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Summary

The existence and optimality of a state-dependent (s,S) policy
is shown for the infinite horizon inventory control problem with
general Markovian disturbances using Markov contraction operators. A
new result is then presented concerning the convergence to steady-
state probability distributions of Markov processes in general
metric spaces having regeneration points. The optimal stock level
for the inventory problem is then shown to be a regeneration point of
the inventory process, yielding convergence to a steady-state proba-

bility distribution on stock levels.



Introduction

The class of stock adjustment problems known as inventory control has
found wide application in economics and operations research (see Arrow, Karlin
and Scarf [2], Arrow, Karlin and Suppes [3], and Scarf, Gilford and Shelly
[20]). Specific applications and extensions include minimizing the costs of
holding and altering inventories of goods when faced with penalties for be=-
ginning a period with insufficient stock, management of a money - bond portfolio
when transactions costs are present, investment in a capital stock with costs
of adjustment, and management of a renewable resource with harvesting costs.
In these and other applications, the nature of environmental and market un-
certainty may be quite complex. That:is, the random disturbances faced by
the decision-maker may take values in a general (uncountable) state space and
may be generated by Markov processes. This is a reasonable assertion in the
case of random demands for the inventory problem or random interest rates in
the portfolio problem. Thus, the standard assumptions that disturbances
take values in countable state spaces and are independently and identically
distributed are approximations at best (see for example [2], [11], [12] and
[221).

This paper will extend the analysis of the inventory problem to the case
of Markov disturbances taking values in R". An (s,8) type feedback policy,
which depends upon the last observed disturbance, will be obtained by using
Markov contraction operators on Banach spaces. The optimal policy thus ob-
tained will then be used to demonstrate convergence to an equilibrium probability
distribution on stock levels. To demonstrate convergence a renewal theorem of
some independent interest will be stated and proved.

Part I of the paper will obtain the existence and optimality of a state-



dependent (s,S) inventory control policy using the contraction operator
approach to stochastic dynamic programming developed by Blackwell [6], Maitra
{17], Strauch [21] and others (see Hinderer {10] and Bertsekas [5] for a dis-
cussion). The contraction operator approach will also allow a clearer pre-
sentation of the existence and optimality of the (s,S) policy for the special
case of independent and identically distributed disturbances.

The optimal stock-adjustment rules obtained from inventory-type problems
are useful in examining the long-run behavior of the system since they lmve
the property that when they are applied, the stochastic process describing
the changes in the stock over time may enter a 'regeneration state.' This
'regeneration state' is an initial starting point for the random movement of
stock levels over time which allows us to characterize the long-run be-
havior of the stock in an interesting way. It is then possible to show that when a
stochastic process obtained from the interaction of an optimal policy and exogenous un-
certainty has a regeneration point, the sequence of probabilities generated by the
process will converge to an equilibrium (or invariant) distribution over stocks.
This invariant distribution of stocks characterizes both the empirical distribu-
tion over time for a stock managed by a single decision maker as well as the
cross~-sectional distribution of stocks for a group of independent and identical
decision makers.

The optimal inventory policy guarantees that the regeneration point can be
reached in a finite number of periods from any point in the state space. A theorem
on ergodicity of stochastic processes will be presented in Section II. This
theorem shows that any stochastically bounded process with a regeneration state
having a positive probability of recurrence in a finite number of steps, will con-~

verge to a unique invariant probability. While this theorem has formal similarities
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to well known theorems in renewal theory, the result is presented in a more
direct manner which will greatly facilitate its application to a wide range
of economic problems.

The problem of convergence to an equilibrium probability distribution has been
previously considered in the literature on inventory control. We briefly
consider three important papers. Karlin [13] pp. 234-237 and [14] shows con-
vergence to an equilibrium distribution for the simple inventory model sub-
ject to independent and identically distributed disturbances by directly examining
the transition operator for the Markov process of stock levels in [13], and also
by renewal theory Methods in [14]. These proofs do not apply when exogenous
disturbances are Markovian. Furthermore, it may not be evident how to repre-
sent changes in stock levels by sums of i.i.d. random variables when the tran-
sition equation is nonlinear. The case of Markov disturbances in an inventory
model with a finite state space was considered in Karlin and Fabens [15].
However an (s,S) policy was arbitrarily imposed. In the present paper, the
(s,S) policy is derived from optimizing behavior and shown to depend upon the
last disturbance when disturbances are Markov. This is a case which cannot be
handled by the approach of Karlin and Fabens [15].

In Section III, the optimal policy obtained in Section I, for the case of
general Markov disturbances, will be shown to imply the existence of a
regeneration point which can be reached from any point in the state space in a
finite number of steps. In particular, the optimal stock level for an (s,S) -
type stock adjustment policy will be identical to the regeneration point. The
Regeneration Theorem of Section II will then be used to show that the stochastic
process of stock levels converges to an equilibrium probability on states of the

system. Specific examples of economic problems will then be interpreted.
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I. The Optimal Inventory-Control Policy

An extension of the Arrow, Harris and Marshak {l] inventory problem will
now be presented. The model will be extended to the case of Markov distur-
bances taking values in a general state space. 1In addition, a general tran-
sition equation will be introduced which yields the inventory control problem
as a special case. A decision-maker is assumed to manage a stock so as to mini-
mize expected discounted costs over an infinite horizon. The problem will
be reduced to the recursive form of the Bellman optimality equation in which
the decision maker applies a stationary-feedback policy. The existence and optimality
of this policy willAbe demonstrated using the techniques of stochastic dynamic
programming. |

Let X be the initial stock at the beginning of period t

The initial stock may be negative indicating shortages or debt.

Let L € E c R™ be the random disturbance which is observed

during period t . Given the state of the system at time ¢t
(st,wt) the transition equation of the system g will describe the

remaining stock z, at the time the decision is made to reorder:
- ' 1.1
Zt g(xt)wt)
Let a be the choice of the initial stock for the next period:

X = a . 1.2

The stock is assumed to take values in the compact set (x,X]
The bounds may be derived from the costs of holding large inventories and
of experiencing large shortages, or from institutional constraints. The

following assumption on g is not overly restrictive:



Assumption 1 The transition equation g 1is given by a function E
which is linear and non-decreasing in x and continuous in w , where
x B(x,w) > x
g(x,w) = g(x,w) otherwise
X B(x,w) < X

This assumption permits the standard inventory transition equation

where X, is the initial stock and w_ represents random demand. For

the portfolio problem E may take the form

1 2
b4 = WtXt + Wt

1. . . . 2
where v, 1is a random interest rate applied to savings X, and W,

represents random endowments or expenditures. Aggregate investment

problems may also be handled. Let the capital stock z, be given by

z, = f(wt)xt

where X, is the capital-~-labor ratio and f(wt) represents the effects

of population growth and capital depreciation. For the investment problem

at the level of the firm, f(wt) may represent the effects of random usage

rates and depreciation on the initial capital stock X,

The stock is subject to random disturbances which are represented

by a Markov process w & Ec R" with transition probability m(-]w)

Assumption 2 The measure ¢ takes E into the space of pro-

bability measure on E , P(E), continuously when P(E) is endowed

with the weak topology.
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The decision maker will face holding and shortage costs h(zt)

of holding stock z, for period t

Assumption 3. The cost of holding and shortage h(:) 1is

continuous, bounded and convex for z € [E,E]

See Scarf [19] p. 197 for a discussion of these costs for the inven-

- 2z ) 1is positive, the

tory problem. When the addition to stock (at ‘

decision maker will face a 'set-up' cost of ordering K as well as
linear ordering costs ¢ + (a - z) . The fixed cost K may be due to

transactions costs or adjustment costs. The cost function faced by the

manager is therefore

C(z,a) = h(z) + %a-z)' K+c - (a-2) 1.3

where 8 1is an indicator function. Given these assumptions, the

decision maker's problem is to minimize the expected value of costs dis-

counted at rate o , where 0 < a< 1 . Formally the decision maker solves:
minE [ 5o, ot lc(z ,a.)] 1.4
t=1 t’ %t |
s.t. zl,w1 given.
z.<a <X

The problem may be rewritten in the recursive form of dynamic pro-

gramming, with value function V defined by



V(x,w) = min_[h(z) +8§

) *K+c . (a-2)+a| V(a,w)do (w'/w)]
af [z,x] (a-2) Jﬁ

1.5

where 2z = g(x,w) 1is the remaining stock when the decision is made to
reorder. The decision-maker should add to his inventory if and only

if there exists a € (z,x] such that:

K+ c'(a-2) +cLJ'V(a,w') do(w'/w) < aJ'V(z,w') deo(w'/w)
1.6

If such an a exists, the stock should then be raised to the level

which will minimize
c - a+ cofv(a,w') deo(w'/w) 1.7

over (z,X%]

The optimal policy and value functions for this problem will
be examined. The proof of the results will employ K-convex functions,
introduced by Scarf [19], p. 199 .

Definition (Scarf) . Let K> 0 . The function f is

(strictly) K-convex if

K+ f(y+x) - £(x) - [f(x) -bf(x-b):] > = 0

=
(@ o]



where y> 0, b>0
Scarf also states a number of useful properties of K-convex
functions:
i) O - convexity is equivalent to ordinary convexity.
ii) If f(x) is K- convex, then f(x+y) is K- convex for all vy
iii) If £ and h are K- convex and H- convex, respectively, then
pf +oh is (pK + oH) - convex when p and o are positive.
As pointed out by Scarf (iii) extends to integrals when the exchange
of limits is permissible. Using these properties it is easy to show
the following result (which was presented by Reed [18] for non-differen-
tiable K - concave functions).
Theorem (Reed) Suppose f(x) is continuous and strictly K - convex
on [x,x], and let N = inf° f£(x) and S=sup{y: f(y) =N,y & Ix,%x]}

[x,x]

Then there exists at most one s , x<s< S , such that f£(s) =N+K s

and further, if such an s exists

f(x) > N+ K for x € [x,s]

Given this result, the following theorem for the infinite
horizon problem may be directly obtained using the contraction operator

approach to dynamic programming:



Theorem 1 Given assumptions .1 to 3 the following results hold:

2

i) For K> 0 , the optimal value function V exists and is con-
tinuous and bounded in x and w and is K- convex in x

The optimal policy takes the form:

z if z> ;(w)
a = _ _ 1.9
S(w) if z < s(w)
where z = g(x,w) . The maps s(-), E(-) are measurable in w and

x< s(w) < S(w) < ¥ for all w .

ii) For K =0 , the optimal value function V exists and is continuous
and bounded in x and w and is convex in =x . The optimal policy takes
the form

z if z> SW)

a ={ _ _ 1.10
S(w) if z< S(w)

where 2z = g(x,w) and x < S(W < x .

For the case of independent and identically~ distributed disturbances

the value function V may be written as

V(x,w) = min [h(z) + 8
a>z

(a-zy KF e - (@2 + afV(g(a,w")) do(w"] . 1.11
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For the i.i.d. case we immediately obtain the following corollary to
Theorem 1

Corollary Given assumptions 1 . to 3 ,

i) For K> 0 , the value function V:X -+ R 1is continuous, bounded,

and K - convex. The optimal policy takes the form

wnl
e
+
N
0

where z = g(x,w) and E,g are constants such that §§§g§_§

ii) For K =0 , the value function V:X -+ R is continuous,

bounded, and convex. The optimal policy takes the form

N
N

\
w»

vl

N
IA

wnl

where z = g(x,w) and S 1is a constant such that x < s < x

" The proof will be given after three lemmata are stated and proven. ﬁet
B(X x E) be the space of bounded and measurable functions on X x E . The
space B(X x E) is Banach under the sup norm. Let CK(X x E) be the space
of all bounded, continuous functions on X x E which are also K- convex on

X .
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Define the operator T : B(X X E) # B(X X E) by

(Tv) (x,w) = min [h(z) +8
a€ [z,x]

(a-gy KFter(a-2 + of v(a,w') dep(w'/w)]

where v € B(X ¥ E) and z = g(x,w).

The motivation behind this theorem is that it is easy to see that T is
a contraction on the Banach Space B(X x E) since T is a linear operator
there. Then, in any closed subset of the Banach Space which is mapped into

itself by T , there must be a fixed point.

lemma 1: The space CK(X X E) is complete.

Proof: We need only show that CK(ngE) is a closed subset of the
complete space B(X x E). It is sufficient to show that (fn) C CK(X x E)
and fn a:f- in the sup norm implies that £ € CK(X ¥ E)

Clearly f is a continuous bounded function, so we need to show

that f is K- convex. Since fn € CK(X x E)

R+ £ (xby) - £ (0 -y [ 2O ZIED ) 5 0 vy

fn-+ f implies £n(x) -+ £(x) , fn(x+y)-+ f(x+y) , and

fn(x-b) » £(x-b) hence

£(x) - £(x=b), o o .

K+ fx+y) - £x) -y [ 5

Thus fe CK(X x E)
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lemma 2

For K> 0 the operator T on CK(X x E) defined by

(Tv) (x,w) = min [h(2)+§ + K+ec-(a-2z) + arv(a,w') deo(w'/w)]
- (a-2) J
ag (z,x]

where v € CK(X x E) and =z = g(x,w) , takes the space CK(X X E)
into itself.

Proof: Clearly (Tv) is bounded in (x,w) . Since v 1is continuous
and K - convex in x then by property (iii) of K - convex

functions the term
oaj’v (a,w') dop(w'/w)

is continuous and strictly K-convex in a . So, the sum
e « a+ OLI v(a,w') dp(w'/w)]

is continuous and strictly K-convex in a . Thus the conditions of

Reed's Theorem are satisfied. Let N(w) and S(w) be defined by

N(w) = inf _fc - a +CL‘J" v(a,w') dp(w'/w)]
a elx,x]

and
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s(w) =supf{y: [c *y +ofv(y,w) do(w'/w)] = NW), y € [x,E] } .

(Note that by the maximum principle (see Berge [4]) , N(w) is
continuous in w ). Then there exists at most one E(w), where

x < s(w) < S(w) < x such that

c g(w) + ouj‘ v(s(w),w') do(w'/w) = N(w) + K
and further, if such an s(w) exists,

cy + ou_J‘ v(y,w')dop(w'/w) > N(w) + K

for y € [_}E,;(W)) . If such an s{w) does not exist let 's(w) =x .
The maps s(w), S(w) will be measurable in w . Thus (Tv) may be
rewritten as

h(2) +afv(zw)de'/w) if z> 5(W

(Tv) (x,w) = _ _ _
h(z) +K+c-(S(w)-2) +CLI v(S(w),w')dop(w'/w) if z < s(w)
where z = g(x,w) . Substituting for 1z ,
h(g(x,w)) +ogfv(g(x,w) ,w') dp(w'/w) if z> _s_(w)
(Tv) (X)W) = _ _
h(g(x,w) +K+c- (S(w) -g(x,w)) +aj v(S(w),w") dp(w'/w) if z < S(w).
(Tv) will now be shown to be continuous in x and w . The term

K(g(x,w) + af v(g(x,w),w") dyp(w'/w)

is continuous in x and w by the continuity of h(*),g(:,), v(-,")
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and the continuity of ¢(-/w) in the weak topology. Also,

the term
h(g(x,w)) + K - ¢ - g(x,w)
will be continuous in x and w . From the definition of N(-)
c - Sw +af v(S(w),w') dp(w'/w) = N(w)

is continuous in w . Since the term is constant in x , it is

continuous in x . Thus, the expression
h(g(x,w)) + K +c* (E(W) - g(x,w) + qfv(g(w),w') dyp(w'/w)

is continuous in x and w
So (Tv) 1is continuous for those x and w where

g(x,w) < s(w) and where g(x,w) > s(w) . Further, since

crs(w) +af v(s@),w') dpw' /W) = N +K = c-S(w) +afv(S(w),w') dp(w'/w) +K
or

af v(s(w),u') do(u'/w) =c-(S(w) - SWY+K+af v(Sw),w') dp(w'/w)

then at gx,w) = ;(W), (Tv) 1is continuous in x,w . So (Iv) is
continuous in x,w .
Let w be fixed. For x such that g(x,w) > s{w) , the function

(Tv) is composed of the term

h(g(x,w) )
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which is convex for all x € [x,x] since h(-) 1is convex and

g is linear in x . Also aJ‘v(g(x,w),w')d:p(w'/w) is strictly
K - convex since v 1is K - convex and O<a<i1 . For x

such that g(x,w) < s(w) , (Tv) 1is composed of a constant term

and the convex function
h(g(x,w)) - ¢ - g(x,w)

so (Tv) 1is K - convex for the intervals on [§,§] where
g(x,w)jz.g(w) and g(x,w) < s(w) . Consider the interval
[x,y] where x 1is such that g&,w) < s(w) and g(y,w) > s(w)

Let y =x +a . We wish to show that £for w chosen arbitrarily:

> 0

(Tv) (x,w) - (TV)(x - b,w)
K+ (Iw)(a +x,w) - (V) (x,w) - a ]

b

where a,b> 0 .

K+ (Tv) (a + x,w) - (Tv) (x,w) - a [(TV)(X;W) -b(TV)(x - b,w)}

= K+ [h(g(a+x,w) +afv(glatx,w),w)dow' /W) ]

- [h(g(x,w)) + K+ c - (8(w) - g(x,W) +a[ v(SW),w") dp(w'/w)]

-2 [h(g(x,w) +KR+c - (S - g(x,w)) +CLI v(S(w),w') dop(w'/w)
b
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- h(g(x-b,w)) + K + c(S(W) - glx-b,w) +af v(sSw),w") de(w'/w) ]

= [ b(g(a+x,w) - h(g@x,w) - a [h(g(x"’)) ;h(g(x'b”’”}}

+ {[c-g(a+x,w) +ocjv(g(a+x,w) ,w'y dyp(w'/w)] - [c-S(w)-l-or,Iv(S(w),w’) dp(w'/w) ]

teo - [exw - g@+txnw + ¢ (8w - gx - b)] ]

The first term is non-negative since h °g 1is convex in x

The second term is non-negative by the definition of S{(w) . Since
g 1is linear, the third term will be zero. So (Tv) will be

K - convex for all x € [x,X] . This will be true for any w since
w was chosen arbitrarily.

- F
So T: CK(X X E) - CK(X X E)

lemma 3 Let T : B(X X E) » B(X x E) be defined as in the text by

(V) (x,w) = min [h(z) + 8§

‘K + c(a-2) +ocfv(a,w') dop(w'/w ]
al[z,%] : '

(a-2)

Then there exists a V¥ ¢ CK(X x E) such that TV* = V¥ ,

Proof: Since T 1is clearly a monotone, linear operator and
0<a<1l it is a contraction mapping on B(X x E) . Since

T : CK(X x E) » CK(X x E) and CK(X X Eyc B(XXE), T is also

a contraction on CK(X X E) . Hence by the Contraction Mapping Prin-
ciple there is a unique point V* g CK(X ¥ E) such that TV*x =v+* ,

see ILiusternik and Sobolev [16]. -
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proof of the theorem:

i) The argument now follows the standard dynamic programming framework

(see for example Maitra [17] and Hinderer [10]) . With each

Borel measurable map
a: X xEa X

associate the operator Q(a) : CK(X Xx E) o CK(X X E)

defined by

(Q(a)v) (x,w) = h(z) + & 'K+ c-(a(x,w) - 2) +afv(a(x,w)de(w'/w) for

(a(x,w) - z)

for K> 0 .

Since Q(a) 1is a monotone, linear operator and O < a< 1 it is a con-
traction on C(X x E) (the space of continuous and bounded functions on
X X E) and thus has a unique fixed point in CK(X x E) by an argu-

ment similar to that for T . Let I(a) be this“uniQue fixed point. By

the Selection Theorem of Dubins and Savage [8] , (see Maitra = [17]),

there is a Borel measurable map a : X X E 9+ X such that

TV = Q(a)V . Hence Q(a)vV =V and V = 1I(a) since 1I(a) 1is the

unique fixed point of Q(é) . Therefore TV =V can be rewritten as e
I(a)(x,w) = min [h(z2) +5(a_z)-K+c < (a-z) +a[v(a,w') de (w'/w)]
a€ [z,X] :
for z = g(x,w). Thus 7I(a) satisfies the optimality equation and the

stationary plan (a,a,a,...) is an optimal plan (see Blackwell [61}.
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As V =1I(a) and V € CK(X X E) the optimal return is continuous

and bounded on X X E and K-convex on X . Since O <a< 1l , the
term that the planner seeks to minimize, if the decision is made to re-

stock,
c - a+al V(a,w") do (w'/w)

is continuous and strictly K - convex in a by properties (i) and
(1iii) of K-convex functions. Hence the conditions of Reed's theorem
are satisfied and (by arguments similar to those used in the appendix)

the optimal policy will have the form

z if z> s(w)

T (w) if =z < s(w)

ii) When K =0 , the contraction operator T may be defined on
C(X x E) the space of continuous, bounded functions on X yx E which

are convex on X . T 1is defined by

(Tv) (x,w) = min [h(g(x,w)) +c - (a-g(x,w) +afv(a,w") deo(w'/w)]
aclg(x,w),X]

Proceeding as before, the optimal value function V can be shown to
be continuous and bounded on X x E and convex on X . Also, an

optimal plan

I(a)(x,w) = min [h(g(x,w)) +c - (a-g(x,w) +afV(a,w") de(w'/w)]
a€ [g(x,w) ,%]

where the term
c *a+ och(a,w') deo(w'/w)

is continuous and convex in a
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Let N(w) = inf [c-a+ afV(a,w") dew'/w)]
a €[x,%] ' '

and S(w) =sup {y: [c'y +alV(y,w')do@w' /)] =NWw), ye€ [x,x]} .

These are well defined since the bracketed term is continuous and convex

(Note that N(:) 4is continuous by the Berge Maximum Principle, see [4]).

Then

c . S + afV(S(w),w') dp(w'/w) = N(W)

so that
c * S(w) +oc[‘V(S(w),w') dop@'/w) <c a+oo_['V(a,W') de (w'/w)
Thus the optimal policy has the form

2 if z > S(w)

sS(w) . if z S(w)

Note that S{w) will be measurable .
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1I. Regeneration Theorem

In this section we provide a theorem, similar to the theorems
of renewal theory, about the convergence of a particular type of
Markov Process., The type of process that we consider has a regenera-
tion point--a point which the process attains with strictly positive
probability, regardless of its initial state. Such processes naturally

result from the interaction of exogenous randomness and optimal

policies in many decision problems. It will be seen in the next section

that the Markov Processes resulting from the inventory problem have this form
in most cases. The theorem will allow consideration of the asymptotic proper-
ties of the process of inventory levels without explicit consideration of

a renewal equation (see [14] and [22] for a discussion of the Renewal Theory

approach) .

The state space of the system will be denoted by the measure space

(8,2/) where S 1is a complete separable metric space and ./ is its
Borel o - algebra. The transition probability on S x ,# will be
denoted by P:S x ./ [0,1] . P(s,-) is the probability measure on
tomorrow's states when the current state is s € S and 1is derived
from an individual decision problem. The following definitions will
be used frequently in this section:

1) ca(S) -- the set of all bounded, real valued, countably additive

set functions with domain _ .
2) P(S) -- the subset of ca(S) consisting of the probabilities on

S .
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Note: all spaces of set functions will be endowed with the weak

topology. That is, for (l»bn) c ca(S) b, W if and only if
[Eu_(ds) + [£(s)u (ds)

for all real valued, bounded, continuous functions £ on S

The transition probability P defines a linear operator M*

mapping ca(S) into itself, by

M*A(A) = [P(s,A)A\(ds) gg; i i ,,cva(s) .

M*1  is defined in the same way from P’ the n-step transition pro-
bability. Then M\ gives the probability measure that will result in
n periods of time if the initial probability is A .

The following two definitions will be used to state the assump-

tions needed in the following convergence theorem.

Definition: A point £ &€ S will be called a regeneration point if there
is an integer n> 0 and a £ > 0 such that Pn(s,A) > B>0 for all
s € S and for all measurable sets A containing ¢

That is, if p is a regeneration point, then there is a strictly positive
probability of reaching p ina finite number of steps from any point in the state

space. The process will then start over from p since it is Markov.

Definition: A Markov Process will be called stochkistically bounded if

there is an integer n such that the family of probability measures

{M"‘nx, N € P(S)} 1is tight, i.e. if for any ¢ > 0 there is a compact

set Cc S such that M*n“)\(c) > 1 - ¢ for all X € P(S)

That i's,.theremust be a compact set such that eventually the process stays in
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this set most of the time. Clearly any process on a compact state

space is stochastically bounded.

Theorem 2 Any stochastically bounded Markov Process with a regenera-
tion point has an invariant probability A* and M) converges to
A* for any initial probability A .
Proof: We show that this system satisfies Doeblin's Condition and
has only one compact ergodic set with no cyclically moving subsets. These
results will imply the conclusions of the theorem, see Doob [7]
We will first show that the linear operator M associated
with P is quasi-weakly compact. An operator is quasi-weakly compact
if and only if the corresponding transition probability satisfies Doeblin's
Condition, see Futia [9] , Theorems 4.4 and 4.9. A linear operator
M: ca(S) »+ ca(S) 1is quasi-weakly ' compact if there is a linear
operator L : ca(S) & ca(S) with closure (L(P(S))) weakly compact
and HM%D - L] <1 for some integer n .

Let L: ca(8) &+ ca(S) be defined by

B[x] if p €A
LA(A) = .
0 otherwise.
L 1is clearly a linear operator. We want to show that closure (L(P(S)))
is weakly compact. Note that L(P(S))) can be identified with the
compact interval [0,B] by £ : [0,B] @ L(P(S)) defined by
c B €A

f(e¢) =4 such that pA) =
0 p € A
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Hence L(P(S)) is the image of the compact set [0,B] under a
mapping £ which is clearly weakly continuous. Therefore

L(P(S)) 1is weakly compact.

%I

We now want to show that || M - L[| < 1.
™ -1 = sup [M™N-1A =sup |MA-B|<1l-B<1
NEP(S) NEP(S) P

since M%nX(A)'Z B for all A such that p € A and

MTA(A) <1 - k for all other A€ .,/ . Therefore Doeblin's
Condition is satisfied.

Ergodic sets must be essentially disjoint and for any
ergodic set E , P(s,E) =1 for all s &€ E . Since Pn(s,A)E:B>>O for
all A containing p and for all s &€ S there can be at most one er-
godic set. There is at least one since the process is stochastically
bounded.

A sequence of cyclically moving sets Cl’CZ"" , Cm must be

essentially disjoint and P(s,Ci =1 for any s ¢ Ci , for all i

1

Suppose there is such a sequence of sets. Consider s g Ci s

Pn(s,A) > B> 0 for all A containing p implies that

B € Ci+n(m°d m) . Repeating for all i we have ¢p € Ci for all 1

and hence the sets Ci are not essentially disjoint. Therefore there

are no cyclically moving sets.



-l

In the following section we show that under certain assumptions, in
both the i.i.d. and Markov cases, the transition equation resulting from
an optimal inventory policy generates a transition probability which
satisfies the assumptions of this theorem and hence has an invariant
probability reflecting the steady state behavior of inventories. The
unifying element of such problems is that the optimal policy has a very
particular structure resulting from linearity of the function representing
current costs and benefits from altering the stock. The presence of
non-convexities in the objective function will not affect the solution
since the optimal policy will be to do nothing over some segment of
the state space and then at the boundary of this segment jump to a
particular state. This state will be shown to be a regeneration state.
Such a regeneration state will result from any policy, whether optimal

or not, which has this property.
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ITI. Convergence to a Steady State Distribution

The asymptotic properties of the inventory process subject to
Markov disturbances will now be examined. Repeated application of the
optimal stock adjustment policy a: X x E+ X in the presence of random
disturbances will generate a stochastic process on the space of inventories
We may define a stochastic process on the state of the system S = X x E.
The transition probability measure

3.1
P:S X » [0,1]

will be given by

P(s,B) = B, (D o @ (pleoj B/w)

for s €S and B ¢ , for the Markov case. For the 1i.i.d case,

the state space can be restricted to X and the transition probability

can be written as

P(x,B) = (v € E/a(x,w) € B) 3.2

for x € X and B € X . P gives the probability measure on the

next state of the system that results from the composition of exogenous

randomness with the optimal plan given the current state of the system.

It is easy to show that P defines a Markov process on (8,
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The results of Sections I and II will be used to show that the
sequence of probability measures over time converges to a unique probability
regardless of the initial state. This invariant probability can be inter-
preted as the result of observing one decision maker over a long period of
time or of observing a cross section of‘independent identical decision
makers at one time. We will use Theorem 2 and show also that the optimal
inventory E(E) forms a regeneration point. Before proceeding however,
the following additional condition is placed jointly on the transition

equation g and measure ¢ to assure an interesting problem:

Condition 1 a) When disturbances are Markov there exists a disturbance

w € E satisfying
w(a\ w) >y>0

for all w ¢ E, such that for a sequence (zn) defined by
zq ='g(xo,§),z2 = g(zl,ﬁ),z3 = g(zz,ﬁ), for all x_, there exists an

integer N such that <X .

Z
N
b) When disturbances are i.i.d.,, there exists a set

A c E satisfying
p@) >v>0

such that for the sequence (zn) defined by z = g(xo,wo),z2 = g(zl,wl),
zq = g(zz,wz),..., for all xo, and for any Wh € A, there exists an
integer N such that Zg <X .

The effect of this condition may be examined for the inventory problem.

The restriction for the i.i.d. case simply implies that when the stock

is not replenished, demand will exhaust the current stock to zero (or to



-27-

the limit on backordefs) within a finite number of periods. For the
Markov case, the restriction guarantees that at least one demand level
will reoccur with positive probability such that the stock will be
exhausted within a finite number of periods. These restrictions simply
require the presence of a decision maker to periodically readjust the
stock and are useful in examining the existence of a regeneration state.

Given Condition 1, it is now straightforward to demonstrate
convergence to a unique steady state distribution on the process of

inventory levels.

Theorem 3 The sequence of probability measures on inventories con-
verges to a unique probability measure ¥ with S(W) as a re-
generation point in the Markov case and S as a regeneration point in the
i.i.d. case.

Proof: By Theorem 2 we need only show that the process is stocbastically
bounded and that it has a regeneration point. The process is clearly
bounded since S 1is compact.

We now show that in the Markov case (S(W),w) is a regeneration

point. By Condition 1(a) there is an w € E with ¢(§/w)2y>o

and an N such that ZN-g X , for any XO R

Hence from any initial point (XO,W) € S the process will reach

if no action is taken.
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(x,w) with probability YN if no action is taken. But by Theorem

2 we know that the optimal policy is to restock to S(w) once

@ - x (or 5(3) in the case of K = 0) 1is reached. Hence with
probability greater than or equal to y(N + 1) the point

(S(w),w) 1is reached in at most N + 1 steps from any initial point.
So (S(w),w) 1is a regeneration point. Therefore there is an invariant
probability T on S . The invariant probability A* on inventories

is then defined by

Ak (A) = T](a-l(A)) for all A ¢ X .

Similarly in the i.i.d. case S 1is a regeneration point (by condition
1(®)) 1in the restricted state space S and hence there is an invariant
probability A* . on s

Hence any stock management problem fitting the assumptions of
this section will lead to a regeneration point and an equilibrium proba-
bility on the stocks. For example, in the traditional inventory problem
with transition equation z, =X - W there is an equilibrium distribution
of inventories A* on [x,X] in which the optimal inventory level S
(or S(W)) has probability of at least y(N + 1). This equilibrium
distribution of inventories could also be easily transformed to give the

distribution of costs for the firm.

There will also be an equilibrium distribution of savings in the
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. 1 2 :
portfolio problem with transition equation z, = WX + LA This

distribution describes the observed distribution of savings or
money holding among individuals as a result of random needs and
returns and an attempt to minimize non-convex costs.

This method can also be applied to the problem of capital management
for a firm or investment for an economy in which there are both marginal
and fixed or adjustment costs. In this case a possible transition

equation is zt = f(wt)xt where X, is capital stock (or capital

labor ratio) and f(wt) represents random effects of usage rates and
depreciation (or random population growth and capital depreciation). In
either case there will be an equilibrium distribution of stocks as a result
of the planner's actions. Hence in the case of a firm managing a

capital stock otherwise identical profit maximizing firms need not have

the same capital stocks, although they will have the same distribution of

capital over time.
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