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In our paper [l] we presented a proof of Lemma 3 that is only valid for
the case where each agent's constraint set Bj(u) is a £-1 dimensional mani-
fold. Our results, however, are in terms of the general case where Bj(u)

. < ~1. Therefore this addendum presents

]

a general proof of Lemma 3 that, because of its length, was not included in

may have any dimension mj, 0<m

our main paper.

Lemma 3. If 0 is strategy-proof and satisfies BA,

then, for all i # j, S 9 2 57 where s denotes

the closure of SlJ.

Proof. Suppose the Lemma is not true. A u € R therefore exists such

that:
— N o—
a. i A(u) j and not i A(u) j and

b. a neighborhood N(G) = N(Gi) X N(Gé) X ... X N(G;)C: R
exists for which u ¢ N(G) implies i A(u) j and
n
not i A(u) j.

~

Regularity and BA imply that we may select a neighborhood N = N(Oj(a))‘: X
so that (a) corresponding to each x in Bj(ﬁ) N N is an admissible utility

function u? € N(Gj) that has its maximum on Bj(a) at x and (b) for all



u € N(G), the manifold Bj(u) N ﬁ is smooth, continuously differentiable
in u, and m-dimensional where 0< m < #-1 . Note that because 0 is strategy-
- X
roof o, (u\u.) = x.
p 5 (W)
First we consider the harder case where 1 < m < 2-1. The second case
where m=0 is deferred until the end. Pick an arbitrary v, € CZ(X). For
— n,
all u € N(u), not i A(u) j by hypothesis. This means that D( )u O (u) =
V1
for all u € N(u). Define B.(A)={x€N]Eu!€N(u.) s.t. x=0,(u u.,u,+}\v.)}
] ] | j j’i i

where the scalar A is contained in some neighborhood A of zero and

—\u ,ul + Av ) = (u AR ,u',u, feesu 1,u + Av ,u, FERERERELN ). Be-

cause B (A) is m-dimensional within N, it is representable as the solu-
tion of &-m = L continuously differentiable functions: Bj(A)=={xE:N'fk(x,A) =0

n
Vk £ M} where M = {1,...,L}. We show as a first step that not i A(u) j

for all u € N(u) implies, for all k € M and all x ¢ ﬁj(O),

(1) Bfk(x,k)

A

when evaluated at A = 0. In the second step we show that (1) implies
D(v )Oj(E) = 0, which contradicts the hypothesis that i A(G) j and there-
1

fore completes the proof for this case where 1 <m < 2-~1.
n, _
That not i A(u) j for all ue N(u) implies (1) is seen as follows.

~ X —_— A
Pick an x € Bj(O) and let uj £ N(u,) be maximized on Bj(O) at x.

x — _
sessUL g5UL,U u ).
- J

i =0.(u,,...,u + s
Define Oj(A) Oj(ul, 1,u Kv ,u 41 0

i+1°
Since 0 is strategy-proof Oj(K) solves, for all A € A | the maximization

problem max v’ (y) subject to fk(y,l) = 0, Vk € M. Regularity implies that
yeN

the usual first order conditions hold; thus

(2) vu¥[G. ()1 =) 8 L VE [o (M) ,A)
33 keK

fk(OjO\)J\) = 0 Yk eM



where Vu? and ka are the gradients with respect to x of u? and fk res—

pectively and the Gk(k) are the Lagrangian multipliers as functions of A.l
. . VoK. —\ X —
By hypothesis, not i A(u\uj)J because (u\uj) € N(u). Suppose not
A
i A(u\u?)j does not imply Bfk(x,O)/BX = 0 i.e. a nomempty M; © M exists
such that Bfk(x,O)/BA # 0 if and only if k ¢ Ml.
solution Sj(x) implies that, for all k € M and X & A, fk(aj(k),k) = 0,

Feasibility of the

Differentiation with respect to A gives, for all k € M,

X d5.(0) £, [G,(0),0]
(3) Vi, [6,(0),0)s —— + ’ = o
J d A

This implies that, for all ke M

l,
X da.(O) not 0 if k € Ml
*) v [6,(0),0) —— =
dh 0 if k¢ M
1
N o~ X
The assumption not i A(u\uj) j implies that
du®(6.(¢0)] da, (0)
(5) —4 3 - WG] —— = o0
ax i3 ar

Substituting (2) into (5) in conjunction with (4) results in

- dc, (0
(6) I 6095 [8;0),00- 1P =0
keM dar
1
where ka- dsj/dk # 0 for each k ¢ Ml. Pick scalar weights Oy such

that (a),

We follow the convention that Vu?[sj(K)] represents the gradient of
u? evaluated at Gj(k). Similarly ka[sj(k),k] represents the gradient of
f with respect to x evaluated at (Sj(k),k).



-4 -
a5 . (0)

) Y o VE [0.(0),0]r —— 40
kaMl kk o d dx

and (b), for each k £ M, & = 0. Define v,(x)S ) a f (x,0).
1 k ] KEM k™ k

Broad applicability implies that, for a small enough scalar v >0,

~X

uj = u? + ij is an element of N(GS). That aj(O) maximizes U> on Bj(O)
is a consequence of regularity and the fact that the first order condi-

tions continue to hold at Gj(O):

AX A _ g . X4 ~
) Vuj[oj(O)] Vuj[Oj(O)] + YVVj[Oj(O)]

= 7 [6,(0) +ya ] V£ [5.(0),0]
keM k k k3

where the second line is obtained by substituting from (2} and (7 ) and

rearranging. But

. a8 (0) . a5 (0) . 4o (0)
Vor[6, (0)] s—I— = vu¥167 0y )]s —— + yVv.[5.(0)] —L1—
3 ax J ar 3 ax
R d8j(0)
(9) ~ YVVj[Oj(O)]°'—j;;—‘
# 0.

where the inequality follows from (7) and the definition of vj(x).
This implies that D(Vl) G?Oj(G\G?) # 0 because Oj(X) is a feasible (if
, ~X . .Y b S

not optimal) path for agent uj to follow when A varies. Thus 1 A(G\uj) i
and 1if Bfk(x,O)/Bk # 0 for some x € Bj(O),a G? exists such that

—\ ~X —. Vo— Ax . . .
(a) (u \uj) € N(u) and (b) i A(u\uj), which contradicts the hypothesis

f\J —_—

that not i A(u) j for all u € N(u). Therefore Bfk(x,O)/ak = 0 for all
x € Bj(O). A useful implication of this follows directly from (3):

for all k € M,



- d8j(0>
10 ) Vf, [6.(0),0]s ——— = 0.
k™3 ax

This completes the first step of this case's proof.
n, —
Step two of the proof is to show that if not i A(u) j and if

afk(x,o)/ak=() for all x ¢ Bj(O) and ke M, then, for all ViEZCZ(X),

D oj(E) = 0, which is to say that not i A(u) j. Let

(vi)

~ —_ X
Oj(X) = Oj(a\ﬁi + Xvi), i.e. in the notation of the first step uj = uj.

Suppose the result is not true, i.e. a v does exist such that

D o,(a) = do,(0)/dX # 0.
(v5) J( ) J( ) #
Rotate and translate the coordinate system of X so that (a) the
origin is X, = ej(O) = Uj(ﬁ), (b) the Xy axis is in the direction

de(O)/dA, and (c) the x., axis is in the direction Vﬁﬁ[cj(O)]. Re-

2
A, —

quirements (b) and (c) are consistent because not i A(u) j implies ortho-

gonality of VE&[Sj(O)] and dej(O)/dA . The directions of the remaining

2~2 axes may be set arbitrarily, provided orthogonality is preserved.

The first order conditions (2) may be differentiated with respect to

A  to obtain:



(11)

U1 V12 U1g
ox
Us1 Uso Uss
X
U1 Y2 g
Bfl(xO,O) Bfl(xO,O) Bfl(xo,O)
3xl 3X2 aXSZ,
3£ (x4,0) 3£ (x4,0) 3£, (x,50)
Bxl 3x2 BXSZ,
ao .. (0) 3£, (x.,0)
51 kEM ak(o) k"0
4 = 3%3%
kM k
dx 3x
2
dg, SL(O) s (0)8 fk(XO’O)
keM k
dx 9 X _9JA
2
as. (0)
dx o
] ds_ (0) ) 8f, (%4,0)
dx 3

Bfl(xO,O)

Bfl(xo,O)

Bxl
afL(xO,O)

8X2

afL(xO,O)

ax




_7 —
where

BZE.(XO) 3°f
.. = J

_ _ 2 )
L3 BXIBXJ keM "k BxIBXJ

The choice of coordinate system immediately entails three conclusions.

First, the orientation of the Xy axis means that

~ not 0 if I =1
BojI(O)

A

(12)
0o if 1 e {2,...,0}

Second, equation (10) together with (12) implies that Bfk(xo,O)/Bxl =0
for all k € M. Third, the proof's first step established that, for all

X € ﬁj(O) and all k € M, Bfk(x,O)/Bk = 0; therefore Bzf 0)/axlax =0

k(XO,
for all k ¢ M because (a) movement in the direction of d8(0)/dk is, by

definition of the coordinate system, movement out along the Xy axis and

(b) the orthoganality of do(0)/dA and each Vf (x.,0) implied by (10)

0’

axis is movement within ﬁ&(O).

k

means that the movement out along the Xy
In addition, the second order conditions for 85(0) to be a regular maxi-

mum require that Ull # 0. These restrictions on the values that terms

within (11) may take reduce the first of the £ + L equations of (11) to

da. ., (0)
(13) g, — o 0.

11 a4

Since Ull # 0, necessarily dgjl(O)/dX==0, which contradicts the assumption

i A(u) j. This completes the proof for the case 1 <m < 2-1.
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The proof for m=0 is simpler. Dimensionality of zero for Bj(u) for
all ue N(u) implies that Bj(u) is just a point in X, i.e. j's alloca-
tion is imposed on him by the other agents. The hypothesis that i A(u) j
means that i can move the point Bj(u) in X, i.e. a v, € CZ(X) exists such
that
d Oj(O) dB, (0)

= 40
dx dx

(14)

where Oj(k) = Gj(u\ui + kvi) and Bj(k) = Bj(x—l\ui + kvi). The hypothesis

Ib_
that not i A(u) j implies that

_ 4B.(0)
(15) Vu,[o,(w)] » —— = 0.
I dX
Pick a vj € CZ(X) such that
B dB, (0)
(16) Vv, lo. (@] « —L— # 0.
J ] dx

BA guarantees the existence of a scalar y > 0 small enough such that

G. = u, +95v, ¢ N.). Thus
J J J J
A _ dB,(0) B B _ dB., (0)
(17) Va,[0,. )]s —4+— = {Vu,[0, (W] + Vv, [0. (@]} « —— # 0.
33 ar i3 i3 ar

Ny e A .. — — A —
which is to say that i A(u\uj) j. Moreover, since Gj € N(uj), (u\uj)e N(u).
VAN . Y .
Therefore i A(G\pj) j contradicts the hypothesis that not i A(u) j for all
u € N(E). This completes the proof for the second case where m=0 and thus

completes the proof of the entire Lemma.

lIt is permissible to write dBj(O)/dA because ﬁj is a point.
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