ECOMNZTOR

Make Your Publications Visible.

Peterson, Elmor L.

Working Paper

A Service of

ﬂ I I I Leibniz-Informationszentrum
° Wirtschaft
o B Leibniz Information Centre
h for Economics

The Complementary Unboundedness of Dual
Feasible Solution Sets in Convex Programming

Discussion Paper, No. 165

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and

Management Science, Northwestern University

Suggested Citation: Peterson, Elmor L. (1975) : The Complementary Unboundedness of Dual
Feasible Solution Sets in Convex Programming, Discussion Paper, No. 165, Northwestern
University, Kellogg School of Management, Center for Mathematical Studies in Economics and

Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/220524

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/220524
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 165

The Complementary Unboundedness of Dual Feasible

Solution Sets in Convex Programming

by

Elmor L. Peterson

August, 1975
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by
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Abstract. F.E. Clark has shown that if at least one of the feasible
solution sets for a pair of dual linear programming problems is nonempty
then at least one of them is both nonempty and unbounded. Subsequently,
M. Avriel and A.C. Williams have obtained the same result in the more
general context of (prototype posynomial) geometric programming. In

this paper we show that the same result is actually false in the even
more general context of convex programming -- unless a certain regularity
condition is satisfied.

We also show that the regularity condition is so weak that it is auto-
matically satisfied in linear programming; (prototype posynomial)
geometric programming, quadratic programming (with either linear or
quadratic constraints), zp-regression analysis, optimal location, roadway
network analysis, and chemical equilibrium analysis, Moreover, we develop
an equivalent regularity condition for each of the usual formulations of

duality.
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1. Introduction. In convex programming there are at least five different

formulations of duality -- the original Fenchel formulation [5,12], the
(generalized) geometric programming formulation [3,6,8], the Fenchel-
Rockafellar formulation [10,12], the ordinary Lagrangian formulation
[15,4,12], and the Rockafellar formulation [11,12]. Although each for-
mulation has its own advantages and disadvantages, each can also be viewed
as a special case of each of the other four (by virtue of the special-
izations given in [6,12]). In particular, a given result in one for-
mulation has its counterparts in each of the other four formulations, all
of which can be used to supply important information about various special
programming types.

For simplicity, we begin by establishing our main result in the con-
text of the most recent unconstrained geometric programming formulation
[8]. This also provides a convenient mechanism for translating it into
the context of the most recent constrained geometric programming for-
mulation [8], as well as both the Fenchel-Rockafellar formulation [12]
(including the original Fenchel formulation) and the more recent
Rockafellar formulation {[12]. In turn, the latter provides a convenient
mechanism for translating it into the context of the ordinary Lagrangian
formulation [12]. When appropriate, we also consider applications to
special programming types.

Some familiarity with the usual concepts, terminology, notation, and
facts from "convex analysis" [12] is assumed. In particular, given a
nonempty convex set S in EN (N-dimensional Euclidean space), its "re-

cession cone'

A
07s) =[y€EN | s+ay €5 for each s€5 and each q>01},



and its Ybarrier cone"
A
A8) ={6€EN lthere is a scalar B for which {s,8) <p for each s€S]}.
Moreover, given a nonempty convex cone K in Eg, its Ypolar cone”

A
K° ={6€EN | {y,8) <0 for each y€K}.

2, The Main Result. Throughout this paper we assume that the follow-

ing hypotheses are satisfied:
X is a nonempty closed convex cone in E

g is a closed convex function with a nonempty

(effective) domain Cc En'

Now, given X and g, consider the resulting "geometric programming

problem" &.

PROBLFEM ¢/. Using the feasible solution set

A
S=XNC,

calculate both the problem infimum

A
o= inf g (x)
X €/

and the optimal solution set

A
Se={x € |gl) =0},

Geometric duality is defined in terms of both the ®dwal cone"

A
'Z/={y€En |0 <(x,y) for each x€X}=-2°



and the "conjugate transform function" /# whose (effective) domain
A -
b={y€r_| sup [{y,x) -g)] is finite}
n

x€eC

and whose functional value
A
Ay = suwp [{y,x) -g@0)].
x€C

In particular, given the geometric programming problem &, consider the

resulting '"'geometric dual problem' /.

PROBLEM /7. Using the feasible solution set

i
T=yns,

calculate both the problem infimum

A
Y= 1inf A(y)
I7AS

and the optimal solution set

ne

Tx={yeT |h@ =1{}.

It is important to note that the symmetry of conical duality (or,
equivalently, the symmetry of conical polarity asserted by Theorem 14.1
on page 121 of [12]) together with the symmetry of functional conjugacy
(asserted by Corollary 12,2.1 on page 104 of [12]) induces a
symmetry on the theory that relates problem & to problem /5. In par-
ticular, under our given hypotheses, each statement about & and
automatically produces an equally valid "dual statement' about /& and

d (obtained by interchanging the symbols %:and Y, the symbols C and 25,



e

the symbols g and A, the symbols o/ and J, the symbols ¢ and V,

the symbols o/ and J*, and the symbols x and y). However, to be concise,
each dual statement is actually left to the reader.

Although there are dual problems ¢ and 5 with nonempty feasible
solution sets o and J for which both o/ and 7 are bounded, the main re-
sult of this paper shows that such problems & and 2 do not possess the

following regularity.

DEFINITION. Given that

there is a nonzero {(direction) vector v €XN (07C),

problem ¢7 is said to be primal regular. On the other hand, given that

either X or (O+GJ is not a vector space

and given that

0'C)° < @),

problem (7 is said to be dual regular. A problem (7 that is either primal

regular or dual regular is said to be regular.

It is important to note that neither the definition of primal regularity
nor the definition of dual regularity explicitly involve (dual) problem
B. On the other hand, it is also important to note that the (unstated)
duals of these definitions do explicitly involve (dual) problem &, but

not (primal) problem &.

Proposition. Given that at least one of the dual problems ¢/ and 2 is

regular, if at least one of the corresponding feasible solution sets o

and J is nonempty, then at least one of these sets is both nonempty and




unbounded.

A proof of this proposition is given in Appendix A.

Counterexample (1) in Appendix B shows that this proposition loses
its validity when our regularity assumption is deleted ~- even when it
is replaced with the assumption that both feasible solution sets o/ and J
are nonempty and there is no "duality gap'". On the other hand, we shall
eventually see that our regularity assumption is actually so weak that
very broad classes of dual convex programming problems satisfy it. In
fact, the much stronger regularity assumption that requires both problem
@ and problem & to be both primal regular and dual regular is still not
even strong enough to guarantee the absence of a duality gap -- a fact
that can easily be demonstrated with the aid of the second example.in
Appendix C of [6].

The second example in Appendix C of [6] also shows that the preceding
(strongest possible) regularity assumption is not strong enough to
guarantee that at most one of the feasible solution sets o/ and J is un-
bounded. In fact, Theorem 3 in Appendix A along with its (unstated) dual
shows that the existence of a nonempty bounded feasible solution set
(either o/ or J) 1s incompatible with the existence of a duality gap. On
the other hand, counterexample (2) in Appendix B shows that the absence
of a duality gap along with primal regularity (and hence regularity) for
both problem ¢ and problem /7 is.also not strong enough to guarantee that
at most one of:the feasible solution sets o/ and J is unbounded.

The most effective applications of this proposition require several
elementary (seemingly unrecorded) facts about convex sets and cones to
establish our regularity assumption. In particular, the following

elementary facts are crucial to many applications:



r r
(A) Each Cartesian product Cﬁ=xC%(has the property that o'e) =x (O+Ck),
1 1 .
s
(B) A Cartesian product ¥ =¥ Wk is not a vector space if and only if
1

at least one of the factors Wk is not a vector space,

T
(C) A Cartesian product cs=xc5( satisfies the condition (0'2)° c (A2) if
1
and only if each factor Ck satigsfies the condition (O+Ck)°!;(ACk)o

Formal proofs of these facts are left as exercises for the reader.

The preceding theory can be applied directly to the unconstrained
cases of the following special programming types: posynomial minimization,
(convex) quadratic minimization and zp-regression analysis, (convex)
optimal location, {(convex) discrete optimal control with linear dynamics,
and monotone network analysis -- simply by consulting examples 1 through
5 respectively in section 2 of {8]. In particular, it is easy to see
that discrete optimal control and monotone network analysis are the only
such examples for which nontrivial problems ¢/ are not necessarily primal
regular. Moreover, it is also easy to see that the kind of monotone net-
work analysis that arises in the context of rcadway networks always
involves a problem ¢ that is dual regutar. However, the possible states
of regularity for discrete optimal control and the more classical kinds
of monotone network analyses that arise in the context of electric
and hydraulic networks have not yet been investigated in sufficient detail

to report on here.

3. Other Formulations. For each of the other formulations, we specify

problem & and then give the resulting problem 5 along with appropriate

characterizations of the different kinds of regularity.
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The following three subsections are pedagogically independent of

one another, but the fourth subsection utilizes the third subsection.

3.1. The Constrained Geometric Programming Formulation. First, suppose

that:
I and J are two nonintersecting (possibly empty) positive-integer

index sets with finite cardinality o(I) and o(J) respectively:

xk and yk are independent vector variables in En for ke {o}UIUJ,
k
I
and xI and y~ denote the respective Cartesian products of the vector

. . 3 3
variables xl, i€I, and yl, i €I while x and y denote the respective
Cartesian products of the vector variables xJ, j€J, and yJ, j€J; so

A A
the Cartesian products (xo,xI,xJ)==x and (yo,yI,yJ5 =y are independent
vector variables in En’ where

A
n=no+2 n, +25 n,s

1 J

o and A are independent vector variables with respective components ai

and Ki for 1 €I, and B and X are independent vector variables with re-

spective components Bj and Kj for j€J;

X and Y are closed convex dual cones in En, and gk and hk are closed

convex conjugate functions with respective domains C, SE and D, CE
k ny k ny
for k€ {0JUIUJ.

Now, let

}’

A, 0o 1 . J 0 I J _
Z={&x,x 0% k) €E, | (x,x ,x")€X; a=0; KEEO(J)



_8_
where n+o0o(I) +o(J) =n. In addition, let
Ao 0 I J 0 i
c={(x ,x ,0,% ,K)EEn ]x GCO,x €Ci, OLiEEl, and
g (x5 +a, 0,1i€1; () k.yec j€J)
i i 3 b 3 j j’ 3
and let
A 4 A
Q(xo,x}a,xI,K)=go(xo) +2 g, (x7,€.) =G(x,K),
7 d i
where the (closed convex ) function g; has a domain

+5c 0 ;3 4] 3

C.={(x?,k,) | either €, =0 and jsup (x ,d”)<4w, or K,>0 and x” €K,C,}

J J J d‘JQD, J J 3
3

and functional values

-

sup (xJ,dJ> if K, =0 and sup (xJ,dJ)<+oo
dJGDj J djEDj

+ >

K.g.(x3/K,) if K,>0 and xJ €K.C,
3%3 j j 3’5

Then, section 6 of [7] shows that

1.

0 I J 0O 1 J
?,!={(Y Y :7\.,}7 :B)EEn ! (Y Y LY )EEO(I); B=O; KEEO(I)

Section 6 of [7] also shows that
0. I, 3 0 i + L]
b={G .y My B EE |y €Dy; (v A ) €D, L€y €Dy,
Iy+g.%0, i
Bs€E;, and h, (") +8; <0, j€J},

and that
0 I J . 0 +, i ) .
Ry sy Ry .8) =hy(y ) +20 h; 7,2;) =H(, M),
I

where the (closed convex) function hz has a domain
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A . . - 3 .
D‘j‘j:{(yl’}\i) l either )\'i =0 and sup <y1,cl> <-|¢0, or )\i> 0 and y1€ )\iDi}

ciec,
i
and functional wvalues

sup (y",c™) if 1. =0 and sup (y",c™) <+
c'-LECi * cte Ci

+, i
hi(y

e

A )

1,y i
Kihi(y /7\1)- if >\1> 0 and y EkiDi.

The symmetry of this formulation becomes even more apparent with the
observation that the specified problem ¢/ consists essentially of minimizing
G(x,k) for x€X and gi(xi) €0, i€1I while the resulting problem /3 con-~
sists essentially of minimizing H(y,\) for y€ Y and hj (yj) <0, j€J. (In
fact, this is the only known completely symmetric formulation of duality
for general convex programming with explicit constraints.)

Now, fact (A) and the displayed formula for C imply that

©*e) ={(xo,xI,0L,xJ,K)€ En l XOE (o CO); xiE Eni, aiE El’ and

spp (xl,dl_) +a, < 0, i€ 1I;

d €D,
i

j +
(=),6,)€c,, j€I3,
P ECs, ] }
by virtue of both the equation
v, i i i -
(O {Gxa) | x€C 0, €E , and g, (x ) o, <0}) =

{(xl,CLi) ' % € En s aiE El’ and §upD (xl,dl) +ais O}
i i
i dié€ i

and the equation

FaFy
(0 cj>-c4jf.
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+
To derive the latter equation, simply observe that Cj is a convex
cone and then use Theorem 8.1 on page 61 of [12]. To derive the former

equation, first note that
{(Xi,ai)] xt¢ Ci,aiE E,, and gi(xi)441is 0} =
(o) | G5, -a,) € Cepi g}
and then infer from Corollary 8.3.4 on page 64 of [12] that
O (G | Ghma) € Cept ) D= 160 | -0, €007 (epi g -

Now, use the definition of giO+ at the top of page 66 in [12]; and then
invoke Theorem 13.3 on page 116 of [12].
To determine whether the specified problem¢ is primal regular,

simply note from the displayed formulas for X and (0'C) that

problem & is primal regular if and only if there is a nonzero

I J

0
(direction) vector (yo,yI,yJ,yJ) such that: (v ,y ,y )€X;

0 . ‘ , .. .
v €0 cy); 'YlEEn and . sup (P,dt) <0, i€1; I,y ect, jeq

. i d*€p, >
{where,yJ has components Yj for §€J).

To determine whether the specified problem ¢ is dual regular, note from

facts (B) and (C) and the displayed formulas for X; & and (0'C) that

problem ¢ is dual regular if and only if: either X is not a
vector space, or (0+CO) is not a vector space, or

{(xl,qi)] x € En , aiE El’ and sup (xl,dl)-kqif;O] is not a
i dLeD,
i

vector space for some i€ I, or J is not empty; and both
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+ o i i
(07C,)° = (aG,) and {GTa) [ %€ Eni, a; €E , and
sup (x',dY) +a, s0lPc@{Gta) | xEC,, o, € Eqs
a* €D, * t 1l
1

and gi(x1}+q.iso}) for each i €1.

Needless to say, the state of regularity for the resulting problem
[F can be determined with the aid of the dual of each of the preceding
displayed statements (obtained by interchanging the symbols ¢ and 3,
the symbols v and 6, the symbols X and Y, the symbols C and D, the sym-
bols g and h, the symbols I and J, the symbols x and y, the symbols
a and B, the symbols i and j, and the symbols ¢ and d).

The theory established in section 2 can now be applied to the con-
strained cases of the following special programming types: (prototype)
posynomial programming, linear programming, (convex) ordinary program-
ming, and chemical equilibrium analysis -- simply by consulting examples
6 through 9 respectively in section 2 of [8]. Moreover, the interested
reader should also have no trouble making applications to (convex)
quadratic programming (with either linear or quadratic constraints),
constrained zp-regression analysis, and constrained (convex) optimal
location -- simply by consulting the references alluded to in section 2
of [8]. 1In particular, it is not difficult to see that ordinary pro-
gramming and chemical equilibrium analysis are the only such examples for
which the resulting problem B is not necessarily dual regular. In fact,
for all other such examples, (0'.8) is not a vector space because I is
not empty; and (07.5)° < (AP) because J is empty and because rather el-
ementary computations show that (0+D0)o =(ADO). Although the state of
regularity for ordinary programming depends on the particular nature of

the functions g, and g;, i€ 1, the specified problemd is always dual
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regular in the context of chemical equilibrium analysis. In fact, for
chemical equilibrium analysis, (0'@) is not a vector space because J is
not empty; and (0'C)° < (/%) because I is empty and because rather elemen-
tary computations show that (C)JrCO)O = (ACO). Moreover, in chemical equilib-
rium analysis, the signs of the components of the specified generatoérs
for X- along with the specific nature of C-;, j€ J readily imply that the
resulting problem is never primal regular; so Theorem 2 and the (un-
stated) dual of Theorem 1 in Appendix A clearly imply that J, but not o/,
is unbounded in chemical equilibrium analysis.

Although the preceding observation about linear programming pro-
duces the complementarity theorem of Clark [2], stronger complementarity
theorems about linear inequalities have subsequently been given by Williams
[13,14] . Moreover, stronger complementarity theorems about posynomial
programming have subsequently been given by Avriel and Williams [1]; and
stronger complementarity theorems about some of the other special pro-
gramming types are, no doubt, possible. However, the generalizability of
such theorems to much broader classes of convex programming problems has,

to the best of the author's knowledge, not yet been investigated.

3.2. The Fenchel-Rockafellar Formulation. Let

A 1
X =the column space of [Mr] s

where Ir is the r X r identity matrix, M is an arbitrary s x r matrix, and

r+s=n., In addition, let
A1 2 A 1 2, 2
C=C"xC andg(x)=g1(X)-g(x ),

where the closed convex function gl has domain Cl.C_ Er’ and the closed con-
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2 2
cave function g has domain C ;ES.

Then, section 5 of [6] shows that

Mt
’y=the column space of -1 s
s
where M* is the transpose of M, and IS is the s X s identity matrix. Section

5 of [6] also shows that
2 1 2 2
5=0" x[-0?] and n @) =n' 1) -7 -y,

where hlle is the (convex) conjugate transform of gl:cl, and h2:D2 is
the concave conjugate transform of gZ:C2 -- obtained by replacing sup with
inf in the definition of the conjugate transform.

The symmetry of this formulation becomes apparent with the obser-
vation that the specified problem ¢ obviously consists of minimizing
gl(zr) - gz(Mzr) for er C1 and Mer C2 while the resulting problem & ob-
viously consists of minimizing hl(l\’fc zs) -hz(zs) for M* 2% € D1 and zSE D2.
(Actually, Fenchel and Rockafellar prefer to rephrase the resulting pro-
blem B in the (still symmetric) form of maximizing hz(zs) —hl(MJc z°) for
z° € D2 and M*2z%¢€ Dl.)

Now, fact (A) and the displayed formula for C imply that
0@y = (o ¢y x (o7 c?).
To determine whether the specified problem & is primal regular, simply

note from the displayed formulas for Z and (0*'C) that

problem & is primal regular if and only if there is a nonzero

vector yr such that yrE (o Cl) and MyrE (O+C2).
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To determine whether the specified problem ¢ is dual regular, simply note

from facts (B) and (C) and the displayed formulas for X and (0'C) that

1
problem ¢ is dual regular if and only if either (0"C’) or
(OFCZ) is not a vector space and both (0+Cl)°$;(ACl) and

(0" c?° < ey,

Needless to say, the state of regularity for the resulting problem 5
can be determined with the aid of the dual of each of the preceding dis-
payed statements (obtained by interchanging the symbols ¢ and £, the
symbols yr and GS, the symbols Cl and DZ, the symbols C2 and Dl, and
the symbols M and M.

It should be mentioned that the original Fenchel formulation can be
obtained by letting M==Ir, in which case s=r.. Moreover, it is worth
noting that the (reverse) specialization described by the "note added
in proof" at the end of [6] shows that the counter examples in Appendix
B serve equally well as counterexamples in the context of the original
Fenchel formulation (and hence the preceding Fenchel-Rockafellar Formula-

tion).

3.3. The Rockafellar Formulation. Let

A I
X =the column space of Op R

q

where Ip is the p xp identity matrix, Oq is the g X p zero matrix, and
ptq=n.
Then, section 5 of [6] shows that

0

y==the column space of Ip »

q
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where Iq is the qx q identity matrix and OP is the p x q zero matrix.

The symmetry of this formulation becomes even more apparent with the
observation that the specified problem & obviously consists of minimizing
g(zP,O) for (zP,O)GG while the resulting problem /7 obviously consists of
minimizing h(O,zq) for (O,Zq) €.5. (Actually, Rockafellar prefers to re-
phrase the resulting problem /5 in the (still symmetric) form of a maximi-
ation problem by placing minus signs at crucial (and difficult to
remember) places, but those details need not be of any direct concern
here.)

To determine whether the specified problem¢? is primal regular, simply

note from the displayed formula for X that

problem & is primal regular if and only if there is a nonzero

vector Yp such that (yP,O)G (0°Q).

To determine whether the specified problem is dual regular, simply note

from the displayed formula for X that

problem & is dual regular if and only if (0'C) is not a vector

space and (0"C®)° c (A2).

Needless to say, the state of regularity for the resulting problem
3 can be determined with the aid of the dual of each of the preceding dis-
played statements (obtained by interchanging the symbols & and /3, the
symbols Yp and éq, the symbols (YP,O) and (O,Sq), and the symbols @ and .8).
It is worth noting that the (reverse) specialization described in Ap-
pendix A of [6] shows that the counterexamples in Appendix B (of this

paper) serve equally well as counterexamples in the context of the pre-
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ceding Rockafellar formulation (and hence the original Rockafellar

formulation).

3.4, The Ordinary Lagrangian Formulation. In the context of the

preceding Rockafellar formulation, suppose that
A
X = (z,u) where zEEp and u€ Eq.

Then, let

[ =d

A
2 ={(z,u) | z€C and Gi(z)+uisO, i €1} and g(z,u) =G0(z),

where I is a (possibly empty) positive - integer index set with finite

cardinality o(I), and the G 1(6{0}[)1, are closed convex functions

k’
with a common domain CS;EP.

Now, suppose that

A
y=@,\) where uEEP and A€ Eq’

Then, an elementary computation (given essentially in section 30 of [127)
shows that

B={@,\) | 120 and sup [{u,z> - G, (2) -2 A, G, (2)] <)

ii
z€C I

and

h@,)) = sup [(u,z>-G0(z)-2 1.G, (2)].

ii
z€C I

The lack of any transparent symmetry in this formulation becomes
apparent with the observation that the specified problem & obviously con-
sists of minimizing Go(z) for z€C and Gi(z) <0, i €I while the resulting

problem /5 obviously consists of minimizing over A >0 the supremum over z€ C
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of the negative of the ordinary Lagrangian GO(z) +25 hiGi(z). (Actually,
I
standard treatises prefer to rephrase the resulting problem Z in the

(still unsymmetric) form of maximizing over A 20 the infimum over z € C of

the ordinary Lagrangian GO(Z) +2 hiGi(z).)
I
Now, the displayed formula for C implies that

o*'e) =n 0" {(z,u) [ z€C and G, (2) +u, SO}),
T i i

by virtue of Corollary 8.3.3 on page 64 of [12].
To determine whether the specified problem ¢/ iz primal regular, note
from the corresponding displayed statement in the preceding subsection

3.3 and the displayed formula for (0'C) along with Theorem 8.6 on page 68
of [12] that

problem ¢ is primal regular if and only if there is a nonzero

vector ypsuch that Yp is in the "recession cone" of G; for

each i €1.

To determine whether the specified problem ¢ is dual regular, note from
the corresponding displayed statement in the preceding subsection 3.3

and the displayed formulas for & and (07®) that

problem 7 is dual regular if and only if rl(0+{(z,u)| z€C and
I
Gi(z)i-ui:gO}) is not a vector space and [N (0"{(z,u) | z€C and

I
Gi(z) +ui go})]° c (@ Q {(z,u) | z€ C and Gi (z)‘~+qi:.s03) .

Needless to say, the lack of any transparent symmetry in this
formulation necessitates another return to the preceding subsection 3.3

to characterize the state of regularity for the resulting problem /5.
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The characterization that comes from also using Theorem 8.6 on page 68

of [12] is that

problem 2 is primal regular if and only if there is a nonzero
vector 6q such that 6q is in the recession cone of

{A20 ] sup [(u,z) - G () LK G (z)] <+=} for at least one
z€C

vector u € E_ for which {320 l sup [{u,z) - G (z) -2 7\ G (2)] < +=}
P z€C I
is nonempty.

and

problem & is dual regular if and only if (0" {(u,)) | A2 0 and

sup [{u,z) - G (2) ZDK G (z)] <+=}) is not a vector space and

z€C
O {(Cu,n [A=0 and sup [{u,z) - G, (z) - Z)\ G. (z)]<+oo}) <
z€C
@{G,)| 1220 and sup [{u,z) - Gy (2) ZK G, (2)] <+4=}).
z€C

It is worth noting that the (reverse) specialization indicated at
the top of page 298 in [12] shows that the counterexamples in Appendix
B serve equally well as counterexamples in the context of the preceding

ordinary Lagrangian formulation.

Appendix A: The following sequence of theorems culminates in a proof

for the proposition stated in section 2. (Actuélly, it may be worth
noting that the closedness of X and ¢ hypothesized in section 2 is needed
in neither the proof of Theorem 1 nor the proof of Theorem 2 -- though

such closedness is needed when utilizing the duals of Theorem 1 and
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Theorem 2 to prove the proposition.)
The following theorem proves the proposition under the much stronger

assumptions of primal regularity and consistency for problem &

Theorem 1. Given that

there is a nonzero(direction) vector yéEZTW(O+G),

if o/ is nonempty, then o/ is unbounded.

Proof. Given an x€XNC, the convex conicality of X and the definition
of (0°C) imply that x+svy€XNC for every § 20; so XNC is unbounded (in

the direction v). q.e.d.

The following theorem shows that dual regularity for problem
along with a lack of primal regularity for problem ¢« implies primal

regularity for problem 5.

Theorem 2. Given that

either X or (0'C) is not a vector space

and given that

(0"C)° = (1),

there is no nonzero (direction) vector y€ZN (07C),

then

there is a nonzero (direction) vector 662;0(0+£0-
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Proof. The following lemmas are needed and may be of some interest in

their own right.

Lemma 1. Each convex cone K in En for which 0€ (ri K) is actually a
vector space (where the "relative interior” (ri K) of K is defined to

be the "interior'" of K "relative to'" the "affine hull" of K).

Proof. Such a K is obviously nonempty, and hence Theorem 6.4 on page
47 of [12] readily implies that such a K==-K; :from which we infer via
Theorem 2.7 on page 15 of [12] that such a K is actually a vector

space, q.e.d.

Lemma 2. Given that either X or another fixed nonempty convex cone
¥ in En is not a vector space, if there is no nonzero (direction) vector

v €EXNX, then there is a nonzero (direction) vector éé’g,zﬂ?(".

Proof. Our assumptions clearly imply that (xriX )N (ri¥X) is empty, by
virtue of Lemma 1 and the obvious fact that (riZ) N (ri%) €A NX. Taking
account of Theorem 6.2 on page 45 of [12], we now infer from Theorem 11.3
on page 97 of [12] that there is a hyperplane "separating X and X properly".
According to Theorem 11.1 om page 95 of {[12], this means that there is
a vector § EEn such that

sup (v,8) > inf {(v,5)

vEX v EX
and such that

inf (v,8)2 sup (v,8).
vEX vEX
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The (strictness of the) former inequality obviously implies that § is
not the zero vector; and the latter inequality along with the conicality
of X and ¥ clearly implies that

inf {y,8) =0= sup (y,6>o

vyEX ' v EX
Finally, the first and second equations in the preceding relation simply

assert that 8§ €Y% and § €X° respectively. q.e.d.
Lemma 3. The barrier cone (AC) is a subcone of the recession cone (07.8).

Proof. Obviously, each § in (AZ) has the property that sup {c,§) <+
ceC

and according to Theorem 13.3 on page 116 of [12] such a "support' §

for C must be in the domain for the "recession function" of A. Finally,

Theorem 12.2 on page 104 of [12] and (the final assertion of) Theorem

8.5 on page 66 of [12] clearly imply that such a 8 must be in ©0*H . q.e.d.
Now, Theorem 8.1 on page 61 of [12] asserts that (0*®) is a nonempty
A .
convex cone. Hence, letting k”=(O+CJ, we immediately infer from Lemma

2 and Lemma 3 the desired conclusion of Theorem 2. q.e.d.

The following theorem shows that consistency for problem ¢ implies

that either ./ is unbounded or problem 5 is consistent.

Theorem 3. If ./ is nonempty but bounded, then J is nonempty (in fact,

J contains a vector yoff(riZOfW(rifD, and hence problems ¢/ and 5 have

no duality gap).
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Proof. The assumptions obviously imply that each objective function
"level set" £ré{x €/ |gx) <r} is bounded; so Theorem 3 in [9] asserts
the existence of a vector y?’E (riY) N (ri.B). The absence of a duality
gap is then asserted by the (geomettic programming) version of '"Fenchel's

;heoraﬁ'given,as Theorem 31.4 on page 335.0of [12]. qg.e.d.

To prove the proposition, we first consider the case in which pro-
blem & is regular. 1In doing so, we also consider two mutually ex-
haustive subcases.

IfJ is nonempty, then either J. is unbounded ( in which event our proof
is complete) or J is bounded. In the latter event, the (unstated) dual
of Theorem 3 asserts that o/ is nonempty -- the defining condition for the
second subcase.

If o/ is nonempty, then either o/ is unbounded (in which event our
proof is complete) or o/ is bounded. In the latter event, Theorem 1 clearly
implies that problem ¢/ is not primal regular; from which we infer via
our regularity assumption and Theorem 2 that problem /2 must be primal
regular. Since Theorem 3 asserts that J must be nonempty, we now conclude
from the (unstated) dual of Theorem 1 that J must be unbounded.

To treat the only other possible case -~ the case in which problem

B is regular -- simply utilize the dual of the preceding argument. q.e.d.

Appendix B, The following counterexamples place limitations on any

strengthening of the proposition stated in section 2.

Counterexample 1. Let X be an arbitrary vector space in En’ and let g

A
be the identically zero function on c=x.

Then, X and.}tare orthogonal complementary vector spaces in E,,
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and A is the identically zero function on £>=Zf.
Obviously, neither this problem & nor this problem & is regular.
Moreover, note that S=ANx" ={0} and J'=@!ﬂ@f ={0}. Consequently, both

# and J are nonempty, but neither ./ nor J is unbounded.

Counterexample 2. Let X be an arbitrary nontrivial vector space in En’

A
and let ¢ be the identically zero function on C=2.

Then, X and Y% are nontrivial orthogonal complementary vector
spaces in En’ and A is the identically zero function on S =Y.

Obviously, both this problem ¢ and this problem £ are primal regular
(and hence regular). Moreover, note that /=XNX =X and J =YNY="%.
Consequently, both o/ and /7 are (nonempty) nontrivial vector spaces,

and (hence) both o/ and 7 are unbounded.

Note that in both of these counterexamples the infima o and § are
both zero; so in both of these counterexamples 0 =g+ y, and hence both

of these pairs of dual problems ¢ and /5 do not have a duality gap.
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