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1. INTRODUCTION

The theory of relational databases owes its power to the ability to define
and manipulate database integrity constraints, such as functional dependencies
(c1, Bl; W1l], multi-valued dependencies [F1], and first-order hierarchical
dependencies [D1]. The theory of dependencies is connected to the design of
database systems by the following observation: each dependency corresponds
to one or more possible decompositions of the database. Since each decomposi-
tion defines a different logical structure of the database, the dependencies
determine the class of possible logical structures.

As an example, consider the following personnel database: the four attri-
butes employee number (E), project number (P), project leader employee number
(L) and department (D) are stored. Each employee works in a single department
(in the notation of functional dependencies, E—~ D and L - D) and all the em-

ployees in a department report to the same project leader (DP ~ L). There are

many possible decompositions of this database. Some of them are:

R, = (E,D) R, = (E,P,L)
R, = (L,D) R, = (E,P,L)
R1 = (D,L) Rz = (P,L) R3 = (E,D) R4 = (E,P)

This list is not inclusive, of course. Generating an inclusive list of possible
decompositions, would require the necessary and sufficient conditions under
which a relation can be recovered from a decomposition

Rissanen has proved the necessary and sufficient conditions for a decompo-
sition into two relations [R1]. 1In this paper, the necessary and sufficient

conditions are given for decomposition into an arbitrary number of relations.



2. THE RELATIONAL MODEL

Let o = {A, B, C, ...} be a finite set of symbols, called attributes. As-
sociated with each symbol is a set dom (A), dom (B), dom (C), etec., called a do=
main. A subset R(ABC...) of the Cartesian product of these domains is called
a relation over «a.

Let R denote a relation over . For a subset § of o the relation RB over
B, called the projection of R on B, is defined as the image of R under the
projection operator mapping the Cartesian product of the domains listed in ¢
onto the Cartesian product of the domains listed in B.

If the projection Ra ~ R, has an inverse R A6 - Ra’ which maps each element

B B

of RB to the unique element in Ra that projects to it, then R_ - R and
a

B

RB - R 8 are functions. When the relations stored in a database are restricted
a—

to those such that RB - RY is a function, then there is a functional dependency
from B to vy, written
B -

Armstrong [Al] calls a family J of functional dependencies full when it
satisfies the following three statements: For all nonempty subsets B8, vy, and
& of a:

(1) if B - vy and v » 6 are in J, then so is B = &

(2) B S a implies B —» B is in J

(3) B-vyand B~ § are in J if and only if B - WS is in J
A full family of dependencies defines a database by defining the set of rela-
tions that may be stored in it. We denote by £(F) the set of all relations R

B

A database A is a triple {a, #, &) where q is a set of attributes, J a full

such that R, - RY is a function for every functional dependency B — vy in J.

family of functional dependencies, and & is a database schema., A database schema




is a set of subsets of the attribute set., If the database schema & is equal

to fa(1l), ..., a(n)} then the stored database corresponding to relation £ in

R() is the set {RO-L } of relations. The relation R is ideally

1y’ " R

recoverable from the stored database.

A relation is recovered from a set of stored relations by using the natural
join defined by Codd [Cl]. This is a product defined for any two "joinable"
relations R and R’ over attribute sets q and a', respectively. The relations

. s . _ / - nf . = .. = y e e
are joinable if B = afla’ and RB R 8 Let B {Bl’ ; Bk}’ a BU{A1 ) Am},

and o = BU{A&s vees A;}, Then the natural join R*R’ is the relation over ala’
o ’ ’ .

containing all tuples (al, cees A bl’ cee, bk’ als cees an) for which

(al, ce s am, bl, cees bk) is in R and (bl, ey bk’ a&, ey a;) is in R’.

A database schema & = {a(l), ..., a(n)} over attribute set a will be called

a lossless schema for a full family & of functional dependencies over o if, for

every relation R in 2(F),

KR

~ R Ramy

The following theorem, proved by Rissanen (r1], gives necessary and sufficient

R

conditions for a database schema. A = {Bl, 82} to be a lossless schema.

THEOREM 1. Let o be a set of attributes. Then for all full families J over
a and for all subsets Bl’ 52 of a sucﬁ that o = Bl U 52’
is in J if and only if for all R in R

B, NP, =B, or Blﬂﬁz - B

1 2

To extend this result to arbitrary schemas «, Rissanen points out that we can de-

fine a decomposition series consisting of pairwise decompositions of a relation

into components. For example:

R =Ry * Ryp = Rpy *Rpp) * (Ryy * Ryp)



where

Ro1 = By1 ¥ Ry

Ro2 = Byp ™ Ryy

Clearly, the original relation can be recovered from any such decomposition.
However, as the example of section 3 shows, it is not true that all decompositions
arise from successive pairwise decompositions.
3. A DECOMPOSITION WHICH IS NOT A SERIES OF PAIRWISE DECOMPOSITIONS

Consider the relation R(ABCDEFGHIJKL) together with the full family
F#=1{A-CI, D~ EL, F - BGH, BD » AILJ}*

It is shown below that there is no series of pairwise decompositions
such that R =R_. * R, = (R

01 02 11

with Rop = Rygp ™ Ryps Ry = Ryy * Ry

*Rip) F Ry *FRyo)

but in fact, for every R in £(F), it is nonetheless true that
R = RABCDIJ) * R(ABEFGH) * R (CDEFKL)
To see that there is no series of pairwise decompositions, it suffices
to examine every natural join involving the three relations. These are:
R(ABCDEFGHIJ) ; R(ABCDLJ) * R(ABEFGH)
because AB —» B in J iff B € ABCI
R (ABCDEF LJKL) : R(ABCDLJ) * R(CDEFKL)
because CD — B in J iff B € CDEL
R(ABCDEFGHKL)<§' R(ABEFGH) * R(CDEFKL)
because EF - B in J iff § € BEFGH
To see that R = R(ABCDIJ) * R(ABEFGH) * R(CDEFKL), take elements X1s Xyy X

3

belonging to some R in R(F). If {Xl} XZ] # 0,

ascnzs ¥ Xodaprren * %3} cpmrxe

then the following equalities must hold:

X hap = Xolpp



X = Klep

(X, gr = X3 g

Applying the functional dependencies A -+ CI, D —» EL, and F — BGH gives the

following equalities:

= {X 1

{x 23 ABCT

l}ABCI

{Xl}CDEL {XB}CDEL

£, peren = %3 peren

Using transitivity of equality, we find that:

{XI}ABCEI = ¥ }ABCEI
fX Y acorr = {X3}BCDEL
{XZ}BCEFGH = {XS}BCEFGH

Now applying the functional dependency BD = AIJ gives:

X}

1 ABCET 2

X}

ABCEX

(X} spepEran = {X3}ABCDEIJL

= {X,]

{XZ}BCEFGH 3°BCEFGH

And finally applying transitivity one more time gives:

= 1%}

fx } 27ABCEIL

1°ABCEI

= %}

{XI}ABCDEIJL 3 ABCDEIJL

{%y} \ncErcuT = {X3} spcErcat

= {x. ]

Thus, {X,] 1"ABCD1J and {X,]

= {X }

ABCDIJ

{x.}

1" ABCD1J X }ABEFGH 3 CDEFKL

3°ABEFGH

Since this holds for arbitrary R in R(F) and for arbitrary elements X X

2’ aprea® SO that

* % = (1),

2

, and x

3



of R, it follows that for every R in R(),
R(ABCDEFGHIJKL) = R(ABCDIJ) * R(ABEFGH) * R(CDEFKL).
for = A~ CI, D~ EL, F ~ BGH, BD — AIJ} * Note that the three relations
defined are in fact independent components of R.
4. NECESSARY AND SUFFICTENT CONDITIONS FOR A DECOMPOSITION
To determine whether a set {a(l), ..., a(n)} of subsets of the attribute
set o gives a decomposition of R(F), we define the smallest family of equiva-
lence relations {SB]B‘E a} over the set {1, ..., n} which satisfies the fol-
lowing conditions:
Al, TFor each subset B of a, if a(i) Na (j) » B is in J, then (i,j) is
in S _.
B
A2, For each subset B of a, if (i,j) is in S{A} for all A in B, then

(1,3) € 8y

A3, For all subsets B and v of a, if B —» vy is in Fand (i,j) is in SB

then (i,j) is in SY.

A4, For each subset B of a, S, is an equivalence relation.

B

This family will be called the decomposition family of equivalence relations

for the set {a(l), ..., a(n)} of subsets of a and the full family J of
functional dependencies over (.

Then the necessary and sufficient conditions for {a(l), ..., a(n)} to
be a decomposition of J are given in Theorem 2.

THEOREM 2. Let & = {a(l), ..., a(n) } be a set of subsets of an attribute
set o; let F be a full family of functional dependencies over a; and let
{SBIQE a} be the decomposition family of equivalence relations over ¥ and &. Then
d is a lossless schema for q and & iff there is some a(i) € & such that for every

a(j) €d, (i,j) belongs to Sa(j)'



Remark: TFor the case n = g, the decomposition family can be described as follows:

SB = é? if a(l) Na(2) » B is not in J
s =1l if (1) Na@) - B is in 7
B~ 11

Then the theorem states that {a(l), a(2)} is a lossless schema for o and # if and

only if (1,2) belongs to S or (1,2) belongs to Sa . This condition holds

a(l) (2)
if and only if a(l) N a(2) - a(l) is in For a(l) Na (2) - a (2) is in F

Proof of Theorem 2:

First, let us suppose that ¢ is a lossless schema for o and F, and prove
that there must be some a(i) in & such that, for every a(j) in &, (i,j) belongs

to Sa(j)'

By definition, & = {a(l), ... a(n)} is a lossless schema for o and ¥ means

that for every R in R(F),

w®

R = Ra(l) ... Rd(n)'

Also for every subset S of R

S EE
a(m)

- Soc(l)
[This holds if & is a set of functional dependencies but need not hold if it is

a set of multivalued dependencies or first-order hierarchical dependencies.]

The proof proceeds by constructing a relation R = {xl,...,xn3 from the decomposi-

tion family for & and F and showing that R belongs to £(F). R is constructed so

= Kook ; the theorem follows immediately.
that {xi} {xl}a(l) {xn}a(n)’ e m W ately

Let & = {SBIB C o} be the decomposition family for & = {a(l), ..., a(n)}
and ¥. Define functions ﬁA: {1,..., n} = dom (A) so that fA
(fA is well~-defined for each A as long as |dom A)]

(1) = £,(3) if
and only if (i,j) is in S{A}'

is greater than or equal to the number of partitions induced by SfA}')

= .o b 1 = l
Let R {xl, s xn} e defined so that {xi}{A} {fA(l)}. Then the

following conditions hold:



(1) fx }a(l) EEREE S {xn} # @, because by condition [Al] on o, for all

1
A in a(i) Na(j), (1,j) is in S{A} and therefore
(x5}, = (5,01 = £,(D} = {x],.

2) {xl,..., xn] is in R(¥), because by condition [A3] on o/, if B —» v is

a(n)

in J and if {xi}a = {xj]B, then f, (i) = £,(j) for all A in B (implying that
(i,j) is in S,) and therefore (i,j) is in S_ and consequently {x.} = {x.} .

B Y Civy Ty
It follows from (1), (2), and the hypothesis that & is a lossless schema for

a and §F, that the following must hold: for some i

{Xi} = {Xl}a(l) Keook {xh}a(n)'

But this implies that for each j, {Xi}a(j) = {Xj}a(j)’ and therefore

fA(i) = fA(j) for all A € a(j) and therefore (i,j) € Sa(j)'

Conversely, let us suppose that there is some a(i) in & such that (i,j) belongs

to Sq(j) for every a(j) in d. We wish to show that ¢ is a lossless schema for o

and ¥, i.e., that for every R in (&)

ol

Rd(l)*...n Ra(n)'

It suffices to show that for every R and every x

R =

1 ? ? n ’
ol

{Xl}q(l)*"'"
If {xl}

{ Xn}@(n) =@ or {Xl}q(l) Feoouk {XA} = {xi} for some 1i.

a(n)

e {xn} # @, then fxi} for all i,j.

a1y a(n) o) ~ Flana)

Define a class J = {TB]BEEQ} of equivalence relations as follows:

(i,j) is in T, if and only if

B
{xi}s = {xj}B.

J satisfies conditions Al - A4, as shown below:

[A1]): If a(i) Na(j) » B is in J, then (Xi) (xj)

a(i)n alG) ~ a (i) (i)

and therefore (x.), = (x.)
i’ j’8
fA2]: Trivial

[A3]: If B - vy is in J and if (xi)B = (Xj)ﬁ then (xi)Y = (xj)Y'

[A4]: By definition.



Since o/ is the smallest family of such relations, each relation Sg

the corresponding relation TB. Thus for i such that (i,j) is in Sa(j)

G0 T FPa

Q.E.D.

refines

for all j,



a (1) = ABCDIJ
o (2) = ABEFGH
o(3) = CDEFKL

A. 1 2
1 1 1@
2 1 1P
3 1t 18
B 1 2
1 1* 12
2 12 1
3 18 f
c. 1 2
1t ¢
2 19 P
b
3 1° 18
D. 1 2
1 1% o
2 o 1°
3 12 o
E 1 2
1 1 18
2 18 1P
3 15 1€
F. 1 2
1 1" o
2 1P

- 10 -

1 2 3
L
1 f
R
1 2 3
b o
o 1* f
o 1f 1P
1 2 3
P4 gt
R LR L:
tog 4P
a(1)Nalz) = {A,B}
a(HNa(3) = {c,D}
a(2)Na(3) = {E,F}

A - CI and A € o(1)Na(2)
D - EL and D € a(1)Na(3)
F = BGH and F € a(2)Na(3)
Transitivity
Reflexivity

BD = AIJ and (1,3) € SBD

oo

7O O Ww



- 11 -

1 2 3 1 2
1 1t 1 0 11 0
s 1 1 0 2 0 1
3 0 o 1 3.0 1
8 ¢ ABCET B C ABEFGHI
1 2 3
1 1 0 1
2 o 1 0
3 01 o 1

B C ABCDEILJL

* For all B, if (i,3) € Ry for all B « B then (i,]) € Rg

101

=g = 010

Point: S
a(l) ~ "ABCDIS .7

100

S =3 = 011
a(2) ~ TABEFGH - o7

100

S = § = 010
a(3) ~ CCDEFKL o

There exists some j such that for every i, (i,j) € Sa(i)'
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