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1. Introduction

This essay concerns decentralized decision making in a non-market organi-
zation. A principal has to make a decision under uncertainty. He has available
agents whom he may consult in the process of making the decision, because the
agents possess some relevant information. The problem the principal faces in
using agents is that the agents may have different objectives than he has.

I am interested in the principal's problem of designing a decision mechanism,
which optimally exploits the agents' cooperation.

My specific concern is with delegation as a means for organizing decision-
making. In delegation the agent is given freedom to make the decision subject
to constraints specified by the principal. A central issue is the relation-
ship between the agent’'s freedom of cheice, the information he possesses
and the divergence in preferences. This question is addressed in the context
of simple one-dimensional quantity controls. For a stylized model of economic
planning, it is shown that the agent will be given more freedom when he gets
more informed or when his preferences come closer to the principal's. The
model extends Weitzman's (1974) work on prices vs. quantities and gives an
indication of the relationship between the tightness of economic control and
information.

The result on information and the agent's freedom of choice is highly model
specific, whereas the result on the effects of preference divergence can be
extended. I do so by considering the general one~dimensional control problem
with the principal using interval (quantity) controls. In this case agents can
be partially ordered by their unrestricted response functions, so that the
principal always prefers and gives more freedom to an agent whose response
function is uniformly closer than another agent's. Without specifying proba-
bility distributions for the agents' information, no stronger ordering is
possible. For higher-dimensional control problems (like non-linear pricing)

one has to be content with even weaker orderings; generally, only agents whose



preferences lie on a ray originating from the principal's can be compared in-
dependently of probability distributions. Though one finds that some agents
can be compared, these results are rather negative for the prospects of model-
ling agency markets.

A basic question of interest in delegation is when it will be a useful
tool for cooperation; that is, when is it of value for the principal? This
question is of relevance for understanding the emergence of economic institu-
tions that are based on agency relationships. I give two sufficient conditions
for a positive value of delegation, which show that the value depends on how
coherent the principal's and the agent's preferences are and what opportuni-
ties there are to control the agent so that his induced preferences align more
closely to the principal's.

The rest of the paper is organized as follows. Section 2 presents a quite
general formulation of the decentralization problem, which specializes to
delegation when different agents' information do not get coordinated in the
decision process. The delegation problem is reformulated in section 3. A
theorem on the existence of optimal control sets is proved and examples are
presented to indicate the general applicability of delegation. Section 4
treats the earlier mentioned extension of Weitzman's planning problem and
section 5 contains the general results on the use of interval controls. The
value of delegation is studied in section 6 and conclusions with a comparison

to some of the literature is contained in section 7.



2. A General Formulation of the Decentralization Problem

Suppose there is a decision d to be made such that it belongs to a

prespecified set of alternatives D, called the decision space. A decision

process can quite generally be described as a mapping d:M = D, from inputs
m € M to final decisions d(m) € D.

We will here be concerned with decision processes that have n partici-
pants and can be described as follows. Each participant i chooses a message

m, from his set of alternative messages Mi’ called i's message space. The

final decision is determined by the message n-tuple m = (ml,...,mn) via a

n
decision function d:M - D, where M = X Mi is called the joint message space.
1:

1

If the decision function d depends on more than one m, we have a decentralized

decision process. The pair N = (d,M) is called a decision mechanism.

We are looking at the problem of a single decision maker, called the
principal, who has to choose d € D facing some uncertainty. The uncertainty

is described by a probability space (Z,F,P), where z € Z is the state of nature

and P is the principal's subjective probability measure on events in F. The

principal's objective is to maximize the expected value of his preference func-

tion F.:D x Z - Rl, which for each d € D is a measurable function on (Z,F).

0

The key feature of our problem structure is that the principal has

available n agents (indexed by i = 1,...,n), who possess scome private infor-



mation about the state of nature. Each agent i has observed the outcome of
a random variable ;; on the probability space (Z,F,P), which provides infor-
mation about ;: For this reason the principal is interested in using the
agents in the decision process by defining a decision mechanism N = (d,M),
which decentralizes the decision as described above. The agents' messages
will normally correspond to part or all of their private information.

What decision mechanism N should the principal use? The problem that
the principal faces is that each agent will act in his own self-interest
according to a preference function Fi:D X Z -~ Rl, i-= l,...,n.l Any parti-
cular choice of decision mechanism, will result in a non-cooperative game
between agents. I will model this as a game of incomplete information {see
Harsanyi [1967-1968]) so that the agents' strategies are message functions
mi(yi) of their private information. It 1s assumed that a Nash equilibrium
(or a Bayesian equilibrium) is the appropriate solution concept. This gives
the principal the basis for evaluating different decision mechanisms.

Let me now formulate precisely the principal's problem. For this we
have to assume that the agents know each others preference functions Fi and
the functional form of each other's private information (not the outcomes).
They should also agree on the specification of the probability space (Z,F,P).
These assumptions can be defended as in Harsanyi [1967-1968], and rest on
the idea that the probability space can be augmented sufficiently to incor-
porate all differences in information. Given a decision mechanism N = (d,M)

n

i=1 satisfying:

a Nash-equilibrium is defined as a set of functions {ai(yi;N)}
(2.1)  E[F (d(m(y;N)),2)] 2
_i .
E[F, @' (v30),m, (v,)),2) ],

for every alternative strategy mi(y,) and for every 1 = 1,..,,n
i 3 .,0.



— — - 3 _— - _i - —
Here m(y,N)—(ml(y,N) ces ,mn(y,N)) , M (ml, RS SR ELIEERE

— i _
.,mn) and (m ,mi) = m.
The existence of a Nash equilibrium for each N is assumed.

In choosing among different decision mechanisms N, the principal is

restricted to a set of admissible decision mechanisms N. I will comment

on this set shortly. The principal's problem can now be stated as follows:

Decentralization Problem: Choose a decision mechanism N € N, such that it

maximizes
(2.2) E[F,(d(m(y;N),2))],

where m(y;N) is a Nash equilibrium for each N, defined by (2.1).

If there is more than one Nash equilibrium, assume the principal will
choose one of them as a basis for his optimization problem. The existence of
a solution to the decentralization problem will only be discussed in connec-
tion with delegation.

There is another way of viewing the principal's problem defined above.
Let E(y) = d(ﬁ(y)). The function E(-) describes what eventually will be
realized in equilibrium given the outcomes of the agent's signals. It is

called the outcome function. An outcome function is said to be attainable

if there exists a decision mechanism N ¢ N, which yields that outcome func-
tion at a Nash equilibrium. Denote the set of attainable outcome functions
by K. The principal's problem can then equivalently be phrased as:

Find d(-) € K which maximizes

(2.3) E[F,(d(y),2)],
or verbally, find the best attainable outcome function.
n
Let the range of Y be Yi and let Y = Yi' A simple but useful result is

i=1



b

the following:

Revelation Principle: An outcome function E(-) is attainable if and only

if the decision mechanism N = (E(-), Y) has a Nash equilibrium such that

This principle shows that the principal need not look at general mes-
sage spaces M in the design problem. He can always take M = Y and concen-
trate on the choice of the decision function alone. However, he can only
consider decision functions that yield truth-telling Nash equilibria.

A few remarks about the formulation are in order:

1. We have avoided a further complication of the problem by assuming that
the principal has no private information of interest to the agents.
Otherwise we would have had to include the principal as a player in
the game of incomplete information with his strategy being the choice

of N as a function of his information.

3%

Randomized strategies can be included in the formulation by augment-
ing the agents' signal spaces Y, by independent and uniformly distri-
buted random variables. Likewise, the principal could use the out-
come of a uniformly distributed random variable to randomize his deci-
sion rule. All of this, of course, could be embodied in the specifi-

cation of z.

3. By appropriately specifying N we could allow agents to take private
actions (as part of d), which cannot be controlled by the principal

4
(e.g. levels of effort).



4. Rather than maximizing the principal's objective we could look for effi-
cient decision mechanisms by having the principal act according to the
preference function:

n
(2.4) iil E[Xi(yi)Fi(d,z)] + E[Fo(d,z)].

(see Harris and Townsend (1981), Holmstrom (1977, Section 2.5), Myerson (1979).

A few examples may illustrate the general decentralization formulation.
If all Fi are identical we have a team (Marschak and Radner (19725).

Each agent i is in charge of a decision di' Their private information can

be communicated through an information system I, which may be the null-system.

The center's problem is to find the optimal decision rules to be employed.
p

For this problem, we can take F. = F_., d = (d

0 i l,...,dn). The restrictions on

the decision rule will be determined by the information system I and can be
incorporated through a definition of N. Since we have a team we are not
making any effective changes by letting the (auxiliary) principal design the
decision mechanism, so the team problem is indeed subsumed in the general
formulation.

Another example is the revelation of preferences for public goods
(Groves (1973), Green and Laffont (1979)). The public good decision is do.
Individuals have valuation functions Vi(dO’yi) over the public good and their
preferences are linear in money. Let (dl,...,dn) denote transfer payments to
the principal. Then Fi(d,z) = Vi(do’yi) - di’ Fo(d,z) = f Vi(do,yi), and
the problem fits the general framework.

A final example is the design of auctions (Harris and Raviv (1981),

Myerson (1981) , Maskin and Riley (1980)). An object is set up for seal-bid



auction by a seller (principal). Buyers (agents) have information about

their preferences and the quality of the object is given by (yl,...,y ). Let
n

dO be the award decision and (dl,...,dn) the payments from buyers to sellers.

Let Yo be a randomizing signal for the seller. Preferences are given by
. 1 . .

FO(dO,dl,...,dn,y) and Fi(dO’di’y)' The seller's problem is to find the

best rule dO:Y - {1,...,n}, di:Y - R, which yields truth-telling as a

Nash equilibrium as described in the general formulation.

3. The Delegation Problem

An important subclass of the decentralization problem is arrived at by
restricting the decision function to the form d(m) = (dl(ml),...,dn(mn)).
In that case no information gets coordinated in the decision process, and the
process becomes equivalent to delegating the decision di to agent i subject

to the constraint that

(3.1) d, €C; = {diIEmi €M, s.t. d; =d.(m)}.

Rather than choosing decision functions di(-), the principal can be viewed

as choosing control sets Ci' A reason for not coordinating information may

be the transactions costs saved by the simpler decision process. In any

case, it appears that delegation is a very prevalent mode of decentralization.
The central features of delegation can best be studied by analyzing

the case of a single agent. Then the delegation process proceeds simply as

follows: the agent observes a signal y, the principal chooses a control set

C ¢ D, and the agent determines the final decision by choosing d € C so as

to maximize his own benefit. Formally, given C and the private signal y,

the agent solves the program (from now on superscript A refers to agent, P to

principal):



(3.2) max E[FA(d,Z)lY]
d€C

D will be taken to be compact and C closed so a solution always exists. Let
d(y,C) be the set of maximizers in (3.2). A selection from d(y,C) for each

y, will be denoted d(y|C) and called a response function. Notice that we

can define a response function for the principal as well even though he does
not observe y. When necessary dA(-) will identify the agent's response func-
tion, dP(-) the principal's (particular selections when necessary).

It is essential how the agent resolves ties. One possibility is the
rule

| P )
(y{C) = argmax E[F (d,2z)|y];
ded(y,C)

(3.3) d
max

i.e. the agent acts according to the principal’'s interests in case of a tie.
This will ensure existence of an optimal control set as seen below. For

the moment though, let d(ka) be the response function that the principal per-
ceives as the agent's behavior. Then, we may define the principal's problem

as:

Delegation Problem: Choose C € N such that it maximizes

(3.4) E[FY d(y]C),2)].

Here N is the class of feasible control sets. (We use N again, since a con-
trol set is equivalent to a decision mechanism).
It deserves to be mentioned that there is no reason to delegate if the
agent does not have any private information. More generally, the control set
P

C has the cardinality of the signal space Y. Of course, if F = FA, setting

C =D is optimal.
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One of the virtues of the delegation formulation is the following result:5

Theorem 1. Assume D is compact, N is a closed subset of the set of all closed
subsets of D, FP and FA are continuous in d and uniformly bounded, and either
(i) or (ii) holds:

(i) the agent acts according to dmax(') defined in (3.3), or

(ii) Prob {d(y,C) is not a singleton} =0, YC € N.

Then the delegation problem has a solution.

Proof: See Appendix A.

The theorem gives two simple conditions under which existence it
guaranteed. The latter condition is usually satisfied if there is any un-
certainty about the agent's preferences.

Let me next turn to some examples of delegation. The first one represents
the simplest one-dimensional control problem.

Economic Planning (Weitzman (1974)).

A central planner tries to control the production of a single good of which
an amount d can be produced at a cost C(d,z) for a benefit of B(d). The pro-
duction unit knows z, the center knows B(d). Weitzman considers two modes of
control: setting centrally a quantity d, or setting a price p and delegating the
choice of d to the production unit, which will subsequently maximize its profits
pd-C(d,z). To get a comparison of the two modes one may approximate B(d) and

C(d,z) by quadratic functions:

(3.5) B(d) = b + B’(d-d%) + 1/2 B”(d-d*)?,
(3.6) C(d,z) = c(z) + (€= h(2)) (d-d%) + 1/2 C”(d-d%)°,
where d* is the best centralized action.6 Without loss of generality, take

h(z) = z and E(z) = 0, so that C“ = B’ by optimality of d¥%,

4

Weitzman shows that the best price to set in the price mode is p* = B" =

C’ and that the price mode is better than the quantity mode exactly when B” +
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C” > 0, independently of the distribution of =z.

I will consider a more elaborate form of delegation, which mixes a
policy of prices and quantities. Specifically, the center can set a price and
in addition require that d ¢ [dL,dU]. If z has a symmetric distribution and
the approximation in (3.5)-(3.6) is used, it is evident that the optimal price
to set will again be p* = B” = C”. Suppressing the price decision, what re-

. . . . . 1
mains is a one-dimensional control problem, with D € R~ and preference fun-

ctions:
(3.7) F (d,z) = B(d) - C(d,2),
(3.8) F(d,z) = p*d - C(d,z).

I will return to this model in the next section.

An Insurance Model

Since the path-breaking work by Mirrlees (1971) and Spence (1973), many
signalling and screening models have appeared in the literature (e.g., Roths-
child and Stiglitz (1976) and Riley (1979)). Though these models deal with more
than two persons, they normally involve only bilateral trade, which can be put in
the framework of delegation. 1In order to be specific, I will look at the case of

an insurance market (Rothschild and Stiglitz (1976)).

The insurance company is the principal and the insured the agent. In the
simplest case, the agent faces a risk of having an accident, described hy a
random variable x (= 0 if no accident, = 1 if accident). The agent knows his
probability of having an accident, denoted by y, whereas the insurance company
is uncertain about y. We can then take z = (X,v¥). The decision is what in-
surance policy d should be offered to the agent. Let d = (a,t),
where a is the level of insurance (payment in case of an accident net of premium)
and -t is the premium. The company is assumed to be risk-neutral, and has a

preference function, given by:
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FPod,z) = -t , if %

"
Il
Q

The agent is risk-averse, with a utility function U and consequently a pref-
erence function:

FA(d,z) u(t)

M2
Il
o

, 1if

L4
1]
b

U(a) , if

Since the company does not know y, it turns out that it is beneficial
to delegate the choice of an insurance policy to the agent by offering him a
set C of insurance policies, rather than a single one. The agent prefers,
for any fixed level of insurance a, smaller premiums to larger, so the company
only needs to consider delegation of sets of the form C = {(a,S(a))}. This can

be seen from figure 1 below.

Figure 1 about here

S(a) is the price the agent has to pay for the level a of insurance. We see
that the company's optimal pricing problem is one of optimal delegation.
Remark: It is of interest to note that closed subsets of R2 correspond to
closed epigraphs of the price function in screening models. This means that

Theorem 1 guarantees the existence of an optimal solution for these problems if
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price functions are upper semi~continous.

Moral Hazard (Mirrlees (1976), Holmstrom (1979, 1982)).

The agent's utility function is UA (w,a), defined over wealth w and
effort a; the principal's is UP (w), defined over wealth alone. Effort
affects the distribution of the monetary outcome x. The agent has observed
a signal y before the principal determines the sharing rule s(x). There-
fore, it generally pays the principal to let the agent participate in the choice
of s(x). In the delegation framework, d = (s(-), a), but only s(:) can be
controlled by the principal.

Let f(x {y,a) be the conditional density of x given the signal y and
effort a and let g(y) be the density of y. The principal's problem can be
stated as:

nex S U (x - s() £(xly, a(y) g(y) dxdy, s.t.
s(-

a(y)= argmax [ UA (s(x), a) f(x,7,a)dx, ¥ y.
a

It can be reformulated as a delegation problem, by writing out the derived

preference functions:
P P
F (s(:), a, y) = J U (x-s(x)) f(x]y,a)dx,
F (s(4), a, ) =f U (s(x),a) f(x|y,a)dx.

These examples serve to indicate the generality of the delegation form-
ulation as well as the structural relationship between rather different looking

problems.

4., Quantity Controls in Economic Planning

In this section I return to the economic planning problem described
earlier in order to illustrate the use of interval controls. The objective is to
find out how economic control depends on the curvature of the benefit and cost

functions, and the information gab.
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With the quadratic approximations in (3.5-6) the preference functions in (3.7-8)

can be written (ignore constants and recall that p* = B' = C') as the loss functions:
P z 2
4,1 = - d* =
D ) = @ - ax - ),
(4.2) LA(d,z) = (d - d* - —%: )2

Define ay = 1/(¢” - 8") > 0, a, = 1/¢””> 0 and bP = b, = d*. Then (4.1-2) are

of the general form:

(4.3) tid,z) = @ - (a,z + bi))z, i= AP,

For the analysis of information change it will be useful to add some genera-
lity by letting z = y + x and assume that the agent observes y but not x. Assume
further that x and y are independent so that x represents pure noise in the
signal. Because of (4.3) there is no loss in generality to let Ez = Ex = Ey = 0.
If necessary a; and bi have to be redefined, but not in the planning problem

, . 2 2
considered, since Ez = 0 was already assumed. Let Var x = S, and Var y = s_.

Conditional on y, expected losses are (dropping constants):
(4.4)  2.(d,y) = @~ (a.y + b))%, i=a,p.
i’ i i ’ ’
Consequently, the response functions are linear:
. = + , i = A,P.
(4.5) di(y) a.y bi i

Let (dL,dU) be a control interval. The expected loss for the principal

when he uses this control is:

yL yU
2
(6) B LA = 7@ - 400700 + @) - ) e
B y
L

L @y - dp))Yac(y) + 82
"y

b
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where YL and y

£ _ _ . .. _
y are defined by dA(yL) dL’ dA(yU) dU. Since dA is increas

ing we can look for optimal values yi, yg instead. It will suffice to analyze

the upper limit because the analysis of the lower limit is symmetric.

*
Differentiating E_ with respect to Yy gives the first-order condition for Yyt

P

7'<+ B _ _ .

(4.6) i(aAyU by, — apy - bp)dG(y) =0
Yu

This is the conditicn for ya when we have general quadratic loss functions

with linear responses as given by (4.3) and (4.4). To get further I will assume
that x and y (hence z) are normally distributed and return to the specific

case of central planning in which, recall, a, > a_ > 0 and bA = b_. In that

A P P

case (4.6) reduces to:

* 2
% g(yU)Sy

(4.7) (aA/aP)yU =

1 - G(yy)
Notice that the function h(y) = g(y)/(1-G(y)), is the hazard rate for the
Normal distribution; a well-known function from reliability theory (see Barlow

and Proschan [1975]). 1In Appendix B the following properties of the hazard

rate are established:
2
(4.8) h(y) >y/sy, vy

(4.9) 0 < h'(y) Si < 1, ¥y;

(4.10)  1im 2D
y > =

L
2

]
y

Thus the RHS in (4.7) has y as an asymptote. Since a, >ap > 0, (4.8) ~ (4.10)

imply that (4.7) has a unique solution 0 < y; < =, Thus,
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£ = * = d*
dU aAyU + bA > bA d#,

where d* is the principal's best centralized act. Symmetrically df < d* so d%

is contained in the optimal delegation interval (df, dﬁ).

Now look at changes in the information gap y. Only the RHS of (4.7)

changes with si. In Appendix B T show that,

4.11 2
( ) a? [h(y) Sy] >0 , for all y.

y

Since ays aP > 0, it follows from (4.7) (by total differentiation w.r.t. SV)
* % ’
ay.. ad.,
that 3e > 0, which implies 3 > 0. A symmetric analysis shows that
ad* ’
L

2 . , .
< 0. Thus the agent is given more freedom as Sy’ that is the information

as
Y 2
gap, increases. Notice that s does not influence the amount of freedom the
X
. . 2 2 2 . 3 2 )
agent receives. Therefore, since s, = sy + s an increase in sy could be in-

~

. . . <l . .

terpreted either so that the principal gets less informed (sz increases with

2 . 2 .

sy) or that the agent gets more informed (sz stays the same and the increase

. 2, . 2 L .

in sy is offset by a decrease in s ). 1In the latter case it is straightfor-

X

ward to compute that the principal gets better off when the agent becomes more
informed.

P

Finally, consider the effect of a change in C*, B From the expressions

for aA and aP, (4.7) gives directly that either an increase in B™ or a decrease
in C” will decrease the freedom of the agent. This accords with Weitzman's findings
that when B” - C” increases, prices tend to be better than quantities.

The preceding discussion is summarized as:

7,8 . . . .
Proposition: In the economic planning problem approximated by quadratic loss

functions (4.1-2) and with a Normally distributed information gap ¥,
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(i) The production unit will be given a finite degree of freedom [df, dg]
which will include the best centralized act d*. Neither prices nor quantities
are optimal.

(ii) The production unit is given more freedom with an increase in the
information gap y. If the production unit becomes more informed, the central
planner becomes better off.

(iii) The production unit is given more freedom the closer are a, and
aps that is, when there is either a decrease in the curvature of the benefit
function or an increase in the curvature of the cost function.

Part (ii) above should be contrasted with Weitzman's finding that the
relative benefit of the price and quantity mode is independent of the in-
formation gap. Actually, one can show that yg > o yi > - 3ag si - ® | SO
in the 1imit the price mode becomes optimal independent of B”, C”. ’ Though
the information structure is quite special, the analysis suggests that
economic control (e.g. pollution control) should be exercised as a function
of differences in information and specifically so that control is less

tight with a less informed center.

5. A General Comparison of Preferences

In the economic planning problem things come out according to intuition:
the agent gets more freedom with better information and with preferences closer
to the principal's. Unfortunately, such is not the case in general. Improved
information may reduce the agent's freedom and make both parties worse off.

An example is given in Holmstrom [1977] and the issue has recently been studied
in more detail by Green and Stokey [1980a], with the conclusion that very little

can in general be said. Only a quite special form of information improvement, called
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success-enhancing will guarantee that both parties get better off.lo The purpose of
this section then is to study what can be said about the other results in the
Proposition.

First, let us study when the coptimal control interval contains the best central-

ized act d* as was the case in the economic planning problem. Define the level sets,
(5.1) Y. (@) = {yeYjd (y) > d}, i = A,P,

of an agent A and the principal P. YA(d) is the set of signal outcomes under
which the agent would prefer a higher action than d. Obviously, Yi(d) c Yi(d'),

when d' < d. The agent's and the principal's preferences (or preference functions)

are said to be coherent, if for every dfD:

YA(d) n YP(d) = YA(d) or YP(d).

Coherence c¢xpresses the requirement that if for one signal y the agent prefers

d, to d, and the principal d, to d then there cannot be another signal for

1 2 2 1°
which the reverse is true. Coherence turns out to be an essential assumption
that loosely speaking implies that the principal's and the agent's preferences

move in the same direction as y changes.l Without such conformity, delegation
will frequently be valueless.

I wish to emphasize that the ensuing analysis does not require any
assumptions about the dimensionality of y as is commonly (and regrettably) the
case in much of information economics. On the other hand, coherence is the

vehicle by which our one-dimensional intuition carries over to the general case.

Theorem 2: Assume that preferences are concave, coherent and continuous.
Then there exists an optimal interval control, which contains the principal's

best centralized decision.
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Proof: Let the optimal interval control [a,b] lie above the principal's
best decision d*. The other possibility can be treated similarily.
Furthermore assume [a,b] is an optimal interval with the lowest lower bound.
Such an interval exists by the continuity assumption and because the set of
optimal lower bounds above d* is closed. I will show that there exists an
&€ >0 s.t. [ a, b] is at least as good as [a,b], unless a = d*. This will
prove the claim.

Suppose a > d*, contrary to the assertion in the theorem. By coherence, two
possibilities exist: (i) YP(a)finA(a), (ii) YA(a) E:Yp(a). They are pictured in

figures 2 and 3 below (the heavy lines represent the agent's controlled response

funectinned

It could be that YP(a) = YA(a). T will for the moment assume this is not
the case, and come back to it later.
Case 1: YP(a) < YA(a), YP(a) # YA(a). Let superscript ¢ denote complement.
By coherence and continuity of preferences, there exists an ¢ > 0
c o
s.t. dP(y) < dA(y), for erA(a-s) - YA(a). By definition, dP(y) <a-=-e¢g, for

c ,
erA(a - €). By concavity of the agent's preference function,

3 - c
a-¢ < dA(y| [a ~-¢, b]) <= dA(yl [a,b]), for stA(a),
and

dA(yl fa -¢ ,b]) = dA(yI [a,b]), for stA(a).
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It follows that under the control [a - ¢,b] the agent's response will be
pointwise as close to the principal's as under the control [a,b]. Since the
principal's preference function is concave, [a - ¢, b] is at least as good
as [a,b], contradicting the minimality of a.

Case 2: YA(a) c YP(a), YA(a) # YP(a). In this case, when one lowers
the bound to a - ¢, it is not true that the agent's respone will become point-
wise closer (see figure 3). We have to argue differently. By continuity and

coherence of preferences there exists an ¢ > 0 s.t.
> — -

(5.2) dp (y) = dA(y), for erA(a £) YA(a).

Furthermore YA(a)_E YP(a) implies

(5.3) dp(y) > a, for yaYA(a)

By concavity of the principal's preference function, he considers d = a - ¢
at least as good a constant response as d = a (since the integral of a point-
wise concave function is concave and a -g¢ is closer to d* than a). It follows

that the principal prefers d = a - ¢ to d = a on Yz(a), since he prefers d = a

tod=a-¢ on YA(a) by (5.3). By (5.2) the principal prefers (weakly)
dA(y][a - ¢, b)) tod =a-¢ on Y;(a), since the former is pointwise closer
in this region. Combined we get that the principal finds dA(y,[a - ¢, b]) at
least as good as dA(y‘[a,b]) on Yz(a). On YA(a) these responses coincide

so we have shown that {a - ¢, b] is at least as good as [a,b] contradicting
the minimality of a.

Case 3: YA(a) = YP(a)- By coherence of preferences and continuity we get
either into Case 1 or Case 2 above, when we lower the bound to a - g, and we get
a contradiction as before.

Consequently, a > d* is not possible. An analogous proof shows b < d* is

not possible and the theorem is proved. Q.E.D.



- 21 -

Next, I turn to the issue of preference comparisons. Consider two a-
gents who have the same information, but one agent's preferences are in some
sense closer to the principal. Does this imply he will be given more freedom
as in the planning problem? The answer is in the affirmative with the appro-
priate notion of closeness.

Definition: Let A and A' be two agents with the same information ¥y,

We say that agent A:s preferences are uniformly closer than agent A':s with re-

spect to the principal's, if for every deDO = the range of dP(y),

¥, (d) €Y, (d)

[N

Y (d),
p

or

Y, (@) 2 Y,(d)

U

Y (d),
P

I define uniform closeness only over the set of decisions which the principal
may take (DO), because the optimal interval controls will always be subsets
of DO.
Note that pairwise coherence is implied by the definition of uniform
closeness.
The following lemma will clarify the meaning of uniform closeness.
Lemma 1: Suppose agent A:s preferences are uniformly closer than A':s

w.r.t. the principal's, and that all preference functions are strictly unimodal.

Then, given any interval control C, we have for every yeY,

d,. (y|]o) < d, &[C) = &, (v,

or

1V

d, 10y 2 a4, vl = 4, (.
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Proof: Make the contrapositive assumption, say,

.4 4,010 < 4,10 = 4, ()

for some y. The other possibility is symmetric. Let d' = dA,(yIC). By
(5.4) and unimodality, yeYp (d'), y¢YA(d'). This implies, by uniform close-
ness, inA,(d'), S0 dA,(y) < d'. Since C is an interval, it contains all
points between dA(y’C) and d'. By strict unimodality of agent A':s prefer-
ences he should then choose dA,(y|C) < d', since dA,(y) < d', which contra-
dicts the definition of d'.
Q.E.D

Notice that we have to restrict attention to interval controls. For
controls with gaps the claim would be false in general. In that case we
would need more information about the specific preference structure of the

agents. With interval controls the relevant information is carried in the

uncontrolled response functions alone.

The lemma shows that uniform closeness implies that agent A:s response function
always lies between P:s and A':s. An example of uniform closeness would be a situa-
tion where agents determine the scale of an investment and all three parties have

exponential utility functions with A:s risk aversion coefficient lying between

P:s and A':s.

It should be noted that it is possible that A is uniformly closer in
preferences than A' for one information signal y, but not for another. Hence,
one cannot define uniform closeness directly over z.

The following is the main theorem on comparison of preferences.

Theorem 3: Assume preferences are concave and continuous. If agent A

is uniformly closer than A' in preferences w.r.t the principal, then the
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principal will be no worse off with agent A than with A', and he will give A
at least as much freedom as A', regardless of the distribution of y.

Proof: The claim that the principal is no worse off with A than A" fol-
lows directly from Lemma 1, since A:s controlled response function is point-
wise closer than A':s regardless of the control C.

For the second claim I need to show that if [a',b'] is an optimal control
for A', then there exists an optimal control [a,b] for A, which contains [a',b'].
By Lemma 1 the optimal intervals overlap, since they contain the principal's
best centralized act (Theorem 2). Hence, if [a,b] does not contain [a',b'],
then either a' < a or b' > b.

Assume b' > b. T will show that [a',b] is a strictly better control of
A' than [a',b'], contradicting the optimality of [a',b']. Two cases are possible
by uniform closeness.

Case 1: YA,(b) D YA(b) E Yp(b). An illustration of the situation is given

e . c
in figure 4, where I have written Y, = YA‘(b)’ Y2 = YA'(b) - YA(b) and

Let fi(d,y) = E(Fi(d,z)ly), i = P,A,A". Since FP is concave s0 ig fP'

and correspondingly for f, and fA"

A

(5-5) T Gy [t b DLy dRly) = £, (ylla',b']),y)dP(y)
1

+ é fP(dA,(yl[a"b'])’y)dP(y) + é fP(dA,(y;[a',bn]),y)dP(y).
2 3
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By definition of YA,(b),

(5.6) [ £y (d, (y]la’,b' 1), 1) dP(y) = J £,(d,, (v[[a",b]),y)dR(y).

Yl Y1

On YA,(b) ~ YA(b), dA,(yl[a',b']) > b, whereas dA(y) < b. Consequently, by
uniform closeness and using Lemma 1,dP(y) = dA(y) < b. Since the principal's
preference function is concave, he would prefer d = b to dA,(y[[a',b']) on

YA,(b) - YA(b). But on this set, dA,(yl[a',b]) = b, so

(5.7) Joofpd, i (y[la’,b']),y)dP(y) =/ £,(d,,(y][a",b]),y)dP(y).

Y, ¥y

On YA(b), dA,(y)[a',b']) is no better than dA(y’[a,b']) for the principal,

by Lemma 1. On the other hand,

Jo£,0d, (12, D),y dR(y) < J (d, (vl [a,b]),y)dP(y)
73 Y3

since [a,b'] was assumed suboptimal, and dA(yl[a,b']) = dA(yl[a,b]) on Yo

3
Consequently,
(5.8) S £p(d,, (v|[a",b' D,y < S £,(d,, (v][a,b]),)dP(y).
73 RE

Combining (¢.5) - (5.8),
JoE(d,, (y[la",b' 1), dR(y) < J £,(d, (y[[a",b]),y)dP(y).

This contradicts the optimality of [a',b']. Hence b' = b in Case 1.
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Case 2: YA,(b) E'YA(b) < YP(b). Proceeding analogously to Case 1, one
can show that b' > b leads to a contradiction of the optimality of [a',b’].
Hence, b' = b also in this case.

Finally, a similar argument shows that a' = a, completing the proof.

Q.E.D.

If we call two agents similar provided they always take acts on the
same side of the principal's response function, we have the following par-
tial converse of Theorem 3 (proof omitted):

Theorem 4: Assume agents are similar and the agents' and the principal's
preferences are concave and pairwise coherent. If the agents cannot be or-
dered by uniform closeness, then there exist two distributions of V¥, such
that for one, agent A is strictly preferred to and given as much freedom as

A', and for the other, the reverse holds true.

As a consequence of Theorems 3 and 4 we get:

Corollary: Assume preferences are concave and pairwise coherent. Among
similar agents, A is preferred to A' for all distributions of y if and omnly if
A is uniformly closer than A' in preferences w.r.t. the principal.

What these results show is that only a very weak partial ordering of
agents (from a principal's point of view) can be obtained even in the simplest
of situations. The relevance of being able to order agents lies in an exten-
ded theory of market equilibrium. Orderings will play a role for how agents
get allocated among firms.

0f course, when the decision space is of higher dimension even less com-
plete orderings can be expected. What appears true is that agents can be or-
dered (for all possible information structures) only if they lie on a ray in

preference space that originiates from the principal's preference profile.
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A 1]
That it is sufficient can be seen easily. Say that F = XFP + (l—X)FA R

Ae(0,1), so that agent A:s preferences are a convex combination of P and A'.

12
Then P always prefers the choice of A to A' because:

B[ (d,,2) |y] > E[FY (ay,2) |91,
P P
E[F (dz,z)]y] > E[F (dl,Z)iy], implies

E[FA(dz,z)]y] = AE[FP(dZ,z)[y]+(1~A)E[FA'(d2,z)ly] > E[FA(dl,z)[y].

If preference profiles are linear in d {say, because we are considering randomized
decisions), then the converse holds true; that is, A is prefered to A' for all
probability distributions only if A is a convex combination of P and A'. This
follows by a standard variant of Farkas' lemma; (Ross (1980) is to be credited

for the discovery of these techniques in a somewhat more specific context).

6. Value of Delegaticn

When are there gains to delegation? This is a basic question of
interest, because it provides an economic rationale for why a principal and an
agent should cooperate. From the value of delegation one may derive a choice
theoretic explanation for observed institutions. For instance, in Holmstrom
(1982) it is shown that in a centrally planned economy, target delegation of
the type contemplated for the Soviet Union (Weitzman (1976). leads to Pareto
improvements because plant managers know better their production possibilities.
Similarily, in Baron and Holmstrom (1980) the demand for investment banking
services is derived from the value of delegation.

I will provide two simple sufficient conditions for when it pays to

decentralize. The first one states that if the agent takes acts both below
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and above the principal's best centralized act and preferences are coherent,
then the principal should give the agent some freedom. The second one con-
cerns the use of transfer payments in coaxing the agent's preferences closer
to the principal's so as to make delegation beneficial.
The following lemma, though obvious, is the main principle behind
delegation.
Lemma 2: Let d* be the best centralized act. Assume there exists
a control CEN, containing d*, and a set Yy E.d;l(C) for which:
(i) the principal prefers weakly dA(yIC) to d* for every y;
(ii) The principal prefers stricly dA(y) to d* for stO;
(iii) Prob {yey.} > O.

0
Then the control C is strictly preferred to d* both by the agent and the

principal.

Proof: Obvious.

The point is that the agent's decision reveals information about y
(sometimes perfect information) and the lemma says that if the principal,

conditional on the agent's decision, prefers it to the best centralized

decision d#*, then the agent should be allowed to make the decision. Notice
that if there would be a set of decisions among which the principal is in-
different, a Pareto improvement would not be guaranteed by delegating this
set to the agent (as is the case in a world of symmetric information). Con-
ditional on the agent's choice, the indifference would generally change;
possibly so that the agent's choice always becomes worse than a particular

best centralized decision. This phenomenon is akin to adverse selection.
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Theorem 5: Assume:

(i) the expected preference function fP and f, are unimodal,

A
coherent and continuous;
(ii) the distribution of y is nonatomic;
(iii) the agent takes acts both below and above the best centralized
act d¥*;
(iv) d,(y) # & (y) for yely|d,(y) = d*}.
Then there exists an interval control C such that both principal and agent are
strictly better off with C than with d*; i.e., it is Pareto improving to de-
legate.
Proof: I will show that we can find C and YO as required in Lemma 2,
with C an interval. Let Y(g) = {y|d* - ¢ < dA(y) = d* + ¢}. By continuity,
coherence and (iv), e > 0 can be chosen small enough so that either
dp(y) > dA(y) or dp(y) < dA(y) on Y(e).
Take the first case, dP(y) > dA(y) on Y(t¢), as the second case is symmetric.
Let Y+(s) = {ng(s)ldA(y) > d*%}. By (iii) and continuity, Y+(s) is of full dim-

+
ension and so by (ii) P(Y (¢)) > 0. By strict unimodality the principal prefers

+
strictly dA(y) to d* on A (¢). Take dl = d%, d2 = sup {dA(y)|y€Y+(6)}, and

define C = [dl’dz]' Let y by arbitrary. Three possibilities arise:

+
(1) vyeY (¢). Then dA(y) is strictly preferred to d* by the principal.

I
o
*

(2) d,(ylo)

!
o

3 d,Glo =
By coherence the third case implies dP(y) > d2 and so by unimodality the prin-

A +
cipal prefers d2 to d*. Hence Y (&) and C satisfy the conditions of Lemma 2.

Q.E.D.



Let me emphasize that coherence is a crucial assumption in the theorem,
as I already argued in connection with the definition. Indeed, if we say that
the principal and the agent are noncoherent when Y;(d) < YP(d) or Y;(d) S_YA(d)
for every d, then the agent is of no value for the principal. This follows from
the observation that if C is an arbitrary control, then the principal prefers
any constant decision in C to the use of the control C.

It should be clear from Lemma 2 that condition (ii) could be replaced by a
number of variants including some, which apply for discrete distributionms.

We can get a weak converse of the theorem. Since it is trivially true
that a necessary condition for decentralization by intervals is that the ranges

of the principal's and the agent's response functions are not disjoint, we have:

Theoremb : The agent is of value (i.e., it pays to decentralize) for all
nonatomic distributions of ;, if and only if preferences are coherent and the
range of his response function contains the range of the principal's.

If transfer payments are allowed, as in the screening models, delegation
will be valuable under less stringent conditions. In fact, the opportunities
to cooperate are increased rather substantially, since now the response functions
need not be close to each other in a metric sense. What counts is how the

agent's rate of substitution between acts and compensation changes with y (which

unfortunately has to be assumed one-dimensional.)
Let d = (a,w), where a is the action to be taken andw is the transfer from
. . o . P
principal to agent. Given y, let conditional preferences be given by f (a,w,y),

13 . . . :
fA(a,W,y). Partial derivatives are denoted by subscripts.
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o A, A o P, P
Theorem 7: Assume 5;’(fl/f2) . —5§(f1/f2) < 0, and that preferences are
convex (level sets convex). Then it pays to delegate using a price scheme com-
bined with an interval control.
Proof: There are many cases to consider all of which are similar, so T will
only focus on one of them. Assume —E~(fA/fA) < 0 i (fP/fP) > 0, and let a%*
oy 172 > 3y 1772 ’
be the best centralized act. If the agent is not used,w=0 by definition. Let
P
y* be a signal outcome such that a* maximizes f (a,0,y*). Assume
ks - f?(a*,o,y*)/fg(aﬁo,y*) < 0 (the other cases can be treated symmetrically).
Let the price schedule be w(a) = ka and let the agent choose freely from the set
C = {(a;v(a))fa > a*}. Because —§§'(f$/f§) < 0, the agent will pick a > a*

P
when y > y*. Because —%;—(fi/fg) > 0 so would the principal (note that f2 < 0).

14
Thus, whatever a = a* the agent chooses, the principal is better off. Q.E.D.

The conditions —%;—(f?/f?) < 0, —%; (fi/fg) > 0 state that for higher y
values the agent is willing to give up more money to take higher actions where-
as the principal is willing to accept higher actions for a lower price. It is
in this sense that their preferences move in the same direction as y increaseg
and this makes delegation gains possible. The condition of Theorem 7 applies
to many screening problems (though not to the earlier discussed insurance ex-~

ample) .



7. Concluding Remarks

Part of the purpose of this paper has been to formalize the notion of
delegation, which is one of the most common forms of decentralization in
organizations. Starting from a general formulation of the decentralization
problem, I showed that delegation corresponds to the special case where informa-
tion from different agents do not get coordinated in the decision process.
Therefore, delegation could be viewed as a process where the agent is given
the authority to make the final decision, but subject to constraints (the
control set) set by the principal. Though perhaps not immediately apparent,

a2 number of recent models on incentives and screening fall into the category

of delegation.

Two factors influence the optimal delegation decision: the relationship
between the principal's and the agent's preferences and the degree of the
agent's expertice. Intuition might suggest that the agent should be delegated
more authority the closer the preferences of the two parties are and the
more expert information he possesses. Indeed, in the context of a much
analyzed economic planning model introduced by Weitzman (1974), T found the
intuition confirmed. The result suggests that with a less informed govern-
ment (or more informed firms), firms should be less stringently regulated.

In general, however, without specific parametrizations, surprisingly
weak comparative statics results obtain. Preferences have to be closer in
a quite strong sense to guarantee an increase in the agent's freedom, even when
control sets are restricted to be intervals.

In contrast, the requirements for delegation to be of any value were
substantially weaker. Loosely speaking, the two conditions provided in this
paper require that preferences move in the same direction with changes in
information. Furthermore, with more dimensions of exchange between the agent

and the principal, these conditions are easier to meet as illustrated by a



comparison of the one-dimensional and the two-dimensional case. Both con-
ditions are useful in explaining the emergence of institutions based on a

principal-agent relationship.

Delegation has two advantages over more complex decision processes in-
volving information transmission between the agent and the principal. 1Its
simple structure saves on administrative costs and so where gains from in-
formation coordination are small, we expect delegation to be an efficient
mode of decentralization. A second advantage stems from the strong form of
precommitment that delegation involves. It is clear that the principal is
better off when he can precommit himself to a mechanism (as modeled here) than
when he cannot and therefore is expected to respond optimally against the
agents' messages. It appears that delegating authority to an agent, as op-
posed to asking the agent for information and promising to act on the informa-
tion in a particular way, is a more convincing form of precommitment (though

they are formally equivalent).

In some situations it may be difficult to make precommitments or delegate
authority. Crawford and Sobel (1981) have recently analyzed the model presented
here under the assumption that the principal cannot precommit himself. In the en-

suing equilibrium the agent will disguise his information by reporting a coarser

partition, which prevents the principal from exploiting him completely.
Crawford and Sobel address the same questions as here: how do changes in

the agent's preferences affect cooperation? Qualitatively, their conclusions
are similar. Preferences have to be sufficiently coherent for cooperation to
be of value and as preferences become uniformly closer, more of the agent's
information can be exploited (by a refined partition equilibrium).

Two papers by Green and Stokey (1980a,b) complement the above analyses on



preference changes. They look at the effects of improved information on
cooperation both in the case of precommitment (i.e., delegation) and no pre-
commitment. The reported results are analogous to the ones regarding pre-
ference changes. Generally, a more informed agent need not be more valuable
for the principal. A weak ordering is obtained by considering success-enhancing
improvements in information, which appears closely related to the convexity
condition given in this paper. A unified theory for preference and information
changes might be conjectured on these grounds.

The three papers mentioned above and the present one, all point to
the very limited results one can obtain in general regarding preference and
information changes. Illuminating as this knowledge is, it is rather negative
for the prospects of a general market theory of agents, since tastes for
agents have no simple ordering. Apparently, we have to be content with
highly parametrized models, looking for simultaneous restrictions on pre-

ference and information structures.



APPENDIX A

EXISTENCE OF OPTIMAL CONTROLS

The following assumptions are made:

Al. D is a compact subset of a complete, separable metric
space.

A2. N is a closed subset of ZD, w.r.t. the Hausdorff-metric

(see below).

P
A3. FA and F are continuous and uniformly bounded.

Let fi(d,y) = E[Fi(d,z)ly] for i = A,P and all y.

In proving existence, I will take the standard apparoach of showing that
our problem is one of finding the supremum of a continuous function over

a compact set. Since the argument of the objective function is a set, we
have to define a suitable metric to get the objective function continuous.
For this purpose 1 will use the Hausdorff (H-) metric (see Munkres [1975]}),

which is defined for two sets A,BEZD as

H(A,B) = max {sup inf m(a,b), sup inf m(a,b)}
acA beB beB acA

. . .. 1 . .
where m is the metric of the space containing D.S’The crucial result, which

gives us compactness is the following (see Munkers [1975]):

Lemma 1: TIf D is a compact set in the metric m, then the set of all
nonempty bounded closed subsets of D is compact in the Hausdorff-metric H.
Since we assumed N is closed in the H-metric, Lemma 1 tells us that N
. D . .
is compact, because 2 is metrizable.

Lemma 2: d(y,C) is u.s.c. in C for every y.
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Proof: Fix y. Let
(i) Cn - C (in the H-metric), Cn’ ceN
(ii) d ed(y,C )

(iii) d -~ d.
n

I need to show that ded(y,C). Since C is compact, d(y,C) is nonempty.
Let asd(y,C) be arbitrary. I show that deC and fA(d,y) = fA(a,y), implying
ded(y,C).

Let 8 >0 be arbitrary. Cb - C = Enl and a sequence {d(n)}, d(n)eC V¥n,

= > L
1 dn - d Enz s.t. m(d,dn) < 8§ when n > n

From the triangle inequality we get m(a(n),d) < 28 when n = n, = max(nl,n

s.t. m(d(n),dn) < S whenn = n 5

2)'

Since & was arbitrary, 5 is a limit point of a sequence in the closed set C
and so asC.

asc = fA(a,y) = fA(a,y). If moreover fA(a,y) > fA(a,y) we are done.
Cn - C = 7 a sequence {d'(n)}, d'(n) ¢ Cn’ Yn, s.t. d'(n) - d. We have that
fA(d'(n),y) *—fA(a,y), since fA is continuous. We also have fA(dn,y)—+fA(a,y)
by (iii). d'(n)an implies fA(d'(n),y) < fA(dn,y) Yn, by (ii). Taking limits

on both sides gives fA(a,y) = fA(d,y) concluding the proof. Q.E.D.

Lemma 3: If Prob{d(y,C) is not a singleton} = 0 ¥CcN, then E{fP(d(y'C),y)}
is continuous in C for any specific choice of response function from the re-

sponse correspondence .

Proof: Let C, > C. Let A= {yld(y|C) is not a singleton}. By assum-
tion P(yeA) = O. E{fP(d(y|Cn),y)} = E{fP(d(yicn),y); yeA} + E{fP(d(chn),Y);
yaAC}.

The first term in the RHS is 0. Let me show that fP(d(y[Cn),y) - fP(d(y'C),Y)
for ysAC. Then, since fP is continuous and bounded, the integral will converge

to the desired limit by the bounded convergence theorem.
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Write d = d(y|C ); d_ed(y,C ). I claimd_ - d(y|C). This is true if
n n n n n
and only if every subsequence {dn,} has a refinement dn,,* d(y|C). Since D
is compact, any subsequence{dn.} has a convergent subsequence dn" -+ d. Since

d(y,C) 1is u.s.c. by Lemma 2, ded(y,C), which is a singleton (because yaAC)

and so d = d(y(C). Hence, dn - d(y!C). This completes the proof. Q.E.D.

Theorem 1 (ii): Assume Al-A3 and in addition Prob{d(y,C) is not a

singleton} = 0 Y CeN, then there exists an optimal solution C#*eN to the
delegation problem regardless of the maximizing response function the agent

uses.
Proof: The delegation problem is to find a maximizing CxeN, if it ex-
ists, for the function E{fP(d(y]C),y)l where d(y|C) is a particular maximizing
response function of the agent. By Lemma 1 N is compact and by Lemma 3 the ob-
jective function is continuous in C. This implies there exists an optimal

control C*eN, Q.E.D.
Let me now study the particular response function dﬂax(y'c)'

Lemma 4: If (i) Cn - C

(i) E{f(d_ (v]c),»} ~F
then E < E{fP(dmaX(y[C),y)}. In other words, E{fP(dmaX(le),y)} is

u.s.c. in C.

Proof: Write d = 4d (y!c ), E = E{fP(d v}
I n max n n n

lim E = lim sup E{fP(d ,y)} £ 1im E sup{fP(d ,¥) 1}
n n k
n-e ko nk

(A.1) E

E{lin sup £ (d_,y)}
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(the inequality holds for sup's and taking limits, which exist since the se-
quences decrease, we get the limiting inequality; the last equality fol-
lows by bounded convergence). I claim: 1im sup fP(dn,y) = fP(dmaX(yIC),y)
for each y.

It is easy to construct a subsequence {dn,} s.t. fP(dn, ,¥) = lim sup
fP(dn,y). Since D is compact there is a converging refinement dn" »—3. of
course, fP(dn,,,y) -+ lim sup fP(dn,y). Since fP is continuous, we also have
fP(dn,,,y) %—fP(a,y). Hence 1lim sup fP(dn,y) = fP(a,y). By Lemma 2 d(y, ")
is u.s.c. for every y. This implies asd(y,C) and so fP(a,y) < fP(dmaX(y%C),y)

by definition of the dmax—function. This proves the claim and the lemma fol-

lows direct from (A.1). Q.E.D.

Theorem 1(i): For the respense function dmax(y,C), there exists

an optimal control C*eN,

Proof: The theorem is a direct consequence of the u.s.c of

E {fP(dmaX(y‘C),y)} and the compactness of N, Q.E.D.



APPENDIX B

THE HAZARD RATE FOR A NORMAL DISTRIBUTION

The hazard rate is defined as:

hiy) = 1—%—(1%,7 , ¥y v N(0,s%).
(B.1) h'(y) = 13'_(?( ;o g°(y) 5 = h(y) (h(y) - s%y).
AN G U 1¢% D Rl
(B.2) B'(y) = ) [ -N2 + v () - 1].

It is well known that h'(y) > O (see Barlow and Proschan [1975]). Consequently,
(4.8) follows from (B.1)

Let ¢, be the density and distribution functions of a standardized
Normal distrihution. Using £' Hospital's rule twice gives:

(B.3) e (y)
y(1 - @(y))

-1, as y > . Hence,

g(y) _ _oly/s) bl e v oo
y - 6(y)) ~ yQ =G/ s)s 2 T T

which is (£.10).

Letkn)be the hazard rate for a standardized Normal distribution. Suppose

hé(;) > 1 for some y, contrary to the claim in (4.9).
By (B.2) hé’(;) > 0, implying hé(y) > 1 for all y > y. This contradicts
(B.3), since ho(y) >y for all y. Hence, hé(y) < 1 for all y. (4.9) follows

2
then from the fact that h'(y) = hé(y)/s , since I already stated that h'(y) > O.
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To prove (4.11) we have:

2
Sh(s%] = i (7/9)s] = by (y/s) + sh!(y/s) (-y/s").

If y < 0, this expression is certainly > 0, and when y > 0, we can minorize

it by using (4.8) and (4.9) and conclude:

9 2 ) A
as[h(Y)S ] >y/s - s 2 0.

This establishes (4.11).



Footnotes

It is a notational short-cut to write preferences directly over decisions.
In later examples we see how these functions may be derived from more
primitive concepts.

Gibbard (1973) was apparently the first to use the revelation principle

in his study of game form design. Since then, many authors have redis-
covered the principle. Dasgupta, Hammond and Maskin (1979) provide a
detailed study of the principle under various solution concepts. Myerson
was the first to use the term revelation principle, which T find descriptive.
There is one restriction of the revelation principle which is important.
The mechanism N = (E(-),Y), sometimes called a direct revelation mechanism
(Green and Laffont (1979)), has to belong to the set N. This need not
always be the case, but is assumed here.

Holmstrom (1977) and Myerson (1980) provide an explicit formulation with
non-observable actions. Notice that restrictions on N will in general be
quite complicated. For instance, they would include the requirement that
non-observable actions form a Nash equilibrium given the information of the

agents.

An example of non-existence is the following. Let D = {0,2}. Let y = z

and Y = {0,2}; Prob{y = 0} = Prob{y = 2} = 1/2. Finally, FA(d,z)=-—(d—z—l)2,
FP(d,z) = ~(d-z)2. The supremum of the control problem is 0. It can be
approximated arbitrarily closely by C = {0,2+c}, & > 0. However, if the
agent in case of a tie chooses the principal's least preferred action,

C = {0,2} will make him choose d=0 both when y=0 and y=2. Thus, the supre-
mum cannot be achieved. On the other hand if he acts according to

dmax(-) in (3.3), € = {0,2} will achieve the supremum. Likewise one can
show that any small (continuous) uncertainty about FA will guarantee exis-

tence of a solution. These observations suggested the conditions in Theorem 1.



10.

11.

12.

The action d* is what the center would choose on its own, not knowing vy.

Note that similar results apply for general a a b b not just for the

P’ AT PN

specific ones in the economic planning problem. The Proposition is valid
(with some obvious modifications) for the general case of Normal uncertainty,
quadratic loss functions and linear responses.

An alternative parameterization for which one obtains an explicit solution

is the following (Holmstrom (1977, section 2.3.2)):

a = a, = 1, bA > b y = z = Unif (-6§,8). The optimal control interval

A P p’

has only an upper bound given by d; = bP + max (0,68 - (bA—bP)). Again, the
closer the preferences are (bA closer to bP) or the bigger the information
gap (measured by §), the more freedom the agent is given.
This example has been further analyzed in Crawford and Sobel (1981)

under a different equilibrium concept (see section 7).

We have, g(O)si/(l—G(O)) = 2<D(O)sy - o as sy -+ «_ where ¢ is the density
of a standardized Normal distribution. Since the hazard rate is increasing
by (4.9), the expression above implies that the RHS of (4.7) goes point-
wise to infinity with Sy for positive values of the argument. Hence,

d* + ® a5 g — o, Similarly, d* > o,

U y L
The information improvement corresponding to a smaller si in the example
above is, however, not success-enhancing.
Notice that coherence is not equivalent to dA(y) 3_dP(y) or dA(y) f}dP(y)
for all y, since then unrestricted responses could not intersect as they
do for instance in the planning example.

This obviously implies that A is uniformly closer than A';. Thus, the

convexity condition yields a less complete ordering than uniform closeness,

which only has force with interval controls.



References

Baron, D. and Holmstrom, B. (1980), "The Investment Banking Contract for New
Issues under Asymmetric Information: Delegation and the Incentive Problem,"
Journal of Finance, December.

Barlow and Proschan (1972), Statistical Theory of Reliability and Life Testing,
Holt, Rinehart and Winston, Inc.

Crawford, V. and J. Sobel (1981), "Strategic Information Transmission', DP81-10,
Department of Economics, University of California, San Diego.

Dasgupta, P., Hammond, P. and Maskin, E. (1979), "The Implementation of
Social Choice Rules: Some Results on Incentive Compatibility, '"Review
of Economic Studies, 46.

Gibbard, A. (1973), "Manipulation of Voting Schemes: A General Result,"
Econometrica, 41.

Green, J., and Laffont, J.J. (1979), Incentives in Public Decision Making,
North-Holland, Amsterdam.

Green, J. and Stokey, N. (1980a), "The Value of Information in the Delegation
Problem," HIER DP776, Harvard University (revised September '81).

Green, J. and Stokey, N. (1980b), "A Two-Person Game of Information Trans-
mission', HIER DP751, Harvard University (revised December '81).

Groves, T. (1973), "Incentives in Teams,' Econometrica, July.

Harris, M. and Townsend, R. (1981), "Resource Allocation with Asymmetric
Information,” Econometrica, January.

Harris, M. and Raviv, A. (1981), "Allocation Mechanisms and the Design of
Auctions," Econometrica, November.

Harsanyi, J. (1967-1968), "Games of Incomplete Information Played by Bayesian
Players," Parts I-1II, Management Science, l4.

Holmstrom, B. (1977), "On Incentives and Control in Organizations,' unpub-
lished Ph.D. thesis, Graduate School of Business, Stanford University.

Holmstrom, B. (1979), "Moral Hazard and Observability,” The Bell Journal of
Economics, Spring.

Holmstrom, B. (1982), "The Design of Incentive Schemes and the New Soviet
Incentive Model," European Economic Review, Vol. 17.

Marschak, J. and Radner, R. (1972), Economic Theory of Teams, Yale: Yale
University Press.

Maskin, E. and Riley, J. (1980), "Auctioning an Indivisible Object,'" DP87D,
J. F. Kennedy School of Government, Harvard University.

Mirrlees, J. (1971), "An Exploration in the Theory of Optimum Income Taxation'",
Review of Economic Studies, 38.




13, Note that fg < 0, since w is a transfer from principal to agent.

14. The reader is urged to draw a simple graph, noting that —f?/f? is the

tangent of the agent's indifference curve in (a,w) space.

15. I am indebted to David Kreps for suggesting the use of the Hausdorff-metric.



Mirrlees, J. (1976), "The Optimal Structure of Incentives and Authority
within an Organization," Bell Journal of Economics, Spring.

Munkres, J. (1975), Topology: A First Course: Prentice-Hall, Inc., Englewood
Cliffs, New Jersey.

Myerson, R. (1979), "Incentive Compatibility and the Bargaining Problem,"
Econometrica, 47.

Myerson, R. (1981), "Optimal Auction Design,'" Mathematics of Operations Research, 6.

Myerson, R. (1980), "Optimal Coordination Mechanisms in the Principal-Agent
Problems", DP429, Graduate School of Management, Northwestern University.

Riley, J. (1979), "Informational Equilibrium,'" Econometrica, Vol. 47.

Ross, S§. (1980), "Equilibrium and Agency-Inadmissible Agents in the Public
Agency Problem,'" American Economic Review, May.

Rothschild, M., and J. Stiglitz (1976), "Equilibrium in Competitive Insurance
Markets: An Essay on the Economics of Imperfect Information," Quarterly
Journal of Economics, November

Spence, M. (1973), "Job Market Signalling,' Quarterly Journal of Economics, August.

Weitzman, M. (1974), '"Prices vs. Quantities," Review of Economic Studies.

Weitzman, M. (1976), '"The New Soviet Incentive Model,'" The Bell Journal of
Economics, Spring.




Vo /(FA(d,z)ly)ﬂ?
i o .~

Ypla) c Y, (a)
Figure 2

Yp (@) Yp (a)
Figure 3



A

///P dA/(y‘[O/")b/])

/ / | dAA.(Yl[O,t_)]\)‘

L T

- e — S y

Figure 4



