equally clear that the geometric programming problem [ associated

with the reduced network 77 is constructed from the cone

Y =2(Y) (28)
and the function A whose domain
b= X-Dk (29a)
K
and whose function-values
h(y) =2 b, (v,) - (29b)
- _

Problem 5. Using the feasible solution set
YLD

calculate both the problem infimum

¥ A inf A(y)
Ty&ed

and the optimal solution set

TEA{Yy €T |y =nQ@) -




-39-
We have already observed that the reduced form 77 inherits from network N all
of the hypotheses (H) along with all of the properties previously derived therefrom.

Consequently, the "reduced form" ¢ inherits from problem A all of the previously

derived properties of A; and the "reduced form" /5 inherits from problem B all

of the previously derived properties of B. In addition, problems 7 and /3 have

important properties not generally possessed by problems A and B, respectively.
However, such properties can be fully exploited only after p-roblems A and B are
more completely related to their reduced forms & and /7, respectively.

The following theorem brings to light the most important relations between

problem A and its reduced form &.

Theorem 3. Problem A has feasible solutions if and ohly if its reduced form

@ has feasible solutions, in which case

O ¢=8
(ii) P* = (8%)
. (ii1) s% =271 (1) ns

Proof. If x€X, then x=Z£(x) €X by virtue of equation (26). If, in additionm,
x €C, then x €C and g{x) =g(x) by virtue of equations (27) and relation (24), along
with both our choice of Y in equations (11) and the definition of K in terms of

J and I. These two facts establish the following lemma.
Lemma a. If x €S, then x=#(x) €, and g(x) =g(x).

Now, if x €%, then X =+#(x) for some x €X by virtue of equation (26). More-

over, relation(24) asserts that x, =0 for each k#X; so the definition of £

k
shows that x is uniquely determined by x. If, in addition, x €€, then x€C and
'g(x) =g (x) by virtue of equations (27) and relation (24), along with both our .

choice of o in equations (11) and the definition of K in terms of J and I. These

two facts establish the following lemma.
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Lemma b. If x€./, then there is a unique x€ S such that x=£(x), and g(x) =g ).

To prove the first assertion of Theorem 3, first observe that Lemma a
implies that the reduced form & has feasible solutions when problem A has feasible
solutions, and then observe that Lemma b implies the converse.

To prove conclusion (i) of Theorem 3, use Lemma a to infer that ¢ <¢, and
then use Lemma b to infer that ¢ <.

To establish conclusion (ii) of Theorem 3, fi;stule‘at xé;Z(S*). Then

x =£(x) for some x€ S such that g(x) =4. Thus, from Lemma a and conclusion (i)
we deduce that x €%, which shows that /%2 £(8%). .Now,A let x €%, which

means that X €./ and g{r) =¢. Then, from Lemma b and conclusion (i), we deduce
the existence of an x€ S for which x=Z(x) and g(x) =&. Thus, x€ S* and

hence xG:&(S*), which establishes the relation /*SZ(S*) and consequently com=-
pletes our proof of conclusion (ii).

To prove conclusion (iii), first observe that the relation S*si-l(o’*) ns
follows immediately from conclusion (ii) because S*&S. Now, suppose that
in—l(J*) NS, which means there is an X €% such that £{x) =x. Then g{x) =0,
and g(x) =g (r) because of Lemma b. These two equations and the assumption that
X €S imply that x € S* by virtue of conclusion (i). Hence, S* =£-1(J*) ns,

and thus our proof of Theorem 3 is complete.

The following theorem brings to light the most important relations be-

tween problem B and its reduced form /3.

Theorem 4. Both problem B and its reduced form 5 have feasible solutions, and

1) y=Y
(ii) T* =L(T%)
(111) _ T+=£ T @) N T

Proof. As previously noted, the existence of feasible solutions to problem B
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is a direct consequence of equation (17) and the fact that each cone T=Y contains

at least the zero vector. Since the reduced form & inherits all of the pre-
viously derived properties of B, we infer that problem /5 also has a nonempty
feasible solution set 7 =%. This proves the first assertion of Theorem 4.

If yET (i.e. yE€Y), then y=L(y) €Y (i.e. y€J) by virtue of equation (28).
Moreover, A{y) <h(y) by virtue of equations (29), along with the first part of

hypothesis (HZ), the construction of y{{l.ffrom ¢, , and both equation (14b) and

k
the definition of K in terms of J and I. These two facts establish the following

lemma.
Lemma c. If y€T, then y=2(y) €7, and h{y) <h ().

Now, if y€J (i.e. y€?%), then y=£(y) for some y€Y (i.e. y€T) by virtue
of equation (28). Moreover, relation {(25) clearly implies that suc;h a y is not
uniquely determined by y and can in fact be chosen so that ykso for k¢ K. 1If
such a y is chosen, then h(y) =A(y) by virtue of equations (29), along with the
first part of hypothesis '(Hz), the construiction of y{{l from Cyo and both

equation (14b) and the definition of K in terms of J and I. These facts establish

the following lemma.

Lemma d. If y€J, then there is at least one y €T such that y=Z(y),

and h(y) =hA(y).

We can now prove conclusions (i), (ii), and (iii) of Theorem 4 by using
Lemmas c¢ and d in the same manner that Lemmas a and b were used to establish
conclusions (i), (ii), and (iii) of Theorem 3. We leave the details to the

reader and hence consider the proof of Theorem 4 to be complete.

Needless to say, Theorem 3 shows that problem 7 is equivalent to problem
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A, and Theorem 4 shows that problem 5 is eguivalent to problem B. Consequently,

network 77 is equivalent to network N.

8. Boundedness Theorems. It is worth noting that boundedness of the ex-

tremal vector set E (consisting of all network-equilibrium vectors {x,y)) is
intimately related to boundedness of the dual optimal solution sets S* and T*.
In particular, the representation formula E=8% x T* clearly implies that E is

bounded if and only if S* and T* are both bounded. Moreover, we shall soon

see that hypotheses (H) guarantee that S* is always bounded, while T* is

bounded only if network N is canonical. Needless to say, an immediate corollary

to these facts is that E is bounded only if N is cenonical. Moréover, it is

worth noting that the boundedness of S* implies via conditions (1,2) and the

non-negativity of the feasible circuit vectors 6J that the set Z'(consisting

of all demand-equilibrium circuit flows z) is always bounded.‘

To show that S* is bounded, it is of coutse sufficient to show that g(x)

approaches +« when some component X of x€ C becomes unbounded (because g(x*) =&
for each x*€ S*). Now, using the defining equation (13a) for C along with the
defining equation (lla) for Ck’ we infer from the defining equations for (the
domains of) s and Yi that each such component xq is bounded from below by 0.
Moreover, our hypotheses (H) and the defining equations (11b) and (11lc) for gk(xk)
clearly imply that gk(xk);zo for each kaECk while gq(xq) approaches 4= when
xq approaches 4o, The desired conclusion is now a direct consequence of the
defining equation (13b) for g{x).

To show that T* is unbounded if network N is degenerate (and T* is:not
empty), simply note that the non-negativity of the inverse functions y£1 (as

implied by hypotheses (Hl-H3) and hypothesis (HS)) along with both the defining

equations (14) and (16) for h and equation (17) for D imply that any positive
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multiple of the vector y- described by relation (25) produces a vector in T¥*

when added to a vector in T*. Consequently, canonicality of N is a necessary

condition for boundedness of T* {and hence E) -~ though we conjecture that
boundedness of T* {and hence E) is not characterized by canonicality of N.
However, characterizations of the boundedness of T* (and hence E) can probably

be obtained via refinements of the general results given in [30].

9. The Main Existence Theorem. The following fundamental theorem shows that

our hypotheses (H) are sufficiently strong to guarantee the existence of traffic

equilibria.

Theorem 5. If there is at least one feasible circuit flow z (i.e. if there is

at least one vector z that satisfies conditions (1,2,3",4)), then there is at

+ +
least one extremal vector (x ,v ).

Pfoof. As previously observed, the existence of a feasible circuit flow z
implies the existence of a feasible solution x to problem A. Since we have
also previously observed that problem B has at least the feasible solution 0, we

deduce from Corollary 2A that
the infima ¢ and Y are both finite.

Now, the fact that ¥ is nonempty and convex {as inferred from equation {9))
and the fact that D==En (as asserted by equation (17)) ciearly imply via Theorem
6.2 on page 45 of [36] that problem B has a feasible solution yOGE(riY)fW(riD),
where (ri W) denotes the "relative interior" of the given set W. From the existence
of such a feasible solution yo and from the preceding displayed statement, we
deduce via (the geometric programming version of Fenchel's) Theorem 5 in sub-

section 3.1.4 of [28] that 0=%+VY and S* is not empty.
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In view of the final assertion of Corollary 2B, we now need only show that
T* is not empty to complete our proof. To do so, we first note from conclusion
(i1i) to Theorem 4 that it is sufficient to show that J* is not empty. Toward

that end, observe that Theorems 3 and 4 along with the preceding displayed

statement imply that
the infima ¢ and ¢ are both finite.

Now, the defining equations for I and J along with the feasibility conditions
2,3") obviougly imply that the feasible circuit flow z has components z =0
for each j#J. Consequently, the definition of network 77 clearly implies that
the vector £ bbtained from z by deleting component zj for each §¢J is a
feasible circuit flow for 7]. Moreover, it is clear that x =Z£(x) where x and x
;are the total flows on 7] and N respectively resulting from 2 and z respectively.

From the defining equation for I and the feasibility conditions (2,3",4)
it is obvious that a slight (possibly zero) perturbation of Z can be used to
produce a feasible 2' with strictly positive components. Moreover, it is
equally obvious that a slight (possibly zero) perturbation of &' can then be
used to produce a feasible 2° with strictly positive componénts such that the
resulting total flow x° has components x;é (rin) for each k€ X. Now, it is
a conséquence 6f the strict positivity of z° along with équations (8) and (26)
for X and X respectively that x° € (riX), by virtue of the linearity of & and
Theorem 6.6 on page 48 in [36] « Moreover, it is a consequence of the relations
xZG (riC’/k) along with equation (27a) for C that x° € (riC), by virtue of the
first formula at the top of page 49 in [36].

From the existence of this feasible solution xo E(riD N (ri®) and from the
preceding displayed satement, we deduce via the {unstated) dual of (the
geometric programming version of Fenchel's) Theorem 5 in subsection 3.l.4 of

[28] that 0 =g+y and 7% is not empty. g.e.d.
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10. Computational Considerations. There are at least four different approaches

to computing traffic equilibria (x,y), but only (very limited versions of) two
of them have formed the basis for all computer algorithms [5,13,15,20] known
to us.

The first approach [5,13,20] seems to be the only one that is now widely
used in practice. In essence, it "simulates" the behavior of drivers by using
"shortest path algorithms" (as described, for example, in [16,19]) to
iteratively solve in heuristic ways the defining equations (1-6) for Wardrop
equilibria. Even though such algorithms have {to the best of our knowledge) been
used only when all cost per unit of flow functions ¢, are continuous and strictly
increasing, it is widely known that they frequently fail to converge. Of
course, such numerical difficulties are likely to be compounded when discon-
tinuous ¢, are present and demana equilibria are being sought.

The second approach is (to the best of our knowledge) now being set forth
for the first time (even in the special context of computing Wardrop equilibria

when all ¢, are continuous and strictly increasing). It uses any algorithm

k
(possibly thése in [24]) that can solve the network-equilibrium conditions (I~III).
This approach is analogous to a well-known (rather successful) approach used

in analysing electric and hydraulic networks. 1In the context of such networks, con<~"
dition (I) constitutes the "Kirchoff current add potential (conservation) laws', con-

dition (II) is implied by (I) and hence is redundant, and condition (III) is just

"Chm's law".

The third approéch is ésséntially a simplification, amplification, and
generalization of the variational approach tonsidered (in the context of Wardrop
equilibria). by Dafermos and Sparrow:[7,8] and computerized by many workers (e.g.,
see [15]). It uses aﬁy algofﬁthm that can solve the closed convex separable
optimization problem A. Actually, any such algorithm that exploits the absence

of nonlinear constraints (in particular, any of the most powerful convex programming

algorithms [42] presently available for solving linearly-constrained problems)
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can be used. To do so, simply replace the only (conceivably) nonlinear con-

straints kaECk with the (generally weaker) linear constraints

xk=dk'€closure of I, for k=1,2,00e,1 @a'"hH

-and

0<x <b, for k=r+l,r+2,...,n. @'Y

&his xef&fmulatiOﬁ does not alter the infimum ¢ and the optimal solution set 8%
for problem A, because the defining equations (1la) and (11b) for Ck and gk(xk)
respectively clearly imply via the defining equation (13b) for g(x) that g(x)
approaches +» when at least one component xq approaches some point not in Cq

Of course, once a single optimal solution x* € S* has bgen computed, the set

E of all traffic equilibria {(x*,y*) can be computed via the technique outlined
after Corollary 2B. This approach is analogous to a classical variational
approach [39,10,3,21,2,34] used in analysing electric and hydraulic networks.
In’the context of such networks, problem A consists of minimizing the "content"
of the network (which is frequently just the power dissipated in the network),
subject to only the Kirchoff current (conservation) law.

The fourth approach is essentially a simplification, amplification, and
generalization of the variational approach considered by Murchland [22] and
more recently by Evans [12]. It uses any algorithm that can solve the closed
convex separable Finearly-constrained optimization problem B (in particular,
any of the most powerful convex programming algorithms [42] presently available
for solving linearly-constrained problems). Needless to say, once a single
optimal solution y* € T* has been computed, the set E of all traffic equilibria
(x*,y*) can be computed via the technique outlined after Corollary 2B. This
approach is also analogous to a classical variational approach [39,10,3,21,2,34]

used in analysing electric and hydraulic networks. In the context of such

networks, problem B consists of minimizing the "co-content™ of the network
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(which is frequently just the power dissipated in the network), subject to only
the Kirchoff potential (conservation) law.

Unlike the first and second approaches, the only nonlinear functions to
be reckonea with in the third and fourth approaches (the functions gk and hk
»respectively) are both continuous and convex. In fact, a multivalued yk(e.g.
a discontinuous ck) induces only a lack of differentiability in an otherwise
differentiable g, ; and a multivalued yl-;l (e.g. a ¢, that is constant over at
least one nontrivial interval) induces only a lack of differentiability in an
otherwise differentiable.hkmi Naturally, the third and fourth approaches can
be carried out in unison fo provide an algorithmic stopping criterion, as
explained after Corollary 2A. However, that criterion may not be of much use
because it provides direct information only about the degree of convergence of
g{x) and h{y) -- not the desired degree of convergence of x and y. Nevertheless,
the degree of convergence of x and y can frequently be deduced from the degree
of convefgence of g(x) and h(y) through an analysis of the rates éf change of
tﬁe Yy and the Y;l (e.g. the second derivatives of the 8 and the hk when the§
exist). In any event, the fact that D==En {(as asserted by equation (17))
obviously endows the fourth approach with a numerical advantage over the third
approach {(because CiéEn). Moreover, the immediate availability of the data
required in the representation formula (9b) for Y (i.e., the generators 6j Eor
X) endows the fourth approach with still another numerical advantage over the
third approach (because comparable data required in the corresponding (unstated)
representation formula for X can be obtained only from the generators for ¥,
which, to the best of our knowledge, can be computed only with the aid of a
rather intricate linear algebraic algorithm due to Uzawa [40]>.

Actually, network planners need only know T* to uncover the possible
“bottlenecks”" in a given network. In fact, it is cleér from linear programming
theory that they need only know the "extreme points" and "recession directions”

of the convex polyhedral set T* to uncover such bottlenecks. Of course, the
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same information can also be extracted from the extreme points of the convex
polyhedral set S* (which has no recession directions because of its boundedness).
Moreover, it is worth noting that either set of extreme points (and recession
_directions) can be computed without computing the set Z (of all demand-equilibrium
circuit flows) -~ simply by using either the second, third, or fourth approaches.
Consequently, the first approach is, no doubt, the least attractive approach
for network planning, even though it is the only approach that is now widely
used.

Finally, each of the preceding approaches should clearly be used on the
reduced network 7! when network N is not canonical. Moreover, the de-
composition principles given in [27,28,31,32] should probably be used in con-
junction with the preceding approaches when 77 is large but ”sparsé" (e.g. when
N results from modeling a metropolitan roadway network in which various

identifiable subnetworks are only weakly linked to one another).
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