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SINGULARITY THEORY OF UTILITY MAPPINGS -1

Degenerate Maxima and Pareto Optima
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Northwestern University, Evanston, IL 60201, USA
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Many papers have described effective necessary and sufficient conditions for
Pareto optimality using calculus techniques. The sufficient conditions are
usually some sort of non-degeneracy conditions on the second derivatives of
the utility mappings. In this paper, we shall investigate the optima not covered
by these tests — optima which we call ‘degenerate’. In addition to discussing
methods for determining the optimality of such points, we shall look at two
basic questions concerning degenerate optima. The first question is to determine
for ‘most’ utility mappings the structure of the subset of the degenerate optima
within the set of all optima points. In particular, do they form a subset of
measure zero? The second question concerns the relative abundance of utility
mappings which give rise to these degenerate optima. For example, are there
open sets of utility mappings which admit non-empty submanifolds of degenerate
optima?

As indicated by our choice of words like ‘most’ and ‘generically’, we will be
studying open-dense or residual subsets of utility mappings. Since there is a
bit of arbitrariness in passing from an observed preference ordering to an
analytical utility function, it certainly makes sense to study residual subsets of
utility mappings since, intuitively speaking, the probability of choosing a
utility mapping that is not in a given residual set is zero.

The first question mentioned above asks for the size of the degeneracy set in
the set of all optima. We shall show that it is usually not only a measure zero
but it even forms a lower-dimensional submanifold. Simon-Titus (1975) give
a very brief sketch of a proof of this fact. We are giving another proof here for
two reasons. First of all, the ideas and concepts in our proof are much more
elementary. For example, unlike Simon-Titus, we do not use the differential
geometry of differential forms and wedge products. Secondly, while others,
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such as Smale, Simon, Titus, Wan, have used general singularity theory to
obtain results on optima, we begin with this paper a systematic study of the
singularity theory of utility mappings in the space of utility mappings. We shall
begin to develop, essentially from first principles, and to apply the singularity
theory of the space of utility mappings. This project ties in with the challenge
of Thom (1972) to develop singularity theories for special categories of functions.

The second question raised in our introductory paragraph asks a comple-
mentary question to the first. Once it is known that, when degenerate optima
exist, they usually lie on submanifolds of lower dimension, it is natural to
question whether a utility mapping with degenerate optima can always be
perturbed to obtain a new utility mapping possessing only non-degenerate
optima. If this would be the case, then an argument based on the arbitrariness
of the choice of utility functions could be forcefully presented to consider only
those utility mappings for which the optima are discernable by second-order
calculus techniques! However, in the last sections of this paper we show that,
for economies with three or more agents, degenerate optima persist, i.e., they
exist for open subsets of utility mappings. Indeed, the more agents there are in
the economy, the more derivatives one may have to check to find all the Pareto
optima.

This latter fact is in sharp contrast to the situation of mappings into R! -
where an open-dense set of functions have only non-degenerate critical points —
and even to the situation of mappings into R? — where an open-dense set of
mappings have only non-degenerate Pareto optima.

Most of the research for this paper was done while the second author was
visiting the Mathematics Department at Northwestern University. He would
like to express his appreciation to both the Mathematics Department and the
Center for Math Research in Economics at Northwestern for their hospitality.
In addition, some of the ideas of this paper were generated at discussions at the
1974 Rencontre in Mathematical Economics at the University of Warwick,
and at a 1975 conference at Oberwolfach.

1. Mathematics and economics background

In this section, we will recall some of the basic definitions and concepts
involved. For further details, see Debreu (1959), Malinvaud (1972), Simon-
Titus (1975), or the papers of Smale.

Let R, denote the set of positive real numbers and R, the set of non-negative
real numbers. We will work in economies with @ agents and ¢ commodities,
where 2 £ g, ¢ < . A holding of the kth agent is a vector x* = (x, ..., x¥)
in RS where x% designates the amount of the jth commodity held by the kth
person. We shall assume that the total amount of each commodity is fixed.
Thus, our state spaceis = Q,, = {(x', x?, ..., x) e R)*[x" +... +x7 = b},
where b is a fixed vector in RS . Notice that Q is the subset defined by the
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intersection of a given c(a— 1)-dimensional affine subspace with the closure of
the positive orthant of R°. By the choice of this subspace, it follows that Q
1s compact.

We'll assume further that each agent’s preferences are summarized to be a
smooth utility function u*: Q2 — R, so that if x and y are in Q, the kth agent
prefers commodity bundle x to commodity bundle y if and only if #*(x) = #*(»).
For simplicity, we will take ‘smooth’ to mean C* throughout this paper,
although each result holds with weaker smoothness assumptions. We will make
two rather important classical assumptions on our utility functions: no external-
ities and no satiation. The first assumption implies that the kth agent’s
preferences depend only on his own holdings, i.e., there is #*: RS — R such that
u* (X, ..., x7) = a*(x*), where @i* is C® on a neighborhood of R¢ . The second
assumption means that no #, has a critical point in R%. In addition, we will
make no assumptions on the convexity or monotonicity of .

Let C°(Q, ,R%) denote the space of all the utility mappings u = (u, ..., u%)
where each u* satisfies the above hypothesis. A topology for C2(2, ,R) will
be discussed in section 3.

For simplicity, write y > x for x, y € Q if ¥*(y) = u*(x) for all choices of k
and u'(y) > u/(x) for some j. A commodity bundle x e Q is a local Pareto
optimum (LPO) if there is some neighborhood W of x in Q such that no ye W
satisfies y > x. If W can be chosen to be 2, then x is a Pareto optimum (PO).

For a given u € C®(Q, R?) and x € Q, one would like necessary and sufficient
conditions for x to be an LPO for u. Let Du(x) represent the derivative of u
at x, either as a linear map from the tangent space T, Q to R or as a Jacobian

matrix. If one uses x, ..., x*~! as coordinates for Q. ,, then the matrix Du(x)
for this coordinate system is
" Diit(x!) 0 ... 0 ]
0 Dii?(x?)
0 3
: : DL—‘a—l(xa—l)
| —-Du(x*) —Dua*(x") ... —Du'(x") |
where x* = b—x'—...—x*"!. Since no Di*(x*) is zero (the non-satiation
assumption), this matrix has rank a or rank (a—1). In the latter case, there are
non-zero 4, ..., 4, in R with A, Dii’(x’) = A,Dua"(x") for all i or alternatively

with }';4,Du'(x) = 0 on T, Q. (See Lemma 7 in section 4.) Let
S(u) = {x| Du(x) has rank <a}
= {x| Du(x) has rank (a—1)}
= {x| there are non-zero 4,, ..., 4, with YA Dui(x) = 0}
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This is the ‘singularity set” of u. Let 0(«) be the following subset of S(v) : 0(uv) =
{xe .Q|El/ll y..es Mg all positive with > 2,Du’(x) = 0}. Proposition 1 below
states that a necessary condition for x € Q (the interior of Q) to be a PO or
LPO is that x € 0(u).

Before sufficient conditions can be given, we’ll need to introduce a few more
concepts. Let K, = kernel Du(x) = (; kernel Du'(x). It is easily seen that K,
is the tangent space to (), u'” (#'(x)). Let x € 0(), and let 4,,..., A,eR, be
such that ) 4,Du,(x) = 0. Let F? be Y ;4,D%u,(x) restricted to K, x K. Finally,
let M'u) = {x€ 0(u)|F§ is a degenerate bilinear map, i.e., it has determinant
zero}. In the following proposition, we collect some of the basic results of the
above references regarding necessary and sufficient conditions for optimality.

Proposition 1. Let ue CX(Q, ,, R and let x € Q.

(@) If x is an LPO, x € 0(u).

(b) F2 is intrinsic in that it does not depend on coordinatization of Q.

(©) If xe0(u) and x ¢ I'(u), then x is an LPO if and only if FZ is negative
definite on K.

(d) Let UP = ()t 'W(x)). U® is a submanifold of Q of codimension
a—1. If x€0(u), then TU® = K, and the index of D*(u*|UM) is the
index of FZ.

(e) If x is a (local) maximum for every u*|UP, then x is a (LPO) PO.

(f) Ifx €0 and x is a local maximum for some u*|U®, then x is an LPO.

An essential mathematical tool in all these investigations is the implicit
function theorem. For completeness, we will state this theorem in a very useful
form. See Golubitsky-Guillemin (1973, sec. 1.2) or Edwards (1973, sec. 3.3).

Proposition 2. (Implicit Function Theorem). Let F:R™ — R" be a C" map with
m = n. Let b e R" and W be an open set in R™ such that, for all xe W n F~1(b),
DF(x) has rank n. Then, W ~ F~(b) is a codimension n C"-submanifold of R™;
and if y e W nn F~Y(b), T,F~1(b) is the kernel of DF().

For example, most of Proposition 1(d) follows immediately from Propo-
sition 2 and the fact that rank Du(x) = a—1.

2. Degenerate minima

Parts (e) and (f) of Proposition 1 indicate that one can often reduce the
problem of optimizing k functions on Q to that of maximizing a single function
on a submanifold of Q. For the latter problem, one can use many classical
techniques, such as those of Lagrange or of Kuhn-Tucker. Most of these
techniques, however, find only non-degenerate maxima. In a later paper, we
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plan to treat extensively calculus methods for finding degenerate maxima. In
this section, we describe a simple method in this direction.

Since we are studying local maxima, we will assume that we have a smooth
function f: R™ — R with f(0) = 0 and Df(0) = 0. Point 0 is a non-degenerate
maximum if and only if the Hessian D?2f(0) is negative-definite. Notice that this
is a condition on the values of the derivatives of order 2 when evaluated at
(0,0). In the following statement we generalize this condition to include
degenerate critical points.

Theorem 3. Suppose that f: (R?%, 0) » (R, 0) is a real analytic function with
Df(0, 0) = (0, 0). Let p and q be the smallest integers such that

z i ZLoyzo
a}7(0)760 and  5=(0) # 0.

Suppose that

(1) both p and q are non-zero, finite, and even,

p q

0 0
@) both — (O) and —]: > (0) are negative,

am+nf*

) (E’"-By"

(0) = O for all (m, n) such that mp+nq < pq, and

(4) neither of the equations

6m+ry‘ am+nf*
0" = —Nm no_
2 Gy =0 2 gy (O = 0

mp+nq=pq mp+ng=pg

admits a real-valued solution u.

Then, (0, 0) is a strict local maximum of f.

If p = g = 2, then Hypotheses (2) and (4) are equivalent to the usual con-
dition that D?*f(0) be negative-definite. Notice that if Hypothesis (3) is
strengthened to include all (m, n) such that mp+ng < pg, m # q, and n # p,
then Hypothesis (4) is trivially satisfied by Hypothesis (2) and the parity of
p and gq.

Proof. The proof uses some simple ideas of algebraic functions. See Hille
(1962, pp. 105-109) for all the concepts employed here. In R2, consider

m+r:f'

N={(m,n) e )#o}
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This is called the Newton Diagram of f. Let C be the convex hull of N, and
let L denote the line segments on 0C, the boundary of C, joining the y axis to
the x axis and separating the origin from the interior of C in R% . According to
Hypothesis (3), L consists of the line segment from (0, p) to (g, 0). Write
(p,q) = r(a, b), where a and b are relatively prime integers and integer r = 1.
According to Puiseux’s Theorem [Walker (1950, pp. 98-105) or Hille (1963)]
there is a complex analytic function h(1) = Y o>, di**? such that the germ of
the zero set of fin C? is given by

x=1t% y=h0),

x=1t% y=hwt),

x=1t° y=hw),

where w = e?™/%, Furthermore, if f has a real zero set at (0, 0), there is a real
analytic choice of A. One finds the coefficients of A4 by solving

f(ta, Z (thk+b) =0
0

for oy, a4, ... . However, by Hypothesis 4, this equation does not admit a real
value for . Therefore, the germ of the real zero set of fat (0, 0) is (0, 0) itself;
that is, there is a neighborhood U of (0, 0) in R? such that f ~Y(0)nU = {(0, 0)}.
Consequently, f cannot change sign in U; which means that (0, 0) is a strict
local extrema of f. That it is a local maximum follows from Hypothesis (2).

Remarks

1. An examination of the proof of Puiseux’s Theorem (for example, Hille)
shows that it is an easy task to generalize the above theorem, but the resulting
statement becomes somewhat cumbersome. The idea of using Puiseux’s Theorem
comes from Simon-Titus (forthcoming) where the existence of real Puiseux
series is also discussed.

2. While Hypothesis (1) and (2) of Theorem 3 are clearly necessary for
(0, 0) to be a maximum, they are not sufficient, even if the mixed partials on the
line mp+nq = pq vanish. To see this, notice that g(x, y) = —y2+x2y—x® is
negative semi-definite at (0, 0) on every straight line through (0, 0); but g
changes sign at (0,0) on the curve y = x> On the other hand, f(x,y) =
—y? 4+ x*y—x% does have a local maximum at (0, 0) by Theorem 3.
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3. Transversality theory in C,°(Q, ., R

The theory of ‘singularities of mappings’ as developed by Thom, Malgrange,
Mather, and others is a powerful tool for studying the local behavior of
mappings in C¥Q, R?; the vector space of all C*¥ maps from Q to R% As we
mentioned earlier, several authors have used this theory to study the problem
of optimizing a mapping in an economics situation. However, in general, these
papers (see section 1) used singularity theory in C*(2, R%) to study problems
in C¥Q, R% = {restriction of C*(Q, R% to utility maps}. That is, they used
utility maps with externalities to discuss utility maps without externalities.

As we mentioned in the introduction, we will correct this situation here by
developing, essentially from first principles, a singularity theory for C*(Q, R9).
In general, this is somewhat more difficult than the setting where externalities
are admitted, since in this case only special perturbations of a given utility
mapping are permitted. Thus the structure of these maps must be emphasized.
On the other hand, many of the results we shall need for a singularity theory of
utility maps follow immediately from existing statements in the literature.
While we will not reprove these statements, we will outline some of the proofs
for reasons of completeness. Concurrently with the development of the theory,
we shall employ it to obtain either new proofs of existing statements, or new
results concerning utility mappings.

In this paper we shall not be concerned with the value of the total resources
of the economy as represented by vector b. Consequently by a simple translation
we can, and will, assume that Q is a compact subset of the vector space

Y xt = 0}.

Let £ and g be in CXQ, RY), let x € Q, and let r be an integer less than k.
Write f'~, .gif f(x) = g(x) and if all partial derivatives of order =r of fand of g
agree at x, i.e., if the rth order Taylor expansions of f and of g about x agree.
An equivalence class under ~, , is called an r-jet at x. The set of all such equiva-
lence classes at all x € Q is called the space of r-jets of utility maps from Q
to R% Ji(@2,R%. An element in J(Q, R?) will be written as jf(x). In fact,
JI(Q2, R is an open subset of a finite-dimensional vector space and is iso-
morphic to QxR xL(Q, R x ... xL(Q, R, where Li(Q, R%) denotes the
space of symmetric j-linear maps from Q to R? that arise as jth derivatives of a
utility mapping. For example, by the computations of section 1, 7,(Q, R is
the space of all matrices of the form

{(x, ..., x) e (RY)"

A4, ... .. 0

0 4,

0 : o A |
| -4, —4, — A,
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where the A; are non-zero row vectors in R¢ corresponding to the Dit(x).
A necessary part of this study will be an examination of the structure of
LYQ, R% in greater detail. So, we will postpone a more precise definition of
these spaces until that time when they arise in a natural fashion. In particular,
we will describe L)(Q, R?) more thoroughly in section 4.

Coordinatize 2 by (x', ..., x*7 1), where x* = (x%, ..., x}) e R°. This induces
a coordinate system on Jj(2, R*) = Qx ... xL(Q, R?) which we will write as

(1, .emxt x0T oyl oy v v,
Vi e Y, Vi, Vi ey Vg ees Vo Vit coes VE L )
r
So if & = j'u(x) in J(Q, R, then
x}(&) = x5, Y& = u(x) = u(x’),
. ou' . . ot .
V() = — (x) = u'(x), ... M = —— (x*

Il

i} (x), etc.

One defines the Whitney C"-topology on CX(Q, R?) by using r-jets, as follows.
Give J(Q, R the topology it inherits as an open subset of a finite-dimensional
vector space. Then, give C%(Q, R?) the topology for which the following is a
base of open subsets: {fe CkQ, R ]j’f(Q) < V} for all open sets V in
Ji(Q, R®). When one takes the union of all these bases as r goes to infinity,
one obtains a base of open subsets for the Whitney C*-topology.

It turns out that two utility maps fand g are ‘close’ in the Whitney topology
of CX(Q, R if and only if there is a ‘small’ positive function 5 : @ — R with

sup, | Dif(x)— Dg(x) || < n(x),

0=i=

where Df(x) denotes the ith derivative of f at x.

We now turn to an examination of j* and state, without proof, some of its
important properties. It follows from its definition that if fis a given utility
map, then j*fis a mapping from Q to J5(Q, R?). It is important to note that it is
a smooth mapping; that is, it is in C®(Q, J5(Q, R%).

While most computations in the study of optima are done with the Taylor
series, j*f, the ultimate goal is to relate these statements to the actual choice of
mappings f. This is particularly the case in this paper where the goal is to
obtain generic statements. Thus, it will be necessary to know whether this
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process of assigning a utility mapping to an element in J5(2, R?) can be done
in a continuous fashion. That it can be is the content of the following statement.

Lemma 4. The mapping j*: C®(Q, R%) — C®(Q, JXQ, RY) defined by f— j*f
is a continuous map in the Whitney C® topology.

The proof of this statement is a modification of the one found in Golubitsky-
Guillemin (1973) - but enough of a modification that we will sketch its proof.
The idea is to take a basic open set ¥V = C®(Q,J5Q, R%)) and show that
(j*~1(V) is an open set in C®(Q, R). Our basic open set ¥ has the form

V= {ge C(Q,JHQ RY)|j"g(Q) = W},

for some integer m and some open set W in J™(Q, J¥(Q, RY).

By the definition of the Whitney C%-topology, we need only show that
(7971(¥) is an open subset of J7(2, R?) for some #, where the natural choice
is n = k+m. So, identity g € ¥ with j*u for some map u: Q - R° Note that u
must satisfy j"(j*u)(Q) < W. To finish the proof by showing that (j*)~(V)
defines an open set in J¥*™(Q, R?), one relates j™**(u) with j™(j*u) by noting
is smooth and that j™(j*u) depends only on partial derivatives of order < k+m.

All of this is standard, as in Golubitsky—Guillemin (1973, sec. 11.3). The
necessary modification in the proof is to show that one can choose a u in
Cr(Q, RY to represent g. That is, one must show that #(x) is a utility mapping.
But, since g(x) e J5(€, R?) for each x, the projection of g onto the factor
L1(Q, RY) is a matrix of the form

A, O 0 ]

0 A, 0 0
A

L —A, —A, —A, ]

where the A, are all non-zero elements of R¢. So
Ou; ,
—(x) =0 for i#h and VxeQ.
5xj

This fact and the equation

imply that u must be a utility mapping.
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Next, we recall some basic facts about transversality theory. Let fe C*(Q2, R%)
and let N be a smooth submanifold of R® Then, fis transverse to N (f & N) if,
whenever f(x) e N, then Df(x)(T,2)+T; N = T,,R" Since the tangent
space of a point in a vector space can be identified with the vector space, we
can write this equation as

Df(X)NQ)+ TN = R,

i.e., the image of Q under f fills up a complementary space to N in R* at x.
We now list some simple consequences of transversality.

Proposition 5. (a) If f is transverse to N, then f ~'(N) is a submanifold of Q
with the codimension of f ~'(N) in Q equal to the codimension of N in R®,

(b) Thom Transversality Theorem — Let P be a finite-dimensional manifold,
and let N be a submanifold of R®. Let F: Qx P — R*® be a C* map with F trans-
verse to N and k > dimQ—dimN. Then, there is a residual subset of p € P,
such that the map F,: Q — R*® defined by F,(x) = F(x, p), is transverse to N.

A subset of P is ‘residual’ if it is the countable intersection of open-dense
subsets of P, e.g., the irrational numbers in R. ‘Residual’ is stronger than
‘dense’ but weaker than ‘open-dense’. In particular, we say a property in a
space A is ‘generic’ if it holds for a residual subset of A.

See Golubitsky—Guillemin (1973) or Simon-Titus (1975) for the proof of
Proposition 5 and for a more complete discussion of transversality. Part (a)
of Proposition 5 is a direct consequence of Proposition 2. One writes N as
g 1(0) locally, where g: R® - R", n = codim N, and 0 is a regular value of g.
Then, f~Y(N) is (gf)~'(0) and the transversality condition implies that 0 is a
regular value of gf. Part (b) is an application of Sard’s Theorem.

The next step in the theory is Thom’s Jet Transversality Theorem, a beautiful
synthesis of the notions of jet and transversality. Here, we mimic Thom’s
proof of this theorem to demonstrate the corresponding theorem for utility
mappings. We exploit the compactness of Q to obtain a slightly stronger
statement, particularly when the theorem is applied to optima problems.

Theorem 6. Let X be any submanifold of J(Q, R?). The set B of utility maps u
in CX(Q, RY) such that ju: Q — J(Q, R is transverse to X is a residual subset
of CX(Q, R). If ¥ is closed, then & is open-dense.

Proof. We will first prove the theorem for closed X. It is rather easy to see
that 4 is open. For, transversality implies either non-intersection or that certain
submatrices have non-zero determinant. Since Q is compact, 2 is closed, and
j" is continuous, it follows that 4 is open.

Thus only the density needs to be established. Let P, be the vector space of
all polynomial mappings of degree <r from R° to R. Let #, = P, x ... xP,
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be the polynomial maps of degree <r in C(2, R%. That is, if pe 2, and -
(x', ..., x) e Q, then p(x!, ..., x%) = (P'(x}), ..., p*(x")) where each p’ € P, and
x* = —%497'x% Let f be an arbitrary mapping in C2(Q, R). Consider the
map F:Qx2P, - J(Q,R" defined by F(x,p)=j(f+p)x). Therefore,
J (f+p)x) = j f(x)+p(x) is the Taylor series of order r of f+p. But, 2x 2,
can clearly be viewed as the tangent space at j’f(x) in the vector space J;(£2, R?).
Consequently, F is a submersion, i.e., DF(x, p) is onto at each point. In other
words, every point in JJ(Q, R®) is a regular value of F, and F: @x P, — J; is
transverse to any submanifold of J(Q, R?). By Proposition 5(b), there is a
p € 2, arbitrarily close to zero with j*(f+p) transverse to Z. This shows the
density of transversal jets.

Assume X is not closed. Cover Z by a countable number of open set {V;}
such that V; < X for all i. The above argument shows that if %, is the set of
utility maps transverse to V;, then %, contains an open dense set. (¥, is used
to obtain the ‘open’ part. ¥;, a submanifold of X, is used to obtain the dense-
ness.) Since & = N%,;, & is residual.

Notice that if £ can be covered by a finite union of closed submanifolds,
or closed submanifclds with boundary, the dimension of each bounded by the
dimension of Z, then the argument shows that & contains an open-dense set.

4. Generic Properties of C;°(Q, ,, R

We shall now apply Theorem 6. As our first application we’ll show for an
open-dense subset of C(Q.,.,R%, S(u) and O(u) are (a—1)-dimensional
submanifolds in Q, if they are non-empty. This theorem is an improvement
(open-dense replacing residual) of a result which was first proved in Smale
(1974) and later in Simon-Titus (1975).

Our first step in this direction is to describe L(©Q, R) more carefully. As
noted in sections 1 and 3, L1(Q, R is the set of all linear maps from (R)?
to R? which assume the form

A, 0 ]
0 A, O 0
A= ,
0 ; Do A,
| —A, —-A, : .. -A,]

where vectors A; € R€ are all non-zero. The non-vanishing of the A,’s corresponds
to the non-satiation condition imposed upon the u;’s. The form of the matrix
corresponds to our study of utility maps without externalities. Since the specifi-
cation of ‘@’ vectors from R° completely determines a given map in this space,
the dimension of L1(2, R is ca, and it can be identified in a natural smooth
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fashion with Ry = (R°)*— {coordinate planes defined by A; =0, for i = |,
2, ..., a}. That LI(Q, R? is a manifold, actually a submanifold of L!(®, R%),
now follows from this identification. We can now state the key lemma.

Lemma 7. Let S denote the subset of L:(Q, R®) consisting of linear maps of
corank 1, and let 0 denote the subset of S defined by A, = ... = A, where
the scalars u; are all positive. Then, S and 0 are codimension (a—1)(c—1) closed
submanifolds of LY(Q,R%; and QxR*xS and QxR°x0 are codimension
(a—1)(c—1) submanifolds of J(2, R%).

We shall provide two proofs of this lemma to illustrate two different
approaches to the subject of singularities. The first proof emphasizes the
structure of L!(Q, R% while the second is an analytical proof emphasizing the
behavior of a given utility map.

Proof. We first characterize the set S by claiming that if [a x ¢c(a—1)] matrix 4
has rank a—1, then there exist (unique) non-zero scalars 4; such that A; = 4,A,
for i =1,..., a. For, the first (a—1) rows of 4, (A;,0,...,0), (0,A,,0,...,),

(0,...,0,A,_;) are linearly independent since the A; are non-zero. Since A4
has rank (a—1), the last row is a linear combination of the first (a—1) rows in
R¢™D, That is, there is (iy,...,H,—y) =0 with (—=A,,..., —A,) =

(AL, 0+ 4, (0,...,0,A,_,). So, —A, = u;A;. Since A, #0,
each y; is non-zero. Let 4; = —1/u;.

The above shows that S can be identified with the submanifold of RY given
by (A1A,, ...y 4,-1A,, A,) Where non-zero A, € R¢ and scalars A; are non-zero.
This submanifold is of dimension c+(a—1); thus it follows that S is a sub-
manifold of codimension ac—c¢—(a—1) = (a—1)(c—1). That S is closed
in L)(2, R follows from the above identification. Subset 0 is defined by
the condition that all the A,’s are positive. Thus the stated conclusion for ¢
follows immediately.

We now turn to the second proof of this lemma. According to the com-
putations of section 1, j'(u) € @ x R* x S if and only if

Du(x) =
-aa—;lli = ... g;f-ic (x} 0,0,0 -
0O O gu—x; x> ... E;—Z-;(xz)
g—z;(x""l) %:(x"_l)
-—% x") ...—aa—z;(x") —éa%;(x“) —gz;(x") |
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has rank (a—1) where x* = —Y %21 x'. Since each row is a scalar multiple of
the last row, as seen in the first proof, all the following 2 x2 submatrices of
Du(x) have zero determinant:

ot ou®  out out
ox}oxg oxioxi

——— —— p— T2

out~1 ou® outt out
oxa—1ox? 0x*~1 0xf

We want to see that these equations define a submanifold of J1(2, R%). Recall
the coordinate system xi,...,x37% yi, ..., »% vi,...,v? defined above for
JNQ, RY. Let W; (1 £i £ a) denote the open subset of J,(2, R?) defined by
vl # 0, v #0,...,v¢ # 0. If Du(x) has corank 1, then 34, ..., 4, all non-
zero such that 4, Dit;(x') = ... = A,Di,(x°) # 0. This means that W,u...UW,
covers S in J,(Q, R%. So, it suffices to show that W;NS is a submanifold for
each i. For simplicity, we’ll work with W;.

Now, W,nS is given by the (a—1)(c—1) equations on J!:

1 . . 1. a 1.a __
A; = viv5—vyvi =0,

Al = vvi—vivi =0,

2 _ 2.4 .2.a _
AZ = ViV —Vay; = 0,

: (#)

2 __ 2.4 2.a __
Az = vive—vivi =0,

457 = v = 0,

A7 = v vET v = 0.

To see that W;NS is a codimension (a—1)(c—1) submanifold of W,, we need
only show that zero is a regular value of the map

A= (AL, . AL A2, ASTY L AT TY(Q, RY) - RETDETD
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by Proposition 2. In other words, we must find an (a—1)(c—1) non-singular
square submatrix in DA(x,y,v). However, if one holds fixed x,y,v3,
v}, ..., v, v, ..., v* and differentiates with respect to the other variables, one

finds that
1 1 2 2 -1 -1y : :
OAJO(Vay ooy Vo Vs eeas Vay oy Vo 5 eaus ve ) Is diag {vi, v], ..., vi}

Since vi # 0 in W,, zero is a regular value of 4 and SnW; is a codimension
(a—1)(c—1) submanifold of W;.

Theorem 8. There exists an open-dense subset of u in C(Q, R%) for which
0(u) and S(u) are (a— 1)-dimensional submanifolds of @ (if they are non-empty).

Proof. This is a combination of Lemma 7 and Theorem 6. One first takes
QxR*x S and then @ xR?x 0 to be the ¥ of Theorem 6. Since S and 6 are
closed submanifolds of L.(Q, R%), it follows from Theorem 6 that for each
of the two sets described in the previous sentence, there exists an open-dense
subset (%, and &) of utility mappings with the property that j’(u) is transverse
to 2. The open dense subset #,Nn%, is the subset we want. According to
Proposition 5(a), for such u, S(u) = j'(w)"*(S) and O6(x) = j'(u)"'(0) are
codimension (@a—1)(c—1) submanifolds of Q. If either set is non-empty, then
its dimension is c(a—1)—(c—1)(a—1) = a—1.

We now come to the main goal of this section: an estimate of the size of the
degeneracy set I'(u) in ©(u) for generic utility mapping u. We will need two
lemmas.

Lemma 9. Let V be a finite-dimensional vector space. Let p = (py, D2y s Pi)"
V — R* be a polynomial on V with Dp,(x), Dp,(x), ..., Dp(x) all independent
for some x € V. Then, p~*(0) is an algebraic variety in V. In particular, it is a
finite union of submanifolds of V, each of codimension greater than or equal to k.

Proof. This is a classical and simple result of analytic function theory. See
Milnor (1968, pp. 14-15).

Lemma 10. Suppose that ue C(Q, R lies in the open-dense subset described
in Theorem 8 [so, O(u) is a submanifold of Q). Then, x € I'(u) if and only if
x € I'(u) and there is a non-zero vector in T, 0(u)nkernel Du(x).

Proof. Let us forget the special structures of # and Q for a second. Let
x* e G(u) Since Du(x*) has rank (a—1), one can find coordinates (y;, ..., Yo—1»
Zys .5 Z(e-1)@—1)y) iD @ neighborhood W centered at x* in Q so that in these
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coordinates u takes the form

u(y, z) = uy(xD+yy,

ua—l(y’ Z) = ua—l(x:—-l)'*"ya—l’
u(y, z) = v(yy5...» Z(c—_l)(a—l))°

This fact follows easily from the implicit function theorem and is sometimes
called the ‘rank theorem’. [For example, see Sternberg (1964, p. 40).]
In these coordinates,

Du(x*) =
1 0 0 0 0 1
o 1 ... 0 0 0
0 0 ... 1 0 ... 0
ov Ov ov ov v
|0y, 0y, 0paey 0z 0Z(a-1 (c-1)
Clearly, (aty,..., 0,15 B1,...) lies in the kernel of Du(x*) if and only if
o =...=0,_; = 0. [Recall, Du(x*) has rank a—1.] Note that x* € 0(u) if
and only if
ov ov
—0)=...=— (0) =
0z, T -1

The second intrinsic derivative, F2., defined on the kernel of Du(x*) is

o by
A:D?uy(x*)(©0, B) = 4, :
Z (x*)(0, p) = ((6 0z >>1§i,j§(a—-1)(c—1)

ﬂ(a—l)(c—l)

So, x* € I'() if and only if the matrix

0%
(<6Zi 0z; (0)))

is singular.
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On the other hand, since 0(x) is defined by

v _ ov
0z,

= —— =),
az(a-l)(c—l)

the tangent space to 6(x) at x* is the kernel of

0 0
D<_£9 very __'E_'—)(O)s
0z, aZ(a—l)(c-l)

i.e., (o, p) such that

oy
0% 0% Olaet
L 77 = 0.
ayiazk aZjaZk ﬁl
ﬁ(a—l)(c-—l)

So, (a, B) € kernel Du(x*)nT,.0(u) if and only if &« = 0 and

(Ze))s -0

In particular, B can be non-zero if and only if x* e I'(w).

Theorem 11. For an open-dense subset of u in C2(2, R, 0(u)nQ is empty or
is an (a—1)-dimensional submanifold and T'(u)nQ is a finite union of lower-
dimensional submanifolds. In particular, I (u) is generically measure zero in 6(u).

Proof. Let us calculate the defining equations for I'(#). By Lemma 10, x € I'(u)
if and only if x € (u) and T,6(u)nkernel Du(x) # {0}. We want to describe
this analytically. For simplicity of notation, we will work in detail for the case
= 3 and then write out the corresponding equations for general a at the end
of this proof.
Let U = (u, v, w): Q - R?; then DU(x, y, 2) is

u(x) ... u(x) 0 e 0
0 .. 0 v, () ... v(y) -
-wi(2) ... —wf(2) —w(2) ... —w(2)

where z = —x—y and v;(y) stands for (0v/0y;)(y). It follows from Lemma 7
that if x € 6(») and if the kth component of Vu is non-zero, then so is the kth
component of Vv and Vw. Since some component must be non-zero, assume
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without loss of generality that u,, v, and w, are all non-zero. So, we shall work
in the W, of Lemma 7.

Vector (a, f) = (g, ..., %y By - ﬁc) lies in kernel of Du(x, y, z) if and
only if o, + ... +ux, = 0 and vl,B1 . +o B, =0, 1ie,

Uty + ... U,

oy = - s
U
™
U0+ ... +v.f,
By = — .
Uy
Let
N TR ) N T )

Fx)’ B Ul(y), a Wl(—x“y).

It follows from the condition A;Di(x) = A, Di(x) that (x,y)e0(U) if and
only if '

Ulx)—Wi(z) =0 and VI(y)—Wi(z) =0,

forj=2,...,c So, T, 0 is given by the kernel of D(U?—W?, ..., V<~ W)
(x, y), i.e., by (a, ) such that

(U2 +W2 ... UZ+W}2: W} e W2 7

Ui, +w;, ... U+W; W, e WL [a]—O
w2 e W2 vi+ew2 ... viswlrl LB
W . WE Ve W: . VE+WE

Now, (a, p) lies in the kernel of DU(x, y)n T, ,,0(U) if and only if (*) holds and

oy |

[%+~//f W ] | _o -

WV +W Il B,

B
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where ‘
UZL-U2U? ... UZ-UZU*
U = 1 atx,
LUS,— UL U ... Us—UL U
"VE=VIVE . VI-ViVe
vV = at y,
LV, —ViVE L VL=V Vel

Wi-Wiw?* ... W2Z-Wiwe
W :

il
8
N
Il
i
i
<

Wei—WEW? .. Wi-—

Wi Wwe
So by Lemma 10 and the above remarks, (x, y) € I'(x) if and only if

U(x)+ W (2) W (2)
det = D(x,y) = 0.
( V@) ve)ew) = DY)
It is clear that this yields a polynomial equation in J2(2, R%) since

3.3 3
uiviwy * D(X, y, Uy, Uy, Uy, Uy, Wy, W,

is a polynomial expression in the first- and second-order partial derivatives
of u, v, and w. For example,

2 2
u Uyy— (U u
szz__szle =( 1) 22u3( 2) 11

1

_ohML—0DML,

i

(jz U(x, y))'

So, the defining equations for I' in JZ(R2, R%) are the (a—1)(c—1) equations of
() in the second proof of Lemma 7 and the above polynomial on (x, y, v, v} )
induced by

W3 D(x, y, tyy ooy Upey Uy oey Woo) = 0.
The latter equation depends heavily on the second-order partial derivatives

of u, v, and w, while the equations of (#) were independent of each other and
involved no second derivatives. Consequently, these (a—1)(c—1)+1 equations
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are independent at many points. By Lemma 9, our I' is a finite union of sub-
manifolds in Juz(Q, R?), each of codimension at least (a—1)(c—1)+1; each of
which can be described by algebraic equations. Since I'(U) = j2(U)~}(I), the
theorem follows now from Theorem 5 and the comment which follows the
proof. The measure zero statement follows from the smoothness of these
lower dimensional submanifolds.

For the general case where a is any integer =2, (**) is replaced by

ol ]

[%1+%a @ ... ]a*
@ W+ ...

L 2 @ .. %°—1+%°J

where U = (u!, ..., u"): Q — R,

UtI(e) = = (),
Uy,
and

U = (Uk—UKU™),

2

IANA
lIA A

J
k

[4
[4
Otherwise, the same argument applies.

Remark. The last two sections have laid the foundations of the singularity
theory of utility mappings. It would be a reasonable goal to see how much of
the usual singularity theory as described in Golubitsky-Guillemin (1973) or
Martinet (1974) carries over to the special theory of utility mappings; that is,
by taking an approach for higher-order derivatives analogous to the first proof
of Lemma 7. For example, I" is probably a codimension (a—1)(c—1)+1 sub-
manifold of J2(Q, R%). In fact, all the ‘Thom-Boardman singularity sets’ in
JHQ, R" that arise in JX(Q, R®) are probably submanifolds. We hope to say
more about this and its economic applications in later papers. We will look at
the cases @ = 2 and a = 3 more carefully in the next sections of this paper.

We conclude this section with a simple result to illustrate other types of
statements which can result from Theorem 6. In the following, we determine
the structure of optima satisfying some given functional relationship between
the values of the utility functions and the Pareto point.

Corollary 12. Let 0 be a regular value of smooth function f: QxR* — Rk,
k < c(a—1)+a. Let F(u) = {x € Q|x is in O(u) and f(x, u(x)) = 0}. There exists
an open-dense subset of CX(Q, R%) such that F(u) is an (a—1—k)-dimensional
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submanifold of Q, if it is non-empty. In particular, if k = a—1, then F(u) is a
union of isolated points, and if k > a—1, then F(u) is empty.

Proof. According to the inverse function theorem, £ ~!(0) defines a smooth co-
dimension k closed submanifold of Q x R® Thus, from Lemma 7, F=f"1(0)x 0
forms a smooth codimension (¢ —1)(a— 1) +k closed submanifold of J}(2, R).
According to Proposition 6, there is an open dense subset of utility mappings
such that j'(x) is transverse to F. By Proposition 5, for such a choice of w,
F(u) = j'(u)"'(F) is a codimension (a— 1)(c — 1) + k submanifold of Q. If F(u) is
non-empty, then it is of dimension c(@a—1)—(a—1)(c—1)—k =a—-1-k.
If kK = a—1, it is of dimension zero. If £ > a—1, it is empty.

The above imposed a special condition upon the Du(*). The statement can
easily be generalized to some functional relationship between the x, u(x) and
Du(x).

Other examples follow from Theorem 6 by using higher-order jet spaces.
For example, the condition that F2 (see Proposition 1) is negative definite is
an open condition in L%(Q, R?). Thus it follows from Theorem 6 that for an
open-dense set of utility mappings, the set of non-degenerate LPO’s is either
empty or it forms a smooth (a—1)-dimensional submanifold of €. While this
statement is immediate, we defer a detailed proof until a future paper where we
emphasize the structure of the higher-order jet spaces.

5. Degenerate optima in two-agent economies

Theorem 11 shows that for a residual set of utility mappings u, the degenerate
singularity set I'(v) is very small in the singularity set ©(u) — not only is it
measure zero, but it is also lower-dimensional. To complete this current study
of the degenerate singularity set, we need to look at one more question: are
they removable in the sense that for generic u in C°(Q, R?) all the LPO’s are
in ©(u)—I'(u), where, according to Proposition 1, second-order tests give
necessary and sufficient conditions for optimality ? Namely, is there a ‘near-by’
u which has only non-degenerate optima?

In this section, we will consider these questions in economics with two agents.
In this case, the generic u: Q — R? has ©(u) a one-dimensional manifold and
I'(u) a set of isolated points in @(u)NQ. We will see that the generic u has no
optima in I'(u) so that second-order tests give all the LPO’s for most u.

Two basic facts make the study of C*(2, R?) rather simple. First of all,
the studies of C2(2, R?) and C*(Q, R?) are equivalent. Secondly, H. Whitney
(1955) has fully described the generic theory of singularities for maps into the
plane. Wan (1975) has also applied Whitney’s theory to study the generic O(w).

Lemma 13. For a residual set of maps f in C*(Q, R?), Df(x) never has rank
zero. In searching for generic properties in CJ(C. 5, R?), it is equivalent to
search for such properties in C*(R¢, R?).
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Proof. Let 3¢ = {j'f(x) eJ'(2, R?)|Df(x) = 0} = @ xR?*x {0}, a codimen-
sion 2(dim Q) submanifold of J1(€2, R?). So, 2 is the space of all I-jets (x, f(x),
Df(x)) such that kernel Df(x) is c-dimensional. By Thom’s Jet Transversality
Theorem, j'f is transverse to X°¢ in J'(Q, R?) for a residual subset of f in
C*(Q, R?. For such £, (j1)"'(2°) is a codimension 2-(dim Q) submanifold
in Q [by Proposition 5(a)]. Since 2-(dim Q) > dim €, this means that for such f,
(j*/)~'2¢ = 0, i.e., Df(x) never has rank zero.

The second sentence of the lemma follows by noticing that if u = (', u?)
lies in CX(Q, R?), then u(x', x?) = (@' (x"), #i?*(x?)) = (@'(x"), #*(—x")), where
x' € R®. So, given a map fe CXR®, R?) of rank = I everywhere, one can think of
£ as being in CX(€Q, ,, R?) by writing it as (f;(x"), f5(x?)) where x' e R° = Q_ ,
and x2 = —x'. i

For the remainder of this section, we will work without loss of generality
in C*(R¢, R?). To indicate why a generic f has no optima in its degeneracy
set I'(f), we will outline briefly how one obtains ‘normal forms’ for mappings
via charges of variables in the source. The prototype of all normal-form
theorems is Morse’s Lemma which states that if x* is a non-degenerate critical
point of g € C*(R¢, R), then on some neighborhood of x* in RS, one can choose
coordinates (y,, ..., y.) in which g has the form

g(yl’ sy yc) = g(x*)+_zl siyizs

where each ¢; = 1.
For our study, we will need the following generalization of Morse’s Lemina.

Proposition 14 (Decomposition Lemma). Let g:R° — R be a C* map with
g(0) = 0 and Dg(0) = 0. Suppose that the Hessian of g,

o%g
((ax i0x; (O)) )

has rank p < c. Then, there is a coordinate system (yy, ..., y.) on a neighborhood
of 0 in R® under which

g(yl’ ---:yc) = Q(y19 cees yp)+h(yp+13 "-’yc)'

Here, Q is a non-degenerate quadratic form in y,,..., y,; # depends only on
Vp+1s ---» Vo3 and all the first- and second-order partial derivatives of /4 vanish
at 0.

Although the proof of this ‘decomposition theorem’ does not depend on the
division theorem or on some other similarly powerful but abstract technique
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of singularity theory, it does rely heavily on the implicit function theorem and
on some basic facts about differential equations. Consequently, we will omit
the rather technical proof and refer the reader to Martinet (1974). We come now
to the goal of this section.

Theorem 15. Let B < CF(Q, ,, R?) be the open-dense subset described in
Theorem 11. For u € B, there are no LPO’s in I'(u).

Proof. By Lemma 13, we can study C*(R¢, R?) without loss of generality.
The problem now is to find and study the generic singularities in C°(R¢, R?).
This task has been accomplished by Whitney (1955) and Morin (1965). See
Martinet (1974) for an excellent exposition of this work — work that we will
briefly outline now.

Suppose x, € S(u), i.e., Du(x,): R® — R? has rank one. In singularity theory,
one uses the notation x,e 2°'(v) to emphasize that Du(x,) has (c—1)-
dimensional kernel, i.e., corank (c—1). By the ‘rank theorem’ again, there is a
change of coordinates in a neighborhood W about x, under which x, corre-
sponds to 0 and «(y) has the form

ul(yla""yc) =y1’

W15y ) = ks yo.

1 0 .0
D“(Y)z(h hy, ... hy)’

»1 y2

On W,

and X '(w)nW is {y|h,, = ... = h, = 0}. By our genericity assumption
on u, 2°"!(u) is a 1-manifold, i.e., 0 is a regular value of (4,,, ..., h,.).

Again using the notation of singularity theory, we will write x, € 2~ 1*(1)
if xo € 2°7!() and if the kernel of D(u|2°~'(x)) at x, has dimension k. [Recall
") is a submanifold, so this makes sense.] As in Lemma 10, the latter
condition is equivalent to the subspace ker Du(xo)nT,, 2~ '(x) having dimen-
sion k. So, if k = 0, then x, ¢ I'(), i.e., x, is a non-degenerate singularity.
In this case, x, is a non-degenerate critical point of u?|u'~'(u(x,)); and one can
easily use the Proposition 14 to find coordinates (¥,, ..., y.) about x, in which «
has the form

ul(y') = yla
u’(§) = r@)+ 0@, .., o)

where Q is a non-degenerate quadratic and r'(0) # O.
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If x, is a degenerate point of S(u), i.e., x, € I'(¥), then &k = 1. As shown in
Lemma 10, the matrix ((/1,,, (0))); ;>4 is singular in this case. So, I'(w) is given
by the ¢ equations

h,=0, h,=0,...,h, =0, 4= det((hy,y )i, j>1 = 0.
By our hypothesis on u, 0 is a regular value of these equations. Since X~ ()
is a one-manifold, this means I'(¥) is a zero-dimensional submanifold, i.e., a set
of isolated points.

Notice that it is impossible for k to be =2 in the expression Z°~!*(u). This
follows from the definition of 2°~!*() and from the fact that 27! is a one-
manifold by the generic transversality assumptions we have made for u. So
we need only investigate the singularities in 27 !-!(4), i.e., we can assume that
((hy,5,(0));, j>1 has rank (c—2). Thus, the map (y,, ..., ) = A0, y2, ..., ¥.)
has a Hessian of corank one at 0. By Lemma 14, we can choose coordinates
Vis.ers Yo s0 that y; = J, and A0, y,, ..., ) = R(J,)+O(Fs, ..., J.) where O
is a non-degenerate quadratic form. We have not yet used the fact that 0 is a

regular value of (4,,, ..., h, , 4) : R® - R°. Since
y2 Ye

oh,
o - :
%, (0) = hy;,(0) =0 for i> 1,

¢ a regular value implies that

%

4
5, = (0) # 0.

A short calculation shows that this inequality implies that

3h
50 #0

i.e., that R(§,) = 735(§,) where S(0) # 0. Change variables by 7, = 7,[S(7,)}'/?
near 0. Now,

h(os)_)za'-'syc) = yg+Q(5)'3a'-'sic)-

One can now use Proposition 1 to see that x, cannot be an LPO for u. For,
u?| (@) (' (x)) is A(O0,7,,Fs,...,5) in our new coordinates. Since
73+ 03, ..., §.) cannot have a maximum at 0, x, cannot be an LPO for u.

If one is ambitious, one can continue the above analysis and, using the
Malgrange-Mather Division Theorem, derive the following canonical form
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for u about a point in 21 1(u),
ul(zyy .0y 2,) = 24
ulzy, .oy 2.) = ky(z)) +ky(z)z+ 25+ 023, ..., 20),

where Q is a non-degenerate quadratic and k5(0) # O.

6. Stable degenerate optima in C (R™, R“)

In section 5, we saw that for the generic economy with two agents, second-
derivative tests are sufficient in the search for all local Pareto optima. Our
goal now is to begin a systematic study of this question for economies with a
agents, @ = 2. We will first need to introduce some more ideas from general
singularity theory. While doing this, we will treat degenerate optima in
CyR™R%) = {/:R" > R°|fis C*, m 2 a, rank Df(x) = a—1 for all x}. In
the next section, we will specialize to utility mappings in C,°(£2, ,, R%).

Recall from the previous section that for fe C®(R™ R?), X" **(f) =
{x e R™|ker Df(x) has dimension m—a+1} = {xeR"|Df(x) has source
corank m—a+1 or target corank 1}. This is the singularity set of f. By the
Thom Jet Transversality Theorem this is generically a submanifold of R™.
One continues this process as before. If 2™~ %*!(f) is a submanifold, look at
Iroatbki(fy = {xe " *(f)|kernel D(f|Z""**!(f)) has dim k, }. This turns
out to be {x e Z’"‘““(f)]kernel Df(xX)NT, 2™~ **1(f) has dimension k, }, as was
sketched in Lemma 10, and again is a submanifold for generic f.

Continuing this process, one defines ™ a*1lktke(f) where m—a+1 =
kyz...zk, as {xeZm ot ku(fy|gnmatlke-i(f) i a submanifold
and ker Df(x)NT Zm~e*1:-kr=1(f) has dimension k,}. For a residual set of f,
this is a submanifold whose dimension is easily computed. See Golubitsky-
Guillemin (1973) or Boardman (1967).

As examples of stable degenerate optima, we will now focus on the sets
FmoethL 1., 1.00£) These are the so-called Morin singularities [Morin (1965)]
and are generalizations of the Whitney singularities examined in section 5.
Consider for example, the following map f = (f;, ..., f,) in CZ(R™, R):

fl = X1,

/2

X5,
(##)
Jao1 = Xays
m
fo= 00X+ x Xy 24 xxt T4 L x o+ D, XY,
i=a+1

where 6 = + 1,¢, = +1forallj,and r £ a+1.
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Proposition 16. [Morin (1965)]. For the f of (# #), 0 lies in
Z‘m—-a+1,1,1,...,1,0(j‘)'

r—1
Furthermore, if g€ Cg(R™, R®) and if

x* e Zm—a+1, 1,... ,11,0(g)’
r—

where all the

m—a+1,1,...,1
P A
k

are manifolds for 0 £ k < r—1, then there are coordinates (x;,...,x,) in a
neighborhood U of x* in R™ and coordinates in a neighborhood of g(x*) in R®
such that g] U has the form (# #) in these coordinates. There is also a neighborhood

W of g in C(R™, R?) such that for h in W,
Zm—a+1, 1,..., ’o(h)ﬂW # 0
1

r—

We will refer the reader to Morin (1965) for the proof. See also Golubitsky-
Guillemin (1973) or Martinet (1974) for the case a = m. The first sentence is a
simple calculation. The last sentence of the proposition follows immediately
from the transversality conditions in the definition of Fm—e*1.1.1..:1.0(g)
and from the openness of transversal intersection. The main steps in the proof
of the middle sentence are the universal unfolding theorem and the decom-
position lemma - both consequences of the Mather-Malgrange Division
Theorem.

Note that, if one chooses r to be even, 6 = —1, and ¢; = —1 for all { in
(# #), then by Proposition 1, 0 is a degenerate Pareto optimum of f. For,
ﬁ,l(fl =...=f,_y =0)is then —x,—>"  x7, which has 0 as a strict local
maximum. By Morin’s Theorem, 0 is a persistent optimum in that nearby
functions will still have a degenerate optimum near zero. Furthermore, to test
for optimality near 0 for f and mappings near f with calculus techniques, one
needs to examine at least r derivatives, where » £ aif g is even and r £ g+1
if a is odd. This leads naturally to the following conjecture:

Conjecture: For a residual subset G of CZ(R"™, R), one needs to examine
at most (a- 1)st derivatives in using calculus techniques to find all the LPO’s
of an element in G.

Mather’s theory of stable mappings indicates that this conjecture is true
for a £ 6. A map fe C*(R™, R is called ‘stable’ if there is a neighborhood W
of fin C®(R™, R“) such that for any f* € W there are diffeomorphisms (i.e.,
smooth changes of variables) g of R™ and /4 of R? such that f* = Afg. In Mather
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(1970a), Mather shows that if fis a stable map and x € R™ then there are co-
ordinates in a neighborhood of x in which fis a polynomial of degree <a+ 1.
[In fact, this polynomial is j**'f(x). See Martinet (1974) for another proof.]
Furthermore, Mather (1970b) shows that stable maps form a residual subset of
C*(R™ R% for a < 6 with the exception of a = 6, m = 8. The following
proposition summarizes the discussion of this section.

Proposition 17. (a) Let F be any dense subset of Cg(R™, R?). Then, there exists
fe F for which one must check (a+ 1)st order derivatives to find all the LPO’s of f
via calculus technigues. (b) If a < 6 (except for m = 8, a = 6), there is a residual
subset G of CZ(R™, RY) with the property that one need only check the first
(a+1) derivatives of any f in G to find all the LPO’s of such an f via calculus
techniques.

7. Persistent degenerate optima for utility mappings

In this section, we will prove the analogue of part (a) of Proposition 17 for
the utility mappings in C;°(€, ., R?). So the more agents there are, the more
derivatives one will have to check to find all the persistent LPO’s. The special
structure of utility mappings makes the construction of ¥ 111 %singulari-
ties a non-trivial matter. For example, one cannot construct persistent degenerate
Pareto optima in C?(Q,, 5, R?) while holding @'(x;, x,) = x;.

Theorem 18. There exists an open set & of C2(Q. ., RY) such that for ue %
one must check (a+1)st order derivatives (or ath order if a is even) to find all
the LPO’s of u via calculus.

We understand that Y.H. Wan has independently established a result similar
to Theorem 18.

Proof. To simplify notation, we will prove this theorem for ¢ = 2. Examples
for ¢ > 2 are easily constructed from the examples below. Furthermore, we
will only carry out the details for ¢ = 3, 4 and 5. We will indicate at the end of
the proof how to carry out the construction for a > 5.

¢ = 2,a = 3: For simplicity, write u as (g, A, k), where g, h and k lie in
C2(R?, RY). Recall that Q = {(x, y, z)|x+y+z = 0}; so (x, y) coordinatizes Q.
Without loss of generality, we can assume that 0 € @(ux) and that Dg(0) =
Dh(0) = Dk(0) = (1, 0). Since

8 &, O 0
Du(x, y) = 0 0 h hy, 1, (7.1)
—kzl —kzz —kz

1 2
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(x,y)€O@) if and only if G—K =0 and H—K =0, where G = g,,/gx,>
H = hylh, , K= k,[k, . Furthermore, @(x) = Z*() is a manifold about 0 if
and only if 0 is a regular value of (G— K, H~K). In particular, we want the
following matrix to have rank 2 at (0, 0):

(G,“+Kz1 G.,+K, K, K., ) 1.2)
Kzl KZz Hy1+K21 Hyz+K22

If this happens, then (x, y) near (0, 0) lies in X! if and only if ker Du(x, y)n
ker D(G—K, H—K)(x, y) is one-dimensional. But («;, a5, B, f,) € ker Du(x, y)
if and only if ¢; = — Gu, and 8, = — HB, at (x, y); and (—Go,, a,, —H,, B,)e
ker D(G— K, H— K)(x, y) if and only if

(ze+Kz )—G(Gx +Kz ) Kz _HK21 L9} 0
2 1 1 2 — . (73)
K,,—GK,, (Hy2+Kzz)-—H(Hyl+KZI) B, 0

Let¥ = G,,—G,,G, # = H,,—H, H, A = K,,— K, K. Then, if (x, y) € Z*(u),
(x, y) € 2> }(u) if and only if the matrix of (7.3) has rank one at (x, y): i.e., if
and only if

A(x, y) = det(

G+A A
A A +H

=GH+HAHN+YGAHA =0 at (x,)),
where some entry is non-zero. [Recall G = H = K in ©(u).] Furthermore,

0e2?!(y) and X*(u) is a manifold near 0 if 0 is a regular value of
(G—K, H-K, 4), i.e., if the following matrix has rank three at O:

Gx1+Kzl Gx2+Kzz K21 Hyz
( K, K, H,+K,, Hy2+Kzz) (7.4)
Axl sz AJ’l A}’z

Finally, if (x, y) near 0 is in the manifold X?'!(u), then (x, y)e Z?:1:!(u) if
and only if kerDu(x, y)nker D(G—K, H—K, A)(x, y) is one-dimensional.
[Keep in mind that T, ,,2%!(u) is ker D(G—K, H—K, 4)(x, y).] As above,
this means that the matrix

G+A A
( A H+H )
4

xz_KAxt A}’z—'KAm
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has rank one at (x, y); for example that

A H+H
A = det
sz_KAxl Ayz_KAm

is zero at (x, y). Finally, to see that 0 e £>'*1:1-%() and that X2''!(x) is a
zero-manifold near 0, one need only show that A(0) =0 and that
D(G—K, H—K, 4, A)(0) has rank four.

To realize all this with a concrete example in C2(Q, 5, R?), consider the
utility mapping u = (g, h, k), where

8(xy, X3) = Xy +Xx1%,,
h(yy,¥2) = » +J’1J’2_J’§s

k(zy, z5) = 21+ 22, z3.

Using the above notation, we find

G = gﬁ = *1 ,
gx1 1+x2

H = {72 _ y1—2y,
hy1 1+y2

K= /’_cz_3 _ zy—4z3
k,,  1+z,°

Since G(0) = H(0) = K(0) = 0,0lies in O(u) = X*(u). Since D(G — K, H— K)(0)

1s
2 01 0
1 0 2 -2

[as in (7.2)], Z2(u) is a two-manifold about 0.

Similarly,
—2x
4 =G,,-G6G, =—-—,
X2 X1 (1+x2)2
—-2-2 2
# = H,,~HH,, = Nty
(1+y,)

—2z,— 1223 —4z3
(1+2,)*

A =K,,—KK,, =
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Since
A=GH+GAH +H#H =0 at 0,0e X% (u).
Since
2 0 1 0
D(G—K,H-K, 4)(0) = |1 0 2 =2
0 0 -4 0

[as in (7.4)] has rank 3, Z2'!(u) is a one-manifold around 0. Since
G+H A 0 0

[ A H+AH :I = [O —2]

A,,+k4,, A4,,—KA,, 0 0

has rank one, 0 € 22'1:1(1). Since

1 0o 2 =2

0 0 —4 0
Aey —96 A, A

y2

2 0 1 0]
D(G—K, H-K, 4, A)(0) =

(where A is defined as above), X21-1(y) is a zero-manifold about 0 and
0ex211:%%).

We now apply Proposition 1 to see that 0 is an LPO forv. Ong = 0, x; = 0;
onh =0,y = ¥31+y,). So, k|(g =h=0)is

—X—)2

1
(=x,—y)(1+2z)—z5 = "J’%[ 157, ]“(xz +y,)*.

By inspection, it is clear that this expression is non-positive for (x,, y,) near
(0, 0). So (0, 0) is a strict local maximum. One can also apply Theorem 3 here.
By Proposition 1, 0 is an LPO for u.

, Furthermore, since 0e 22'*'*:%u), 0 is a stable Morin singularity. By
Proposition 16, Z2'1:1:%w) # @ for all w close enough to u in C®(Q, R3).
Applying the second sentence of Proposition 16, one finds that these
22 1:1.9yys will contain a (degenerate) LPO near 0. So, a whole open set of
utility mappings in C®(Q, R?) have LPO’s where fourth-order tests are needed
to determine optimality. Such LPO’s will be isolated points.

D
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¢ =2,a=4: Apply the same analysis to v = (f, g, h, k), where
SOy, wy) = w+w,w3,
glxy, X)) = Xy +x,X,—x3,
h(y1, ¥2) = p1+31Y2—V3s
k(z,, z,) = z,+2,2,—23.

One easily checks that 0 e 31 %) and that 23(u), Z*'(w), 2> " '(u), and
>3 1.1.94)) are all submanifolds near 0. Furthermore,

”

2 2
o h e = 2 Y2 . 4
k|(f=g=h=0) ( T, 1+y2> (I+2z)—(x2+y+w,)",

which has a strict local maximum at 0. By Proposition 1, 0 is a (degenerate)
LPO for u. By Proposition 16, all utility mappings close enough to u will have
an LPO in X*1:1.0 This time the degenerate optima lie on one-dimensional
manifolds!

¢ =2,a=>5: For this case, we will construct a stable example where one
must examine the 6-jet to determine optimality. The utility mapping is a bit
more complicated here. Consider the utility mapping u = (f, g, A, j, k), where

f(vy,02) = v,(1+305+ 303 +308) — 203 — v§ — 303~ J0§,
gwy, wy) = wi(1 +W2+%W%+%W§)"2W§_2W3_%Wg—%wz,
h(x;, x5) = x,(14+2x;, +3x3+x3) —2x3 —4x3 — x5 —2x8,
J01s v2) = n(+3p3+yD - 23— i34,

2 .6
k(zy,z,) = z; —4z5—25.

At the end of this proof, we will discuss the rationale behind this choice of
utility mapping. . _

As before, let F = f,,/f,,» G = &4,/8w» ---» K = ky,[k,,. The equations for
Oy are(F—K,G—K,H—-K,J—K) = (0,0, 0, 0). Since F(0) = ... = K(0) =0,
0 € O(u). [Alternatively, note that Df(0) = ... = Dk(0) = (1, 0).] Furthermore,
O(u) = 2*(u) is a 4-manifold near 0 since 0 is a regular point of (F—K, G—XK,
H-K,J—-K). For,
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D(F—K,G—K, H~K, J—K)(0)

247

F,+K,(0) F,_+K,, K, K,
K, (0) K, G, +K, G,,+K,
K, (0) K,, K., K.,
K, (0) K., K., K.,
K21 Kzz Kzl K22
Kzl KZZ Kzl KZZ
H.+K, H,+K, K, K,
K,, K, I +K,,  J,+K,
0 =30 10 10 1
_[0 11 -30 10 1]
o 10 12 =30 1J
lo 10 10 10 -3

has full rank. Since the kernel of Du(v, w, x, y) is {(—Fo, o0, —GB, B, —Hy, 7,
—Js, 8)| (2, B, 7, 6) € R*}, 0 € Z*(w) lies in 2* !(u) if and only if

ker Du(0)NToZ*(u) = ker Du(0)nker D(F—K, G—K, H—-K,
H—K, J—K)(0)

is one-dimensional, i.e., if and only if

F+AH A A A

[ A G+ A A A ]

l A A H+AH A
A A A f+9£”J

has rank three at 0, where as before, # = F,,—F,F,..., ¥ =K,,—K, K.
Since this matrix is

-3 1 1 1
[ -3 1 1]
l 1 =3 1

1 1 —3J

0e2* u). Again, let A =FGHE+FGHA+FHIN +FGIA +
GH gA , the determinant of the above matrix. Note that 2% !(x) is a 3-manifold

et ek ek
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about 0 since

D(F-K,G—K, H-K, J—K, 4)(0)

0 -3 0 1 0 1 0 1]
0o 1 1 -3 0 1 0 1

=1 0 1 0 1 2 -3 0 |1
o 1 0 1 0 1 0 -3
|-16 032 04 0 -16 0]

has full rank. )
Similarly, 0 € Z*1-1(x) if and only if

ker Du(0)nToZ* '(u) = ker Du(0)nker D(F—K, G—K, H—K,
J—K, 4)(0) |

is one-dimensional, i.e., if and only if

F+A Va A A
a G+ A A
A A A
A A A S+

| 4,,—FA,, A,,—GA, A, —HA, A, —JA, |

has rank three at 0. Since 4,,0) = 4,,,(0) = 4,,(0) = 4,,(0) = 0, it does have
rank three, and 0e€ X*!'!(u). Now, let L be the determinant of the lower
4 x 4 submatrix of the preceding matrix. One checks that

D(F—K,G—K, H-K,J—K, 4, L)(0)

—~ -

0 -3 0 1 0 1 0 1

o 1 1 -3 0 1 0 1

o 1 0 1 2 -3 0 1

] o 1.0 1 0 1 0 -3
~16 032 048 0 —16 0
2 0 74* 0 945 0 0 Ol

which has full rank. So, 2*'!*1(x) is a two-manifold.
Now, 6 € 2*!-1() if and only if

ker Du(0)~ker D(F— K, G—K, H—K, J—K, 4, L)(0)
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is one-dimensional, i.e., if and only if
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F F+ A A A A

A G+ A A A

K A H+AH A

A A A F+H
4,,—F4, A4,,—G4,, A.,—HA. 4, —J4,
r,-FL, L,—-GL, L, —HL, L,-JL, |

has rank three at 0. Since L,,(0) = L,,,(0) = L.,(0) = L,,(0) = 0, it does have
rank three and 0 € 2*1-1:1(). Let M be the determinant of the 4 x 4 submatrix
composed of rows, 2, 3, 4, and 6 of the previous matrix. One checks as before
that D(F—-K,G—K, H-K, J—K, 4, L, M)(0) has full rank at 0 and therefore
>4 1113y is a one-manifold near 0.

Similarly, one constructs a new matrix by adjoining the row (M,,—~FM, ,
M, -GM, M, —HM, , M, —JM,) to the previous matrix. Since M,,(0) =
... = M,(0) = 0, this new matrix has rank 3, and 0 e 2**-1*1-!1(4). One final
computation illustrates that £*1-1:1-1(3) is a zero manifold about 0 and 0 is
in 24’1’1'1'1'0(0).

We now use Proposition 1 to verify that 0 is an LPO for ». We want to
examine k restricted to f = g = h = j = 0. Simple calculations show that

f(0,,0,) =0 < —p, = —22,
gwy, w)) =0 < —w = —2ws,
g(x, %) =0 <« —x, = —~2x2,
j31,y.) =0 <« —y = —2y3.

But k(v, W, X, y) = (=0 —w; —x; =) =30, + Wy + X3+ y5) 2 — (0, + Wy + X, +
)% On f=g=h=j=0, k(v wa, X35 ¥2) = -—2(v§+w§+x§+y§) -
L, +wy+x,+ )2 — (v, +w,+x,+y,)°. For simplicity, let us drop the sub-
script 2 now and make the change of variables

a = Ho+w—x—y),
b=L-v+w—x+y),
c= }(—v+w+x—y),

d=Ltv+2+x+y) = —iz



