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In this note, we consider the linear complementarity problem
w=Mz+q,w=0, z=Z0, sz=0, when all principal minors of M are
negative. We show that for such a problem for any q, there are either O,

1, 2, or 3 solutions. Also, a set of sufficiency conditions for uniqueness

are stated.
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On the number of solutions to a class of

linear complementarity problems

M. Kojima

R. Saigal

Introduction. In this note we consider the following problem: Given
a n x n matrix M and a n-vector q, find vectors w and z which satisfy

the inequalities

w=Mz+gqg (1.1)
w20, zZ20 (1.2)
wT z =0 (1.3)

This problem is called the linear complementarity problem, and is a
unifying body of knowledge covering topics in mathematical programming,
game theory, economic equilibrium theory, mechanics, etc.

In this note we will consider the case when M has all principal
minors negative. Such problems were introduced in [4], and several
properties were established there. Our aim is to prove that for any
given q such problems have either 0, 1, 2, or 3 solutions..

In section 2, we state some properties of (1.1-3) proved in [&],

and in section 3, we prove our main result. In section 4, we prove

some important properties of such matrices,
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§2. Some properties of ICP's with M ¢ N,

We say that a matrix M is in N if and only if all its principal
minors are negative. Then, we can prove that:
Lemma 2-1: Let M ¢ N. Then, either M < 0 or there exists a d > 0 such
that M d > 0.
Proof: Follows from Theorem 6.1, Corollary 6.2, and Theorem 6.3 of
[4].
Lemma 2.2: Let M ¢ N, and M « 0. Then, for each q 2 0, (1.1-3) has a
solution, and has no solution for q # 0. Also, it has exactly two
solutions for q > O.
Proof: Follows from Corollary 6.1 of [4] by noting that the non-
degeneracy assumption is not required for q > O.

Given a choice, Ai'e {ui, - Mi} ,i=1, . . ., n, we say
pos(A) = {y:y =A%, x=0)1is a complementary cone, and F a (n-~1)-face
of pos(A) if it can be expressed as F = pos(B), where B is nx(n-1)
submatrix of A. As in [4], we say that two complementary cones on a
face F are properly situated if the #tersection of the two cones is
F. We call such faces F proper. We can then prove:
Lemma 2.3: Let M e N. Then the two complementary cones incident on
the (n-1)-faces of any complementary cone other than pos(I) are
properly situated.

Proof: See Lemma 6.2, [4].



§3. The main theorems:

In this section, we prove the main theorems and thus establish
the required property that for M 4« 0, for anyq, there are 1, 2, or 3
solutions, and two when q@ = 0, qi = 0 for some ia
Theorem 3.1: o

Let M e Nand q ¢ R°. Then, if M £ 0 and q # 0, (1.1-3) has a
unique solution.
Proof: We will prove this theorem by induction. Since no such 1 x 1 matrix
exists, the theorem is true for p = 1. Now, assume that the theorem is
true for p X p matrices, for p = 1,2,..., r. We now show that the
theorem is true for p=r + 1.

Let g =~Mde«0, d>0 (such a d exists from Lemma 2.1.). Then

1 .
0, z~ = d. Now, assume that there is

z1 # 22. Let

]

(1.1-3) has a solution w1
another solution, (w2, 22) to (1.1-3) such that.w1 # w2,
1= {i : zi >0} and J = {i : zi = 01.

Now, |I| = 2 since the contrary implies that q; > 0 for some i.
Now, if |I] = p - 1, then, since q lies in two adjacent cones on a
facet of pos(-M), we have a contradiction, as all faces of pos(-M) are
proper. See Lemma 2.3. For simplicity, assume I = {1, 2, . . ., m}
and J = {m+1, . . ., p}.

Rewriting (l.1) as

2 Cov . 1 T2
v Mgt Mo 1% 4
I A A B R R A 3.2
2 Wy 2 3.2)
Y2 21 {22 2 42
L P, - 1 - L _




A

2 2 _ 2 _
where 2] > 0, z, = 0, we note that = M11 zy =4y < 0. Hence, M11 & 0.
We will now construct a p-vector v and a number t such that (l.1-3)
. * . 3 .3 4 4 . 3
with @ + t v has two solutions (W ,.2”) and (w , z ) with z~ > 0 and
{i:z?>0}={1,2, . . ., m+1}3.
Since Mll 4 0, there is a m-vector ¢ > 0 such that—M11 c <0, For

e = 0, define

M P
_ T
w(e) = - ¥y c - ey te E ug
1 .
j=mt
m P
H .
= Z-Mlcl-eum+1+ez Yy
i=1 j=m+2

Consider the system

n
1 _
- Z MiAzi v(e)

i=1

For sufficiently small ¢ > 0, the above system must satisfy A zl >0,

i=1, .. ., m Also, consider the system
m P
2 N 2
- -+ . =
Z Mi A z; Z u; A vy v(e)
i=1 i=m+

2
Azi=ci i=1, .. ., m
2 -e i=m+1
AW.={ : ,
i € i=m+2, ..., D
. 2 _ . 2 _ . ' 2 2
DeflneAzi—O,leJaﬂd AWi—O,JeI,and thus P vectors A z“ and A w",
1 2 2

and we consider the two solutions (0, g~ + t A zl), (w2 +tAw, 8 +t A 22)
for t 20, when q in (1.1) is replaced by q + t v(eo) for some sufficiently

small eo>0 for which A zi> 0, i=1, . . ., m.
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By the construction of v(eo), we have that

z} + t A z} >0 i=1, . . ., m

i i

z?+tA‘z?>0 i=1, .. ., m

i i
w% +t A W? >0 j=m+2, .. ., D .
3 J _

2
A wm4f 0.

Now, for some sufficiently large t = t*, we will have either z; + £ A z;

for some j=m+1l, . , ., por §= wi+f £* b w2 0. But, if any

]
* i

Z;(t*) = Z? +t° A zj =0, i =1, but §> 0, then we have found two solu-
2

tions for (1.1-3) with z§(t*) = 0 and zj(t*) = 0. But this is impossible
by the induction hypothesis, since then we would have found two solutions

for the system

2 2
v =My oz e

extracted from (3.2) with Mll a(r x r) matrix. Hence, § = 0, and the two
solutions for q + t* Y(eo) in pos(-M) satisfy the required property. Now,
continuing the above procedure, we will have found two solutions, one with
]I] = p - 1, which is a contradiction. Thus, for q = -M d, d > 0 has a

unique solution.

Now, for any q ¥ O, consider the line L(}) = (1 - M) (-Md) + A q. For

% =0, L(A) lies in the unique cone, C, say. Then, either L()\) lies inside

C, when q has a unique solution, or the line cuts a facet of C. Since all

facets of C are proper, the line leaves C and enters C’. Thus, if the re-

maining line lies inside C/, q has a unique solution. Otherwise, the above

0

argument can be continued, since this line never crosses any facet of pos(Il),

and thus all facets encountered are proper. This, then completes the induc-

tion argument.
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Theorem 3.2: Let g > 0, and M ¢ 0. Then (1.1-3) has exactly three solutions.

Proof: Consider the line L(A) = (1 - %) § + X g for some a # 0. Then, from
Theorem 3.1, a lies in exactly one cone C. Now, this line must encounter a
facet of pos(I), and would thus add two additional solutions, giving the
result.

Theorem 3.3: Let 0 # ¢ & 0, with 9 =0 for some i M &£ 0. Then (1.1-3)

has exactly two solutions, with one solution degenerate.

Proof: Now, the line from & > 0 to q will meet all proper facets inside

pos (I), but since it ends at the boundary, exactly one solution will be lost.
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Further Properties of M ¢ N:

We now establish some further properties of M ¢ N, which also
give an indication as to how to construct matrices M ¢ N, M < 0 .

The first result we prove is:
Lemma 4.1: Let M be a real matrix. Thén,.M e N iff all proper prin-
cipal minors of M-1 are positive, and det H-1<: 0.

Proof: Let M and M-1 be partitioned as

= t -1 _ !
M=Myg M o M=y Ly
- |
Ma1 | Ma2 Y,
| |
Then, it is easy to see that
1
Mo T 'L
|
det M . det L, = det ( IR N A B
i
M1 Maa | O [P22
]
= det Mll ! 0
My, | T
= det M11 .

and since M ¢ N, we have our result.

As a consequence of Lemma 4.1, we can establish a further structure

on the several solutions to (1.1-3) guaranteed by Theorems 3.2 and 3.3.
Theorem 4.2: Let 0 # q =2 0, and M & 0. Then, if w, = 0 in some solu-
tion to (1.1-3), then v, > 0 in all other solutions.

Proof: Assume we have two solutions with wi = 0 and wi = 0. Consider

the following equivalent system to (1.2):

z = M-1 w o+ M-l q 4.1)



and extracting the system

z=Mw+gq (%.2)

obtained by dropping the ith row and the ith column of M-1 in
(4.1), we note that M has all principal minors positive (from Lemma 4.1),
and the reduced complementarity>probiém ﬁas two solutioné. This vio-
lates a well-known result relating to these systems, and we have a
contradiction. (For example, see Samelson, Thrall, Wesler [5]).

We now show how to construct matrices M ¢ N such that M < 0.
For this, we introduce the class of matrices Z. We say P is in Z iff
Pij =0 if i # j and Pii = 0 for all i, We also say a matrix P is in
Q iff its determinant is negative but all its proper principal minors
are positive. Then, we can prove:
Theorem 4.3: Let P ¢ Z N Q. Then, P-l ¢ N and P-l < 0,
Proof: Since P ¢ Q, from Lemma 4.1, M = P-1 ] N.

Now, consider the complementarity problem (1.1-3) with M, and the
transformation (4.1) of (1.2). Assume M ¢ 0. Then, from Theorem 3.3,

(1.1-3) has a solution for q = (1, 0, . . ., O)T with 2, > 0 for at

least one i. Assume 2y > 0. Then, from (4.1) we see that

n
zq = E: P,,Lw, - P <0
i_] k| 11

since Pll > 0 and Pij = 0, and we have a contradiction. Now, assume
z; > 0 for i # 1, and without loss of any generality, let i = n.
Extract the system (4.2) by dropping the nth equation in (1.2) and the
nth column of P. Since M has all principal minors positive, from the

theorem of [5], (4.2) has the unique solution z = 0, w= (1, 0, . . ., 0)
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Now, the extended soclution to (1.4) also satisfies (1.1-3), we must

have z = 0, which is a contradiction. And we thus have our theorem.
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$5. Concluding Remarks:

Recently A. Mas-Collel [3] has generalized the Gale-Nikaido
Theorem [1] to hypotheses which considerably weaken. - the positive
principal minors property. He also proved this result for situations
with negative principal minors. An important use of Theorem 3.1 has
been made by Kojima and Saigal [2] to prove some uniqueness theorems
for the nonlinear complementarity problems with the hypothesis of nega-
tive principal minors on suitable submatrices of the Jacobians.

By observing that for M ¢ N, M-l has the property that all proper
principal minors of M-1 are positive, as proved in Lemma 4.1, a simpler

proof of Theorem 3.1 can be obtained by using the partitioﬁAtheorem of

Samelson, Thrall, Wesler [5].
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