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Innovation Adoption and Diffusion
Richard Jensen
Department of Economics
The Ohio State Univeristy

Columbus, Ohio 43210

1. Introduction

The argument has frequently been made that the pattern of diffusion
associated with most new innovations will typically have certain characteristics.
A diffusion curverfor an innovation is usually defined as the proportion of
its potential users who have already adopted as a function of time (measured
from the first adoption). Many empirical studies by both economists and
other social scientists have shown that diffusion curves nearly always have
two distinct characteristics: (i) they are "S-shaped" (the proportion adopted
is an increasing function of time which is initially convex but eventually
becomes concave); and (ii) they tend to be right-hand skewed (the inflection
point occurs at a time corresponding to a proportion adopted.which is less
than one half, so that the function is concave over the greatest amount of
time; in fact, this skewing is occasionally severe enouch to make the diffusion
curve appear concave everywhere).]

The focus of most empirical studies of innovation diffusion has centered
on identification of either the major determinants of the speed of diffusion
or the characteristics of firms which determine how long they delay adoption.2
The seminal contributions are Griliches' [6] study of hybrid corn and Mansfield's
[12] study of twelve industrial innovations. These studies, and most of the
similar ones following, conclude that diffusion is faster for innovations

with higher profitability and that large firms tend to be the earliest adopters.



Some studies (e.g,, Mansfield [12], Herregat [7]) have attempted to ascertain

the effect of information and management attitude toward innovation on diffusion,
an effort which seems to have been inspired by the work of the sociologist

Rogers [16]. However, these attempts have been largely unsuccessful, probably
due to the obvibus measurement problems, The primary deficiency in this line

of research is the lack of decision-theoretic models of individual firm behavior,
Following Mansfield, most authors assume that the probability of adoption by

a firm at a given date is positively related to the proportion of firms in

the industry who have already adopted.3 This assumption implies a differential
equation whose solution yields a logistic (S-shaped) diffusion curve. Although
empirically convenient, this is a description of aggregate industry behayior
which sheds no 1ight on the individual firm's adoption decision and hence

fails to provide a behavioral explanation of why some firms are quicker to

adopt than others.

On the other hand, tne decision-theoretic approaches to individual firm
adoption behavior have tended to confine themselves to explaining why and how
long a firm would delay its adoption of a capital-embodied innovation, In
these models a firm delays adoption while waiting either for its capital in
place to deteriorate sufficiently to make adoptio~n profitable (e.g., Fellner
[3], Salter [17]), or for the innovation's profitability to increase sufficiently
(e.g., Flaherty [4], Reinganum [15]), or both (e.g., Smith [19], Hinomoto [8]).
The major deficiencies in these approaches are that they are limited to capital-
embodied innovations, they ignore the effect of information and management
attitudes on the firm's adoption decision, and they do not link firm adoption
behavior to the diffusion of an innovation through an industry,

The purpose of this paper is to develop a decision-theoretic model of
individual firm adoption behavior which can be used to derive an expected

diffusion curve with the commonly observed characteristics mentioned above.



This analysis will therefore bridge a gap in the ]fterature by providing a
possible explanation for the most typical pattern of innovation diffusion
which is based on optimal adoption behavior and certain characteristics of
firms in the industry. The approach used is to view adoption as a problem
of decision-making under uncertainty when learning can occur. That is, when
the innovation is introduced, the firm does not know whether adoption will
be profitable or not, but this uncertainty can be reduced by waiting and gathering
information, In Section 2 the firm's decision problem is formalized as an
optimal stopping problem in which the firm can either stop and receive the
éxpected return from adoption or wait, take an observation, and receive the
discounted expected value of this information, While waiting the firm learns
about the innovation; that is, the firm starts with an original belief that
the innovation is profitable (expressed as a subjective prior probability)
which it adjusts each time it receives new information by applying Bayes'
rule. An optimal adoption rule based on the firm's current belief that the
innovation is profitable is then derived and used tc show that the firm will
delay adoption of a profitable innovation when its original belief is suffi-
ciently low., This rule is also used to generate results relating the probability
of adoption at or before a given date to the parameters of the model.

In Section 3 an industry model is constructed in which firms differ only
in their original beliefs that the innovation is profitable., An appropriate
diffusion function is then defined and used to derive the common empirical -
finding that diffusion is more rapid for innovations of higher profitability.
This diffusion curve is then shown to be either S-shaped or concave when it
is assumed that the original beliefs are distributed uniformly and that the
proportion of observations seen is equal to the true proportion (for a profitable

innovation). Although these assumptions are somewhat restrictive, this is



nevertheless an important and intriguing result. This is so not only because
jt js the first derivation of an S-shaped diffusion curye for innovations
adopted by firms, but also because it shows that differences among firms in
their subjective beliefs that the innovation will be profitable may be suffi-
cient to exp]aih the commonly observed pattern of diffusion. Section 4 then
concludes the paper with a brief summary of the results and a discussion of

the limitations and possible extensions of the analysis.

2. The Adoption Decision of the Firm

Consider a firm confronted by an exogenously developed innovation which,
if adopted, could either increase or decrease the firm's expected present
value (compared to its current level), Information about the innovation's
existence comes from a source external to the firm(such as the innovation's
supplier or industry trade journals) which will continue to provide information
at discrete intervals as long as the firm has not adopted. It is assumed that
the firm can classify each piece of information as being either favorable or
unfavorable to the innoyation, so that each obser&ation can be represented
by a Bernoulli random variable 7Z which takes on the value 1 if the information
" jis favorable and 0 if not. Hence, if the fi~m does not adopt it will observe
a sequence of random variables Z], 22,.,., which are assumed to be independent
and identically distributed with unknown parameter ¢ = Priz;=1} e (0,1). It is
also assumed that 6 can take on only two values, e] and 65, where 0 < 6, < 8y < 1.

Associated with each value of the random variable are certain revenues
R, and R

1 0’
that the revenue R] is earned if the firm adopts and 1-6 as the probability

where R] > RO' Hence 6 can be interpreted as the probability

that R, is earned. Both R] and R0 represent the present discounted value of

0
5

the future stream of revenues resulting from adoption. That is, Ri “ T
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(i=0,1), where rs is the revenue per period earned after adoption, ry > o
and ge(0,1) is the discount rate. So if the firm adopts, it will receive
" in each period thereafter in which its experience is favorable and o
if its experience is unfavorable. There is a fixed cost C > 0 of adopting
the innovation, so that the expected adoption return is eR] + (1—6)RO - C.4
It is assumed that

e]R] + (]—e]) Ry -C>0> eZR] + (]-92) Ry - C, (m
so the innovation is profitable (good) if o = P and unprofitable (bad) if
6 = 92.

To compute the expected yalues of adoption and the next observation

the firm must estimate o, which is assumed to be done in standard Bayesian
fashion, That is, if p is the firm's current probabilistic belief that
8 = 61, then 6 is estimated by |

a(p) = pey + (1-ple,. (2)
It is also assumed that, when the innovation appears, the firm assigns a
subjective prior probability ge[0,1] to the event o = By - This initial belief
that the innovation is good will depend on both the attitudes and expertise
of the firm's decision-makers and their experience with similar innovations
in the past. The exact assignment of g will not be dealt with explicitly,
but instead will be taken as given. The firm's learning behavior is assumed

to be Bayesian also. Given the current belief p that ¢ = 8y » the updated

belief is

P8,
h](P) = q—(m“ (3)

if the observation is favorable and

a P(]-e])
‘ hoﬁp) =TT (4)

if the observation is unfavorable. Hence, after n observations, k of which

were favorable (k < n), the firm's updated belief that ¢ = 61 will be



p(n,k,g9) = [1 +( 2%— “( l;gf-)"‘k ( 159 )17 (5)

The firm's decision problem can now be formally stated as an optimal
stopping problem, in which the stopping value is the expected return from
adoption and the value from optimal continuation is the discounted expected
value of the next piece of information, Since ge[0,1] it is clear that
p(n,k,g)e[0,1], so the state variable for this stochastic process can be
taken to be pe[0,1], the firm's current belief that the innovation is good.
Let Vt(p) denote the maximum expected return when the state is p and there
are t=0,1,.., decision dates remaining. Assuming that Vo(p) = 0 for all p,

the Vt(P) for t=1,2,... are defined recursively by

Vo (p) = max{Vi(p), Vi (p)} (6)
where the expected adoption return is

Vi(p) = a(p)Ry + (1-q(p))Ry - C (7)
and the expected value of optimal continuation (the waiting va]ue)5 is

Vi(p) = 8La(p)V, _(hy(p)) + (1-q(p))V, 4 (hy(p))]. (8)

Since the focus of this paper is on the case where there are an infinite
number of decision dates, it is necessary to prove the existence of the dynamic

programming functional equation

V(p) = max{V3(p), V¥(p)2 (9)
where V3(p) is given by the right-hand side of (7) and .
V"(p) = sla(p)V(hy(p)) + (1-a(p))V(hy(p))]. (10)

Because this is a familiar exercise, a formal proof will be eschewed. The
existence of an optimal adoption rule for a firm facing this decision problem
is given by the following theorem.6

VW(p) if and

ANV

Theorem 1: There exists a unique p*e(0,1) such that V¥(p)

only if p % p*.



Proof: Standard techniques can be used to show that: (i) V(p) is continuous
and convex on [0,1]; (ii) v¥(0) >0 > Va(O) = eZR] + (]—eZ)R0 - C; and (iii)
V¥(1) = BleyRy + (1-67)Ry - C] < V(1) = 6Ry + (1-6,)Ry - C. Hence, it
follows from (2) and (7) that Vw(p) - Va(p) is a continuous, convex function
on [0,1] which is positive at p = 0 and negative at p = 1. Q.E.D.

fhe optimal adoption rule for the firm can thus be expressed as: adopt
at any decision date when p > p* and otherwise wait. That is, the firm should
adopt when its current beljef the innovation is good attains a minimum reser-
vation level. The following result about how the reservation probability p*
varies with the parameters of the model will be useful in proving several
additional results. The proof of this lemma is omitted because it requires
several long and tedious inductions on t which would add nothing of value to
the ensuing ana]ysis.7

Lerma 1: p* varies directly with C and inversely with ris ¥ and B.

0’
The preceding results can be used to determine how the probability of

adopticn at or before a given stage of the process varies with the parameters

of the model.

Theorem 2: The probability of adoption at or before a given stage n varies

directly with g, k, rys oo and 8 and inversely with C.

Proof: Theorem 1 implies that the probability of adoption at or before n

can be written as Pr{p(n,k,g) > p*}. Hence, the theorem's statement follows

from this and from Lemma 1 and the fact that EEig—a’kigl» 0 and

p(n,k+1,g9) > p(n,k,g) for k=0,1,...,n-1. Q.E.D.
This theorem simply states that a firm is more likely to have adopted by

a given stage when the discount rate is higher or the firm's estimate of the

expected profitability of the innovation at that stage is higher. This is



not a surprising result, of course, but it is significant to note that this
result is an implication of optimal firm behavior under this model.

The final result presented in this section is also not a surprising one,
but it is necessary in order to show that a diffusion can occur in an industry
composed of firms facing this decision problem,

Theorem 3: Imnmediate adoption may not be optimal, but a good innovation will
eventually be adopted with probability one if g # 0.

Proof: Theorem 1 implies that immediate adoption is not optimal if ge[O,p*}.
And if g # 0, then the strong law of large numbers implies Pr{lim p(n,k,g) =1}
=1 > p*, e . Q.E.D

Hence, a firm will delay its adoption of a good innovation (i.e., one
which it would have immediately adopted under certainty).if it is sufficiently
skeptical when the innovation appears, but is willing to learn. Finally, given
that delayed adoption is optimal for the firm, it is easily seen that the length
of delay will tend to be shorter the more optimistic is the firm, the more
favorable the information received, the higher the discount rate or period

adoption returns, or the Tower the cost of adoption.

3. The Rate of Diffusion and an Expected Diffusion Curve for an Innovation
The optimal adoption rule derived in Section 2 will now be used to analyze

the diffusion of a good innovation in a simple industry model. Consider an
industry composed of a continuum of firms who become aware of the innovation

at the same time, receive the same informatipn about it (if they wait), and
are identical in every way except for their original beliefs that the innovation
is good. The assumption of common knowledge about the innovation is a reasonable
one since the observations arise from an external source in this model. The

assumption of different original beliefs is also reasonable since both the



expertise and attitudes of decision-makers and previous experience with similar
innovations is bound to vary among firms. The approach will be to determine
what kind of diffusion curve could be expected to be observed when the inno-
vation is good .(and therefore will eventually be adopted by all firms).

Given these assumptions, firms will adopt at different dates if and only
if their original beliefs differ. Hence it will be useful to rewrite the
optimal adoption rule in terms of the firm's original belief, the information
received, and the reservation probability.

Lemma 2: For any triple (n,k,p*), where k,n=0,1,,.. (k < n) and p*e(0,1),
there exists a unique g*(n,k,p*)e(0,1) such that p(n,k,g)
if g 2 g*(n,k,p*).

Proof: Using (5), p(n,k,g) = p* can be solved directly for g to obtain

p* if and only

AtV

. . - 1-p% Bk 81 n-kq-1
g*(n.kop*) = 1+ (5 (5) (172)" 17 (1)

This expression obyiously belongs to (0,1) for given (n,k,p*). Noting that

BP(”sg’ ) > 0 completes the proof.

The optimal adoption rule can thus be restated as follows: If the reser-
vation probability is p*, then the firm will adopt at any stage n when k < n
favorable observations have been seen if g Z_g*(n,k,p*), and otherwise wait.

So g*(n,k,p*) represents the minimum original belief which the firm could have
had if it adopted at stage n after seeing k fayorable observations when the
reservation probability was p*. Let Sj = (j,-; Zi) for j=1,2,..., and sO=(O,0),

i=1
so that g*(n,k,p*) can be rewritten as g*(sn,p*), and let

9,(s,-P*) = min{p*,g*(s;,p*),....9*(s .p*)}. (12)
Then gm(sn,p*) is the smallest value that g*(sj,p*) has attained over the

initial value g*(so,p*) = p* and the first n observations., Because the
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adoption decision is irreversible, after n observations all firms with

g 3_gm(sn,p*) will have adopted at or before stage n. If the original beliefs
of firms in the industry are distributed on [0,1] according to the cumulative
distribution function F(g), then the proportion of firms which have adopted

and given reservation

by stage n for a given sequence of observations Sys-esSy

probability p* is

%) =
ssP*) = Iy (s pr) GF(9) (13)

Defining the diffusion function in this way insures that it will be nondecreasing
in n since gm(sn+],p*) f_gm(sn,p*) for all n. Moreover, d(so,p*) = f;* dF(g) > 0
and 1lim d(sn,p*) = 1 almost surely when ¢ = 61, SO the diffusion function defined
by (?2; satisfies the basic requirements for the diffusion curve of a good
innovation,

Before addressing the question of the shape of this diffusion curve,
the following result relating the parameters of the model to the rate of
diffusion in the industry will be presented. Conventionally, diffusion of
an innovation is said to be faster when the proportion of firms which have
adopted by a given stage n is at least as great for all n and strictly greater
for some n.
Theorem4 : Diffusion of a good innovation will be faster (slower) when C is
smaller (larger) and rys rgs or 8 are larger (sma]]er).
Proof: It follows from Lemma 2 and (13) that showing gm(sn,p*+5) > gm(sn,p*)
for any arbitrarily small & > 0 will be sufficient to prove the claim of the
theorem, Recall from Lemma 3 that p{n,k,g*(n,k,p*+§)) = p*ts and p(n,k,g*(n,k,p*))
= p*, Since éEiD—’Elﬂl» 0, it follows that g*(n,k,p*+s) > g*(n,k,p*) for all

29
§ >0, Q.E.D.
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This result confirms empirical results showing that diffusion of a good
innovation will be faster (slower) when its expected profitability is higher
(Tower) for all firms in the industry. A]though this is not surprising, it
is worthwhile to note that this result is an implication of optimal firm
behavior and obtains for any measurable distribution of original beliefs.

In order to determine the shape of the expected diffusion curve for a
good innovation implied by this model, the behavior of the second difference
of d(sn,p*) with respect to n will be examined under specific assumptions on
the information received by the firms and the distribution of original beliefs.
The second difference of d(sn,p*) is

s4(s p*) = -Flgp(spazsP™) + 2F(g(5,405P%)) - Flgy(s,.p¥)). (14)
The assumptions on information and beliefs are:

(A1) s = (n,ne]) for n=0,1,...

n

0for0<g<a

_ ] g-a
(A2)  F(g) ={ g= for gela,b]
T forb<g<1

n
Since E( Z:|e =6]) = neq, (A1) requires that the proportion of observations

i=1
seen which are favorable be equal to the proportion expected when the innovation
is good at every decision date. (A2) distributes the original beliefs of firms

in the industry uniformly over a subset of [0,1]. These additional assumptions

allow the following result to be proved.

_ 65 6.l ]-92 ]-6] 1
Theorem 5: Let p=[ 1+ (5—' (Tig_) 1 . Then under (A1) and (A2):
1 1 ‘
(i) if p* > 5, then there exists a unique, positive integer n such that

Azd(sn,p*) > 0 for all n < n and Azd(sn,p*) < 0 for all n > H,
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(ii) if p* < 6, then Azd(sn,p*) < 0 for all n.
6y .6y 1-6y 1-6, | 4

Proof: Under (A1),g*(s ,p*) = {1 + (];E*)[(ég?‘ (Tjgzo 1}

2
Let ag*(s .p*) = g*(s,,q.P*) - g*(s ,p*) and a"g*(s_.,p*) = ag*(s_ ;,P*)

- Ag*(sn,p*)'for n=20,l,... . Then simple algebraic manipulations

yield:
Ag*(sn,p*) < 0 for all n (15)
Azg*(sn,p*) % 0 if and only if g*(sn,p*) § 5. (16)

Hence, gm(sn,p*) = g*(sn,p*) for all n under (A1). Now let n be the value
of n which solves g*(sn,p*) = 6 when n is treated as a continuous variable

(simple algebra can be used to find 5 explicitly and show that n 3_]).

~

If Bgg-is an integer, define n = n; if not, define n to be the smallest

integer greater than or equal to 525-. Then since (15) implies that

g*(so,p*) = p* > g*(s],p*) > ..., results (i) and (ii) fol]ow directly

from (16) and the fact that, under (A2), Azd(sn,p*) = - ﬁ_ggifﬂigil for

all n. ” Q.E.D.

This theorem shows that under (A1) and (A2) the diffuSion curve
found by approximating d(sn,p*) by a smooth curve through the points
{(n,d(sn,p*))]n=0,],...} will be either S-shaped or concave. Although
(A1) and (A2) are rather restrictive assumptions, this is an intriguing
result because it predicts diffusion curves of the same type as those
most often observed. Moreover, this result shows that the pattern of
diffusion which is believed to be characteristic of many new innovations
can be explained solely by differences in the subjective beliefs of firms

about the 1ikelihood that the innovation will be good.
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Finally, the effects of a change in the mean or variance of the uniform
distribution on the rate of diffusion will be examined. A variance-preserving
change in the mean is interpreted as a change in the jndustry's average original
optimism about the innovation, and a mean-preserving change in the variance
is interpreted as a change in the precision of the industry's average original
optimism.

Theorem 6 : Under (A1) and (A2), diffusion of a good innovation will be:

(i) faster (slower) when the industry's average original optimism about
the innovation is higher (lower);

(i1) faster (slower) in the initial stage of diffusion and slower (faster)
in the concluding stage when the industry's original beliefs are

less (more) precise,

Proof: The mean and variance of the distribution given by (A1) are p = E%E
2 (b—a)2 ]
and o = 7 - A variance-preserving change in u corresponds to equal
_ b-g*(s_,p*)
changes in both a and b, Since d(sn,p*) = —p3 under {Al) and (A2},
result (i) follows from the fact that %g-> 0 and %g-> 0. A mean—preserving

change in 02 corresponds to changes in a and b of egual size and opposite sign.

Result (ii) then follows from the fact that, for any small & > O,
b-gq* . .
Big"' if and only if g*

- - * - * - -
(5:%7§(§;§7-§ E:%—- if and only if g*

It is evident that an innovation will diffuse more rapidly when the

b+s-g*

(b%¢)-(a%e)

p and

A v
ANV

V HA
h =

Q.E.D.

industry is more optimistic that the innovation is good, The ambiguity

in the effect of a .change in variance arises from the fact that a change
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in varaince is equivalent to adding (or subtracting) both more optimistic
and more pessimistic firms to the industry. Hence, the duration of
diffusion will be longer (shorter) in an industry whose beliefs about

the innovation are more (less) diverse,

4. Concluding Remarks

The main conclusion of this paper can be briefly summarized as
follows, Firms may delay adoption of an innovation if they do not know
whether it is good (profitable) or not in order to gather information
and reduce this uncertainty. In such a situation firms have subjective
beliefs that the innovation will be good when it appears which will differ
due to differences in the expertise and attitudes of decision-makers
about innovation and differences in previous experiences with similar
innovations, Those firms who do not adopt immediately will revise their
beljefs upward as they learn that the innovation is good (from the infor-
mation gathered) until they become optimistic enough to adopt, The com-
monly observed pattern of diffusion (the S-shaped diffusion curve) can
then be explained solely by the difference among firms in the original
beliefs that the innovation will be good.

It is, of course, necessary to recognize that this result is limited
by the special assumptions made to obtain it., Although there are seyeral
of these, the two which deserye the most attention are the assumption of
a uniform distribution of original beliefs in the industry and the assump-
tion that a firm which never adopts can continue to earn its pre-innovation
return (made implicitly in the assumption Vo(p) = 0 for all p). There is

no reason, a priori, to assume that the original beliefs in an industry
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will have any particular distribution. On the other hand, since this
result holds for at least one type of distribution, it might be possible
to derive the same result for a more general class of distributions, It
would also be interesting (and more realistic) to incorporate rivalry by
allowing a firm which never adopts to gain (lose) relative to its pre-
innovation position when a rival firm adopts an innovation which is
bad (good). A first effort at such an analysis has already been made
by this author [10], but the results have not yet been as interesting
as expected,8

Although extensions along these 1ines will help to broaden the
applicability of the results of this analysis, a final comment in its
defense should be made. It does proyide a much-needed explanation of
a pattern of diffusion characteristic of many innovations which derives
from the optimizing behavior of individual firms, Hence, viewing adoption
and diffusion of an innovation as a problem of decision-making under un-
certainty when learning can occur would seem to be an approach which is

not only appropriate, but also holds promise for more general explanations.
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Footnotes
See Lekvall and Wahlbin [11], Mansfield [12,13], Nasbeth and Ray [14],
or Rogers and Shoemaker [16] for examples of these diffusion curves,
See’Davies‘[]] or Mansfield [12] for excellent discussions, and Gold [5]
for a sweeping criticism, of this approach to the study of diffusion.
The rationale for this assumption is generally Schumpeter's imitation
hypothesis (perceptions of profit opportunities are positiyely related
to the successful experience of others in the market). However, in
practice models based upon this assumption are merely applications of
. the medical theory of epidemics. See Davies [1] for an interesting
demonstration of the relationship between these models.
The decision to adopt is thus an irreversible one.
It is assumed that there is no explicit cost to taking an observation,
This is somewhat restrictive since it precludes the possibility that a
firm may stop (or never start) taking observations when it is sufficiently
skeptical, and therefore may skip a good innovaticn. Neyertheless, the
central results of this paper could still be obtained if there was an
explicit cost of observation, although additional assumptions would be
required to prevent this possibility,
This theorem is proved under much more general learning rules than those
implied by Bayes Theorem in Jensen [9].
This proof can be found in [9].
One result obtained which is interesting is that adoption by one firm
may reduce the probability of adoption by the firm still waiting. Both
Flaherty [4] and Reinganum [15] have analyzed adoption behavior in duopolies
under certainty when the supply price of the innovation declines through
time. Even in this case there is a diffusion since the firms in general

will not adopt at the same date,
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1.
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