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Abstract An algorithm is presented for computing equilibria in
a linear monetary economy, that is, an exchange economy in which
all individuals have linear utility functions and in which goods
are bought and scold only in exchange for money. The algorithm
computes the equilibrium prices by solving a finite sequence

of linear programming problems.
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AN ALGORITHM FOR COMPUTING EQUILIBRTA IN A
LINEAR MONETARY ECONO

1. Equilibriz in a linear mometary economy

In this paper, we develcp a methed to compute price equi-

libria for linear monetary economies. By linear wmonetary

econdmy, we mean a pure exchange economy in which goods can be
bought and sold only in exchange for meney, and in which all
individuals have linear utility functions for goods and money.
An equilibrium of such an economy should be interpreted as a
short~run equilibrium or a2 cne-period tempeorary equilibrium in
a dynamic economy, so that the individuals' utility for moneay is
derived from their expected use of money in future periods.
Temporary monetary equilibria ef this form, with a

“rash in advanee" constraint on individuals’ demand,

have been provesed by Clower [1]; see alasos Myerson [37.

Gur algeorithm may be used in simulating such models.

Many algorithms- have been suggested for computing economic
equilibria; see Jeapf { 41, Eaves [ 2 ] has shown that
Lemke's algorithm can be used to solve general linear exchange
economies in finitely many steps. We shall show here that
linear monetary economies have enough special structure so
that computing their eguilibria can be reduced to solving a
finite sequence of linear programring problems. In fact, when
cne has a good first estimate of what the equilibrium prices
might be {as would be the case in simulations of a2 dynamic

. model, where last period's prices could be used), our algorithm
could require mnlf one linear program to converge. |

Let T denote the number of individuals in the SCconoemy,

-with 1 denoting a typical individual, so that 1 always ranges
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over i=1,...,I. Let J denote the number of goods and other
non-money assets, with j denoting a typical non-money asset,
so that j always ranges over j=1,...,J. We may think of

money as asset #0.

Let Kij denote the quantity of asset j which individual
i has available to sell this period, and let Xip denote the
quantity of money which i1 has available to spend this perioed.
We assume that each individual i has a linear utiliry function
for assets, and so let Uij denote i's warginal utility for
asseF j- We shall assume that all Uij *» 0, which will guarantee
that any equilibrium will have all positive prices. Without loss of
generality (rescaling the indiwvidual's utility functions if
necessary), we assume that each individual has unit marginal
utility for money, so that Uiﬂ = 1,

Cur problem is to compute prices, supply, and demand
in a market equilibrium. We shall let pj denote the price of
asset j. Our supply and demand wvariables will be expressed
in terms of the market value of the quantities supplied and
demanded {(evaluated at the pj prices), rather than in physical
units. That is, Sij will denote the value of the quantity of
asset j which individual i supplies to the wmarket, and dij will
denote the wvalue of the quantity of j which 1 demands from
the market. Thus, the actual guantities Df j supplied and
demanded by i1 would be sijfpj and dijfpj respectively,

Given the market prices pj, gach Individual 1 wants to

choose his 843 and dij quantities so as to maximize



J Uij

(1) 7 C ﬁ—j— -1 ) (dij-sij)

:j::]_
subject to

W=

{2) sij“’pj i xij ( _] 1!"‘JJ}!

J
(3) 2 dgs < Xy

i=l
{4) Sij > D, and dij > 0 {¥ j=1,...,0).

To see where the coefficients in (1) come from, observe
that every dollar (or unit cof money) spent to buy j brings in
lfpj units of j, each of which contributes Uij units of
utility, while the loss of the dollar spent reduces i's ucility
by 1 {(since UiD = 1). Thus {Uijfpj - 1) is the coefficient
of dij in i's utility formula, Similarily, every dollar's worth
of j sold contributes one unit ¢f utility for the money
brought in, but costs Uijfpj units of utility for the lfpj
units of j sent out. So (1 - Uijfpj) is the weefficient of
S5 in (1). Constraint (2) asserts that the quantity of j sold
by i cannot exceed 1's available endowment 5f i. Constraint (3)
asserts that i's total spending cannot exceed his available
money balances, Constraint (&) gives the obvious non-negativity
constraints., (This interpretation of (1)-(4) is in the spirit
af [ 1 ], but differs slightly from [ 3 ]. It is easy to see

that the individual's decision preblems in [ 3 ] are mathemati-

4

cally equivalent to {1}-(4), with a simple translation of notation,.
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Qur problem is te find prices (pl,.ﬁ,;pj) such that,

for all j=1,...,.J:

1 I
(3) E .. = z d..

i=1 1

when the individuals choose the Sij and dij to maximize (1)

subject to (2)-(4).
It will be more convenient to work with the comple-

mencary slackness conditions generated by the optimization

problem {1)-{4). Thus, we shall need the following fact.

Lemma. Given any individual i and prices Dj, suppose

-

that the supplies 843 and demands dij satisfy (2)-(4). Then

the sij

if there exists some pumber g, * 0 such that for every j
4 ¥ ]

and dij maximize (1) subject to (2)-(4) if and only

{73} q; < 1,

and such that the following complementarity conditions are

satisfied, for every J:

(8 Sij = 0 or pj > Uij;

.: = X .P- . -
(91 ey5 = XigPy oF Py S U4y
(10) dij =0 er q; = pjfUij ; and
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Proof., (B8) and (9) simply assert that i sells mo j if

Pj < Uij and sells all his j if P; > U3 Interpreting Ui.

i’ 3

as 1's personal reservation price for j, we can easily see
that (8) and (9) are the conditions for optimal sales.

On the demand side, i wants to allocate all of his
money L0 demanding those assets for which Uij,-’pj is maximal
and greater than 1. Bur this is equivalent to allocating all
demand to those assets for which ijUi. is minimal and less

J
than one. Conditions (6),(7), and (10}-{12) imply that

{13} qi = min {1, m?n (pjfUij}}

and that no asset is demanded unless q; = ijuij' Thus

lfqi is i's marginal utllity of Zneome, and [(6)-(7) and {(10)-{12)

ars the eonditions for ootimal dsmand. @.E.D,

2. The algorithm

The problem of computing a price equilibrium is eqguivalent

to the following optimization problem, from which we will derive

our algorithm:

(14) HMinimize Zg +

I =1
3]
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subject to the complementarity constraints (8)-(11) (for

all i and j) and:

I

1
16y 2y - I (457835 20 Cvi)
(l?) Z'D - Zj z D (.'i'-j) ;
(18 X;385 - 555 2 0 (v, ¥3)
J .
(19 djg + L d;; = X (¥i) ;
j=1
(20 py - Ugjq; 2 0 (vi, 730 s
(21> g5 <1 (Ti),

(22) s;: 20, 4,520, d.. >0 (vi, vi) ;

{23) P; > minimum (U, | X.. >0}

Since (18)-(22) merely restate (2)-{&} and (8)-(7), it
should be clear that any solution to the above cptimization
problem achieving a value of zero in the objective function
must be 2 market equilibrium. Constraint (23) merely states

that no asset’s price can drop below every potential seller's



raservation price for the asset, a condition which must hold

in equilibrium. (The roles of zg and of constraint {éB).may seem
redundant here, but they will be needed to guarantee convergence
of our algorithm.) However, this optimization problem is not
quite a linear program, because of the alternative conditions in

the constraints (3)-(11). OQur algorithm will search through
a2 series of linear programs generated by considering restricted
versions of these constraints,

We shall consider two ways of restricting (8)-{11):
the method of price-based constraints, and the method of
quantity-based constraints.. In each methed, we begin with
0 o 40

some ziven reference wvalues p?, 4 d°

ijr 7di0* Tije
-satisfying (18)-{(23) and (8)-(ll), generated at a previous
stage in the algorithm.

In the case of price-based constraints, we replace

(8)~(11) by the following consfraints, for every i and j;

(24) s;; =0 and p; < Ugy, if p§ < Ugs s

(25) 1595 835 = 0 and py 2 Vg, if p? > Uy s
(26) Py = Uy, if p? = Ugs s

(27) dyy =0, if p? - Uiqu > 0;

(28) p; - Ujja; = 0, if pJ‘E’ - Ulj:_;‘; = 0,

(29) d;q =0, if g5 <1 ;

(30) q; =1, if qf = 1.
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In the case of guantity-based constraints, we replace 8)-(11)

by the following constraints, for every i and j:

(31) s;5 =0 and py £ Uy, if sgj =0 ;

(32) Xij?j - 855 = 0 and P > Uij’ if ng = Xijp? ;
(33) ;5 = Uy, if 0 < sgj < xijp§ ;

(34) djy =0, if dgj =0

- _ . o .
(35) pj - Uijqi =0, if d;. » 0 ;

o

(36) dig = Q, 1if dig = 0 ;

(37y q; =1, if dfy > 0.

Tt is straightforward to check that (24)-{30) do imply
{8)-(11), as do {31)-(37).

We can now describe our algorithm. At the first itera-
tion, choose any vecitor of reference prices satisfying (24).
(In a2 dynamic model, we could generally use the previous
period's equilibrium prices.) Then define qg by

qg = min {1,m§n (pgfﬂij)}

Now solve the linear programming problem of minimizing (14)
subject to (15)-(23) and (24)-(30). It is straightforward to
check that this linear program does have feasible solutiomns.

For example, all the constraints are satisfied by letting each
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0
3
demand and supply gquantities for individual i at these prices.

_ L 0 . | ) :
;=P and q;=q;. @nd letting the dij and sij be any optimal

At the second and every subsequent iteration, let the
new reference values (pg,sgj?dgj,qzl be the optimal sclution
from the linear program solved at the preceding iteration.

At every even iteratiom (second, fourth, ete.), solve the
linear programming problem of minimizing (l4) subject to
{15)-(23) and (31)-(37) (using the quantity-based constraints),
At every odd iteration (third, fifth, ete.), solve the linear
programning problem of minimizing (14) subject to (15)-(23)
and (24)-30) (using the price-based comstraints). At any
iteration, if the objective function canncot be reduced then
the preceding iteration's optimal solutionm should be retained.
The z2lgorithm terminates at a market equilibrium when some

linear program achlieves an optimal solution with Z, = 0.

3. Convergence of the algorithm

Theorem. The algorithm must terminate at & market

equilibrium within a finite number cof iterations.

Proof. At every iteration, the optimal solution from
the preceding iteration is still feasible for the new linear
programoing problem, by the way the new comstraints were con-
structed {{24)-(30) or (31)-(37)). Thus, we know that all ocur
linear programs are feasible, and the value of the objective

funetion can never increase at any iteration.

At each iteration, we construct a linear programming

problen by seleciing one of the two alternatives in each of
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if 1 1s willing to buy j, and we have a two-way arg between
i and j if 1 is actually buying j, in the market solution
represented by the reference wvalues.

To interpret this graph, observe that a one-way
arc represents a direction in which demand could be increased
without violating the price-based constants (27)~(30}., A two-
way arc represents a direction in which demand could be
increased or decreased without vieclating (27)-(30). Thus, in
the price-based problem seolved at the odd iteration, 1t must
be possible to shift some positive amount of demand along any
directed path in the graph which goes from one asset-vertex
to another.

Given this directed graph, we say that vertex «
reaches vertex B iff there exists some directed path in the
graph from o to 8. (Any vertex reaches itself.) Let Rl be
the set of all vertices which do not reach the vertex 0 or any
asset-vertex j such that iil (sgj-dgj) > 0. lLet R2 be the set
of all vertices which are not reached by the vertex 0 or by

I
any asset-vertex j such that E (dzj-szj) > 0,
i=]1

IThese sets Ry and RE can contain both asset-vertices and
individual-vertices. Efery asset in Rl must have excess demand;
and every asset in R, must have excess supply. ({(There may be
assets with excess demand or excess supply which are not in

Rl or Rz,lhowever,) Every individual in Rl nust be only willing
to buy assets in Rl; agd every‘individual in R2 mist be actually
svending al% ol his momey on assets in RZ'
Observe that R, and R, cannot both be empty. If they

were both empty then, in the price-based linear program solved

in the odd iteration, it would be possible to shift some demand
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from every asset with exzcess demand to an asset without excess
demand, and it would be possible to shift some demand to every
asset with excess supply from some asset without excess supply.
These shifrs could strictly reduce

the maximum market imha%ance zy without inereasing the sum

of market imbalances 7} Z; - Such demand shifts would thus
j=1

contradict our assumption that the reference values were optimal

for the linear program at an odd iteration.

{This is why we have included the 2y term in the objective
- funetion {(14).)

For any asset j in Rl. and for any individual i, if

&) 4] o . .
85 < Pj Kij then M < Uij‘ Similarly, for any asset ] in R,,
and for any individual i, if s‘]?_j » O then pf,.; > Ujj. These

facts must hold because otherwise supplies would have been in-
creased in Rl or decreased in R2 during the odd iteration, since
such supply changes would have reduced the total market Imblanace

{excess demand in Ry, excess supply 1In RZ) without violating (24}

or (25).
1
- O
For any asset j in R, or R,, we must have izl 57y > Q.
In Rl, this faét follows from the first sentence of the pre-

ceding paragraph together with constraint (23). In R,, th;s
fact iﬁ obviousz, since a¥l asseﬁs in Rz have gxcess sﬁpply.

Using the observations from the preceding three para-
graphs, we can now show that our reference values could noct be
optimal for the gquantity-based problem solved at the even
iteration. First consider Rl, in which all assets have excess
demand. Suppose that we try to increase pj for every asset j
in Rl’ 4 for every individuai iin Rl} and Sij for every

asset ] in Ry and every individual 1. If these
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increases above the reference values are kept propertiomate to
each_other,'then small sirict increases are possible without
violating any of the constraints (18)-(23) and (31)-{(37). Small
increases in 9 would be blocked by {20} only if there were
some asset j not in By such that p? = Uiqu’ but this would
imply that the arc i + j is in the graph, so that i could not
be in Rl' (By definition of Rl, there cannot be any path
reaching from inside Rl to outside Rl.) Similarly, (21) could
net be a binding constraint for any i in Ry, since this would
imply 1 + 0 would be in the graph. Constraints (32) and (35)
will never be violated by these increases, since in each case
both wvariables are being increased in the same proportion.
(Recall dgj » 0 implies that i 4> j is in the graph.) Con-
straints (31) and (33) can never block small price increases

in R,, because s%. < K,.p? implies p? < U. Thus we can
1 1] 11%] h i

j-
strictly inerease all prices in R, and (because } sgj > 0
i

for j in Rl) all supplies of acsets in R So if Rl is non-

1"
empty, then the objectiwve function (14) wmust decrease at the
even iteratlon.

ILf Rl 1: empty then we must check RE‘ where.there is
excess supply. Thus, we want to decrease the following
.variables: P; for every asset j in R,, q; for every individual i
in RZ* aﬁd 543 for every ésset j in R2 and.éverﬁ individuél 1.

As before, if these decreases below the

reference values are kept proportionate to each other, then

sufficiently small strict decreases are possible without wviolating
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any of the constraints (18)-(23) and (31)-(37). Constraint
{20) could not bleck small price decreases for j in sz
because either p? > Uiqu or else 1 1s an individual in R, as
well, Constraints (32) and (33) can never block small price

decreases because ng > 0 implies p? = Ui and (23) could

5
not be binding, or else supplies would have been reduced at
the odd iteration. 8o we can strictly decrease all prices
and supplies of assets in R,, which must reduce market imbalance,
Since RlLle # B, the objective function (14) must decrease at

the even iteration, if it did not decrease at the preceding

odd iteration.
Q.E.D.



Footnotes

Lrhe "marginal wvalue Uij in this paper corresponds to the ratic

vij(t)fvig(t) in [3], and the "endowments" xij and %;p in this

paper correspond to the maximum transaction rates o, .x..{t} and

13 1]
nliiD(t) in [3]. What we have labelled S and dij in this
paper would correspond to pjsij(t) and pjdij(t) in the notation

of (3], where the supply and demand variables are measured in

physical units,
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