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ABSTRACT

Location on Tree Networks: P-Centre and n-Dispersion Problems

We consider two problems of locating facilities on trees. 1In
the first, we wish to determine the location of n points so as to
maximize the minimum distance between any pair. In the seccond we
wish to locate p centers of a single type of fﬁsility so as to mini-
mize the maximum distance between any point and the center nearest
to it. We provide polyncmial algorithms for both problems, of
: O(lnlzlogn-loglnl) for the first problem and of 0(1N1210gp) for

the second, where INI is the number of nodes in the tree.



1. Introduction and Plan of Paper

1.1, Introduction

In this paper we present polynomially bounded algorithms for two
related problems of locating facilities on tree networks. More pre-
cisely, let T = T(N,A) be an undirected tree with N and A denoting the
set of all nodes and arcs respectively. Each arc of the tree is asso-
ciated with a positive number called the length of the arc. Sugppose
T is embedded in the Euclidean plane so that the arcs are line segments
whose endpoints are nodes and arcs intersect only at nodes. By a point on
T we mean a point along any arc of T. If u and v are points on T, then
d(u,v) represents the distance between u and v measured along the arcs-

of T. The two problems solved in this paper are:

1) The n-center dispersion problem: Locate n facilities on T

so that they are as far apart as possible, i.e. find points XyseoosXy

on T so as to maximize nin d(xi,xj).
- 1<i<j<n

2) The p-center problem: locate p facilities on T so that the

| maximum distance for any point on T to its nearest facility is mini-
mized, i.e. find points yl,...,yp on T so as to minimize
max min d(x,yi).
xeT 1<i<p

The p-center problem has received a great deal of attention in the litera-
ture [3,6-16,18-20] and therefore seems to require little motivﬁtion at this
point. The dispersion problem is very closely related to the p-center prob-

lem [19] but has received surprisingly little attention and needs some moti-

vation. This is provided below.
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Daughety and Turnquist [ 5] provide a procedure for solving a non-
linear program whose objJective function has to be estimated. The search
procedure to estimate the objective function is based on solving a
sequence of n-center dispersion problems. Church and Garfinkel (4 ]
have looked at the problem of locating one obnoxious facility on a net-
wprk. The work in this paper can be extended [20] to solve a g-center
obnoxious facility problem, where we wish to locate new facilities not
only as far apart from each other as possible but also from existing
facilities. Siting of strategic military facilities and of nuclear waste-
storage points are examples of this problem., Thus the n-center disper-
sion problem is of interest in its own right., In addition, the duality
relationship exhibited by Shier [19], relates the dispersion problem to
the p-center problem. Shier [iﬂ shows that the objective functiocn values
of tha p-center problem and the (p+l)~center dispersion problem are equal.
The results in our paper shows that there exists
a palr of methods for the two problems that closely resemble each other.
Indeed, using the results of this paper, it is clear that one could use
any method to solve one problem to yield an algorithm for the other problem.

Wa have restricted our attention to locating centers on trees as
opposed.to general networks., There are several reasons. First of all,
the obvious one: we know how to solve them efficiently as shown by the
polynomial algorithms presented here. Secondly, we know [16 ] that the
p-center problem on generél network (when we restrict ourselves to the
discrete case) is NP-complete; hence the likelihood of finding a poly-
nomial algorithm for the general case is small at least for the discrete
case. While we do not know whether the algorithms presented herein are

extendable to other special cases, and while it is easy to show that the
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duality relationship between the two problems fails for general'network,
these two points are unrelated since the algorithms themselves do not
use the duality results. It is our expectation that a deeper understand-
ing of the two problems for trees will lead to a better understanding
of the general case. Moreover, the kind of justification that exists for
examining the p-center problem clearly also exists for the n-center dis-
persion problem for trees.

Finally, the methods presented herein are of interest in their own
right. This is especially true of the kind of binary search that is des-
cribed later on for determining the right value of the two objective func-

~

tions.

1.2, Flan of the Paper

The next section treats the dispersion problem., First we provide a
O(INlloglNl) algorithm to compute N{A), the maximum number of facilities
that can be located on the tree so that the distance between any pair cf
them is at least A. Since N(A) is a monotonic step function of X, one
could use a binary search to determine A*(n), the optimal value of the
objective function for the dispersion problem. However, this does not, by
itself yield a polynomial algorithm. The procedure we use does and it
appears that a similar process might work for some other problems wherein
the monotonic step-function over which the binary search 1s carried out
has an exponential number of steps, We consider this special binary search
in itself an important result of this paper,

In section three, we provide similar algorithms for fhe p-center prcb-

lem. The pattern of secticn two is repeated. First we find P(r)}, the mini-
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mum number of facilities needed so that every point on the tree has a

facility at a distance at most r. The algorithm provided to do this is
0(|N|). This again leads to an exacﬁ ngorithm to determine r*(p) (the
optimal value of the objective function for the p-center problem) using

an approach similar to the one used for the dispersion problem.
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2.0, The n-Center Dispersion Problem

2.1. Clusters, Reductions and Computation of N(1)

A node of the tree T whose dggree is 1 is called a tip. A maximal
set of tips which are connected to the same node, say s, is called a
cluster C(s). The removal of nodes in C(s) along with arcs incident at
them will render s a tip in the remaining tree. The algorithm to deter-
mine the maximum number N(A) of facilities that can be located on T so
that the distance between any pair of them is at least A proceeds as
follows: 1) at each step a set of facilities will be located aleng arcs
(s,1) where 1 € C(s) and then 2) the cluster C(s) is eliminated. A
repeated application of this procedure gives the desired result. We first

provide some simple results that motivate this cluster elimination routine,

Rl: If 1 € C(s), 1 # s and there is an optimal solution
with a faeility on arc (s,i) then there is an opti-
mal solution with a facility at i. Hence if d(s,i) >A
we can locate a facility at i and reduce the length of
arc (s,i) by A. This process results in a situation
in which all arcs associated with a cluster are of
length less than A. Indeed, the process could

be applied to any arc that is incident at a tip.

R2: Let i,j € C(s) and let d(s,j) > d(s,i). If in some opti-
mal solution a facility is located at i then there is am

optimal solutioun with a facility located at jJ.
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R3: Let C(s) be a cluster whose members are numbered
so that A > d(s,i) > d(s,j) whenever i < j. Let
1® = max {h: d(s,h) + d(s,h+l) > A}
heC(s)
Then there is an optimal solution with no facility
on arcs (s,j) for j Z_ho + 2, j € C(s). Thus these
nodes may be removed along with arcs incident at
them. Thus the distance between any pair of re-

maining tips in C(s) is at least A.

R4: Let C(s) be a cluster with d(s,i) < A Vj e C(s)
and d(i,3) > A Vi # 3, 1,j € C(s). Let t be the
unique node of T not in C(s), but adjacent to s.
If d(j,t) > A for some j €C(s), then there is an optimal
solution which has a facility at j. This holds since
the only possible reason for not locating a facility at
jJ in such a network is that there is one on arc (t,s)
at a point k with d(k,j) < A . 1In this case one could
simply move this facility to j and not change the value

of the objective function.

R5: If C(s) is a cluster with d(s,j) <A vj € C(s) and
d(1,3) > A Vi $# j, 1, € C(s) and there is no t as
in R4 then locate a facility at each node i € C(s)

none at s and Stop.

If in R4 it turns out that d(j,t) >A Vj € C(s), then we locate a

facility at each j € C(s), and remove these nodes along with the arcs (s,j).
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Also reduce the length of the (t,s) to d(t,s)-f where B = A - min d(s,j)

jeC(s)
(as shown in Figure 1 below). If not, we locate a facility at each
J € C(s) with d(j,t) > X and remove such nodes j apd arcs (s,j). Also
remove node s and connect t directly with remaining nodes in C(s) and
let d(t,3) remain the same for these nodes (see Figure 2). Cluster C(s)
is eliminated at this point.

By using these rules repeatedly we can determiﬁe N(A). Some savings
are obtained by noting that the lengths of arcs created by R4 are all less
than A and are already ordered for R3.

Since no newly created arc goes through Rl, the number of computa-
tions in R1 is of O(lNl). Proper implementation of R3 (using the informa-
tion that newly created arcs are already ordered) gives a bcund of
0(|N|log|N|) for ordering and 0(log|N|) for determining h°, Hence the
entire algorithm for determining N(A) is O(|N|log|N|).

So far, we have described an algorithm to compute N(A). In the
dispersion problem, however, we are given the number n of facilities to
be located, not the minimum separation A. Using the fact that N{(A) is
a monotone nonincreasing left continuous step function of.l one could
solve for A* = max{A:N(A).Z n} using binary search that uses the above des-
cribed algorithm as a subroutine. Unfortunately, there is no guarantee that
the resulting algorithm will be polynomially bounded although in practice
it might turn out to be quite efficient. What we describe below is a
judicious binary search that is also polynomially bounded. Hence this
procedure will also be practically efficient in addition to being theoreti-

cally satisfying. This procedure is also applicable to other problems in



C(s) —3

Figure 1

jed(d,t) > A

\
3 d(3,e) <A

Figure 2
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which the value of a parameter is to be determined by a binary search.

2.2, Determination of A*(n)

If we study the algorithm tc determine N()) carefully, we note that
remaining arc lengths are always linear functions of A . Also, it is

clear that not only does N(A) not change for pairs of values of A that are

sufficiently close, but the algorithm itself has precisely the same realiza-
tion except for slightly altered values of the reduced arc lengths. More
precisely, the number of facilities located on arcs incident at tips in

Rl remains the.same, the ordering in R3 remains the same, the graph
reduction in R4 (depicted in Figures 1 and 2) remain the same and so onu.
Thus, every time the algorithm has a possibility to branch into dif-

ferent realizations, the branching remains the same for values of \ that

are sufficiently close. The idea is to zero in on an interval of values

of A that contains k*(n) over which the realization of the algorithm is

that same as at A*(n), To do this efficiently, we first partition the

real numbers (the set of possible values of 1) into a (polynomially bounded)
number of disjoint intervals and by using the algorithm described above
determine the interval that contains A*(n). This is based on the idea that
with A in an interval of the type above, the realization of Rl is the same.

For example, the number of facilities located on arc (s,i) i € C(s) in

R equals k for all X € (déji“, d(sl’ci))]. Thus, 1if we let

Qi(s) = { d(s,1) 1 <k< n}
and Q(s) = U Q. (s)

Q(s) is a set of real numbers with lQ(s)l < lC(s)l'n. If Q(s) were ordered
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(by the usual ordefing of the real numbers) this provides the first par-
tition of the reals as indicated above. Within any of the intervals de-
fined by this partition Rl has the same realization. Let us suﬁpose that
the interval of the above partition containing A*(n) is {qr,qr+l) where
ar is rth element in the ordered set Q(s). Also suppose

d(s,1i) = ki A+ ai(A) Oigai(k)'< Afor A e [qr,qr+1); note that ki does
not change. Thus ai(l) = d(s,i) -~ kik » @ linear function of A. We

subdivide this interval ) into a polynomial number of subintervals
9,

’qr_',_l

so that the realization of R3 is the samé within each one of them. This
is done in two steps. In the first step, we make sure that the ordering
of 1 € C(s) remains the same. Hence consider numbers ai(k)==d(s,i)-kik.
The only values of A of iﬁteiest for which the arrangement of ai(k) in

R3 changes are contained in T(s) where

. d(S,i)—d(S,j)

BAT TR 0k
J

T(s) = {A|A ¢ [qr
i

# kj, i,j € Cc(s)}

ey i

Note that T(s) is a set of real numbers and |T(s)l_§]C(S) [2. Thus T(s) in-
duces a partition of the interval [qr,qr+1) into subintervals and we can

find a subinterval [tz, t2+l) suchrthat N(tg) >n, N(t,,,) < n and hence

241

‘A*(n) € [tz Now we turn to the second step in R3 which determines

1Bl 4
the index h°. It is clear that the only values of A for which h°® in R3

might possibly change are contained in W(s) which is designed as follows:

wis) ={A]ae [t ), a;(A)+a; ;(\) = X for some i}

2t

It is assumed that ai(l) are arranged in decteasing order in the above

definition of W(s); note that by above, argument, this arrangement does
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not change for A € [tl’tl+1) W(s) is a set of reals and [w(s)| §_|C(s)[..
The ordered set of numbers in W(s) induce the third partition. Once again

3 3 . ) *
we can determine the sublqtervall[wa,wa+l) of [tl’tl+l) that contains A*(n).
Now we proceed to R4 and the cluster elimination procedure for further
partitioning of this sukbinterval [wa;wa+l)' The set of values A for which

the configuration in R4 might change are contained in

x(s) =(Mx e W, W

), d(s,t) + 2, () = A}
X(s) is a set of real numbers and |X(s)] < [C(s)|. The ordered set of
numbers in X(s) induce the fourth partition, Once again we can determine

the subinterval [X ) of [W&’Wa+i) that contains A*(n). We have now

B ¥p+1
completed one cycle and the process is fepeated. Similar arguments apply to
R5. The amount of work in one of these cycles is 0(|C(s)|-log n «|N]-log|N]) .

At the end of this cycle the network has at least ome fewer nodes,

However, if in R4 we are in the case depicted by figure 1, then_the old ones

in the cluster disappear and if we are in the Case depicted by figure 2, then
these ones do not have to go through many of the steps again. This can be

used to reduce the work and we can use two ordered sets to crééfe a larger
order set without starting from scratch. When all this is done the total effort
involved in the algorithm is of O(Ile 1ogn'loglN|).‘ Hence the algorithm is

polynomially bounded.




3. The p-Center Problem

3.1. Ccmputation of P(r)

The notions of tip and cluster are as in section 2.1, The procedure
is to determine the minimum number of facilities required to be located
along arcs (s,i) for 1 € C(s) and then to eliminate the cluster C(s). A
repeated application of this procedure gives the desired result. As some
of the detaills of the process are slightly different, we provide them be-

low.

Cluster Elimination Routilne:

Step 0: Choose a cluster C(s).

Step 1: Let {(s,i)li € C(s)} be the set of arcs connecting the tips to
their predecessor s. For each i € C(s) let d(s,1) = 2rki + bi
where ki is a nonnegative integer and O < bi < 2r.

Set d(s,1) + bi for 1 € C(s).

(At this point ki facilities have already been located on arc (s,i) with
distance between adjacent facilities equal to 2r, Also note that the trimmed
arcs have positive lengths.)

Step 2; Let a = min {d(s,1i): d(s,i) > r} = d(s,1¥)
1eC(s)

and

B = max {d(s,1): d(s,1) <t} = d(s,13)
ieC(s)
%
In case of a tie 11 (12) can be chosen as the smallest index for which
the minimum (maximum) is attained. Also, 1f a(B) is defined on an empty set,

it is taken to be +» (-), (Note that at least one of a,B is finite),.
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(1): 1I1f (a+B) > 2r, then for each i € C(s) such that d(s,i) > r,
locate a facility on (s,1) at a distance r from the tip 1
(of the reduced cluster obtained in Step 1l). Remove arc
(s,1) in C(s) except (s,i;). If s now becomes a tip, locate
a facility at s and terminate., Otherwise remove node % as

shown in Figure 3 and go to Step 3.

*
1

locate a facility on (s,1) at a distance r from the tip 1.

(ii): If (o+B) < 2r, then for each 1 # 1., i € C(s) with d(s,i) > r,

*
Remove all arcs except (s,il). If s 1s now a tip, locate a

*
1

Otherwise remove node s as shown in Figure 3 and to to Step 3.

facility on (s,iI) at a distance r from 1, and terminate.

(111): Choose a cluster of the remaining tree and return to Step 1.

The reasoning for thils procedure 1s along the same lines as that for the
dispersion problem. It is clear that for 1eC(s) if d(s,i) > 2r, then a
facility must be located on arc (s,i) at a distance not greater than r from
the tip 1. Since this facility may be located at a distance exactly equal
to r (from 1) Step 1 follows. It is clear that after reductions in Step 1
are done, there must be a facility on each arc (s,i) with d(s,i) > r and if
a+B 5 2r, one of these serves the arcs (s,i) with d(s,i) < r. If not, we
need one additional facility and this has to serve arc (s,i;) and hence the
‘reductions in Step 2 are justified. If in Step 1 we only record the number

k of facilities then this algorithm is O(|N|).
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{i e d(s,1) >r

i e d(s,i) <1

ca+ 8> 2r \ a+ B < 2r

s removed

8 removed

Figure 3
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3.2 Determination of r*(p)

The approach used is similar to the one used for determining A*(n).
Again we note that P(r) is a monotone non-increasing step function. The
first partition this time is based on keeping the values ki the same in

Step 1. For this we let

Q(s) = {d—(i{(-i—) , 1<k <pl} i€ C(s)

Q(s) = U Qi(s)
ieC(s)

Q(s) 1s a set of real numbers with [Q(s)] <p* C(s)|. 1f Q(s) were ordered
(by the usual ordering for real numbers), this provides the first partition .
Suppose in this ordering we determine r*(p) € [qz,q2+l). The lengths d(s,i)
of the arcs (s,1) after Step 1 become bi(r) = d(s,1) - 2rki. (Note that ki
are fixed for r ¢ [qz,q2+l)). The only possible candidate values of r of

interest for which the realization of Step 2 might change are contained in

T(s) given by
T(s) = {rlrelag,qy,,)52r=b (D) +b,(0), 1,5 € C(s) i # 3}

T(s) is a set of real numbers and |T(s)] i_lC(s)Iz. The ordered set T(s)
gives us the partition of the interval [qi,q£+l) so that within each sub-
interval the realization of Step 2 remains the same. We have now completed
one cycle and the process is repeated. The amount of work in one of these
cycles is O(IC(S)I'log p-[N[) . At the end of this cycle the network
has at least one fewer nodes. Thus tge total effort 0(|N|2 logp), if the

implementation uses work reduction as in the case of dispersion problem.
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