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1. Introduction

In this paper we present an efficient, polynomially bounded algorithm
for determining p centers on an undirected tree network using the minmax
criterion.

To formulate the general model mathematically assume that an undirected
tree T = T(N,A), with N and A denoting the set of all nodes and the set of
all arcs respectively, is given. Each arc of T is associated with a posi-
tive number called the length of the arc. By a point on T we mean a point
along any edge of T. 1In particular, the nodes of T are points on T. Using
the arcs lengths, we define the distance between two points x and y on T
as the length of the (unique) path conmnecting x and y. This distance is
denoted by d(x,y).

Two finite sets of points on T, S and D are specified. § is the set of
possible locations for supply centers, while D represents the demand points.
(Note that neither S nor D are assumed to be subsets of N, the set of original
nodes of T.) Each demand point in D is associated with a positive number
called the weight. Given a number of supply points, p, the objective is to
find p locations in S for the p supply centers, such that the maximum of the
weighted distances of the demand points to their respective nearest supply
centers is minimized.

Following Hakimi [7], minimax location problems, discrete as well as
continuous, on networks, have been studied quite extensively, with emphasis
given to the algorithmic aspects. The main results appear in the following
list of references: ([6, 7, 8, 9, 10, 11, 14].

Focusing on a tree network T = T(N,S), Handler [10], has suggested the
categorization scheme {E}/{S}/p, where the first and second cells refer to

the possible locations of facilities and demand points respectively, and



the third cell indicates the number of supply centers to be established.
This scheme identifies a variety of minimax facility location problems in
tree networks. For example, A}A]P refers to the problem of locating p
centers, where each point on the tree is both a demand point and a poten-

tial location of a supply center.

Referring to the above categorization scheme we note that efficient
polynomially bounded algorithms have been given for the special cases
where p, the number of centers is equal to 1 or 2, [3, 6, 7 8, 9, 10. 14].
The recent work of Hakimi and Kariv [11], provides polynomially bounded
algorithms for the models AIN]P.and N]N]P. Their work also contains several

results on the complexity of minimax location problems on general graphs.

In this work we present a unified model for N|N|P, A|N|P and N|A]|P,
and give a polynomially bounded algorithm for solving the weighted cases.
(Weights are associated only with the models N]N]P and A]NlP, i.e., when
the set of demand points is finite.) A polynomial algorithm for A]A]P
has been recently developed and reported in [2].

The organization of the paper is as follows. 1In Section 2, we present
graph theoretic results on families of subtrees and neighborhood subtrees.
These results are then used in Section 3 to develop an algorithm for the
general weighted minimax location problem, described above, with general
finite sets, D and S, of demand points and potential location points res-
pectively. This algorithm has a worst case bound which is polynomial in
IN[, ]D], and lS]. The bound does not depend on the number of supply cen-
ters, p. ([-] denotes the cardinality of a set.) 1In Section &4 it is shown

that the three cases, N|N|P, A|N|P and N|A|P are special cases of the above
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general framework, with both sets S and D, containing at most O(lle) points.
Section 5 focuses on computational aspects of the general algorithm. The

last section presents a related problem of locating '"mutually obnoxious"

facilities

2. Intersection of Trees and Neighborhood Trees

Let T = T(N,A) be a finite undirected tree with node set N and arc set
A. Considering a finite set of subtrees of T, {Ti] i=1,...,m, define
the intersection graph, G, of {Ti} as follows: G has m nodes, each cor-
responding to a different subtree in {Ti}. Two nodes are then connected
by an (undirected) arc if and only if the two corresponding subtrees of T
intersect.

Following [1], we note that the intersection graph G is a rigid circuit

graph, i.e. each simple cycle of order greater than 3 contains a chord.
Such graphs possess the following property due to Dirac [4] and reported

also in [1].

Theorem 2.1, Let G be a rigid circuit graph. Then G contains a node u
such that u and all its neighboring nodes in G form a clique, i.e. the

subgraph defined by u and its neighbor is a maximal complete subgraph

of G.

Nodes of G with the above property are called simplicial nodes. Also
observe that the rigid circuit property is inherited. Namely, if a node
and all its incident arcs are removed from a rigid circuit graph, then the
remaining subgraph is also rigid circuit. 1In particular, this subgraph

contains a simplicial node.
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Next we prove that given a clique of the intersection graph G, the
subtrees corresponding to the nodes of the clique have a common nonempty

intersection, which is also a subtree of G.

Lemma 2.2. Let T, and Ty be subtrees of the tree T. Then T1 n T2 and

1

T1 U T2 are also subtrees of T.

Lemma 2.3. Let T, T, and Ty be subtrees of the tree T, satisfying,

TlﬂTz#¢,T10T3#¢andeﬂT3#¢. ThenTlﬂTzﬂT3aé¢.

Proof. Suppose that (T1 n T3) does not intersect (T2 n T3). Then

since T3 is connected, S3 = T3 - ((T1 n T3) U (T2 N T3)) is not empty.
For i = 1,2, let Ai be a point in Ti n T3. Then there is a simple path
P1 on T3 connecting A1 and A2. P1 intersects S3. A1 and A2 are also on

the tree, T1 ] T2, and therefore there exists a simple path P, on TlLJT2

2
connecting those two points. Py does not intersect S3. Hence Py U P,

contains a cycle-contradicting the tree property of T.

Theorem 2.4. Let {T,}, i=1,...,m be a set of subtrees of the tree T.
i

If T, n ’I‘j # @ for all i,j, then T, n Ty -.- n T 1is a ponempty tree in T.

Proof. It is sufficient to prove that the intersection is nonempty.
The proof is by induction on m. Assume m > 4. Consider the collection
R = {Tl,Tz,...,Tm_z,{Tm_1 n Tm}}. From Lemma 2.2 R consists of m-1
nonempty subtrees, while Lemma 2.3 implies that the intersection of each
pair in R is nonempty. By the induction hypothesis, the intersection of

all of them, i.e. N Ti’ is nonempty.

i=1



Next we define neighborhood trees and present several of their proper-
ties.

Suppose that the lengths of the arcs of T are given, we define the dis-
tance between any two points on T, as the length of the (unique) path con-
necting them.

Let S be a finite set of points (not necessarily nodes) on T = T(N,A).

Definition 2.1. Given a point p;, on T, and a number r. > 0, the neighbor-
hood tree of radius ros with center Py is the minimal subtree of T con-

taining P; and all points x in S with d(pi,x) < r,. This subtree is denoted

by T(Pi’ri)-

It is clear that a neighborhood tree T(pi,ri) may consist of the center
point P; only. Furthermore, all the tips of T(pi,ri), but possibly Py
provided it is a tip, are points in S.

We now prove that if the intersection of a collection of neighborhood
trees, each containing a point in S, is nonempty, then the intersection

also contains a point in S.

Lemma 2.5. Let T(pi,ri) be a neighborhood tree in T = T(N,A), which contains
at least one point in §. Let x be a point in T(pi,ri) and define r = ri-d(pi,x).
Then the neighborhood tree, T(x,r), contained in T(Pi’ri)’ has at least one

point of S.

Proof. It is clear from the definition that T(x,r) € T(Pi’ri)' To
prove that T(x,r) contains a point of S, consider T(pi,ri) as a tree rooted

at P;- Then the subtree, T,Pof T(pi,ri) rooted at x contains a point of S.
i

/

|



(Otherwise, x would not be in T(pi,ri)). But TEE T(x,r), hence, completing

the proof.

Theorem 2.6, For i = 1,...,m, let T(pi’ri) be a neighborhood tree in T,
with radius ri and center Py~ If T(pi,ri), i=1,...,m, contains a point

m m
of Sand N T(p,,r.) is not empty, then (1 T(p.,r.) contains a point of S.
i=1 i1 i=1 i’7i

m
Proof. Let x be in N T(p.,r.,). For i = 1,...,m define o=, -d(x,p.),
—_— i=1 i’ i i i i

and let j be such that r. = min r’. Then,
1<i<m
T(x,r;,) = T(x,r'i) S T(p,r) for all i=1,...,m. (2.1)

From Lemma 2.5 T(x,r}) contains a point in S. (2.1) then implies that this

m
point of S is also in N T(p.,r.).
i= i’ti

3. The General Location Model

Given a finite tree T = T(N,A) with distances on the arcs, a finite set

of points, D & T, corresponding to demand points is specified. Also, a
finite set of points, S &€ T at which supply centers can be located is iden-
tified. (Points of D or S are not necessarily original nodes of T. Also
D and S may intersect.) Further, there are weights associated with the
demand points. Suppose that at most p < ]S] supply centers can be estab-
lished. The objective is then, to find the locations of the supply points,
such that the maximum of the weighted distances of the demand points to

their respective nearest supply centers is minimized.



We introduce the following notation. Let D = {ql,qz,...,qm} be the
demand points and let S = {sl,sz,...,sk} be the set of potential locations.
LA >0, i=1,...,m will denote the weight associated with the demand
point q;-

The optimal maximum of the weighted distances of the demand points to
their respective nearest supply points is equal to one of the following
k.m numbers: R = {rij = wid(qi’sj)’ i=1,...,my, j=1,...,k}. This
latter observation suggests a procedure for the location model described

above,

General Scheme

1) For each r in R = {rij} find a subset Y(r) € S of minimum cardinality

such that

W, min d(q,,s,) <r for all q, in D.
1 sjEY(r) J 1

2) Denoting by p(rij) the cardinality of the set Y(rij), the optimal loca-
tion points for the supply centers is given by the set Y(rij) for which
rij is the smallest among all values of r in R satisfying p(r) <p

(p is the maximum number of supply centers that can be established).

We note in passing that if rl,r2 are in R and r1 < r2, then p(rl) > p(rz).
This monotonicity property enables one to reduce the computational effort
required by the above general scheme. A further elaboration will be pro-
vided in Section 5.

Next we present a polynomially bounded algorithm, finding the subset

Y(r) € S, of minimum cardinality, for an arbitrary r > 0, such that

w, min d(q;,s.) <r for all 9, in D
sjEY(r) J



Algorithm
(1) For each demand point q; in D, find the neighborhood tree of radius
r, = r/wi, T(qi,ri), with respect to the set S of potential location

points. TIf T(qi,ri) contains no point of S, stop--the problem is

infeasible.

(2) Generate the intersection graph, G, corresponding to the collection

of neighborhood trees {T(qi,ri)], i=1,...,m
(3) Find the minimum number of cliques covering all the nodes of G.

(4) For each clique found in (3), find a point of S in the intersection
of the subset of neighborhood trees corresponding to the nodes of the

clique.

Y(r) consists of the points of S specified in (4) for the cliques in
the minimum cover. The cardinality of Y(r) is equal to the number of cliques
in that cover.

To prove the validity of the algorithm, we first observe that given r
the above problem is feasible if and only if each neighborhood tree, T(qi’ri)
contains at least one point of S. Equivalently, (from Section 2), the prob-
lem is infeasible if and only if there exists a demand point a; which is
not a point in S, and T(qi,ri) = {qi].

Assuming feasibility, finding Y(r) amounts to identifying the minimum
number of points in S required to cover all the neighborhood trees, i.e.
each tree T(qi’ri) will contain at least one of these S points.

Given a supply point Sj’ then the subset of neighborhood trees con-

taining Sj corresponds to a complete subgraph in the intersection graph G. The



results of Section 2 prove that we also have the reverse correspondence.
More specifically, given a clique of G, Theorems 2.4-2.6 ensure that there
exist a point of S, Sj’ which is contained in all the neighborhood trees
corresponding to the nodes of the clique. Moreover, the maximality of a
clique as a complete subgraph shows that sj is not contained in any tree
which is not represented by a node of the clique.

The above discussion has validated the algorithm. We conclude this
section by showing that the computational effort of the General Scheme for
solving the location problem is bounded by a polynomial in m = ]D[, [k[ =[S[,
and n = ]N], the number of nodes in T(N,A). The General Scheme applies
the Algorithm at most k.m times.

In fact, due to the monotonicity of the function p(r) defined in the
General Scheme, the Algorithm is applied at most O(log(k.m )) times.

Hence, it suffices to show that the latter is polynomially bounded.

It is clear that steps (1), (2) and (4) of the Algorithm can be done
in polynomial time. To find the minimum number of cliques covering all
the nodes of the rigid circuit graph G, we can use the techniques of [5,13].
There, it is shown how to find the minimum clique cover of a rigid circuit
graph in O(m + e) time, where m and e are the numbers of nodes and arcs of
G, respectively.

Thus the General Scheme is polynomially efficient.

4. Special Cases

The following location problems on a tree, T = T(N,A), are discussed
in the literature, but only a few cases are solved in a polynomial time,

(13, 7, 8, 9, 10, 11, 147):
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I. NIN P.

In this model the set of demand points, D, and the set of potential
location points, S, are identical and equal to N, the set of the original
nodes of T(N,A). Given weights on the nodes, the objective is to locate
at most p supply centers as to minimize the weighted maximum of the dis-

tances to the respective nearest supply points.

II. A[N|P
The only difference between this model and NlN]P, is that here the
supply points can be located anywhere on T, i.e. S is the union of all

arcs in T.

III. Nlale

In this problem supply centers can be located only at the nodes of T,
i.e. S = N. The set of demand points consists of the whole continuum of
points in T. There are no weights associated with the demands points, and
the objective is to locate at most p supply points, minimizing the maximum

of the distances to the respective nearest supply points.

IV, AJA[P

The only difference between this model and N!A]P is that the supply
centers can be established anywhere along the continuum of points of T.

Next we show that the first three models described above are special
cases of the general model of Section 3. A polynomially bounded algorithm
for the model A]AlP is given in [2].

It is obvious that NINIP is a special case of the general model since

both sets, the demand points and the set of potential locations are finite.
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We turn to AlNlP and demonstrate that one may consider only (lNl+‘N!(lNJ-1)
2

potential locations for the supply points. The arguments used are similar
to those appearing in [12]. Suppose that a supply point  x, is located at a
point of T which is not a node. Then, as in [12], we may assume that there
exists nodes of T, 9 and qj’ with weights LA and wj respectively, such

that wid(qi,x) = wjd(qj,x). Observing that d(qi,x) + d(qj,x) = d(qi’qj)’

we obtain,

d(qi,X) = Wj.d(ql’qj)/(wi + Wj)

Therefore, in addition to the lN[ nodes, where a supply center may be located
each pair of nodes contributes at most one potential location that one should
consider. Hence, the model A]N[P can also be solved by the general model
with [D] = |N| and [s] = |N|(|N] + 1)/2.

Finally we turn to NIA]P. Supply centers can be established only at
the nodes of T. We demonstrate that one may assume with no loss of generality
that demand points are located only at a finite set of points. In particular,
one should only consider the case where demand points are located at the
lN] nodes and at the ]N](]N]-l)/Z midpoints of the paths connecting pairs
of nodes. It is sufficient to show that for any setting of supply centers
at nodes, the maximum of the distances of the demand points to their res-
pective nearest supply points is attained for one of the above [N](IN]+1)/2
demand points.

Consider an arbitrary arc (qi’qj)’ and let q, be the nearest supply
center to q9; (see Figure 1). If q, is also the nearest supply center to
qj, then q, is the nearest supply point for every point x in (qi,qj), with
d(x,qu) < d(qi,qu). Hence, suppose qV is the supply center nearest to qj,
(Figure 1). This implies that d(qj,qv) - d(qi’qj) < d(qi,qu) < d(qj,qv)

+ d(qi<qj). A simple calculation shows that the function min{d(quv),d(x,qu)},

defined for x in (q.qj), is maximized at the midpoint of the path connecting
i
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9 with q, This cempletes the proof that only IN](]N|+1)/2 demand points
should be considered.

Summing up this section, we have demonstrated that the location models
N]N[P, AlN]P and N[A[P are solvable by the algorithm of Section 3 in a

total effort bounded by a polynomial in ]N].

q.
envlﬁ\-\w\_xpn_w///”udiqv

93

Figure 1

5. Complexity and Computational Efficiency

The initial step of the General Scheme is to compute all the distances
on T(N,A) between the m demand points and the k potential location points.
Generating this m X k distance matrix is done in total time of O(m(n+k)),
since finding distances from a given demand point to all points in S is
done in O(lNl+!Sl) time,

Turning to the algorithm, which is applied at most O(log(km)) times.
in the General Scheme, we next show how to generate the incidence matrix
of G in 0(km) time. Two nodes of G are connected by an arc if and only if
their corresponding neighborhood trees intersect at a supply point (Theorem
2.6)., (We assume that each of the m neighborhood trees contains a supply
point,) An O(m) effort will determine all nodes intersecting at a given
supply point and therefore, the incidence matrix of G is generated in 0(km)
time.

As mentioned above, the minimum clique cover of G can now be done in
O(mz) time, using the implementation of the algorithm of [5], as suggested

in [13].
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Finding the location points on T(N,A) corresponding to the minimum
clique cover of G, can certainly be obtained from the information acquired
during the construction of the incidence matrix of G. (Recall that each
clique of G corresponds to a set of neighborhood trees intersecting at a
location point.)

We have thus demonstrated that the worst case time bound for the
General Scheme is of order O(mn + m(k+m)log(km )) time. The term O(m(n+k))
is the time of the initial step of computing the distances on T(N,A),
between the demand points and the potential locatioms.

Note that the above bound is independent of p, the maximum number of
supply centers that can be established. It is, therefore, quite conceivable
that certain special cases of our general location model, can be solved
more efficiently for small values of p. 1Indeed, the models AIA[P = 1,2
and A[NIP = 1,2, with equal weights are solvable in O(IN]) time, see [8,
9, 10, 14].

Remark

Using the notation of Section 3, we observe that p(r) is computed in
Step 3 of the algorithm, and is equal to the cardinality of the clique
cover. Therefore, step 4 of the algorithm is to be executed only for the
optimal value of r in R, i.e. for the smallest r in R satisfying p(r) < p,
(where p is the maximum number of supply centers that can be established.)

Turning to the special models considered in section 4, we now improve
the cdmplexity bounds for those cases.

For the weighted AINIP model we have m=n and k = 0(n2). First we note
that two nodes of G, say q; and qj, are connected by an arc if and only if
the sum of the radii of their respective neighborhood trees, T, + rj =
r/wi + r/wj, is not less than d(qi’ qj). Therefore, the incidence matrix

: 2
of G, (steps 1-2 of the algorithm) is found in O(n ) time, Finding the
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clique cover, step 3 is also done in 0(n2) effort by the general algorithm.
Finally, we show that step 4, which is executed only for the optimal value
of r, can also be done in 0(n2) time. There, for each clique in the cover,
we find one supply center covering the set of demand points corresponding
to the clique. Now, using the efficient algorithms for locating one
center on a tree, [3,8,9,11], and observing that a demand point, which has
already been covered, can be omitted from all remaining cliques, we obtain
the bound 0(n2) for step 4. Thus, we have achieved an O(nzlogn) time
bound for the scheme solving the weighted A[NIP model.

The weighted NIN[P problem can also be solved in O(nzlogn) time.

Steps 3 and 4 can be done in 0(n2) time like in the AINIP model. As to
steps 1-2, we show that the incidence matrix of G can be generated in 0(n2)
time. 1In fact, since the demand points coincide with the nodes of T, we
can easily find all the neighbors in G of a given demand point, by root-
ing T at the given demand point and then scanning the tree once.

Finally, we turn to the NIAIP model, where the nodes of T are the
potential supply points, and only m = O(nz) demand points should be con-
sidered. Again, by rooting T at a given demand point, x, and scanning the
tree, all the neighbors of x in G are found in O(nz) time. Thus, the
incidence matrix of G is generated in O(nh) time. Step 3 will also con-
sume 0(m2) = 0(n4) time, by the general algorithm. Finally, since the dis-~
tances between all the supply and demand points are known, step 4 is done ir
0(n3) time. Therefore, the NlAlP model is solvable in total effort of

O(nhlogn).
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6. Locating '"Mutually Obnoxious' Facilities

The following location problem is highly related to the general loca-

tion model described in Section 3.

Given the tree T = T(N,A) and a finite set of points S in T we wish
to place a fixed number of points, p, p < lSl, in § which are as far apart
as possible from one another. We show that this problem of locating '"mutually
obnoxious'" facilities is equivalent, or dual to the problem of locating p-1
centers on T such that the maximum of the distances from the k = |S| points
of S to their respective nearest centers is minimized.

Let {Xl < Xz < ... < Xt}, t = k(k-1)/2, be the sorted sequence of
distances on T(N,A) between all distinct pairs of points in S. Assume that
the above sequence contains only r < t distinct values, which are then

relabeled W = {Xl <A, <. < Xr].

Lemma 6.1. Let Sj’ j=1,...,r, be a subset of S with maximum cardinality

such that the distances between distinct points in Sj is at least Xj. Denote

N, = |S.|.
J ‘ Jl
Let Qj’ j=1,...,r be a set of points in T(N,A) of minimum cardinality

such that the distances between points of S to their respective nearest points

in Qj is at most kj/2. Denote Pj = IQj[. Then Nj =P =1,...,2. (We

j-l, J

assume that Xo = 0).

Proof. From the previous sections we recall that Pj-l is the minimum

number of cliques in the optimal clique cover of the nodes of the intersection

graph G, corresponding to the k = lSI neighborhood trees of radius Xj_1/2.

To generate S,, we first note that two points of S are in S, if and

3 3

only if the distance between them is at least Xj. Since Xj > Xj-l’ a dis-

tance between two points of S is at least Xj if and only if it is greater
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than lj-l' Therefore, if G is the above intersection graph corresponding
to the k = | S| neighborhood trees of radius lj_l/Z, then Nj is the car-
dinality of a maximum cardinality anticlique in G. (An anticlique is a
maximal set of nodes in G no two are connected with an arc).

Since G is a rigid circuit graph, we obtain that the cardinality of
the largest anticlique is equal to the minimum number of cliques required
to cover the nodes of G. Hence Nj = Pj-l’ j=1,...,r.

To introduce our duality result, suppose that S = {ql,qz,...,qk].

Theorem 6.2. Given the tree T = T(N,A), the finite subset SC T and an

integer [SI > P> 1, we have
max {min{d(qi,qj)lqi,qj €U, q; # qj}] =

USs
lul=p

=2 min { max {min d(q,x)}}.
VET q.€S x€y
[v]=p-1

Proof. Following [12], we observe that the sets V considered on the
right hand side of the above relation can be assumed to be consisted only
of the set of midpoints of the different paths connecting pairs of points in
S. Hence, the right hand side is equal to li’ where Xi is in W. Also the
left hand side of the above relation is equal to Xj’ where Xj is in W. We
prove that Xj = Xi.

Using tﬁe notation of Lemma 6.1, Xi is the smallest element in W such
that Pi < P-1, and Xj is the largest element in W with Nj > P, i.e. m< i
implies P,> P-1, and m > j implies N, < P.

Suppose that j > i. Then i < j-1 and therefore Pi > Pj-l' Applying
Lemma 6.1 we obtain the contradiction

P<N, =P, <P, <P-1.
-3 3l-i-
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Hence, j < i. To see that also j > i, note that Ni =P P-1. Therefore,

i-17
Ni > P. But j was defined as the largest element in W with Nj > P, which
in turn yields j > i. We have thus shown that i = j and therefore Xj = Xi.
The proof is now complete.

A similar duality result dealing with the continuous problem of locating
obnoxious facilities, i.e. S is assumed to be the whole continuum of points
in T(N,A), is presented in [1l4].

Finally, we turn to solving our problem of locating the obnoxious facili-

ties. Referring to the set W = {kl < A < kr}, we have to find the lar-

gsees
gest kj such that Nj > P. The initial effort of finding the elements in W,
or evaluating all the distances between the points in S is done in 0(k(n+k)),
where n is the number of nodes in T(N,A) and k = |s].

Next, given ki’ finding Ni’ is done by computing the largest anticlique

on the corresponding intersection graph G. As mentioned in Sections 3-5, the

techniques of [5, 12] can be utilized, yielding a bound of order O(k2) for
fihding N;. The monotonicity of Ny in i, i = 1,...,2, enables us to solve
the location problem by finding Ni for at most 0(log k) values in W.
Therefore, the total effort involved in finding the optimal locations 1is

O(k*n + k?logk).



10.

- 18 -
References

Buneman, P. "A Characterization of Rigid Circuit Graphs,' Discrete

Math., 9 (1974), 205-212.

Chandrasekaran, R. and A. Daughety. ''Problems of Location on Trees,"
Discussion Paper No. 357, Center for Mathematical Studies in Economics

and Management, Northwestern University, 1978.

Dearing, P.M. and R.L, Francis. "A Minimax Location Problem on a Net-

work,'" Transportation Science, 8 (1974), 333-343.

Dirac, G.A. "On Rigid Circuit Graphs," Applied Math. Sem., University

of Hamburg, 25 (1974), 71.

Gavril, F. "Algorithms for Minimum Coloring, Maximum Clique, Minimum
Covering by Cliques, and Maximum Independent Set of a Chordal Graph,"

SIAM J. Comp., 1 (1972), 180-187.

Goldman, A.J. 'Minimax Location of a Facility in An Undirected Tree Graph,"

Transportation Science, 6 (1972), 407-418.

Hakimi, S.L. "Optimum Locations of Switching Centers and the Absolute

Centers and Medians of a Graph,'" Operations Research, 12 (1964), 450-459.

Hakimi, S.L., E.F, Schmeichel and J.G. Pierce. "On P-Centers in Networks,"

Transportation Science, 12 (1978), 1-15.

Handler, G.Y. 'Minimax Location of a Facility in an Undirected Tree Graph,"

Transportation Science, 7 (1973), 287-293.

Handler, G.Y. 'Finding Two-Centers of a Tree: The Continuous Case,"

Transportation Science, 12 (1978), 93-106.




11.

12.

13.

14.

- 19 -

Kariv, 0. and S.L. Hakimi. "An Algorithmic Approach to Network Location

Problems" to appear in STIAM J. Appl. Math.

Minieka, E. '"The m-Center Problem," SIAM Rev., 12 (1970), 138-9.

Rose, D.J., R.,E. Tarjan and G.S. Lueken. "Algorithmic Aspects of Vertex

Elimination on Graphs," SIAM J. Comp., 5 (1976), 266-283.

Shier, D.R. "A Min-Max Theorem for Network Location Prcblems on a Tree,"

Transportation Science, 11 (1977), 243-252,




the third cell indicates the number of supply centers to be established.
This scheme identifies a variety of minimax facility location problems in
tree networks. For example, A{A{P refers to the problem of locating p
centers, where each point on the tree is both a demand point and a poten-

tial location of a supply center.

Referring to the above categorization scheme we note that efficient
polynomially bounded algorithms have been given for the special cases
where p, the number of centers is equal to 1 or 2, [3, 6, 7 8, 9, 10. 14].
The recent work of Hakimi and Kariv [11], provides polynomially bounded
algorithms for the models AIN]P‘and N]N[P. Their work also contains several

results on the complexity of minimax location problems on general graphs.

In this work we present a unified model for NlN]P, AlNlP and NlAlP,
and give a polynomially bounded algorithm for solving the weighted cases.
(Weights are associated only with the models NIN‘P and AlN[P, i.e., when
the set of demand points is finite.) A polynomial algorithm for A[A[P
has been recently developed and reported in {2].

The organization of the paper is as follows. 1In Section 2, we present
graph theoretic results on families of subtrees and neighborhood subtrees.
These results are then used in Section 3 to develop an algorithm for the
general weighted minimax location problem, described above, with general
finite sets, D and S, of demand points and potential location points res-
pectively. This algorithm has a worst case bound which is polynomial in
[Nl, [D[, and ISI. The bound does not depend on the number of supply cen-
ters, p. (|| denotes the cardinality of a set.) In Section 4 it is shown

that the three cases, NlN]P, A]N]P and N]A]P are special cases of the above
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Finding the location points on T(N,A) corresponding to the minimum
clique cover of G, can certainly be obtained from the information acquired
during the construction of the incidence matrix of G. (Recall that each
clique of G corresponds to a set of neighborhood trees intersecting at a
location point.)

We have thus demonstrated that the worst case time bound for the
General Scheme is of order O(mn + m(k+m)log(km )) time. The term O(m(n+k))
is the time of the initial step of computing the distances on T(N,A),
between the demand points and the potential locations.

Note that the above bound is independent of p, the maximum number of
supply centers that can be established. It is, therefore, quite conceivable
that certain special cases of our general location model, can be solved
more efficiently for small values of p. Indeed, the models AlA[P =1,2
and AlN]P = 1,2, with equal weights are solvable in O(lNl) time, see [8,

9, 10, 14].
Remark

Using the notation of Section 3, we observe that p(r) is computed in
Step 3 of the algorithm, and is equal to the cardinality of the clique
cover. Therefore, step 4 of the algorithm is to be executed only for the
optimal value of r in R, i.e. for the smallest r in R satisfying p(r) < p,
(where p is the maximum number of supply centers that can be established.)

Turning to the special models considered in section 4, we now improve
the complexity bounds for those cases.

For the weighted A]N]P model we have m=n and k = 0(n2). First we note
that two nodes of G, say q; and qj, are connected by an arc if and only if
the sum of the radii of their respective neighborhood trees, r, + rj =

r/W:.L + r/wj, is not less than d(qi, qj). Therefore, the incidence matrix

2
of G, (steps 1-2 of the algorithm) is found in O(n ) time. Finding the
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6. Locating "Mutually Obnoxious'" Facilities

The following location problem is highly related to the general loca-
tion model described in Section 3.

Given the tree T = T(N,A) and a finite set of points S in T we wish
to place a fixed number of points, p, p < IS[, in S which are as far apart
as possible from one another. We show that this problem of locating "mutually
obnoxious'" facilities is equivalent, or dual to the problem of locating p-1
centers on T such that the maximum of the distances from the k = !Sl points
of S to their respective nearest centers is minimized.

Let {Xl < Xz <...< Xt}, t = k(k-1)/2, be the sorted sequence of
distances on T(N,A) between all distinct pairs of points in S. Assume that
the above sequence contains only r < t distinct values, which are then

relabeled W = {Xl < Xz <...< Xr].

Lemma 6.1. Let S,, j=1,...,r, be a subset of S with maximum cardinality
such that the distances between distinct points in Sj is at least Xj. Denote
N, = |S,].
PEREN
Let Qj’ j=1,...,r be a set of points in T(N,A) of minimum cardinality
such that the distances between points of S to their respective nearest points

in Qj is at most Xj/2. Denote Pj = [Qj[. Then Nj =P j=1,...,2. (We

31

assume that ko = 0).

Proof. From the previous sections we recall that Pj-l is the minimum
number of cliques in the optimal clique cover of the nodes of the intersection
graph G, corresponding to the k = IS] neighborhood trees of radius Xj_l/Z.

To generate Sj’ we first note that two points of S are in Sj if and

only if the distance between them is at least Xj. Since Xj > Xj-l’ a dis-

tance between two points of S is at least Xj if and only if it is greater
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than Xj-l' Therefore, if G is the above intersection graph corresponding
to the k = ISI neighborhood trees of radius Kj_l/Z, then Nj is the car-
dinality of a maximum cardinality anticlique in G. (An anticlique is a
maximal set of nodes in G no two are connected with an arc).

Since G is a rigid circuit graph, we obtain that the cardinality of
the largest anticlique is equal to the minimum number of cliques required
to cover the nodes of G. Hence Nj = Pj-l’ j=1,...,r.

To introduce our duality result, suppose that § = {ql,qz,...,qk].

Theorem 6.2. Given the tree T = T(N,A), the finite subset SC T and an

integer ]Sl > P> 1, we have
max {min{d(qi,qj)lqi,q. € U, a9, # qj}} =

US s J
[ul=p

=2 min { max {min d(q;,x)}]}.
veT qlE S x€y
Jv]=p-1

Proof. Following [12], we observe that the sets V considered on the
right hand side of the above relation can be assumed to be consisted only
of the set of midpoints of the different paths connecting pairs of points‘in
S. Hence, the right hand side is equal to ki, where ki is in W. Also the
left hand side of the above relation is equal to kj, where Aj is in W. We
prove that Xj = Xi'

Using the notation of Lemma 6.1, ki is the smallest element in W such
that Pi < P-1, and kj is the largest element in W with Nj >P, i.e. m< i
implies Py > P-1, and m > j implies N, < P.

Suppose that j > i. Then i < j-1 and therefore Pi > Pj-l' Applying
Lemma 6.1 we obtain the contradiction

P<N, =P, <P <P-1,
-3 i-l=is
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Hence, j < i. To see that also j > i, note that Ni = Pi-l > P-1. Therefore,
Ni > P. But j was defined as the largest element in W with Nj > P, which
in turn yields j > i. We have thus shown that i = j and therefore Xj = Xi.
The proof is now complete.

A similar duality result dealing with the continuous problem of locating
obnoxious facilities, i.e. S is assumed to be the whole continuum of points
in T(N,A), is presented in [14].

Finally, we turn to solving our problem of locating the obnoxious facili-

ties. Referring to the set W = {Kl < A o < Kr}, we have to find the lar-

gree
gest Kj such that Nj > P. The initial effort of finding the elements in W,
or evaluating all the distances between the points in S is done in 0(k(n+k)),
where n is the number of nodes in T(N,A) and k = lS[.

Next, given Ki, finding Ni’ is done by computing the largest anticlique

on the corresponding intersection graph G. As mentioned in Sections 3-5, the

techniques of [5, 12] can be utilized, yielding a bound of order O(kz) for
fihding Ny . The monotonicity of N; in i, L = l,...,2, enables us to solve
the location problem by finding Ni for at most 0(log k) values in W.
Therefore, the total effort involved in finding the optimal locations is

O(k*n + k?logk).



