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1) Introduction

This paper indicates one way to link equilibrium theory with
capital theory and especially with turupike theory. I consider a model with
finitely many, infinitely lived consumers. Their utility functions are addi-
tively separable with respect to time and they discount future utility.
There are finitely many, infinitely lived firms. Primary resources are
necessary for production and their supply is constant over time. Technology
and utility functions do not change over time either. The model is simply a
general equilibrium model with infinitely many commodities. The infinity
arises because the horizon is infinite and commodities are distinguished
according to date.

I use results from a previous paper of my own [1972] in order to prove
that the model has an equilibrium, for any strictly positive vector of
initial resources. I also prove that the initial resources may be chosen
so that there exists a stationary equilibrium. I prove the following
analogue of Scheinkman's turnpike theorem {1976]. Suppose that all consumers
discount future utility at the same rate. Then, the equilibrium allocation
converges provided that the consumers' common rate of time preference is
sufficiently close to zero. (The rate of time preference is the interest
rate used in discounting future utility.)

Finally, I prove that if consumers do not all have equal rates of time
preference, then the less patient consumers eventually consume nothing
in equilibrium. The less patient consumers are those whose rates of time
preference exceed the smallest rate among all consumers. In an equi-
1ibrium, the less patient mortgage all their future income beyond a certain

date so as to consume more, earlier.



It {s easy to relate the above resulits to capital theory. 1In capital
theory, authors tend to use a reduced form, aggregate wmcdel in which a
single utility function is defined directly on a single intertemporal pro-
duction possibility set. The following is one of the many maximization

problems studied in capital theory.

t R
1.1) max { 5rulk, s k) | (k> k. ) €D , for all t ,

-]
t=0 t+l
k0= kol , where ko is given.

In this problem, t 1is the index for time. & 1is the discount factor applied
to. future utility, where 0< § <1 . kt is the vector of capital stocks
at time t . u 1is the utility function, and D 1is the intertemporal
producticn possibility set. ﬁ

If one makes appropriate assumptions, it is not hard to prove that (1.1)
has a solution. A solution corresponds to an equilibrium in my model.
Sutherland [1970] and Peleg and R}der [1974] proved that one may chocse
k. so that cme solution to (1.1) is statiomary. ( A solution is stationary

0

if kt= k for all t .) Such a stationary optimum is known as the

O 2
modified geclden rule. It corresponds to a stationary equilibrium in my
case. Scheinkman [1976] proved that under appropriate conditions, any
solution to (1.1) converges to a uaique stationary optimum, provided
that & is sufficieatly close to one. )

The idea that less patient consumers eventually consume nothing mav bde
found at the end of Ramsey's early paper [1928]. The saxe idea occurs
in Rader [1971] and Becker (1978 and forthcoming].

I discuss the literature more thoroughly in section 6 .

There is a subtle difference between the turnpike theorem of capital



theory and the one I prove. The turnpike theorem of capital theory
asserts that optimum paths converge to a unique stationary optimum. Thus,
the limit is independent of the initial conditions. 1In my case, the limit
of an equilibrium is not necessarily a stationary equilibrium and the limit
depends on the initial conditions. Also, stationary equilibrium is not
necessarily unique. Stationary equilibrium is not necessarily unique for the siame
reason that equilibrium may not be unique for the Edgeworth box. The
initial conditions affect the limit of an equilibrium because they
affect the relative wealths of the consumers. Also, because conditions
change over time, some consumers may borrow or lend early in time. For this
reason, they may be paying or earning interest in the asymptotic state
approached as the equilibrium converges. Thus, the limit is not necessarily
a stationary equilibrium. The limit may, however, be labeled a stationary
equilibrium with transfer payments. 1In such an equilibrium, consumers
maximize utility on budget sets modified by lump-sum subsidies or taxes.
The taxes should be thought of as interest payments.

It is easy to Qee why the turnpike theorem = applies to equilibrium.
I assume that all utility functions are concave. Hence, equilibrium
maximizes a weighted sum of consumers' utility functions, the weights being
the inverses of the marginal utilities of expenditure. Since I assume
that all consumers discount future utility at the same rate, the maximand

may be written as

[:<] -1
t t
1.2) L 82 Ay ui(xi) .
t=0 i

In this expression, 1 1is the index for consumers, Aj is the marginal
utility of expenditure for consumer i , ug is his utility function, and

t . . . . . ;
x; 1is his consumption vector at time t. § is the discount factor

applied to future utility.



(1.2) looks much like the objective function in (1.1). Hence,

a version of Scheinkman's theorem should imply that.equilibrium converges.,
In fact, I do not apply Scheinkman's theorem or any of the recent
generalizations of it. Instead, I provide a direct proof of the convergence
result. I do so for three reasons. 1) I do not want to make unncecssary

assumptions. 2) I obtain exponential convergence, which is stronger
than that of corresponding theorems in the literature. 3) My method of
proof seems to improve on existing methods.

My proof i& in many ways simply a modification of existing proofs.
I use the value loss method. My main innovation is to use a one-sided

value loss rather than a two-sided value loss. This value loss is easy

to interpret and leads to many simplications.,

-

Nevertheless, my proof is very long and complicated. The complications
arise largely because I use a full general equilibrium model rather than
the reduced form, aggregate model of capital theory.

If one assumes that there are one consumer and one firm, then my turn-
pike theorem becomes a turnpike theorem in the sense of capital theory
can can be compared with theorems in the literature. In this case, my
result is meither more general nor more special than existing ones. I
elaborate in section 6.

I emphasize that my goal is only to link two distinct branches of
economic theory. I do not claim that my model is realistic or that it
justifies capital theory. The assumption of immortality is certainly not
realistic. Also, prices in my model can be interpreted only as Arrow-Debreu
prices of contracts for future delivery. Such prices seem especially

unrealistic when there is an infinite horizon.



I emphasize that I cannot avoid interpreting prices as prices for
forward contracts. I cannot interpret prices as sﬁot prices and say that
agents have perfect foresight. This last point of view is the one sometimes
taken in capital theory. However in my model, consumers may borrow and
lend, which means that there must be forward markets. In capital theory,
there is only one consumer, and he owns the firm or firms. Hence, it is
impossible for the consumer to borrow or lend.

By linking equilibrium theory and capital theory, I do give some
1n31ght into the nature of the assumptions that must be made in order to
obtain the turnpike property. Dealing with a ggneral equilibrium model
obliges one to state assumptionsonly in terms of individual utility
functions, endowments and production possibility sets. Assumptions in
éapitalr£heo;y do ﬁot always have a concrete interpretation, since the
models are aggregated.

I make strong assumptions. I assume that utility functions are strictly
concave and that production possibility sets are strictly convex. The
assumption about production possibility sets is especially strong, for it
excludes constant returns to scale.

In order to exploit strict convexity, I must assure that price ratios
exactly equal marginal rates of transformation in production. (The prices
referred to are in the limit stationary equilibrium with transfer payments.)
1 assure equality by assuming that firms can use inputs and produce outputs
efficiently in any ratios they like. This assumption excludes the fixed

coefficients, linear production model.
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There exists in capital theory a form of turnpike theorem which
applies to models with constant returns to scale and fixed coefficients.
If one allows constant returns to scale, then there can exist optimal
programs which oscillate indefinitely, even if future utility is not
discounted. (I give an example in section 5.) Therefore, the turnpike
theorem is not valid if one insists on convergence to a point. However,
one can ask that optimal programs converge only to a set of programs known
as the von Neumann facet. The von Neumann facet includes the set of optimal
programs which are stationary or oscillating. McKenzie [1963, 1968] has
proved that if future utility is not discounted, then optimal programs do
converge to the von Neumann facet. However, it is not known whether
optimal programs converge to the facet when future utility is discounted.
If such a turnpike theorem were valid, then it would be possible to eliminate
my most objectionable assumptions., (McKenzie [1979] has proved that given
e > 0, optimal programs eventually stay within an e-neighborhood of the
facet if the discount factor is sufficiently close to one. I am insisting

mconvergence to that facet with a given discount factor,)

2) Definitions. Notation and the Model

Commodities
There are L types of commodities. Lc<: {1,...,1} denotes the set
of consumption goods. Lo<: {1,...,L} denotes the set of primary commodities,
such as land, labor and raw materials. Lp ={k=1,...,L l k ﬁ Lo} denotes
the set of producible goods. Goods not in either Lc or Lo should be
thought of as intermediate goods or goods in process.

Vector Space Notation

L
RL denotes L-dimensionsl Euclidean space. A standard subspace of R

1
is one of the form RL ={x€ RL ! X, = 0 if k ¢ L'}, where L' < {1,...,L}.

' L L
RL is said to be the subspace corresponding to L' . R ¢, R and



RLp are the subspaces corresponding to Lc’ L0 and Lp, respectively. It
s . . . L L Lp
is important to keep in mind that vectors in R ¢, R9 and R are
thought of as belonging to RL

I-I denotes the maximum norm of any Euclidean space. That is, ]z] =
max |z
ax |z

A vector z = (zl,...,zN) will often be written simply as (zn)
The z =~ may themselves be vectors.

1 t JE

= 0 L t
b, 1. denotes {§ =(x, x,...) | x € R, for all t, and Sgp]x | <w}.

. Lm,Lc’ zw,LP and lw,Lo are the subspaces of QQ,L corresponding

Lc’ LP and Lo, respectively. 1If f € &w,L’ li\ denotes Sgp Ixt!

]'} is called the supremum norm.

g1 1 denotes {p= % pl’....) ! pt € RL, for all t, and
2 ~

@ t
.z lp l'< @ }.
=0
Infinite dimensional vectors are always written in bold face. How-

ever, components of infinite dimensional vectors are not written in bold

face. Finite dimensional subvectors are not written in bold face either.

1
Thus, f = (XQ, X ,....) €79 o, 1 where xt € RL, for all t. xi is a
component of x. 0 denotes an infinite sequence of zeros.
~ 0
5 . t t
If x€4 and p € ¢ , then pe*x denotes I p - X .
~ ":'D;L ~ 1.,11 ~ ~ t=0
If x € RL , then "x = 0" means "x= 0 , for all k." "x> 0"
means "x =20 and x #0." "x >> 0" means "xki> 0, for all k." Rﬁ denotes
{x € RL]x = 0}, and R% denotes {x € RY [ x £ 0}.
Let x € ﬂw or x € ¢ . Then, "x =z 0" means "xi 2 0, for
v %, L ~ 1.L ~



all t and k ." "« > 0" means '"x =0 and x £ 0 ."

t
"y > > 0" means "xR > 0, for all t and k ." Finally, "x>>> 0"
. t
means ''There exists a positive number r such that X >r, for all

: i
t and k." g+ donotes {x € f L I x =0}. £ * is defined
~ J ~

m’L 1’L
similarly.
Consumers
There are I consumers, where I is a positive integer. The utility
. . A I Le |
function of consumer i for consumption in one period is u, R, 2 (~»,0).
Utility is additively separable with respect to time and tonsumer i discounts

future utility by a factor 51, where O <:%_ < 1., That is, if

. Le . . ‘
consumer i consumes the bundle X, € R+° in period t, for t=0,1,2,....,
then his total utility from the point of view of period zero is

t t
6i Ui(x )‘

et 8

T
The endowment of each consumer in each period is Wy € R:O . Notice

that each consumer is endowed only with primary goods. This
assumption is not necessary. It is made only for convenience.
Firms

There are J firms, where J is a positive integer. A firm transforms

inputs y, € Rf in one period into outputs y1 € Rip in the succeeding

period. Inputs carry a negative sign and outputs a positive sign. The



L
production possibility set of firm j 1is Yj c R? % R+p. y = (yo, yl)

L
denotes a typical vector in Yj’ where Yo € RE and Y1 € R+P_
Firms have an endownent of produced goods, available at time zero.
These goods should be thought of as having been produced from inputs

in period - 1. The vector of goods available to firm j is denoted by

L J
- -1
Ysi, € R p. Zy. is the initial capital stock of the economy.
11 + =1 il
Firms are owned by consumers. Consumer i owns a proportion eij

of firm j, where i=1,..,.,I and j=1,...,J.» 0= eij = 1, for all
i and j, and 20,. =1, for all j.
i

The Economy
. . . _ -1 '
The economy is described by the list @& = {(ui’wi)’(Yj’yjl)’eij :

i=1,...,I and j=1,...,J}.

Allocations

A consumption program fcr a particular consumer is of the form

L
(xo,xl,... ), where %t € R+C , for all t and \ x\ < w. That is,

TR
li

+ t . : .
x € zw p ~ % 1is the consumption vector at time t. A consumption
~ >
c

0
program is said to be stationary if xt =x, for all ¢,
1
A production program is of the form y = (yo,y yess) s where
L
t t t L P -
y = (yO’yl) € R_x R, forall t=0, and ly| = sup ]ytl < «, The program
~ t

is feasible for firm j if yt ¢ Yj, for all t = 0. A production

program is said to be stationary if yt = yo, for all ¢,

An allocation for the economy is of the form ((xi), (yi)), where each

x; = (xg,xi,...,) is a consumption program and each yj = (y%,yj,...) is

~

a production program feasible for firm j. The allocation ((xi)’(yj)) is
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feasible if FXF = Jwy 42 (ygo + yt_l) , for all t= 0 . Notice that the
1

it i jl
feasibility of an allocation depends on the endowments )’5} of the firms.
Also, the definition of feasibility implies free disposability.

((xi), (yj)) is said to be stationary if each of the programs X, and yj

are stationary and if in addition y§1 = y}i , for all t
The notation ((Xi)’ (yj)) should not be confused with the notation

((XE), (yg)) , which is the vector of allocations at time t

Pareto Optimality

A feasible allocation ((Xi)’ (yj)) is said to be Pareto optimal if there

exists no feasible allocation ((;i)’ (§j)) such that 7 6; ui(iz) =
b 6? ui(xg) , for all i , with strict inequality for some i
_t=0 L o o B

Prices
+
A price system is simply a non-zero vector p in 21 L © P is of
~ b ~
0 1 t L . .
the form (p , p,....) , where p € R, is the vector of prices in
period t . p; is the price of commodity k in period t. p 1is said to
t

be stationary if pt = § p0 ; for all t , where 0< §< 1 .,

If x€4,; ,then p-x = 3 pt . xt.

t=N

Profit Maximization

Given the price system p , each firm chooses a program so as to
maximize its profit. That is, the problem of firm j is

t t t+ t . . .
max { Z (p - Yot P L yl) l y 1is a production program feasible for
t=0
firm j }.

ﬂj(p) denotes the set of solutions to this problem. nj(p) denotes the
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maximum profit plus the value of the firm's initial endowment. That is,

0 -1 ®
m.(p) =p - vyt 2 (p
i~ hj £=0

t+1

t t t
Yo tP ¥ )

0 1
where (y , vy ,....) € ﬂj(p). ﬂj(p) and ﬁj(p) may be empty.

Utility Maximization

Given the price system p , consumer 1i's budget set is Bi(p)= ‘
- ~ J ~

{x € z+ I ’ p+rx = 2 pt- w., + I 6..n.(p)} . His maximization problem
.~ ~ o~ =0 S M A
is ~
«©
2.1) max { 2 6; u.(xt) ‘ x € B.(p)}
t=0 - * ~ Lo~

§i(p) denotes the set of solutions to this problem. gi(p) may be empty.

Equilibrium

An equilibrium consists of ((xi),(yj),P)

2.2) ((xi), (Yj)) is a feasible allocation,
i
2.3) p 1is a price system and, for all t and Kk, pﬁ =0 i1f 2 xﬁ
~ i=1l
I J
-t t-1
< Tw,y FZ (Yt Vaqr )
i=1 ik =1 jok jlk
2.4) yj € nj(p), for all j , and
2.5) X, € §i(p) , for all 1

An equilibrium with transfer payments consists of ((xi), (yj), p), where

these satisfy conditions 2.2 - 2.4 and

[+
2.6) for each i , x, solves the problem max { 3 gt u,(xt) | x €
~i p=g 1 ~
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) J
The transfer payment made by consumer i 1is zZ pt cw. R 8.. m(p) -
s £ R

Pt Xj -
An equilibrium is said to be stationary if the allocation ((xi),(yj))
and the price system p are all stationary.

Notation for Stationary Sequences

T use the following notation for stationary allocation and price systems.

If ((Xi)’ (yj)) is a stationary allocation, then X, € REC and yj € Yj

denote the corresponding consumption burdles and input-output vectors at
one moment of time. Thus, x, = (x;,x,,....) and y., = (y., ¥.,...) . Also,
~1 171 ~J 1771
L
if p 1is a stationary price system, then p € R+ denotes the corresponding

vector of prices at time zero. Thus, p = (p, 8p, 52p,....) .

Convergence of Allocations

Let ((ii),(§j)) be a stationary allocation. An allocation ((xi),(yj))
is said to converge to ((éi), (§j)) if
lim | (D), ) - (&), GO | =0
i ) j i ) yj
e

The convergence is said to be exponential if there is a >0 such that 0 «ca<1
t t - t . .
and | ((xi), (yj)) - ((?i), (yj)) | < a~, for all sufficiently large t .

Marginal Utilities of Expenditure

Corresponding to any equilibrium ((xi), (yj), p) , there is a vector
of marginal utilities of expenditure, A = (Al""’AI)' Each Ag is
simply the Lagrange multiplier corresponding to the budget constraint in

consumer i's wutility maximization problem (2.1).

3) Assumptions

I list below the assumptions I use. Some have already been mentioned.
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Non-Triviality

3.1) Lc N Lo 0 . I=1 and J=1.
Consumers
Lo .
3.2) w; € R+ , for all i
L
3.3) u, R+F + (-®,0) 1is twice continuously differentiable.

Df and D2f denote the first and second derivatives, respectively, of

the function £

3.4) (Strict Monotonicity) For all i |, Dui(x) >>0 , for all
L
X € R+c .
3.5) (Strict Concavity) For all i |, D2 ui(x) is negative
. AR Lo - T

definite, for all x € R+c

Firms
3.6) yjl € R+ , for all j
I represent production in the following way. For each 3} =1,....,J, let
L
— L P . - =

MjO and Mjl be subspaces of R~ and R , respectively. Let MjO _

L + Lp - +
MjO N R_ and let Mj1= Mjl N R+ . Finally, let gj : MjO X Mjl -+ R.
3.7) Y={yeM, xM.|g(y) =01, for all j

j jo 7 731 0 o) ;
3.8) For all j , MjO and Mjl are standard subspaces of RL .
3.9) For all j , gj is twice continuously differentiable.
. - +

3.10) For all j , ng(y) >>0, for all y € Mjo X Mjl .

3.11) For all j and for all y € Mjb X M;i’ ngj(y) is positive
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definite on the subspace of M, K x M

orthogonal to Dg.
50 8 8;(y)

j1
This assumption says that production possibility frontiers have pos-

itive curvature. In other words, production possibility sets are

differentiably strictly convex.

3.12) (Possibility of zero production) gj(O) =0, for all j
3.13) (Necessity of primary inputs) The following is true, for all
j . Let y = (yo,yl) € MjO X Mjl . If yf> 0 and Yo = o ,

for all k € L_, then gj(y) > 0.

Adequacy

The final assumptions guarantee that no consumer wculd have a zero

income in equilibrium.-- - - - - - e e

3.14) For each i , >0, for some k € Lc n Lo

® ik

That is, every consumer is endowed with some primary good, such as labor,
which is also a consumption good.

I
3.15) Z

>0, for allk€L.
. o
i=1

®ik
That is, there is a postive endowment of every primary good.

3.16) There are ¢ € R and (yjo, yjl) € Yj , for 3 =1,...,3 ,

+°L—'

1 Gy

s 1 . .

uch that @ + jil(yJO yjl) >>0
That is, it is possible to produce some of every good in every period
while using only primary inputs from outside the production system.

4) Theorems

T assume that assumptions 3.1 - 3.16 apply.
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J
4.1) Theorem Suppose that 2 y}}k > 0, for all k € Lp' Then
31
there exists an equilibrium.
4.2) Theorem Suppose that 51 = §, for all i. If § is sufficiently
close to one, ~ then (y;i) §=l may be chosen so that an

equilibrium exists which is stationary. The equilibrium price

vector is of the form p = (p, &p, 52p,...)

4.3) Theorem Any equilibrium allocation is Pareto optimal.

4.4) Theorem Let ((xi)J (yj)J p) be a competitive equilibrium. If

n is such that 6n.< max 61 s, then xﬁ =0 , for t sufficiently
i
large.

 For the turnpike theofem, I need the following assumption.

Interiority Assumption

There exists ¥ > 0 and & such that 0 < 8§ < 1 and the following
are true. If Bi = §, for all i, where &6 < 8§ < 1 and if
((Xi)’ (yj), p) 1is a stationary equilibrium with transfer payments,

-1
then ? yjlk >% , for all k € Lp.

4,5) Theorem (The turnpike property) Suppose that the interiority
assumption is satisfied. Suppose also that ; y;ik > 0, for
all k e Lp, and that & " 8, for all 1. If & dis sufficiently
close to one, then the following true. If ((Ei)’(zj)’g) is a

competitive equilibrium, then ((Xi)’ (yj)) converges exponentially

to a stationary allocation ((;i)’ (;5)).
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5) Discussion of Assumptions

All my assumptions are more or less standard in equilibrium theory,
except for assumption 3.8 (no fixed coefficients in production), assumption
3.10 (strict convexity in production)and the interiority assumption. I now
discuss what is wrong with these assumptions. I then give an example, which
indicates what can go wrong if one allows constant returns to scale. |
Assumptions 3.10 excludes constant returns to scale. Constant returns
to scale is a very natural assumption to make. Production possibility sets
really describe production processes, not firms. There is no compelling
reason to keep the number of firms fixed. In fact, one imagines that firms
can be replicated. This possibility is one justification for assuming
constanflfeturns té‘scale; Ali tﬁese conéiderations are especially persuasive
in the context of growth theory, where one thinks in terms of a very long run.
The interiority assumption is traditional in turnpike theory. It would be
better to replace this assumption by assumptions about preferences and technology.
It is, no doubt, possible to do so, but I have not found a convincing set of ‘

assumptions which do not lead to an excessively complicated proof.

Assumption 3.8 is especiallyawkward, It makes it impossible to
represent the use of capital equipment in production. The conventional
representation is as follows, One labels equipment according to age.

A production process using a machine transforms the machine and other
inputs into an older machine and other outputs. The process transforms one

younger machine into one older machine. A fixed coefficient of one is

unavoidable.
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One way to overcome this problem might be to assume that machines
are installed. That is, once one is used by a firm, it can be
used by another firm only after an expensive transfer. However, this kind of
phenomenon is hard to represent using a general equilibrium model.

I now give an example, which shows what may go wrong if one assumes
constant returns to scale, There is one consumer and there are two firms,
There is one primary good, good zero, and there are two produced goods,
goods 1 and 2. The utility function of the consumer is ~
u(XO’Xl’XZ) =,J-§8§I;;- . The consumer does not discount future utility.
The initial endowment of the primary good is 3. The production possibility
set of firm 1 is determined by the function gl(yoo,y01,y024;»yll{yiz) =
«/?;— A/ Y%l + 3y212 - 3,J-;g;;;;- . The corresponding function for firm 2
1s 8000701702 ;y11’y12)=~/r3— J 3911+ Y, T 3 agYgs

This economy satisfies all of assumptions 3,1 - 3,16 except assumption

3.11. Production sets are convex, but not strictly convex. In fact,

production satisfies constant return to scale.

It is easy to calculate that the following is a stationary equili-
brium. The price of every good is one. The consumer consumes one unit
of each good. The production vector of firm 1 1is (X)’yl) = (1,0,1,3/2,1/2).
That of firm 2 1is (1,1,0,1/2,3/2).

Suppose that all prices are fixed at one. Then, each firm produces
along a ray. The ray is the set of profit meximizing input-output com-
binations. When firms are restricted to these rays, the production

system becomes a fixed coefficient linear production model. It 1is described
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by a vector ¢ = (2,2) and matrices A=(q g) and B = ( i b.
cj is the quantity of good zero used when firm j operates at rate

one. aij is the input of good 1 into firm j when it operates at
rate one. bij is the output of good i &ty firm j when it operates at
rate one,

Now suppose that firms operate along these rays and that the initial
capital stock at time zero is é) = (1,3) and that firm 1 alone operates
at time zero. Then, the consumer consumes one unit of each g&ﬁd. The
input vector of firm 1 is (2,0,2) and its output vector is (3,1),

vhich is the capital stock at time 1, call it Kl. At time 1, only firm 2
operates. The consumer again consumes one unit of each good. The input
vector is (2,2,0), and the output vector is (1,3) = K2 = Ko. Thus,

a cycle has been completed. The indefinite continuation of this cycie
describes an optimum which may be interpreted as an equilibrium. Consumption

is the same as in the golden rule, but production oscillates. Hence, the

turnpike theorem does not apply. That is, optimal paths do not converge to

a point, The cyclical path is, however, part of the von Neumann
facet discussed by McKenzie 11963 and 1968].

The turnpike property cannot be recovered by discounting future
utility. 1In fact, the undiscounted case is the most favorable to the

turnpike theorem.
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6) Relation to the Literature

This paper links Arrow-Debreu general equilibrium theory with capital
theory. General equilibrium, of course, has a very long history. The
proof that equilibrium exists is due to Arrow and Debreu [1954]. I
treat prices as prices for contracts for future delivery. This interpre=-
tation was developed by Arrow [1953] and Debreu [1959] (Chapter 7).

Arrow introduced contingent claims and Debreu extended this notion to the

context of many periods.

In this paper, I make use of equilibrium theory for economies with
infinitely many commodities, The extension of equilibrium theory to such
economies was made by Debreu [1954], Peleg and Yaari [1970], myself [1972]

.and Stigum [1972, 1973]. Debreu proved that equilibria in such economies
are Pareto optimal and that Pareto optima may be realized as equilibria
with transfer payments. Peleg and Yaari, Stigum and I proved that
equilibria exist. Peleg and Yaari and Stigum allowed the number of
commodities to be only countably infinite, In my case, there may be a
continuum of commodities. 1In the present paper, there are countably many
commodities, so that I could have applied Stigum's results instead of my
own. I could not have used the results of Peleg and Yaari, for they do not
have production in their model,

Capital theory has almost as long a history as equiiibrium theory.
McKenzie has written an excellient, up to date survey of turnpike theory
[1979]. Ramsey seems to have initiated the subject [1928].

The turnpike theory existing in the literature, deals with models

which have only one utility function and one production possibility set.



-20-

I simply introduce many firms, many consumers and budget constraints
for consumers, The turnpike theorem I prove is an analogue of that of
Scheinkman ([1976] (theorem 3, p. 28).

In my proof, I use a variation of the value loss method. 1I believe
that this method traces back to the work of Radner [1961]. It has since
been improved by Atsumi [1965], Brock [1970], McKenzie {1974, 1976],
Cass and Shell [1976], Rockafellar [1976], Brock and Scﬁeinkman [1976]
and Magill [1977].

The most recent turnpike theorem of the type I prove is contained in
McKenzie [1979] (theorem 10'), His proof builds on that of Scheinkman
and uses methods déVeldped ih the 1i§t of éapers juét cited,

It is hard to compare McKenzie's theorem with my own, eince our
models are so different. In order to clarify the connection between his
work and my own, I show how to derive from my model the reduced form used
by McKenzie. This‘reduced form model is the one typically used in turnpike
theory.

Suppose that in my model there is one consumer and one firm. The
utility function of the consumer is wu: R:c 4 (~ow,w), His initial
endowment is (. The production possibility set of the firm is

L L 0.1 L, L L
Y © R_ X R+p. Let D= {(K,K) € R~ xR, | there exists x ¢ R, such
that (x ~ g - Ko,Kl) €Y. Let v: Do (~ewy») be defined by

L
v(Ko,Kl) = max {u(x) ‘ X € R+c and (x - g - Ko,Kl) € Y} . McKenzie's
economy is defined simply by D and v,

The key concavity assumption of McKenzie is stated in terms of the concavity

of wv. But the concavity of v depends on the properties of both u and Y
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in a complicated = way., Some of the long arguments in my proof of
the turnpike theorem may be interpreted as proving that v is concave.
Benhabib and Nishimura {19791 (section 3.3 , Remark 1) have
already pointed out that the concavity of v requires very strong
assumptions about underlying production relations. They work with a con-
tinuous time model.

I now return to the comparison of McKenzie's theorem with my own.

My theorem is more general in that I prove exponential convergence and

he does not. McKenzie's theorem is more general than mine in that he makes
only a loc¢al strict concavity assumption. I assume strict concavity or
convexity everywhere. McKenzie's assumption is that the Hessian of v is
negative definite at (E:E), where (K,K) satisfies
v(f;i) = max{v(K,K)[(K,K) € D}, (K is the vector of golden rule capital stocks).
The other differences between McKenzie's theorem and my own are of no great
interest.

Araujo and Scheinkman [1977] prove a turnpike theorem with exponential
convergence (theorem 3.2)., They assume that a certain infinite dimensional
matrix has the dominant diagonal property. I do not see that this condition

necessarily applies in my case. For this reason, I did not use their result,

Remark Yano has generalized the turnpike theorem of this paper. (He .
also caught an error in an earlier version of my proof.) He assumed constant
returns to scale. He also assumed that the von Neumann facet containing the
golden rule input-output vector is a single ray. 1In this way, he avoided

the problem illustrated by the example of section 5.
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I now turn to my result that there exists a stationary equilibrium
(theorem 4.2). When there is only one firm and one consumer, stationary
equilibrium becomes what is known as the modified golden rule., Therefore,
the proof of theorem 4,2 provides a new way to prove the existence of
a modified golden rule,

Sutherland ([1970] and Peleg and Ryder [1974] proved that a
modified golden rule exists. They used fixed point arguments. I do so as
well, but my argument is simply a modification of the usual argument which
proves that a general equilibrium model has an equilibrium. Thus, I
c larify the tie between general equilibrium theory and the work
of Sutherland, Peleg and Ryder. My proof is a variation of one given in a
previous paper [1979] of my own. In that paper, there is uncertainty
and there is no discounting of future utility,

;In secﬁibﬁ lgll-méntioned that the idea‘éxpfesseémbyﬁﬁyytﬁééfém b
has already appeared in the literature. This theorem asserts that less
patient consumers eventually consume nothing. Ramsey [1928] (pp. 558-9)
pointed out that in long-run or stationary equilibrium, those consumdrs
with the highest rate of time preference would live at a subsistence level.
Rader makes an argument similar to my own in chapter I of [1971]. A
related idea appears in the last section of one of his recent papers
[1979]. Finally, Becker [forthcoming] proved an assertion similar to
Raumsey's,

Becker studies capital theory using a disaggregated model, just as I do.

In [1979], he proves the existence of an equilibrium and in [forthcoming]

he proves the existence of a stationary equilibrium. Becker's work
differs from mine in that his model is one of temporary equilibrium,
not of general equilibrium. Consumers can sell or accumulate capital

but they cannot borrow. Becker also has only one commodity.
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7) Boundedness

In this section, T prove that feasible allocations are uniformly
bounded. The boundedness of feasible allocations is expressed by the

following two lemmas. Their proofs are completely routine.

7.1) Lémma. Let (y}i) be given. There is B > 0 such that
if ((xi);(yj)) is a feasible allocation with initial
-1
resources yjl , then 1((x§),(y§))] = B, for all t,
i N
7.2) Lemma., Let (y}i) be variable, There is B > 0 such

that if ((xi);(yj)) is a feasible stationary allocation,

A

then ]((xi);(yj))] B and | z Y51 = B
A j .

In proving these lemmas, I make use of the set Y = 2 Yj'
~ 3

7.3) Y 1is closed.

L - L
This is so because each Yj is clcsed and contained in R_ ¥ R+p .
(For a proof, see Debreu [1959], p. 23, statement (9).) Clearly, Y
is convex (see assumption 3.11) and contains the zero vector (see

assumption 3.12).

. I
In the following, ¢ denotes z

1

Wy *

1 1

7.4) Lemma., There exists a positive number B such that \yl\ < ]ybl
whenever the following are true: (yb,yl) €Y, ]yb | =B and

| yor ! = | w |, forall ke L.
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Proof Suppose that the lemma were false. Then for each
. B _B B
B=1,2,..., there would exist (yo,yl) € Y such that ] Yol =B
B B B
and | yOk‘ = |w |, forall ke L, and yet | Y1 | = \yo .
Because each function gj is non-decreasing (assumption 3.10) and

because y? = 0, it follows that (yggxyBl) € Y, for any o such

that 0= a = 1. Hence, I may assume that ]y?] = | yg\ . Let RB
be such that y1kB = | y? |. By passing to a subsequence, I may
assume that kB = k, for all B. N
Let (§3,§?) = | yg \-l(yg,y?). (?g,??) € Y, since Y is convex
and contains zero and since ] yg ] = B= 1, Also, \(;0,51) ] = 1.

Hence by passing to a subsequence, 1 'may assume that
—B —B. — = = - o o, Tt e e
1im (yo,yl) = (yo,yl). (yo,yl) € Y, since Y is closed (7.3). Since
B
1§B | =1 yB ]-1 | @ |, for all ke L it follows that y =:O for
ok ' = 170 w1 o’ =OWS Yok -
all ke Lo' Also, Y1k = 1. These last two facts contradict the

necessity of primary inputs (assumption 3.13),

Q.E.D.

7.5) Lemna An arbitrarily large number B may be chosen so that

] Yll < B whenever the following are true:

¥y ) €Y | Yo | = 1w |, forall keL, and |y,|= B.

-~ Proof. The proof of this lemma is entirely analogous to that of

lemma 7.4.

Q.E.D.
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Proof of lemma 7.1 Let B be as in lemma 7.5 and such that

B>]w | and B>|2y3}|.
i

I show that it is enough to prove that | y;l | < B, for al:
I

t t -
t= ~ 1. By feasibility, 0= Xy £ Ix =@ + = yt.: 1, for all
n=1 ® 3 il
t . t t-1
Hence, x, = lw | <B, if ke L, and x/ = ? Y1k < B, |if
k ¢ Lp, so that | xg | < B. Similarly, since
t J t J t-1
O -y.,,==-2 y .2t 2 vy , for all j, it follows that
jo ~. ’n0 . 7’nl
n=1 n=1
t
- . < .
Vi< B

I now prove by induction on t that | z ygl | < B, for all ¢,
It i; true for t = - 1, by assumption. Su;pqse that it is true fer
t -1. Then by feasidility, - ? ygok < \ W ‘, if ke L s and
J
- z;y?ok <B, if kegL_.. =2 (y? ,y? ) € Y. Hence by lemma 7.5,
7 P jo il
| ? y?l | < B. This completes the induction.

Q.E.D.

Proof of lemma 7.2 Let B be as in lemmas 7.4 and 7.5 and such

that B> | o |.

I first prove that

7.6) | 2y., | <B, whenever ((x,),(y.)) is a feasible
3 30 0 S
stationary allocation.

Suppose that ((xi):(Yj)) is a feasible stationary allocation and that

? Y50 | = B. By feasibility, ? yjok s |w|, forall ke L. Hence
by lemma 7.4,
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7.7) | 2y 1> 2y, |
i 3 At

Since 0= - ? ijk.§ lw|<B<| 3 Yio |, if ke L, it follows

J
that \ ZYy. \ = max (- Zy. ) . But, “Z Vin = 2 V.oqys 1f
. 0 . Ok . 7 j0k k
j keLpJ ] j ! le

k € LP, so that | ? Y50 | = | ?yjlr]. This contradicts (7.7) and
so proves (7.6).

It now follows from lemma 7.5 that | = Yi1 | < B.
|

Q.E.D.

*
8. The Economy &

In proving theorem 4.1, it is easier to deal with an economy in
which production possibility sets are cones. For this reason, I now
modify the economy £ 1in order to obtain an equivalent economy 5* in
which all production possibility sets are cones. 5* will also be such
that free disposability is incorporated in the production process rather
than in the definition of feasibility.

I introduce one new factor of production for each firm. The
jth such factor can be used only by firm j. This factor may be thought
of as the entrepreneurial factor. McKenzie (1959) has suggested
introducing such a factor in just the way I do.

More explicitly, I introduce J new commodities, so that the list
of commodities in 5* is Ly {1,...,J} . The commodity space of 5*

%
is RL X RJ. An input vector for a firm may be written as (yo,y0 ),

*
where Yo € R? and Yo € Rf . Let ej = (0,...,0,1,0,...,0) be the
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jth standard basis vector of RJ. The production possibility set of

th b3 x

the j firm in & is Yy = { ety - ej,yl) :'(yoyyl) € Yy \(YO'Ylﬂ =3B

and t= 0}, yhere B is as in lemma 7.1.

th
I let the endowment of the i consumer be

* J L J

= ( w; ,0) + 2 e (O,ej) € R, x R+ . Notice that I have introduced

j= 1t
one unit of factor j into the economy, for each j. The consumption
L
set of every consumer is still R+c and the utility function of
L ~

consumer i is still u,t R+c 4 (= wy0).

Finally, I introduce an extra firm, firm J + 1, which disposes

of goods, The production possibility set of firm J + 1 is

L
* L J L J P -1
Vo1 = ROx RO Xx {0} cR x R" x R*. Let 9, 1,741 =1, forall 1.
e o eas . . -1 _
The initial endowment of firm J + 1 is yJ+1,1 0.

ale
w

. * -1 % s )
In summary, the economy @& is {(ui,wi),(yjl,Yj),eij: i=1,...,I,
j=1...,J+1}.
*
I now define an equilibrium for § . A price system is still

+
denoted by p . It is a non-zero vector in 21 LU That is,
J

{1,...,0

0
p = (p ,pl,...), where p € RL X RJ and 0 < Z } pt] < ». The

t=0
definitions of allocation, supply and demand are analogous to those

% % *

made before. nj(p), ﬁj(p) and gi(p) denote, respectively, the supply
and profit correspondence of firm j and the demand correspondence of
consumer 1.

The major change comes in the definition of feasibility. An alloca-

J+1
tion ((x),(y,)) is feasible Lf Zx. =3Sw, + % (y. 1y for
e A R | 7i0 Jl

all t = 0. Notice that there is an equality sign here, whereas before

feasibility involved only inequality.
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*
An equilibrium for § consists of ((xi),(yj), P) which

satisfy the following conditions.

8.1) ((xi), (yj)) is a feasible allocation.
8.2) p 1is a price system.
*
8.3) Y; € ﬂj(p), for all j§. ~
%
8.4) x, € gi(p), for all 1.
8.5) Lemma There is a one to one correspondence between equilibria

*
for & and for g .

Proof The proof is routine. I will prove only that to every

%*
equilibrium for g  there corresponds an equilibrium for @g. The reverse

statement ghould then be obvious;

*
Let ((xi),(yj),p) be an equilibrium for & . Then,

L
0 1 t .
X3 = ((xi,O),(xi,O), «es), where x] € R+c, for all t. Similarly
. _ 0 _*0_0 1 =1 1
for all j, ¥y = ((yjo’yjc’yjl)’(yjo’yjo’yjl)"”)’ Let

i i} i.’!-n- ) J Zj y:jo)y:jl J yjo}yjl yeee )y

L

R , 0 _*0 1 =
J = l)nnn;Jv Write P as P ((P »P )I(p P l),...), where

~

% -
pt € R? and p t € RJ, for all t. Let p = (po,pl,...). I will prove

that ((;i)’(§j)’§) is an equilibrium for 4.

First of all, I show that ((;i)’(§j)) is a feasible allocation
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for 4. Each ;i is clearly a consumption program. I now show that

~

if §=1,...,J, then §j is a feasible program for firm j in &.

%
Since ((xi),(yj)) is a feasible allocation for § , it follows that

%
- 1= ngj =0, forall j=1,...,J and all t. From the definition
%*
of Yj’ it follows that

t t t St “t "t Mt '
. .q) = = v. (v, X h : . Y.. Si Ocy
(yJO’le) yJOJ(YJO,yjl)’ where (YJO)YJl) € i nce € j

- - g t t 3 & Yy
and Yj is convex, it follows that (yjo;yjl) € Yj- Hencej Zj is

a feasible program for firm j in g. By the definition of feasibility
J J
* t _ t t-1 t t t-1

tn g, 2T ieg T 2O F Y ) F V0 Fog ¥ 2 050ty )

1 3

for all t. This completes the proof that ((Ei),(§j)) is a feasible

aliocéfidﬁ—fdf &;

Next observe that for j=1,...,J,

t t ~t *t t+1 t
. .!.l . + .

* t+1
‘0+P 'yl‘

t *t
=max {p cystp -y

* *
(¥g¥97Y1) € Yy } =0, for all ¢,

% *
This follows from the facts that yj € nj(p) and that Yj is a cone

with apex zero. (8.6) implies that

t t 0 N *t  *t
8-7) p ° on + p d le = - p° g onj .

I now show that -1; > 0. Clearly, 5_2_ 0, so that I must show
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that ; #0. 1If p*t = 0, for all t, then ; # 0 because

%
p # 0. Suppose that pjt >0, for some t and j. Then, it does

. *
not pay to dispose of the jth factor, so that ngj = - 1. Hence,
t t t+1 t *t _*t *t t+1
ey.. + . = - p. .a: = P: > 0. That is 0 and
P *Yio t P Yi1 P; Yipj = Pj s> P # n
so p # 0.

~

I next show that §j e nj(S) for j=1,...,J. 1t is sufficient
to prove that 7
t+l

t t t t t+1 -
8.8) P "Yjqt P e ¥y Tmaxfpey,top -yl\(yeyl)eYj},

for every t and for j = 1,...,J.

%*
Suppose that ngj = « 1, Then by (8.6) and the definition of
* t t t+tl  t t IR '
. + ] ] .
Yo Peyg,te Y1EP syt vy, for all (v,,yy) € ¥

t _t 5
such that ‘(yo,yl) | = B. By lemma 7.1, ‘(yjo,yjl) | < B. Since

t+1 +1

. t t t t t -
Yj is convex, it follows that p - yjo + p . yjl ZP ‘Y, +p e Yi»

E ¥ vy *t -
for all (yo,yl) € Yj' Now suppose that ijj > =1, Then,

p;t= 0. Hence by (8.7), pt- y?o + pt+1- y§1 = 0. Suppose that there were

+
(yb’yl) € Yj such that pt- yo + pt L, vy > 0, Since Yj is convex
and contains zero, I may suppose that l(yb)yl) l =< B. Then,

* t *t t+1
0 ej,yl) € Yj and p - y0 -p - ej + p * ¥ > 0, which

contradicts (8.6). This completes the proof that ;j € ﬂj(;).

(6

I now prove that X ¢ gi(ﬁ), for all 1i. Clearly, it is sufficient

to prove that the income of each consumer in § 1is the same as his income

%* ) -
in g . By (8.6), nf(p) = po- y.} . The value of consumer 1i's
i~ o 3 o
initial endowment in & is zZp - wy + I Gij b pj . Hence,
=1 t=0

t=0 j
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® . J 0 ®
consumer 1i's income in § is I p e @, + Z26,.(p -y, + =
- i .oy 1] it C
. t=0 i=1 =
Thus, it is sufficient to prove that
0 -1 @ *t
ﬁj(P) =P ¥y + 0z Py for all j. But this follows immediately
~ t=0
from (8.7) and (8.8) and the fact that for all j and ¢,

% %
pjt= 0 if y,t = -« 1. This completes the proof that Xg € gi(p).

joj
I have now verified that ((Ei),(§j),5)) satisfies conditions

(2.2) - (2.4) of the definition of an equilibrium for g§.

Q.E.D.

9) Proof of Theorem 4.1

I prove this theorem by applying results from a previous paper
[1972] 6ﬁ Ehe existence of éqﬁilibrium when there are infinitely manj

commodities. The appropriate economy with infinitely many commodities

afants
LiXal

is § , defined as follows. The commodity space is

1

X is written as (X ,X ,...),

Lo, LU {1,...,01" 2 € L Lyq1,...,0

t L '
where x € R~ x RJ, for all t. Throughout the rest of this section,

I write L, for zw,LLJ{l,---,J}'

The consumption set of each consumer, is X = {x ¢ z+ | xi =0, if
~ © -

K/é Lc1 . The utility function of the ith consumer is
=2}

t t
Ui(x) = 3 5iui(x ). The initial endowment of the ith consumer,
~ t=8
Tk k% kw] . . *%0 * J -1
(,Bi - (wi }U.}i }"‘)’ 1s deflned by wi = (Di + jzl eij(yjl,O)
L J *Ht *
€ R xR and w; =y for t > 0. Notice that the firms' initial

endowments have been transferred to the consumers.

The production possibility set of firm j 1is Y** ={y= (yo,y1

3
t *
€ L, \ there exist (zg,zl) € Yj’ for £t =0,1,... , such that

yees)
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0 _ 0 € _ .t t-1
y =z, and y 2y + 2 , for t > 0}

**

* *% '
1S { (Xl Ui} wi )} Yj > Bij

%
In summary, the economy @&

i=1, ..,IT ; j=1,..., J+} .

*% +
Prices 1 are non-zero vectors in .
ices in & on S AT TR p€

~

+ . . _,0 1 \ t L J
21, LU({1,...,3 ls written as p = (p sp ,-...), where p € R x R, for all t,

Throughout the rest of this section, I write 21 for zl,L U {1’...’J}
ok

An equilibrium for § is defined in the obvious way. It should be
clear that on equilibrium for 5** may be interpreted as an e&uilibrium
for §* . Hence by lemma 8.5, it is sufficient to prove that 6** has
an equilibrium.

Key assumptions in my paper of [1972] are that X and
the Y;‘*are Mackey closed and that the Ui are Mackey continuous.
(The Mackey topology is defined below.) X 1is clearly Mackey closed!
It is proved in Appendix II of [1972] that the Ui are'Mackey continuous.
It is not obvious that the sets Y;*.are Mackey closed. However, it is not
necessary to prove that the entire set Y§* is Mackey closed. It is suff-
icient to prove that { y € Y§* ] !Z' = b} 1is Mackey closed ,for b >0
(This may be seen by examining the proof of theorem 1 in [1972].) On such norm
bounded sets, the Mackey topology is the same as the product topology or the
topology of componentwise convergence.

The proof of this last assertion proceeds as follows. A base of
Mackey neighborhoods of zero consists of sets of the form V = {f € Len '
| p - x| <1 , for all p € C} , where C 1is a weakly compact, convex,

circled subset of Ly (See Keliey and Namioka [1963], p. 173, or

-
Schaefer [1971], p. 131.) C 1is weakly compact only if sup b lpt' < ®
peEC t=0
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0
and lim sup I Ipt‘ =0 . (This is problem 3 oa p. 338 of Dunford
T+» p€C t=T
and Schwar®z [1957].) It follows at once that if X is a sequence in

~

L, such that sup ]xn|'< @ and lim x; =0 , for all t , then x
o ~ e ~

€V ,Vfor n sufficiently large.

I now prove that

*k
9.1) Lemma For each j ,  {y € Yj l lyl = b} 1is closed in the product
topology for any b > 0
*%k . . +
Proof YJ+1 is simply -z@ , which clearly is closed. Hence, I

may suppose that j = J.
It should be clear from the definition of Yj ~that it is a closed

L
subset of RL X RJ x R P It follows by an easy compactness argument

that it is enough to prove the following.

9.2) m < , for all t , wvhere m_ = max {‘zt| | there is
y € Y;% such that |yl =b and y = (zg, zé + z?,....) ; where
n * -
z € Yj , for all n}.
I prove (9.2) by induction on t . Clearly, m = b . Suppose
that m < e and let = ( zO z1 + zO ) € Y** be such that |Y‘ =b .
t-1 y 0’ %0 " FL j z

| = m + b . I now use the following fact.

t t-1 t
Then, ](z + z o = m._q1

0 1 )] = b, so that |z

9.3) For any ¢ > 0, max {‘zl‘ ‘ (ZO’zl) € Y; and ‘zol <c}l <o

*
This follows from the closedness of Yj and the necessity of primary inputs.
(The proof is similar to that of lemma 7.4.)
(9.3) implies that ]yil is bounded, so that m <® . This completegs
4

the proof of lemma 9.1.
Q.E.D.
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The equilibrium existence theorem of [1972] makes use of what I

called an "adequacy assumption.'" This says that for i=l, ..,T , there
Il F%

exists Vs € 7 Y, such that Y5 +(ni >>> 0. Here, I have only the
j=1 o~ -~ ~

weaker adequacy property stated in the following lemma.

sk
9.4) Lemma There exists yj € Yj , for j =1,..., J*L, such that
J+1 .
T oy.+ 2 ow, >>>0
— ~ 3 ~l ~
j=1 i
- Lo .
Proof By assumption 3.16, there are ¢ € R and (y.n 5 Y.q)
——— + j0 j1
_ J
€Y,, for j=1,...., J, such that 9o+ % (y., +y.,)>>0 . By
assumption 3.15, 3 W, >0, for all k € Lo . Also by the hypothesis
|
of theorem 4.1, 7 ¥..,.>0, for all k€ L . Hence, by multi-
.. ~jlk 3]
ji=1
plving w and the (ij’ yjl) by a small positive constant, if necessary,
J
: - -1
s =
I may obtain that @ = ? w; and that jil(ijk + yjlk) =z 0 , for all
kel . Let ., =% . -e, Ay, -e, Ly, -e.), ...
for j=1,....,3 . Let ZJ+1 =0 € z” . It is easy to see that the

y. satisfy the conditions of the lemma.
Q.E.D.
In [1972], I also made a boundedness assumption. What is required is
that the set of feasible allocations of 8** be bounded in the supremum
norm l-l . That this is so follows directily from lemma 7.1.
I now apply the proof of theorem 1 of [1972]. I cannot apply the theorem
itself since the adequacy assumption here is weaker than that made there. If

one follows the proof carefully, one finds that all but the last three lines
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apply and what one obtains is a quasi equilibrium with a price system in ba
ba 1is the set of bounded additive set functions defined on subsets of the

positive integers. It is also the set of linear functionals on La

which are continous with respect to the supremum norm.

More precisely, I obtain ( (xi) s (yj) ; P) which satisfies the following.

*%
9.5) ( (xi), (yj) } 1is a feasible allocation for & .
9.6) p>0 and p € ba. N
S
9.7) For all j , 0 =p yj zp'y, forallyeg Yj
9.8 For all i e o 4 5 = S
-8) or a > PCXEP O J.=19ij£"2'j Prw <

B T Xy for all 5 € X such that Ui(f) = Ui(fi)

It is sufficient to show that

*%
9.9) P - >0, for all i

It will then follow by a standard argument that

9.10) for all i , Ui(xi) = Ui(x) , for all x € X such that p * x
Lo T
=Ep v w, . P ¥
~ ~1 j=1 1] & &)

(The standard argument referred to is given on page 69 of Debreu [1959].)
(9.5) - (9.7) and (9.10) say that ( (Xi)’ (yj), p) is an equilibrium
with prices in ba . I may then apply theorem 3 of [1972] in order to prove

— *k
that there is p € g, such that ((xi),(yj),p) is an equilibrium for § .
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(In applying theorem_3, I make use of the fact that the production possibility

% *
sets Y:;c are cones. This is why I introduced the economy § )

In order to prove (9.9), I first prove that

k3
9.11) pe (2w ) >0,
~ i~

i

By lemma 9.4, there exist ;5, for j 1,...,J+1, such that

H1 - F¥ xx  JT1
z wg + 2 y.,>>0. Butby (9.7), p " Cw, )= pP" " Cuw; -+ Z v.)
i j=1 ~ it ~ g~ gE R
we JHL_
=p *(Z w; + I vy.,) > 0. This proves (9.11).

&%
By (9.11), p- w; > 0, for some 1, say for i =1, But then by

. the standard argument, Ul(fl) = Ul(f)’ for all X € X such that

%%

1

Let pO € Ri be the vector of prices of goods sold in period zero.

PeXx=P-uw

By the strong monotonicity of 111 (assumption 3.4),
0

9.12) Py > 0, for all k¢ L. -

For if ps = 0, for some k¢ Lc, consumer 1 would want to buy an
infinite amount of good k in period zero and xf would not be well-
defined.

By assumption 3.14, for each 1, there exists k ¢ L.n L, such that

*%

0
wik.> 0. But then by (9.12), B' wy = pk(”ik:> 0. This proves (9.9).

Q.E.D.
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10) Proof of Theorem 4.2

I prove thé existence of what I call a §-equilibrium for a two peridd
economy,<§o, where & is the discount factor applied to future utility.
It will be easy to see that a g-equilibrium for 60 corresponds to a
stationary equilibrium for &. 1In 50, consumption takes place in the
first period. Firms j = 1,...,J use inputs in the first period in
order to produce outputs in the second period. An artificial firm, firm
zero, transfers goods from the second period back to the first. Firms J,
for j=1,...,J, are subject to a sales tax of 1 - § times the value of
their output., This tax is paid to consumers according to the shares eij'
Firm zero pays no tax. The tax embodies the distortion caused by discounting
future utility.

L

Lyr?,

I now define 50 precisely. The commodity space of 60 is R
. _ L
. . . L
The production set of firm zero is Yy = {(yo,yf €R xRP \yo = -yl}"

The production set of firm j, for j=1,...,J, 1is simply Yj' The
L L
¢ P

L .
R, x {0} cR xR . The

consumption set of each consumer is X
utility function of consumer i is uzﬁx,O) = ui(x). His initial endow-
L
o
ment is wg = (wi,O) € RL ¥ R P. The profit shares, 913’ are as before,

for j=1,...,J. 8507 I-l, for all i, Formally,

o o o .
8 = {(X’ui’wi)’Yj’eij : 1=1,...,I; § = 0,1,...,7 }'
An allocation for go will be written as ((xz),(yj)), where
o _ . -
x; = (xi,O) € X, for all i, and yj = (yjo,yjl) € Yj’ fo;
§=0,1,...,7. ((x),(y.)) is feasible if I x°= Z o>+ Zy,.
i 1 11t y=0
Price systems for 50 belong to
L
L . , ~ L
A={p=(ppP) €R/XR | Zpy t Z7p,=1]. If p €A, then p,€R" and

kel kel
€“p
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L
Py € R P always denote the component vectors of »p.

Given p € A, the maximization problem of firm zero is simply

max {py-yy + 0t v | (9509p) € Y}

nZ(p) denotes the set of solutions of this problem. For j =1,...,J,

the maximization problem of firm j is
max {po. yO + 5p1' Yl l (yolyl) E Yj} .

n?(p) denotes the set of solutions of this problem. Notice that for
j= 1, firm j maximizes his after tax profits, the tax being
(1-3%) Py yl'

Tf j= 1, the tax paid by firm j to consumer 1 is

o R
eij(l- é)pl' Yy where (yo,yl) € nj(p). Hence, the income of consumer 1,

J :
given p E AJ is Wi(P) = Po * (Di + jzoe ij (po. on + pl ¢ le)) Where
) e ..’J'

0 . . .
(yjo’yjl) € nj(pl), for j = 0,1 wi(p) is well-defined provided

* . o
that pg Y30 +pg yjl is independent of (yjo’yjl) € nj(p), for
j=1,-oo,Ja

The maximization problem of consumer 1, given p ¢ A, 1is
0,0 o o
max {u;(x) | x" €X and pex =w (p)}.

g:(p) denotes the set of solutions to this problem, for 1 =1,.,.,1.

A  §-equilibrium for 50 is of the form ((xz),(yj),p), where
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((xg),(yj)) is a feasible allocation for @o;

J
P € A,pok =0 if % i < 2 wgy + _2- ijk’ and
i i j=0
J
Py = 0 if 0L jEoyjlk;

y; € n}’(p), for § =0,1,...,J; and
° o( ), for all 1
xi G gi P 2 o 4

I now show that a stationary equilibrium for § corresponds to every
 g-equilibrium for 50.' Let ((xg),(yj),p) be a §-equilibrium for

o o _ _ .
8 » where X, = (xi,O) and yj = (ij’yjl)’ for all 4 and j. - Let

fi = (xi,xi,...) and let Zj = (yj,yj,...), for all i and j.

2
Finally, let p = (p0,5;>0, 8 po,...). I claim that

10.1) ((xi)}_l,(yj)j_l,p) is a stationary equilibrium for 4,
~ L ~ i~

. -1 _ A
provided that yjl = yjl’ for j=1,...,3.

In order to see that (10.1) 1is true, observe first of all that

10.2) pOk = plk’ for all k € Lp .

-This follows from the fact that p 1is such that ng(p) is well-defined,.

Next, I claim that
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10.3) X, = sw, +2 (ij+ yJ.l)

4 Xy
i i o=

By the feasibility of ((x‘i’),(yj)), I know that

J

10.4) 2 (x,0 = 2 (w0 + 2 (Figo¥ig)e
i v IR R M

Also by the definition of Yg,

10.5)  Ygo = " Vo1

J
(10.4) implies that - Yo1 = ) yjl' Hence by (10.4) and (10.5),

J i=1 J
Zx, =2 w,+ 2 y.,5 Zw.t+ Z(y.,t¥.q), which is (10.3).
i 174 'Li 5=0 jo i 1 j=1 jo jl

(10.3) implies that ((xi),(yj)) is a feasible stationary
allocation for @g. That ((fi)’(Zj)’E) is an equilibrium for & follows
from (10.2) by an easy argument, which I omit. This completes the proof
of (10.1).

By (10.5), it is sufficient to prove that 50 has an equilibrium.
The proof is standard. I imitate the argument of chapter 5 of Debreu [1959].

o , .
First » I truncate § so as to obtain compact consumption

and production sets. Let B >0 be as in lemma 7.2, Let 50 be

50, truncated at B. That is, 50 = {(X,u:,wi), Yj’eij: i=1,...,1;
j=0,1,...,J}, where X = {(x,0) ¢ X | |x| =B}; ﬁg is the

o » A
restriction of u; to X, and Y, ={ye€Y, | lvl=383.
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A  s-equilibrium for 60 is defined in the obvious way. 1I1f

((xi),(yj),p) is a g-equilibrium for 60, then by lemma 7.2, xg

belongs to the interior of X relative to X,for all i. Similarly, yj

A

belongs to the .interior of Y5 relative to Yy for all j. It follows easily

that ((XZ);(Yj):P) is a g-equilibrium for go. Hence, it is
sufficient to prove that éo has an equilibrium.

For p ¢ A, let ;i(p). g:(p) and %?(p) be, respectively, the
income and demand of consumer i and the supply of firm j . in the
economy ;o. These are defined in the obvious way. Because Qj. is
compact, %?(p) is non-empty, for all j and p. Similarly, E:(p)
is well-defined and non-empty, provided that ;i(p) is well-defined,

';i(p) is well-defined if for each j = 1,...,J, py*ygy+ Py Yy

does not depend on the choice of (yq,¥;) € %;(p). Let (§0,§1) E.%§(p),
where j = 1. By the strict convexity of Yj (assumption 3.11), if

P > 0, then yg = ibk’ for all (yo,yl) € %?(p). Similarly, if

Py > 0, then yik = §1k, for all Gy € ﬁg(p). Hence,

P Yot Pyt Yy T Pgr T *pyoTys forall Ggyp €15 . This
proves that wi(p) is well-defined, for all i. Hence, gg(p) is
well-defined agé non-empty,.for all p and 1.

Now, let gz(p) be defined as follows. gg(p) = §z(p), if

~ . ~o o - o
wi(P) > Q- OtherW1se? gi(p) =f{x €X ‘ prx = 0}.

I 2 J
o o ~
Let ¢c(®) = z(g; (®) -~ wg) -~ 2 ﬂ? (), for peaA. It is
g=1 1 7 40
easy to see that the correspondence ¢ has closed graph and maps

into a compact set. Also, p‘*z = 0, for all 2z ¢ ¢ (p). Therefore by
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(1) on page 82 of Debreu [1959], there exists § ¢ A and
£¢ ¢ (§) such that £=0 . ILet 5%‘1’ = ($,,0) € §;(B), for

i=1,...,I and yj € n?(p), for j = 0,1,...,J be such that

I ~0 o I ~
i=1 i * j=0 j ~ ~ )
It should be clear that ((xi),(y?);?) is a quasi g-equilibrium for
50 . That is, ((xg),(yj)) is a feasible allocation for 50; pOk =0
1 . 1 J . N
if Xy < 2 wy.t 2 ¥.g and p., =0 {if
i=1 1k i=1 ik j=0 ] k lk
J ~ ~ Ao ~ Ao Ao A
0< jzo ijk; yjﬂg nj(?)f forAal;i j; and X e gi(p), whenever
A ~ At ~
wi(p) > 0. Hence, in order to prove that ((xz),(yj),p) is a
s-equilibrium for ao, it is sufficient to prove that
10.6) wi(p) > 0, for all 1{i.
At this point, it is necessary to introduce a restriction on §.
By assumptions 3.15 and 3.16, there exist (y.o,y..)e Y., for
I 3 N LA
j=1,...,3, such that I @, + =2 (y.0 + y.l) > > 0. Clearly, there
i=1 * j=1 J

exists E such that 0 < E'< 1 and

I 3
10.7) 2 owst 2 (YiqatH Y.q) >> 0.
=1 & j=1 &° it
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I now assume that § 1s such that 3'5_5 <1,

In order to prove (10.6), I first prove that

I A
10.8) z wi(p) > 0.
i=1

Let (ij’yjl) be as in 10.7, for j=1,...,J, and let

J J L
= - - = P

and ¢ > 0 1is so small that the following is true.

3
(wy,0) + Gggr¥g1) * jilfyjo’.5yj1)_?'?,9fwyu

W oeamH

10.9)
S i

1
By lemma 7.2, ](yj(yyjl) | <B, for j=0,1,...,J. Hence

3
i

o = - - .v - .
2w () = I opgewg + (pyyog V) * 2 (RgrYy0 F PytYyy)
i=1 i=1 j=1
I ~ L) ~ ~ A J A ~
2 2 pgrey + By ¥ge * PyV) 2 (Pg'Vio 8 Py7Yyy)
i=1 ji=1
= j§1 Po’®; * (P Yoo * P17 Vo) * jil (Pg'¥50 + 0 P1°Y57)

A A I J
i=1 j=1
inequality above follows from the fact that Py’ yj1 > 0, for all J§.

The second inequality follows from the fact that (;jo §j1) € ﬂ?(p),

for j = 0,1,...,J. The last inequality follows from (10.9). This

proves (10.8).
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As in the proof of theorem 4.1, it now follows that
Por~0» for all k¢ L,. (Here, I use the monotonicity of
preferences and the fact that each ;i lies in the relative interior
of %,) Hence by assumption 3.14, ;i(p) = ;0' wg > 0, for all 1,

This proves that ((Xi),(yj);P) is a g-equilibrium for g°.

QDE.DD

11) Proof of Theorem 4.3

I do not give a detailed proof of this theorem, since the proof
is completely routine. One approach is as follows. To any equilibrium
for §, there corresponds an equilibrium for the economy 5** defined
in gection 9? kfhe éomﬁodity space of. 5** wasr zw,LL]{l,.-.,J} )
A theorem of Debreu implies that the 5** - equilibrium allocation is
Pareto optimal among feasible allocations for §**. (See Debreu [1954],

theorem 1, p. 589.) 1t follows at once that the corresponding equili-

brium allocation for § 1is Pareto optimal.

12) Proof of Theorem 4.4

Let ((xi),(yj),p) be an equilibrium and let Ay > 0 be the
marginal utility of expenditure for consumer i in the equilibrium,

Suppose that p 1is so normalized that A < 1. Let B be as in

He R M

lemma 7.1. Then, \ xg \ = B, for all and t. By assumptions 3.3

and 3.4, Dui(x) is a continuous function of x whose components are

positive. Therefore, there exist positive numbers a and b such that
duy (x)

3

1A

b, for all { and k, if | x |= B. Let

A
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Let 1 be such that 5,786 - Then, for any t and k ,

t
-t t er Qe )
A PREANA P = a
K
k
t
Now suppose that 1 1is such that By <8 - 1f X > 0, then
t
ba—u—i—(f-i—)—= ot e G lsta. Let T b h that A.(5  s)ta > b
= N Ai%_ P = Ag 51 &) a. e e such a Ay 51 5§) a> .
k

Then if t® T , it must be that x: = 0

Q.E.D.

13) Proof of Theorem 4.5

~

Let ((xi); (yj), p) be a competitive equilibrium for § . I

first define the allocation to which ((xi)’ (yj)) converges. For
each i , let AL > 0 be the marginal utility of expéndiﬁ&réw%;f_Ebﬁéﬁﬁéf-"

i in the equilibrium ((xi), (yj), P) . This marginal utility was

~

A
defined in section 2. 1 assume that p is so normalized that I Ay = 1. 1

L + L

Jp € . ’ _ -1 c
Let U: R+ + (-, ») be defined by U(x) = max { i Ry ui(Xi) | x; € R, for all

and T Xi =x} . Let §' be the economy obtained from ¢ by replacing
i :

all the consumers with a single consumer whose utility function is U

and whose intiial endowment is ¢ = 5 wg - By a slight modification of
i
theorem 4.2, &' has a stationary equilibrium ( ¥, (§j) , p) . I will

assume that 5 is so normalized that the marginal utility of expenditure
of the single consumer is one. Let (ii) be such that x = 3 ii and
i
U(x) = 7 A;1 u(ii) . It is easy to see that ((ii), (§j), p) is a stationary
i ~ ~ -~

equilibrium for § with transfer payments. In this equilibrium, the mar-~

ginal utility of expenditure for each consumer 1 is Ay ((ii),(§j))
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is the stationary allocation to which (<%i)’ (%j)) converges,

The proof that ((%i),(gj)) converges to ((Ei),(gj)) uses the fact that
these allocations solve related maximization problems. The set of feasible alloca-
tiens for & depends on the Initial holdings, % y}i s of produced goods
in the economy. Think of these initial stocks as a variable. This variable
is denoted by K, where K ¢ R:p . Let %0 be the vector of initial

" ~
resources associated with the given equilibrium ((xi), (yj), P)

For each value of K , let Z7(K) be the set of feasible allocations

((xi)’ (yj)) for & such that 7 xg = 2w, + y?o + K . The relevant
- ~ i i j

maximization problem is the following.

 ot. -1 t
13.1) max {tzoa f AyT U (D) | ((x;), (Zj)) € F(K)} .

The stationary allocation ((ii), (§j)) solves this problem with initial

resources K = 3 §j1 . The allocation ((xi), (yj)) solves this problem

]

with initial resources K . These assertions may be proved as follows.
Because ((%i); (ij)’ é) and ((%i); é%j)’ %) are both equilibria with
marginal utilities of expenditure Ayreeeshy they solve the first order
conditions for solutions of (13.1). Because the constraints are convex

and the objective function is concave, any solution of the first order
conditions is an optimum.

Problem 13.1 is a variant of the maximization problem traditional in

growth theory. I now simply adapt the well-known proofs of the turnpike
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theorem to the situation here.

L
First,I define an appropriate Liapunov function. For K g€ R+p s

-]
t -1
let V(K = 5§ Z hg
3 t=0 1
a solution to problem 13.1 with initial stocks K - (Of course,

lug Geg) = wy (&)1, where ((xy), (7)) is

YéK) exists only if problem 13.1 has a solution with initial stocks K.)

~

Recall that 5. is of the form '; = (p, 6'5, 625,....)

- Let §§K) =p . (K~K) - %§K) . F% is the Liapunov function I will

use.

The diagram below may help one visualize F

A A %§KD

S

Figure 1
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I now turn to a number of technical matters, which, unfortunately,
take up a good deal of space., A series of lemmas then follow which
establish properties of F8 . The actual proof of convergence is

contained in the last few paragraphs.

13.2) Lemma There exist ) > 0 such that Ay > , for all 41 ,

no matter what the value of § .

Proof As in the proof of theorem 4.4, there exist numbers a and

au.(xg) -
b such that a<= —=—> = b , forall i , t and k .,
By the definition of 4.,
1 axk
x§k2>_Q , for all_‘i , k and t . Since ? Ai =1 , there is 1
i

t

t t
8 duy (x,)
—_— AP > with equality if

NA

such that A = Im1 . At the end of the proof of theorem 4.1, I noted

that the income of every consumer is positive in equilibrium. Therefore,

S t
t du; (x4)
xik:> 0, for some i , t and k , so that bz ——— =
%
k
Aié—t pﬁ g*I-la-tpE . That is, 5-tpt = bl . It now follows that for
: k
du_(x0)
the same value of t and forany n=1,,..., I , as ————
axk
-t t . -1 -1
Ana P = Aan . In conclusion, Ay =ab I .
Q.E.D.
I next show that T may assume that
13.3) if ((xi), (yj), p) is any equilibrium for & , then pt >>0

t _ t t
and 7 X, = z Wy + 3 (yjO + yjl ), for all t .

i 1 j
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The argument supporting this assumption requires some new terminology.
I say that firm j can use good ko to produce good k , if MjO
th . . . th
contains the ko coordinate axis and Mjl contains the k1 coor-

dinate axis. I call iko or ikNjN ..... j2k1j1k0 a productive sequence

if the following are true: 1) kn € {1,...,1}, for all n ; 2) kN € L,s
3) j €{l,...,3, forall. n ;4) t€{l,....1} ;5) for all n ,
firm j,  can use good kn-l to produce good kn ; and 6) there are
no repetitions in the sequences ko,....,kN and jl,...,jN . I eall

good k productive if k = ko in some productive sequence iko or
ikNJN....Jlko.

it should be ciear that all productive good will have positive price
in any equilibrium for ig. Similarly, goods which are not productive
will never be consumed and need never be used in production. These facts
follow from monotonicity in consumption (assumption 3.4) and in production
(assumptions 3.8 and 3.10). In conclusion, goods which are not productive
may be eliminated from the economy.

The interiority assumption implies that all goods are productive.
This fact, in turn, implies (13.3).

I now prove that
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13.4) there exist numbers q and q such that

0<qsp=gq, forall k, if 52 5,

where § is as in the interiority assumption.

With any productive sequence 1kNjN...;.k1j1k0 , I associate the

- - -1
ou,(x.) [ oq; (v,.)
number  q(ikyd. .. k3 k) = 5Ny Tl i
1 a;( @1
ky ky
2, G ) G,
N N ceseenre 1 >0 . Similarly, with the

ayOkN_l ayOkov

G

)
productive sequence ik, , T associate the number q(iko) = Ay A e 56

¥

Let q = max { qikgiy. - - 31%p) | ikoye-- Jjkg 1is a productive

>0.

0

sequence and ko =k} . There are only finitely many possible productive
sequences, since there are no repetitions in the sequence kN,...,ko .

Therefore, the maximum in the above definition makes sense.
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Since all goods are productive, 0, for all k.

N

If &= 6, then by the interiority assumption every good is either

produced or available as a primary good in the stationary equilibrium

((;,Ei)’ (_ij)’ g). It follows that p = q.

It 1s now easy to see that (13.4) is true. Let B be as in lemma 7.2,
du, (x)

By assumptions 3.3 and 3.4, is uniformly bounded away from zero

and infinity, for |x| = B . Similarly by assumptions 3.9 and 3,10,
the partial derivatives of gj at y are bounded away from zero and

infinity, for ‘y[ =3B . By lemma 13.2,} = Aié 1 , for all 1 ,

Assertion (13.4) follows at once.

I now state an analogue of lemma 13,2, which applies to firms. TFor

0q.(y.)
—_r1 for all k

. )
7

each j , there is Pj > 0 such that Bkg 0 s

8. (y.)
with equality if ijk <0 . Also 6Py = pj'—-]—-l— , with equality
1k
if yj1k> 0 . If yj =0 , I normalize P; by assuming that
- 99, (5.)
pk=pj-j—-]—_-—1_- s for some k .
ayOk
13.5) There are numbers p and p such that 0< p = Py = ? , for all

j » 1if s =s.

This fact follows from (13.4) and because [S'rj] = B and ng(y) is a
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continuous function of y .

I next define a process, which I call distributing surpluses. The

idea is to modify a feasible allocation so as to absorb additional supplies,
I do so in such a way as to control the size of the modification.
Let ((fi)’ (Zj)) be a feasible allocation and suppose that at.time

T , a> 0 units of good k are made available to the economy. I
define a new allocation, ((%i), (gj)) which makes use of these supplies.
For simplicity, I assume that T =0 . )

In order to construct ((gi), (gj)) > I need some new terminology.
= (0,...,0,1,0,...,0) denotes the kth standard basis vector of
R~ . I say that avproductiyeisgqgenge rikNjN....jlkO__realizes ﬁk_ ?fﬂ,
ko = k and ﬁk = dlikgie... 30k -

Let 1kNJN....Jlk0 be a productive sequence which realizes pk .
I assume that N> 0 . The construction for the case N = 0 will be

obvious.

I next define a sequence of positive numbers, ao,....,aN . Let

= 1 = t
ag=2a . Given a_ , , let a_ = max {(bz 0] (yj 0" 1% R
t t-1
t
i1 +be )EY } . By assumptions 3,8 - 3.10, a_ is well-defined

and positive,

Now let y. = (¥ -a_.e Y +ae ) , for t =0,...,N.
Jt th t-1 kt-l jtl t kt

Let x; = X/ + aNekN . If 34 jt , let yj yj . If t# N or if

t

'#1 , let x;, =x;, . This defines ((x,), G -

i'
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1 now show how to control the size of the numbers an defined above,

Again, I need new notation. The number

-1
9. (¥)
gfifzz ] may be thought of as a
1k, _ 5§Ok0

marginal rate of transformation. It is denoted by MRT(j,ko,kl;y). it
is well-defined only if firm j can use good ky to produce good kl.

By assumption 3.9 and 3.10,

13.6) there exists ¢ > 0 such that

| MBI,k 5k 55) - MRT(G,k0k),5 ") |23 MRT (S, K,k 5),
provided that these marginal rates of transformation are

well-defined and that |y - yJ] <e¢ and |y| s B.

where B is as in lemma 7.2,
I now exploit the fact that if ik ji...j;k, realizes Ek , then
0
-1- -1 —

MRT(jo K, 1oK3Y; ) =8 B By, for n=1,...,N. This fact.
n n n-1

and’ (13.6) imply the following.

13.7) Suppose that the allocation ((fi)’(Zj)) satisfies
gj(yg) = 0 and ] yg - ;j | < e/2, for all t and }J,
where ¢ 1s as in (13.6). Suppose also that a > 0 units
of good k are distributed in the manner described above,
giving rise to the new allocation (é%i),égj)). Suppose

that a 1is so small that 3L3'1 qas e/2. 1f



8 =% , then a =374 qa, for all n

In the above, g and q are as in (13.4).(13.6) and the definition of a imply that
: n

e 251515 4 <341lyg for all i
8,273 8 P Pk n-1 = q q an-l’ or a n, Since N= L,
n n-l
L -1~ L -1- ‘s Cx .
a = 37q " ¢q ag =3¢ " q a, for all n, The condition on a’'in (13.7) implies

that (13.6) may be applied at each passage from a
Now suppose that a vector, z € Ri, of goods is made available at
time T and suppose that a feasible allocation ((fi)’(Zj)) uis given.
Proceeding as above, distribute the first component 2F obtaining an
allocation ((151)’(12j))’ Then, distribute the second component, Zo 5
obtaining ((Zfi)’(ZZj))' Continuing inductively, one distributes all
components- of z,obtaining an allocation ((%i),(gj)) = ((Lgi),(Lyj)), o
I now compute an upper bound on the distance between ((%i),(gj)) apd

(2305 (-
Suppose that 1 yg - zj ‘ < ¢f2, for all j and t, where ¢

is as in (13.6:). Suppose also that gj(yg) = 0 and that

lz | = (L3L‘_51,-1 q) -16/2-

The various goods in 2z might be used to produce one good later.

Taking this into account and using (13.7), I obtain the following.

1389 If gzg, then | (G O,G5 ) - (GG 0,05

3 0

Lglg lz|, if 0< t < L. Otherwise,

1A

L3

(G, D) = (=), )

L to a, for n ="0,...,N,

I now turn to the properties of the Liapunov function ngefined earlier,
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The next lemma says that figure 1 is correct. It says that E is a

subgradient of V at K.
13.9) Lemma If F(K) is well-defined, then F(K)z 0 = F6(E).

Proof It is obvious that q§ﬁ) = 0.

Let ((xi)’(yj)) € 7(K). I must show that

133 et 2t eD s wEY =R ® D)

t=0

Choose (ygi) arbitrarily so that 3 y}

L K. The following equation
j . SO

1.=v - —

is simply an identity.

w
13.11) p* (K -K) - =

5 2 a7t (D) - u )
RO

0 i

R R IR Wl CHCI RN D)

t ~ t t-1 — —
. + -
+ tiﬂ § pel i (yj@ y j1) (yj0+ le)

m —
+ z 5§ Z2I[(P-¥,

— t = t
+ . - - * » + L d - ¢
0% ] jo T 8P yy) - eyt 8 PeYyy)]

It is convenient to write the right hand side of the above as

where Si is the ith infinite sum. § can be rewritten

S1 + 8, + 8 1

2 3’

as follows,

8

13.12) S, = 5"
t

I ™

-1 — _ -
3 ¢ u (x,) - p*x,)
o : Ay SiYy4 i

O TICHIEE TR B
1
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In rewriting S,, T use the fact that i (=5 - wi} = §(§j()+ yjl) .

t_
8§ p°l

s (vt
0 3

13.13 ;
s G0

1t
W8

t-1 t

t i

For future reference, I record the formula for S3.

t

= .t
ot epeypPl

0w
t — e —_— — —
13.14 = ey, -+ . . - .
) 8, tfos §[(p Yjgt 8Peyy) - ey

Clearly, ;i maximizes the function A;l ui(x) - ; *x, so that

, . . t t-1 t
S| = 0. Since ((Ei)’(Zj)) is feasible, §(yj0 + yjl ) + f (wi - xi) =0,

so that 82 = 0. By profit maximization in the equilibrium

(Ge)r GoB), 852 0
Q.E.D.

~0
Recall that K is the vector of initial resources associated

, A A A ~t ~“t-1
with the equilibrium ((xi),(yj),p). For t >0, let K = 2 ygo .
~ ~ ~ j
. At a ~ ~t
Since all goods are assumed to be productive, K = Z (xi - wi) -2 yio *
i 3
B.15)  Lemm 5F6(KL+1) - (K"

§[(A£1ui(;§) -p* ;E) - (Ailui(;i) - .;i)]
i

— At
+ Zl(pey,

— At — — -— —
+ . . - . . + . .
; jo T 8P Yy - Pyt 8Pyl

J

= 0, for all t=0,

Proof By the definition of Fé



-57-

1 ol v ol ~t+1
13.16) § F{K ) - KK ) =p5p°(K -

) -p° K - B
+ vé(ﬁt) -8 v5(f<t+1)

Sty n-t -1 “n -
Clearly, $§K ) = 8 z Ay (ui(xi) - ui(xi)). Substituting this

n=t i
into (13.14) and rearranging, I obtain

W8

o g |

sE & ~eHL =, Nt

) - 5®D = 6 5K - 50 %5

SGFR-F R4 2 TG - uED.

~t “t

A+l
I substitutute 2 (xi - wi) t

Kt, 23’;1 for K, 2y
j j ]

'
™
<
(S
o
Hh
0
Lo}

j1

for the first K and Z(; -w.) - 2 ;, for the second K. The result

S i Mi __,i_ . j_u-]p L e
is the following.
>+l oty L -, t
§ FLK )-Fé(K)—s§p Y31

J

- ~t e - -
'P'[Z(Xi'wi) Zyjol-sfp- j1

i j
FP0 2 Gy mw) - Iyt 3 A G - u &)
i i > Y50 LS B A | S S Sl
i j i
Upon rearrangement, the right hand side of this inequality becomes the
expression in lemma 13,15. That this expression is non-positive follows
immediately from the fact that Aps+-+sAy 2are the marginal utilities of
expenditure in the equilibrium ((;i)’(§3)’;)‘
Q. E. D.
13.17) Lemma There exist o > 0 and ¢ > 0 such that
~ e+l ot 2 e St _ 2
5 EK D - FKD = -amin [0, (G, 60) - (GG 1T,

provides that § 2*§
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Proof By assumption 3.5, the function of vy, ui(y) -I)ui(x)- Y,
achieves a unique maxinum at y = x, Let B be as in lemma 7.1. Since
Dzui(x) is negative definite and continuous in x, there are €e >0
and %, > 0 such that (ui(y) - Dui(x)- y) - (ui(x) - Dui(x) e X)

s -a \ y--x‘2 , for all i, if \ x \ = B and ‘ y-x\ < e,- Recall
that p; = 1, for all 1i. It now follows that, for all 1,

1 nt. = At B
(g 93D = pox) = Gy ey 6g) - proxg)

ItA

-1 At -1 — . "t
(AguyGe) = Ay Dy (=) xp)

At -

_ (A;.l u &) - AEID ug (%) ox) = - [ %y - % |°) provided that

e |

| %5 - %, |s .. By concavity, ( fu,GH -3-%5 - (Tl &) - 5rE)
i~ * UE e » My %Yy i t R B | i

=E-Q ¢

2 “t -
c ~¢

» when ‘ X T %X \ = e
I now apply the preceeding argument tawthemﬁrofits of firms., Let B
be as above. Suppose that y' € Yj and gj(y') = 0., Then by assumption 3,11,

there exist o >0 and €p > 0 such that for all j, ng(y')° (y-y")

=

- a \y-y‘]z,provided that yEYj, ly{=3 and |y-y'|s €p*

- "t - "t
Let P and [) be as in (13.5 ). Then, (p-yjo+ap-yj1)-

~

- - - - - t - 2 ';t -2
. + - yv..)=pe.Dgy.) - . ~y.) = - min (e .~ ¥.1) .
(B - yiot 80 - ¥59) = psDey(yy) - (rg - yy) = -y o 195 - 35
It should no be clear that the lemma is true, with ¢ = min(ec, ep)

and o = min (ac,p ab) .
- Q.E.D.

Lemmas 13.9 and 13.17 imnly the following.

1318) B zemin () (G, 6D) - (G, G

A~

~
Hence, in order to demonstrate that ((xi), (yj)) converges to

- - ~t
((xi), (yj)) exponentially, it is sufficient to prove that §§K ) converges
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to zero exponentially.

The next lemma is simply a corollary of the previous one.

1

13.19) Lemma There exist a« >0 and ¢ > 0 such that €§Kt+ ) -

5—1E§Kt) = -20 min (ez, ]Kt - R]z) , no matter what the value

of § may be.

Proof It is enough to observe that ’((XE)’ (y?)) - ((ii), (§j)|
=@+t & g
Q.E.D.

The next lemma puts an upper bound on §$KO),

ilA
o
e

13.20) Lemma There exist C > 0 such that g;Kp) =

for all 5’;j0.

I prove this lemma by adapting an argument of Gale [1967] (the proof of

theorem 6 on p.12). It is at this point that I use the hypothesis that
-1 ~

0
= :
? yjlk Kk >0 , for all k € Lp
Proof By assumption 3.15 and 3.16, there exist yj € Yj’ for j =
««.,J, such that 2 wg + = (yj0+ yjl) >>0 . I may assume that
i 3

z yj1 = y}i , for 1 may multiply the yj by an arbitrarily small positive

h| j

constant. Hence, I may assume that I w;, +2 (ij + y}i) >>0 .
i j

Choose o such that 0 <a <1 and o 1is so close to one that

- - -1
- Yy =< -
13.21) (1 - o) ; X = i w; + (1 - ) ? on + 0«? yjo + i le .

[}

Let XF
i

t+ly = t . t+l, = +
(1 -a""7%) x; and let yy = 1 -a )yj +ab lyj. Clearly,



((xi),(yj)) is an allocation. I prove that it is feasible,

First, I remark that ((x§+1), (y;_:+1)) = - @ (G, G+
al(x), (7)), for all
I now prove by induction on t that
13.22) z xt.: =z w + Z(yt.: + yt.:-l) , for all ¢t
i . 1 . 730 1
{ i 53 3
0 - - -1
= - < - >
By (13.21), i X (1L - f Xy = f w; + 1 - o) ? ij + anij +§3 yjl

=7 ws + 2 y?o + y:]'}: . This proves (13.22) for the case t =0 .,

i | ]

Suppose that (13.22) is true for t . Then, 2 x§+1 = (1 -a) Z ;ci +
i i

0l xl = (- a)Ze +2 G +i)l Falle, +3 G5, + 50T =

i i~ i i 3 jo jl i i 3 jo jt

' t+1

+ y?i) . The inequality follows from the inductive
i j

hypothesis. This proves (13.22).

Observe that 1lim xt.: = ;{i exponentially. Since u, is differentiable,

0
e N _
it follows that there is ¢ >0 such that 2 (u,(x,) - u,(x,)) = -¢ ,
ivi ivi
t=0
0, _ o .t 1
for all i . Let A be as in lemma 13.2. Then, VéK) =38 ZA
t=0 i

lA

(Ui(xz) - ui(ii)) = -1 K-lc. Hence, F§'l\<0) =p (Y(O- K - Vé(;(O)

»

1

1 <qe®-x)+12"c. The last inecuality follows

Do -1 + 12"

from (13.4).
Q.E.D.

13.23) Lemma There exist ¢ >0 and A >0 such that 1if ]K—I-<| < e

and §= § , then FG(K) is well-defined and Fé(K) = AlK-ﬁlz .
This lemma implies, of course, that the value function, V 52 18

differentiable at K and that p = DV§K) . vyg is probably differentiable
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everywhere. See Benveniste and Scheinkman [1979]) and Araujo and Scheinkman [1977].

Proof It is sufficient to prove the following.

13.24) There exist ¢ >0 and A > @ such that if IK-R[ < ¢ , then
there exists ((§i), (zj)) € 7(X) such that 5 . (K-R) -
[--]
8%l () - u G = A KR
t=0 i
If (13.24) is true, then a Cantor diagonalization argument proves that
§§K) exists. (Such an argument is given in Brock [1970], proof of

lemma 5, pp.277-8.)

I start by defining a feasible allocation ((oxi), (Qyj)) which con-
verges to ((ii), (§j)) exponentially and from below. I do sc¢ by using

the construction of Gale, which I have already used in proving lemma 13.20. Clearly,

§j1 . This is simply (13.21), with

ol
He
1
A

15y Lyy
Zog Feyots 2y, *
i i i

0

= = 'l =1 g ] 7-1=- t= - 1t+1"
a =5 , with ij 5 ij and with }jl le . Let x{ (1 &)

)xiL

: t+2
and yj = (1 - ()

) §j . Then by argument following (13.21),
0 0 . . .
(( Xi)’ ( yj)) is a feasible allocation.

I now modify ((oxi), (oyj)) so as to obtain an allocation ((lxi), (1yj))

such that gj(lyg) =0 , forall j and t . For all j and t ,



t 0t

1t 1t 0t _ t _
)y = ( Yi0 ’ aj yjl) , where a max faz= 1 ‘

Tlet ;

3

0 t 0t - . 1 1
( Y0 @ yjl), ng‘,. This defines (( ’ji)’( Zj))' Since

1t t 1 1 .
Yi1 2 qyil’ for all j and t, (( fi)’( Zj)) is feasible.

Let ¢' be as small as the ¢ in (13.6) and (13.7). Let
¢ > 0 be so small that

-1

(13.25) € < min (g/é,(lO:L3Pg—l€) £°),

where 2 1is as in the interiority assumption. (I also assume that
€< 1/5.) I will now prove that (13.24) is true for a suitable choice of
A and for the ¢ just defined.
Suppose that 0 < IK;EI < & and let T be the largest non-negative
1,T+2 -

integer such that CE) K 2 |K-K|, for all k. Such a T exists since

e > 2/4 and fk z ¥, for all k.

I claim that the part of ((lxi), (1yj)) from T on belongs toetTKK).

= = 1,742, =
For all k ¢ Lp’ Kk z Kk - |xK| = (l—(i) ) Kk. Therefore,
1T 1T 1. T™+1 - 1, T+2 - \
2L c 2y =1l G s X, - 1@ Sy = (1- (3I2y 5z
g ik T30k 2 P T G @ By = A-Q)THE R,

e T _ 1. ™42, =
; yjok) = (1- Qz) )Kk =< Kk’ for all k¢ Lp. This proves the claim.

I now define surplus vectors 2t [ Ri, for t=T, as follows.
T 1T
let z =K+ 2w - (Zx; -2 5y ). If £>1, let
i . jo
i i j
t _ 1 t-1 1t 1t
z = ? yj1 + i w; - ( i X, - § yjo). I distribute these surpluses in

the manner described near the beginning of this section. This distribution

1
changes the allocation (( Xi),(lyj)) into ((in),(zyj))o



I next show that

1, t-T

(13.26) |2 = ¥ 7'B) (& )" |KK]|, for all

where £ is as in the interiority assumption and

It should be clear that yFl = §jl’
1.t+l.<

Therefore, for all k € L (1-¢( -—

p’

1. t+1

1= (1- ("

i jCie

1 gli = Kk. Hence, O

kelL.
€ p

JA

X

If kgL ,then z

)

Recall that T
1 T+2 — z 1 T+3 —

K| 2

IK-K[ Hence,

l(k>

K
It follows that

l t-T
2

(13.27) (-1—)t+l wls & |k-K]|.

This inequality together with the

imply (13.26) for t > T.
By what has been proved, lzTI s |K-X| + |
= |K;E| + 4i—lB IK;EI. This completes the proof

K = (1= ()

1, t+2 -

-0D~-

v

tz T,

B 1is as in lemma 7.2.

for all t and j.

1.t+1
M}z x
: ik

—

1t
Z yJOk
i k|

(%)t+13, for all

xik N

{IA

is the largest non-negative integer such that

(1)T+3

Z, for some k.

inequalities of the previous two paragraphs

X + Emi - (

of (13.26).
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I may assume that § = %, where & 1is as in the interiority assumption.
This means that I may use inequality (13.8), which requires that 6 2 5
4 . 2 t 2 t 1t 1t
(1i3.8) and (13.26) imply that ](( x ), ( yj)) - (( xi),( yj))l
i

1 -1 -

t- - ] — 1, t-T
t |z 7| = (5% 1B) (6L) (L2 + L)qg ~ q ,’K—Kl('f) . In applying

L3 q—

A

q
n

I ™t

0
(13.8), I have used restriction (13.25) on =.
It is easy to see that

1

t+1
5

Bs 4B (P

1A

I((1}{ti), (ly§)) _ ((;i)’(;j))l |K-K|. The second

inequality is (13.27). By the triangle inequality,

By ety ¢'g

1A

2.ty 2.t =\ = %Lyt T
(13.28) [ (%), Cyd) = ()5 G0 | KKl

Inow Tt (), 05 = (Cup 6, Gyl

((xi),(yj)) satisfies (13.24), for a suitable choice of A.

). I will show that -

I now define A. Let B be as in lemma 7.2. By assumptions

3.3 and 3.5, there exists bc > 0 such that for all 1,

ui(x) + Dui (x) » (x' = x) - ui(x') = bc ‘ x -x' ‘2 , provided

that ‘x\ = 83 and | x-=' ]g 1. Let A Dbe as

. 1 - =
in lemma 13.2. Then, for amy 1, A; ui(;_(i) - P ¥,

-1 - -1 -2 -
- (Ai ui(x) -p*x) =2 bc \ x-xi\ , provided that x_=x, = 0

-~ -1 aui(}?i)
whenever k 1s such that Py # Ay -——ax———— .

k
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By assumptions 3.9 and 3.11, there exists bp > 0 such that

A

. . . 2 .
for all j, gj(y') + ng(y')- (yj -y) - gj(y) bp\y - y|", provided

that | y'| =3B and |y-y'}=1 and gj(y) = gj(y') = 0, Let

pj and g be as (13.5). Then, (p'yj0+5p° yjl)- (p-y0+5p-y1)

tA

pb

~

— — 2
= p.D L) - < a.b -y, ided -
P gj@J) Gy = ¥) = p5b, |y yJ\ , provide

that the following conditions hold: 1) Yox = §j0k = 0 whenever

B0 _ - %
P p. —<~—— ; 2)y. =y, =0, whenever §p, # p., —"—t— ;
LS B e L R

and 3) *gj'(Y) =0,
I have been careful to choose ((gi),ggj)) so that the following are

L 2

tk = ;k = 0, whenever Ek # A; —""——axk ; for all i and ¢t

true: 1) Xy

~t
2 D = . = -
)yJOk -?JOk 0, whenever Py # °j _S;____ ) yjlk = yjlk =,O’
ok
whenever 5pk # p: —————— ;3 and 4) g.(y.) = 0, for all j and t.
3 9y, i3

It follows that

3.2 206G - 7% - 4w eD - e ap)

+ zI[p°y
i k|

= b+ D | (), 65 - (GG 12, for atl ¢,

+ De - » t + e t
o FEP Y - @yt ¥41)]
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where b = max (bc,bp),

4 - . 2 L1—
Let A =73b@+D B2 @ )’ T

I now show that (13.24) is true for ¢, A and ((xi)’(yj)) as

8

- - t -1 t -
defined above. By (13.11), p *(XK-K) - 8 2 A (ui(xi) - ui(xi))
i

t

([

= S, +5, + S,

(13.13) and (13.14), respectively. By (13.29) and (13.28),

where Sl’ S2 and S3 are defined by (13.12),

s, 832 b+ 2 5 [(ED, D) - (GG Vs -

1 t=0
-1_.2 2142, 2 2, -1-2 , = = <712 .
= b+ ) B2 + DT (7 B [kK|? = a kK|S since
— t=0
5 (yt s yt'l) + 3( - xt) = 0, for all t, it follows that S, = O.
; o j1 T Wy i - 2

This proves (13.24)

Q.E.D.

I now ma§ prove that lim %§Kt) = 0 exponentially. By (13.18),

o

this proof will complete the proof of the theorem.

Choose a small positive number no larger than the & of lemma 13.19
and the ¢ of lemma 13.23. Call this number ¢ again. Let o be as
in lemma 13.19 and let A be as in lemma 13.23. Clearly, I may assume
that o <A ., Finally, let C be as in lemma 13.20. Then, I know that

FG(;{O)

1A

c
1f 1>825 and K- R[S ¢ , then EK) =4[ k" -R*

Also, Fé(xtﬂ) - b-lFéKt) = -2a min(e’, |K®- &%), for all ¢
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- C -
Let § = max (5, K%a y Ty ) . F¥romnmowon, I assume that 8 = §
- Ctoe

I claim that

~

13.30) Fé(KtH)

= Fﬁ(Kt) - amin (¢, ]Kt-f(lz )

The argument involves induction on t . Recall that §§K0) =C

1y

1A

Assume by induction that F6(Kt) =¢ . If |K-§ =¢ , then FG(KH- = (k%)

2a.] ‘%t- Rlz =

A

+07 D EED -2 &5 )2 = &S + 167 -A

§§Kt)- o ]Kt—ilz . The last inequality follows from the choice of §

1f [R5 Rl 2 e, then BT = R&H + 67 1 E®D - 206”5 BED) +

(6-1- e - 2@62 = §§Kt) - aez . The last inequality again follows

from the choice of 8§ . It now follows that §§Kt+1) = C . Hence, I

may continue the above argument inductively. This proves (13.30)

I now prove that

HA

~ - ~ ’~ 2
13.3 ) FéKtﬂ') max [(1 -cb” 1) Fb(Kt), Fb(Kt) - ag’]

N ~ A - ¢ -
By (13.30), FéKt+l) = FéKt)— aez , if ]Kt— K] z¢ . If |K-Kl e ,

k1 xt Xt &2 x5y - 1okt . This proves (13.3.).
then F(K )éFﬁ(K)-alK-KI s F(K) - ah (K" is p
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I complete the proof by proving the following.

A
[
1
o
Q
@
-

13.32) There existsa positive integer T such that EéKt) =
if t= T, and FG(Kt> S( 1 - ocA'l)t"TAe2 , if £t=T

1f FéKt) = Ac’, then aA’lFS(Kt) = ae? , so that by (13.31), FK'TH) =

At ~ - ~
K - ae> similarly, if E(K) s Ac? , then ad”'R(KY) = ae®
ot -1, ot : (e1
so that ﬁ;K Y= (1 -cA D) %§K ) . Let T be the smallest positive
. 2 2 .
integer such that Ag" = C - ag' T . Assertion (13.32) follows.
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