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ABSTRACT

Matthews, Steven A.-—Seiling to Risk Averse Buyers with Unobservable Tastes.
Schemes maximizing the expected profit from selling indivisible units to
risk averse, heterogeneous buyers are studied. For thé polar cases of an
unlimited and a unit supply, optimal schemes are constructed for buyers who
exhibit constant risk aversion and who differ only in their monetary
evaluations. With a unit supply, the optimal scheme resembles a first-price
auctién in which buyers are‘paid.to submit high bids, but must pay to submit
low bids. The results are interpreted in terms of insurance provision and the

use of risk to weaken incentive compatability comstraints. Journal of

Economic Theory, , (English). Northwestern
University, Evanston, Illinois.

Journal of Economic Literature, Classification Numbers: 022, 026.













1. Introduction

In order to practice perfect price discrimination, a monopoly must know
the maximum price each customer is willing to pay. However, in many
environments customers cannot be distinguished on the basis of their
preferences. The monopoly’s task is then to practice so-called second degree
price discrimination, i.e., to construct a choice setting in which customers
willing to pay more are induced, by their own decisions, to pay greater
prices.

| The first such environments to be studied were ones in which the
empirical distribution of buyers’ tastes is known. Studies of monopoly in
these environments, such as Spence [23], Goldman, Leland and Sibley [3], Mussa
and Rosen [16], Roberts [21], and Mirman and Sibley [l14], characterized
préfit—maximizing selling schemes within the class of schemes in which each
buyer is presented the same nonuniform price schedule. This class of selling
schemes is not the largest, e.g., it excludes schemes that result in random
allocations. However, it can be shown that optimal nonuniform price schedules
are optimal within any class of selling schemes if buyers are risk neutral.

A second environment studied more recently is one in whichrthe monopoly
does not know the empirical distribution of tastes, but instead has only
probabilistic assessments. If buyers are risk neutral and the monopoly has
constant costs, then again it is optimal to present each buyer with a
nonuniform price schedule. But if the cost function is nonlinear, then
average profit will depend on the }otal quantity purchased and hence be
uncertain. In this case it may be better to use a selling scheme in which
each buyer’s allocation depends jointly on the decisions of all buyers.

The polar example of such an environment is one in which there is a

binding quantity constraint. It is then infeasible to set a nontrivial price



schedule, since there is positive probability that independently made purchase
orders will exceed the capacity constraint. Consequently, the class of
selling schemes must be enlarged in these environments to include auction-like
mechanisms.

Optimal auctions have been studied by Harris and Raviv [4,5], Myerson
[18], Riley and Samuelson [19], and Maskin and Riley [9,10]. These authors
study an environment in which (a) the good is indivisible; (b) no buyer wants
more than one unit; (c) buyers exhibit no income effects, i.e., each buyer’s
(unobservable) %illingness-to—pay for a unit is independent of his income; and
(d) buyers are risk neutral. Then, given that buyers’ characteristics are
independently distributed and that only one unit can be sold, the schemes that
maximize expected profit are characterized. It turns out that the set of
optimal schemes is quite large, containing, e.g., under a regularity
condition, both first-price and §econd—price auctions with reserve prices.l’2

The reason there are so many optimal auctions in this environment is that
auctions that differ only in their payment functions, but that have the same
expected payment functions, must be equivalent when all agents are risk
neutral. This equivalency result cannot hold if buyers are risk averse. The
lack of equivalency when buyers are risk averse is suggested by the well-
known result that, in this case, first-price auctions generate greater
expected profit than second-price auctions [4,8,9,11,12,13,19,25].

In this paper, expected profit maximizing schemes are explicitly
characterized for environments in which assumptions (a)-(c) are kept, but (d)
is generalized to allow for risk averse buyers. In particular, buyers shall
usually be assumed to have a constant measure of absolute risk aversion.

Major consequences follow from this apparently minor generalization.

First, when there is no quantity constraint,; take-it-or-leave-it offer



schemes, which are the optimal "nonuniform” price schedules in this
environment, are not optimal in a broader class of selling schemes. Instead,
the optimal scheme gives some buyers only a probability of obtaining a unit.
The reason for this is that when buyers are risk averse, the expected cost of
inducing them to reveal their evaluations can be decreased by allowing them to
avoid, and therefore sometimes to bear, risk.3

The consequences of risk aversion are more startling when there is a unit
quantity constraint. Then, even a small amount of buyer risk aversion results
in the class of optimal auctions shrinking essentially to a unique auction.
This auction does not resemble any standard auction. It can be described, for
the case in which buyers are approximately risk neutral, as a first-price
auction in which buyers must pay to submit low bids, but are paid to submit
high bids. Buyers with high values are induced to submit bids nearly equal to
their values.

Independently, Maskin and Riley [11] have used a similar approach to
study optimal auctions with risk averse buyers. They allow more general
utility functioms, but at the cost of not obtaining conditions that are both
necessary and sufficient for an auction to be optimal. Their results are in
accord with most of the qualitative properties of the optimal selling schemes
found here.

The paper is organized as follows. The environment and a very broad
class of selling schemes are defined in Section 2. The assumption of constant
absolute risk aversion is introduced in Section 3. The seller’s maximization
problem is formulated in Section 4. Its solution is presented in Section 5
for the case of no capacity constraint, and in Section 6 for tbe case of a
unit capacity constraint. Summarizing remarks are contained in Section 7, and

all proofs are contained in the Appendix.



2. Selling Schemes

The environment contains n buyers and one seller of a good. The
following assumptions are made: (i) the good is discrete; (ii) the seller is
risk neutral and bears an opportunity cost c for each unit sold; (iii) no
buyer wants more than one unit; (iv) the buyers exhibit no income effects,
i.e., a buyer with evaluation 6 is willing to pay & dollars for one unit
regardless of his income; (v) the buyers’ evaluations are realizations of
independent random variables whose distribution is common knowledge; (vi) each
buyer’s evaluation is observed only by himself; and (vii) all buyers have the
same, increasing and concave expected utility function u for money.
Consequently, a buyer with evaluaton 8, income I, and one unit of the good
obtains utility u(I + 6). After this section, u will be assumed to exhibit
constant absolute risk aversion.

A further technical assumption is that the buyers’ evaluations are
identically distributed according to a cumulative distribution F. It is
assumed that F has a continuous, positive density f on the support {0,1]. The

seller’s unit cost is assumed to satisfy O < g < 1.

A selling scheme fundamentally consists of a message set Mi for each

buyer,and an outcome function that maps an n-tuple of messages into a

(perhaps random) allocation a. The behavior of buyers is described by a

* *
Nash(Bayesian) equilibrium, which is an n-tuple of functions (ml,...,mm).

%

Each m, maps possible evaluations for buyer i into the message set Mi'
*

The equilibrium property of these functions consists of mi(ei) being the

message that maximizes the expécted utility of buyer i when he has the

*
evaluation ei and every other buyer j uses mj to submit messages.



This notion of a selling scheme is very general, incorporating even
iterative schemes when the message'sets are defined broadly enough.
Such generality is not required here, since any selling strategy, in any
equilibrium, results in the same outcomes as a more tracﬁable revelation
selling scheme. The argument is the following: any scheme will, in a given
equilibrium, result in an outcome 'Z(el,...,en) when the buyers' evalua-
tions are el,...,en . The funct;on ‘S(el,...,en) can serve as the
outcome function of another selling scheme in which each buyer's message
set is the set of possible evaluations. Because the function 4;(91,...,9n)
is obtained as the composition of a selling scheme with one of its equilibria,
the n-~tuple of identity functions (m;(ei) = ei) is an equilibrium of the new
scheme. We have therefore constructed a revelation scheme in which truth-
telling is an equilibrium that results in the same outcomes as did the given
equilibrium in the original selling scheme. 4
Henceforth, attention will be restricted to revelation schemes that are

incentive compatible, i.e., schemes in wﬁich the n-tuple of identity functious

is an equilibrium. Thé preceeding argument indicates that this involves 1i;tiw
loss of generality. However, having the feasible class of selling schemes
depend upon utility functions does obscure comparison and implementation issue:.
Once optimal revelation schemes have been found, some attention will be given
to the question of their implementafion via equivalent, non-revelation
schemes.

A revelation scheme must, most generally, specify a joint probability
distribution for the buyers' allocaiions as a function of reported evaluations.
Deqoting t; as the (possibly random) payment of buygr i, and ;& e {0,1}

as the (possibly random) amount of the good received by buyer 1i,” an outcome

is a joint probability distribution G(xl,tl,...,xn,tn | 91,...,9n). Any



revelation scheme can be identified with such a.function G.
Two properties of a scheme G are of interest. Implementation is
simplified and strategic interactions eliminated if each buyer's allocation is

independent of the other buyers' actions. This occurs if G 1s separable

n .
in the sense of being of the form “~G1(x1’t1' ei). For example, a
i=1 ‘
scheme in which each buyer is presented a price-quantity schedule is
separable, whereas a first price auction is not.
The second property of a scheme G that 1s of particular interest
here is whether, given an n-tuple of reported evaluations, it places all

probability on just one allocation (xl’tl""’xn’tn)' If it does, then G is

deterministic. Offering price-quantity schedules is a deterministic scheme.

So is a first price auction, if the coin flip that resolves ties is ignored.

Buyer 1 isionly concerned with a few marginal distributions of a
scheme G. Suppose that the scheme 1is incentive compatible, so that the
expectations of buyer 1 over other buyers' reports can be taken vié the
distribution F. Then buyer i's expectations over the random elements in
bis environment are well-defined by the two distributions F and G, and

his report 91. When buyer i has the true evaluation Gi but reports 91,

his expected utility is

(1) Elu(e;x, -t,) | 8;]1 = Pr(x;=1]6,)E[u(e, -] 8,,%, =1]

+Pr(x, =0] 6,)Elu(-t,) l’ 8,,x, =0].

Using G and F, define

(2) Q@) =By = 1| By,
R R N L TR T R AN
(4) iy le)) = Pr(t, s p,, | 91';1 = 0) .
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The probability Qi(ei) is buyer 1's percelved. probability of obtaining
a unit. He perceives his random payment S;w contingent upon obtaining
(winning) a unit to be distributed accordiﬂg to Hi’ and his random

payment p contingent upon not obtaining (losing) a unit to be
ie 8 8

distributed according to Ji. Expression (1) indicates that buyer i is
indifferent between any two incentive compatible schemes that result in the

same Qi’ Hi and Ji functions.

The seller's expected profits are

n ., s
(5) E{izl(c R AE
n ~ ~ ~ ~y ~ ~
= 1§1E{Qi(91)3(pi"-°° lo) * Q-0 (B ER, [0} .

- e . L . - .. - -

Therefore the seller too is indifferent between any two incentive compatible
schemes that result in the same Qi’ Hi and Ji functions.
If there-is unlimited capacity, then the problem will be to find a

scheme that maximizes (5) subject to the incentive compatibility constraint
- 1

that ei==ei naximizes (1), and sugject to the constraint that participaticn

be voluntary, i.e., that expression (1) be no less than u(0) at ei'-ei'

-

By the above arguments, therefore, attention can be restricted to finding

the marginal distributions Qi’ Hi and Ji. Once these functions are found,

then the simplest sciheme consistent with them is the separable one that

has buyer i's allocation independent of the reports of other buyers.
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This scheme has Qi(ei) as the actual probability of buyer i obtaining a
unit, Hi(piwl ei) as the actual distribution of his payment when he obtains
a unit, and Ji(piél 61) as the actual distribution when he does not
obtain a unit.

A separable scheme will not suffice i1f fewer than n units cﬁn be
sold. This is because in any (nontrivial) Separable scheme, there is posi-

tive probability that each buyer will obtain a unit. Letting
q (05,0..,8)) = Pr(x; = 1] 815002268.),

then

a .
(6) 0= 2 qi(el,...,en) =1

i=1
expresses the capacity constraint of having no more than one unit to sell.

With this additional constraint, the problem is to find the functions

945 Ji and Hi that maximize (5), where Qi and q; are related by

' 1
(7) Q(e)=f°"f q (e ’ooo’e) nf(e )de -

it 0 0 it "1 n 3#1 j , 3
Once these functions are found, the simplest scheme consistent with them has
the winning buyer determined as a function of all reports via the probabilities
qi(el,...,en), but the payments conditional upon who obtains the unit still

determined independently via the distributions Ji and Hi'

Because all buyers are ex ante identical, only schemes that treat them
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symmetrically need be coni;idered. Henceforth, the subscript "i" is

deleted from the functions Q,, H; and J and the ﬁhree-tuple {Q, H, J)

i i’

will be referred to as a "scheme." If there is no capacity constraint,
then (Q, H, J) 1is feasible if 4t satisfies the incentive compatibility

and voluntary participation constraints. If there is a unit capacity constraint,

then feasibility also reqqires that Q be implementable, i.e., that
functions qy exist such that Q and each q, are related via (7).

The following lemmé, proved in Maskin and Riley [9,11], reduces the
capacity constraint to a more tractable fqrm. In words, it states that
a given Q 1is implementable only if it implies that the probability of
selling the unit to a buyer with an evaluation greater than 6 1is no greater

than the probability that a buyer exists with an evaluation greater than 6.

Lemma 1: Suppose that Qi[O,l] -+ [0,1] is a function for which there exist
functions qi[O,l]n -+ [0,1] (i1=1,...,n) satisfying (6) and (7). Then,
for every 89,

©) (@) = /1P N@ a2 ez 2 0.

] »

-

To incorporate the capacity constraint, (8) will be included as
a constraint in the problem of finding a scheme {Q, H, J) to maximize
expectgd profits. Once this scheme is found, it will be verified that its Q

is indeed implementable, i.e., that the necessary 9y functions exist.



Regardless of the presence of a capacity constraint, one property of =

an optimal scheme can be obtained at the current level of generality. The
following lemma states that attention can be restricted to schemes in which

the payment contingent upon not obtaining a unit, 3}, is deterministic,

Lemma 2: Suppose (Q, H, J) 1is a feasible scheme. Then a scheme
¢(Q, H, J )y , where jfpzl 0) puts all probability on a point p,(6),
- can be constructed that is both feasible and ylelds no less expected

profit than (¢ Q, H, J) .

The proof of Lemma 2 relies upon replacing ;} by its certainty
equivalent. But the proof 1s not standard, gincé incentive compatibility
must be shown to still hold. It is generally not possible to replace ;;
by a deterministic pw(e) that both increases expected profit and maintains
incentive compatibility.

Because of Lemma 2, a three-tuple ¢ Q, H, pzj , Wwhere P, is a

real-valued function of evaluations, can be referred to as a scheme.

R
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3. Constant Absolute Risk Aversion

Henceforth it is assumed that u exhibits constant absolute risk

aversion R. In particular, the symbol '"u" shall denote the function

u(x) = (l-e°Rx)/R.

There are two reasons why this functional form makes the problem
tractable. The first is that the multiplicative separability of u implies

~
that p, can be made deterministic without destroying incentive compatibilit-,
Lemma 3: Suppose (Q, H, pg) is feasible. Then a scheme ¢Q, H, P, Y

where ﬁ(pw ]e) puts all probability on a point pw(e), can be constructed ti: :t

is both feasible and yields no less expected profit than { Q, H, P, Yy .

Attention can now be restricted to schemes with deterministic payment
functions P, and Py - However, rather than using the function P>

it will be more convenient to use the bid function b defined by

b(8) = pw(e)-pz(e) .

The function P, will be denoted p and called the bid submission or
entry fee function. A scheme shall be denoted (Q, b, p ), The
interpretation now 1is that a buyer must pay the submissipn

fee p(g) in order to submit a bid b(g). Submitting this bid

gives the buyer, from his point of view, a probability Q(g) of obtaining

a unit., In the event that he obtains a unit, he must additionally pay the

amount that he bid, b(e).'
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Given a scheme ¢ Q, b, p ) , a buyer with evaluation 6 who reports
6 is paying p(a) to obtain the lottery that gives him e-b(S) dollars
with probability Q(s), and zero dollars with probability l-Q(a). The
second simplification due to assuming constant absolute risk aversion is
that the'buyer's evaluation of the lottery is independent of the entry fee.

Specifically, the buyer's expected utility function,

A A

U(8,8) = Q(O)u(B-p(d) ~b(B)) + (L-Q8))ul =p(8)),

is equivalent to the additively separable function
(9) - U(6,8) = ¥(6~b(8),Q(8)) - p(a),
where V¥ 1s defined by

10)  ¥5,Q = - &) log [1-Q+ Q')

The amount V{(y,Q) is just the certainty equivalent of a lottery offering
y dollars with probability Q gnd zero dollars with probability 1-Q;
it is equal to the expected value Qy minus a risk premium w(y,Q).
The incentive compatibility constraint can now be wade tractable
by a teciinique based roughly upon that of Mirrlees [15]. Given a revelation

scheme {( Q, b, p ) , which then defines U(e,8) by (9), define

(11) v(g) = U(9,9);

If the scheme is incentive compatible, then V(8) 1is the indirect utility



function of a buyer with evaluation 6 . Incentive compatibility is

satisfied if and only 1f V(6) = U(8,8) for all possible € and 6.

Lemma 4: A scheme {(Q, b, p ) is incentive compatible if and only if

Rb(6)
(12) gi%l%'aféi is nondecreasing in 6, and
(13)  V(O) = V(0) + /¥, (2~ b(2),Q(2))dz,

0
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4. The Seller's Problem

1f the seller uses a feasible scheme (Q, b, p Y , then the

expected profit obtained from a buyer with evaluation 6 1is

(14) p(8) + Q) (b(8) ~c )

= ¥(6-b(8),Q(8)) - V(8) + Q(8)(b(8) - ).

Therefore the seller's expected profit is

1) n foltwe-b(e),Q(e)) - (@) + Q(8) (b(8) - c ) IE(e)d B .

The problem of the seller is to maximize (15) by choosing control functions

Q and b. The constraints are those imposed by feasibility. The incentive
compatibility constraint is embodied by (12) and by the equation of motion

for the state variable V,
(16) vV'(8) = wl(e-b(e),Q(e)) with V(0) 2 0 .

Expression (16), which is derived from (13), also incorporates the voluntary

participation constraint. Implementability requires at least the constraint
(17) 0 =Q(8) = 1.

Implementability further requires, in the case of a unit capacity constraint,
thatnonnegati§e functions q exist satisfying (6) and (7).

The problem is solved in the following way. Expression (15) shall be
maximized subject to the constraints (16), (17), and, in the case of a unit

capacity constraint,
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(18) Y(6) = 0,

where Y 1is a state variable with an equation of motion

(19).  Y'(8) = £(8)[Q8) - F(™Y] with ¥(1) = oO.

The constraints (18) and (19) are necessary, by Lemma 1, for Q to be
implementalle in the case of a unit capacity constraint. The solution

-{Q,b?, when adjoined to an entry fee function defined by
(20) p(8) =y (8 - b(6),Q(6)) - Vv(8),

constitutes a selling scheme ( Q,b,p ) . This scheme must then be shown to be.
feasible by, first, showing that it satisfies the ignored comstraint (12).
Secondly, in the case of a unit capacity constraint, functions 9y that
implement Q must be shown to exist.

Both tasks afe facilitated by imposing the following regularity conditionm,
which is satisfied if the density does not decrease rapidly. It is equivalent

to the one used in Myerson [18] and in Maskin and Riley [9].

(RC) For any R 1in an interval [0,R], the function

-1
a(6,c) = u(@-c) + %

. 2
i{s increasing in 8 at any (8,c) ¢ [0,1]1".

Henceforth, (RC) 1is imposed and 0 < R < R 1is assumed. For later use, we

remark now that (RC) implies that the function

u(f - c) F(B) -1
B(e:c) - a' (0-¢) + £(0)
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is also increasing in € whenever 6 > ¢. Both a and 8 are negative i:
€ < ¢, and a(8,c) < B(8,c) holds for all (8,c), strictly if 8 # c.
Consequently, two increasing functions on the unit interval are defined by
a(®(e),c) = 0 and B(8(c),c) = 0, with ¢ < 8(e) < E(c) <1lif 0 <ec <1,
The first step in maximizing (15) subject to (16) - (19) is to

define the Hamiltonian

¥ (6,V,,Q,b,},1)

= [¥(8=1,Q) - V+ (b c)QIE(8) + My, (9-b,Q) + 1 £(O)[Q-F(O)* 1,

and the Lagrangian L =% + nY. Notice that when Q and b are chosen
to maximize % for fixed (6,V, Y,\,u), the maximized Hamiltonian is
concave in V and Y. Therefore the following conditions, in conjunction with

(16) - (19), are sufficient as well as necessary for a solution.5

(21) A'(8) = - 2L = £(0), A(1) = 0, X continuous;
(22) w'(e) = - 2= - n(). w0 =0, WOY© = 0;
(23 if p is discontinuous at 6, then 6 1is an entry or an

exit point of an interval upon which Y = 0, and p(8 ) > u(9+);

(24) n(e) =0 and m(6)Y(H) = 0;

(25) % (8,V(8),¥(6),Q(0),b(0),X(8) ,1(8)) is continuous;
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(26') (Q(e) ,b(e)) £ argmax ﬂ(e,V(e) )Y(e) ’Q’b’)\(e)’“’(e))'

-w<bgw

0=Q =1

Condition (21) immediately implies A(8) = F(8) - 1. This>makes sense.
The amount =~ A(8) 1is the implicit cost ,due to the incentive compatibility con-
straint (16), of increasing by one dollar the dollar-equivalent utility level
V(0) of a buyer with evaluation 6 . The incentive compatibility constraint
requires that if one more dollar is to be given to a buyer with evaluation 6,
then an extra dollar must also be given to the buyer if his evaluation is
greater than 6. Hence, the additional expected cost of increasing V(9)
by one dollar is 1-~TF(8) = - A(9).

Substituting 1-~-F for A\, and letting c=c¢ -p, and dividing by

o

£(8), the important part of the Hamiltonian becomes

@7 #(6,Q,5,¢) = ¥(8-5,Q) + (b-)Q - [ f(F)(e)wl(e-b,Q).

The cbst c(8) = c, - w(9) is the true opportunity cost of selling a unit to

a buyer with evaluation 6; it is the sum of the seller's personal opportunity
cost y and the implicit cost - p(®) of not being able to also sell a unit ¢
another buyer.

Condition (26') can be replaced now by

(26) (Q(8),b(0)) ¢ argmax % (6,Q,b,c(8)).

-w<bhoo

0=Q=1

The following lemma states that this maximization is virtually unique if buyers

are strictly risk averse.



Lemma 5: If 0 =c¢c=1, then Q(G,Q,b,c) is maximized for - o <be =

and 0=<Q=1 by b(8,c) =¢ and

0 ' 8 < 8(c)

28) Q0,0 = § s leg 8(c) = 0 < ()

1 | 82 8(c).

Q =Q( - ,e) is the unique maximizing Q and, on (8(c) ,6(c)), b

¢ 1is

the unique maximizing b. The function Q increases in & and decreases in

¢ if 8e (8(c),8(c)).

21
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5. Solution With Unlimited Capacity

By Lemma 5, the optimal scheme is determined once p(8) 1is determined.
But (8), the implicit cost due to a binding capacity comstraint, is zero
when there is no quantity constraint. Consequently, the seller's optimal scheme

in this casc pas been found. -

Theorem 1l: With no quantity constraint, an optimal scheme

is Q7(0) = Q8,c ), b (8) = ¢, and

(29) P (8) = W(G-—co,Q*(e)) - r® Wl(z-co,Q*(z))dz .
0

1t {Q, b, p) is also optimal, then almost everywhere Q = Q*, p(8) = p*(e)

for 6 =< Ekco?, and b(8) = b*(e) for 6 ¢ (g(co);g(co)). If 6 = Bkco),

then () + p(8) = ¢ + p*(3(c,)).

The scheme described in Theorem 1 could be implemented directly as a
separable, nondeterministic revelation scheme. Alternatively, each buyer

could be offered the increasing payment-probability schedule

(30) P = p Q" ")

from vhich to choose a protability Q of obtaining a unit. A buyer thus
' *

purchases a probability Q for an amount P (Q). Q can be viewed as

"reliability," or as the likelihood that the seller will have the good in

stock. Upon paying for a Q, a buyer enters the store and finds a unit



with probability Q. 1If he finds a unit, he purchases it at cost c,.

Theorem 1 implies that an optimal scheme for risk averse buyers must
sﬁbject them to risk. Hence, it must yield greater expected profit than the
particular deterministic take—it-or-leave-it-offer scheme that is well-known
(and will be shown) to be optimal when buyers are risk neutral. Consequently,
since the deterministic scheme yields the same expected profit regardless of
how risk averse buyers are, greater expected profit can be made when the
buyers are risk averse.

The reason for this is that risk aviodance weakens the incentive compat-
ability constraint. In particular, as the following argument indicates,
greater payments can be extraqted from'buyers with high values if buyers with
low values are subjected to risk. Suppose there are only two buyers, with
evaluations 81 < 62. Two schemes are to be constructed in which the expected
payment of buyer 1 is the same x > O, Scheme A imposes no risk on buyer 1, so
that it simply involves selling a unit for the price x to any buyer claiming
to have value 81. Since buyer 2 can obtain this allocation as well, x is the
largest amount that .buyer 2 can be induced to pay in Scheme A. In Scheme B,
on the other hand, buyer 1 receives the risky allocation (Ql’bl’pl)’ with
0 < Q < i and x = P + lel' By mimicking buyer 1 in Scheme B, buyer 2
receives the certainty equivalent w(eé-bl,Ql) =P which is less than the
expected value Q192 - x because of risk aversion. Therefore, if y is the
largest price that buyer 2 can be induced to pay in Scheme B, then y satisfies
62-y = w(ez-bl,ql) - P < Qlez - X. This implies y > 3, so that the risky
Scheme B extracts a greater payment from buyer 2 than does the deterministic
Scheme A.

The next result emphasizes the usefulness of risk aversion: as buyers

become extremely risk averse, expected profit approaches that which could be

obtained by perfect price discrimination.

23
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Corollary 1: Assume._i'ﬂ o, Then as R =+ «, the optimal scheme in the

case of unlimited capacity converges to the scheme (Q”, b”, p“ Y defined

by b (8) = s

P (t) = | o Q™(0) = | °

Furthermore, the expected profit converges to the maximum that is possible

when information is perfect, r1£3(e-c°)‘f(e)d9 .
o

Returning to Theorem 1, there is a more direct and perhaps more
insightful way of deriving it, based on methods used in some of the nonuniforn

* % %

pricing literature [3,14,16,23]. The first step is to show that if 0 , b and gg

are numbers that maximize profit p + Q(b - co) subject to constraints
¥(6-b,Q)-p =V and \yl(e—b,Q) =V,

*
where V and V' are arbitrary numbers, then b = o Therefore, given
any indirect utility Vv(8) that the seller must give to the buyers

with an incentive compatible scheme, the optimal such scheme will have

*
b*(e) =c, Therefore an optimal feasible scheme will ‘have b (8) = cyo at
least when O < Q*(G) < 1. Then a series of change-of-variable and reversing-
of-integration operations show that the expected profit from a scheme

with b = Co?
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nflw (e - co,Q(G)) - V(8)1£f(8)de
0

= 0 £T(0- Q00 - [ (- ey, dz (@)
0

can be written as
D af Wy @M@ - ey, [1-F@ T (@)14q
; 0

This expression can be maximized pointwise. Doing so yields a function Q-1
that has as its inverse Q*(G) = Ske,co), which is increasing in 6 by
(RC) and hence justifies the use of the inverse Q-l in deriving (31).
Expression (31) is interpretable. A buyer with evaluatién 8 = Q-l(q)
purchases the probability q of obtaining a unit. All buyers with evaluations
greater than Q-l(q) purchase probabilities greater than q. Thus l-F(Q*l(q))
is the probability of selling at least an amount q of probability to an
arbitrary buyer -- the "demand" for the "qth increment of probability" is
n(l-F(Q-l(q)). The maximum price that the marginal buyer 6 = Q-l(q) would
pay for an additional increment of probability above the qth is
WZ(Q-I(q)-co,q), since his profit in the event of obtaining a unit is
Q-l(q)-co. This price is what must be charged for the qth increment to all

buyers who purchase it.' Thus (31) is the sum of the profits made on each
increment of probability sold.

Expression (31) is valid even for R = 0, in which case
WZ(Q-I(q)-co,q) is simply Q-l(q)-co. Hence (31) is @aximized by setting
Q-l(q) equal to whatever constant 6  maximizes (6-c)(1-F(6)). This
results in a particular take-it-or-leave-it scheme. This scheme is equivalent

to the take-it-or-leave-it offering of the price 60 , which is a scheme



found by Riley and Zeckhauser [20] and implicitly by Maskin and Riley [9]

and by Myerson [18], to be an optimal auction when there is only one risk

neutral bidder. The following corollary formally states these results and

also a continuity property.

Cc;rollary 2: If there is no quantity constraint, then as R -+ 0, the

optimal scheme converges to the scheme (Qo,bo,po‘) defined by b°(e) =c,s

o 0 9 < 90 o 0 0 < 90
p (8) = Q (8) = )
9°~co 9?.90 1 9290 3
where
(32) 0 eargmax (8-c )(1-F(8)).
o 5 | o

This scheme is equivalent to the take-it-or-leave-it scheme consisting of
rosting a price 60, and it maximizes expected profits when buyers are risk

neutral, regardless of (RC) holding.

26
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6. Solution With a Unit Capacity Constraint

The solution is far more complicated if no more than one unit can be
sold. The implicit cost p 1s nontrivial and interactions between buyers

must be allowed. A simple case is presented before the general result,

One more function must first be defined. Let 9° be the minimal 6 > 0

satisfying 6{6,c°) = F(e)“'l, and define <¢: [6°,1] ~ [c,,1] by

(33) Q08,5(8)) = F(™L .

Since 6' decreases in ¢ and 616,1) = Q, c 1is well-defined. By Theorem 1,
a seller that had cost EKG) would, without a quantity constraint, assign a
buyer with evaluation €6 the probability F(G)n_1 of obtaining a unit.

It will be shown that if R is small then c¢ is an increasing functien.

In this case, the oppoftunity cost Co~ 1(8) can be deternined by

e, n(e) =
<c(8) 8.2 8

without violating the requirement that co-ﬁu(e) be nondecreasing (see

(22) and (24)). Depicted in Figures 1 and 2, the optimal scheme for this

case has

5(9,C ) < B
* 0
Q (8) =
ce) o =206° , F)™t g=6°,
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*
and p (8) determined from (20). This scheme is virtually the only optimal
scheme when ¢ 1is increasing.

This scheme is feasible, since functions qy that implement Q* can

be found explicitly. Letting emax= max (el"“?en) and m(el,,._,en} be

the number of buyers with evaluation emax’ define

0 6, < 6
% i max
qi(el""’en) =

*
Q (Gi) -t
-1 i “max
m(el,..,,en)F(Gi)
* N n-l o * . .
Because Q (8) < F(8) for 6 < 6, q; 1is a well-defined probability. It

' *
is easy to show that 0 = Zqi =1, and that

* a1 1 *
Q-8 = [uer [la;(6y,.--,8,) T £(65)d0, .

j#i
* [} . . I . . .
These 9y functions imply that a buyer obtains the unit only if his evaluation
is the largest, and that even in this event, if his evaluation is less than

*
° he has only a probability Q (ei) of obtaining the unit. This scheme

6
first identifies the buyer with the maximum evaluation, and then either awards
the unit to him if his evaluation is greater than e°, or, if 6 <« Go,
treats him exactly as all buyers are treated by the scheme that is optimal

when no quantity constraint exists.

Before further discussion, let me present the general result.



Theorem 2: Suppose IO = [0,91), Il = [91,62], I2 = (62,63),...,

1 o

is a partition with 6 = 6 that satisfies the following criteria:

(34) 26%%y = Ty (k=0,...,%

¢ 1is increasing on I (k = 0,...,K)

(35) 2k+1

e2k+1
(36) fe

with equality holding in (36) for 6 = GZk (k

* % X
(Q ,b ,p ) by

t

1,...,K). Define

ace, <6 06 Iy (k=0,....8
(37) Q" (o) =

F(e)™t 06T, (&=0,...8

FYCh 6 ciy (k=0,...,8
(38) ™ (0) =

c(8) 8 € Iy, (k=0,..0,K
(39 2O = ¥e-b"(8), Q" (e) - %y (z-b"(2),Q" @)z

0

Xk X :
Then, { Q sb ,p Y maximizes expected profit and is feasible.
Furthermore, if (Q,b,p) is any feasible piecewise continuous scheme
. 3 . - * *
maximizing expected profit, then Q =Q , p = p , and, for all

v = (8c),1), B(8) = b (8).

Loke1

[F()™ L -Qz,c(6%))1€(2)dz 2 0 V8 e I, (k=0,.

= [8

.« +»K)

29
2K+1

»1]
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kemark 1l: In the original version of this paper, it was only conjectured
that the Q* in Theorem 2 is implementable. Its implementability now

follows from a new theorem of Maskin and Riley [11, Theorem 7], which states
that any nondecreasing function Q that satisfies constraint (8), such as Qf

can be implemented.

Remark 2: Because the partition satisfying (34) - (36) 1is assumed to
exist, Theorem 2 is a characterization rather than an existence theorem. How-

ever, F must be pathological for the partition not to exist.

A more complicated example is shown in Figures 3 and 4. Here there

is a region in which c decreases, so that setting the cost cy, ~ B

equal to ¢ on this region would violate the restriction that ey B

be nondecreasing. The points 62 and 93 are found, loosely speaking, by
letting b (8) = o(8) hold for 6 > 6° until the function Q(- ,c(8)) has
fallen enough to make the two shaded areas (weighted By the density) equal.
After this point, ez, 'b* is held equal to the constant 'E(ez) and Q*(-)
is set equal to Q( ',EKGZ)) until the endpoint 63 of this "irregular”

segment is reached.

There are two qualitative features of the general scheme in Theorem 2
that are due to the buyers' risk aversion. The first is that buyers with
high evaluations are induced to bid nearly their true evaluation, i.e.,

g - b*(e) -+ 0 as 6 —+ 1. This result follows from Theorem 2 because

2K+l,l], and ¢—+1 as 0 -+ 1. But it can also be shown

x* -
b =c<1l on [0
more generally whenever buyers are risk averse. No analagous result is

obtained when buyers are risk neutral, as then only the expected payment
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x(8) = p(8) + Q(B)b(8), as well as the probability Q(8), are determined

in an optimal scheme.

The second distinctive feature casts some light upon the first. The bid
submission fee p*, while positive for buyers with modest evaluations,
becomes negative for buyers with high evaluations. This can be seen from (39),
since 6 - b*(e) -+ 0 implies w(e-b*(e)) -+ 0. But again the result appears
to hold generally when buyers are risk averse.

What is an intuition for these features? Potentially, the largest payments
can be extracted from the buyers with the greatest evaluations. But a buyer
must be rewarded to induée him to reveal that his evaluation is high. Ome
way of rewarding is to let the probability of obtaining a unit increase rapidly
with the reported evaluation. This is the strétegy utilized when a capacity
constraint is absent. With this rewarding strategy the seller's profit is due
to the increasing bid submission fee. The success of this strategy depends
upon the perceived probability-of-winning function increasing rapidly enough
that buyers with high evaluations do not bear too much risk and hence pay only
small bid submission fees. A capacity constraint therefofe limits the use
of this strategy, since then a buyer's perceived probability of obtaining
a unit cannot be made too large. When the constraint becomes binding, buyers
with nigh evaluations are rewarded by lowering their entry fees, with the
seller making the extra profit instead from an increasing bid function. By
making the bid submission fee negative for buyers with high evaluations, the
seller is selling them insurance against the event of not obtaining a unit.

By increasing the insurance coverage with the reported evaluation, the
expected value of the reward necessary to induce buyers with high eyaluations

to reveal themselves is minimized.
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Further light is shed upon the role of risk aversion by examining the
scheme when buyers are nearly risk neutral. To derive the limiting scheme, obsérve

first that the function ¢ is defined by

B(8,c(9) .
-~ B(9,c(8)) - a(8,c(0))

Qee,c(e)) =

Rearranging and substituting in for a@ and B yields

u(e-5S(6)) | E(®)-1 _ [u(e-aen

- ~ 8)  _ ye-Zey) | Fey™t .
u'(6-ce)) £(® u' (8-12(8)) ]

Since u(y) = R 0(1-e V) and u(y)/u'(y) = R (¥ -1) both converge to y

as R-+ 0, the function ¢ converges to the function

F(e) -1
£(8) °

¢’(6) =6 +
The regularity condition (RC) implies ¢® is an increasing function. Also,

as R+ 0 the points 'Q(CO) and 6° both converge to a point 60

defined by

F(eo) -1

_ 0
c, = eo + f(eo) c (60) ,

which is also the 60 = argmax (9-—c°)(1-F(9)) of Corollary 2. Theorem 2
)
therefore implies that the optimal scheme converges to the one presented in

Corollary 3, This limiting scheme is optimal for risk neutral buyers,.

given (RC).
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Corollary 3: As R =+ 0, the optimal scheme with a unit capacity

constraint converges to one defined by bo(e) = co(e) and

0 0 < eo
(o) = |
| F@™ ez
0 0 < 90
p’(e) = |
fgmaX(Z.Go)c;F(Z)n L. R 1 ®=z86, -

In the limiting scheme of Corollary 3, a buyer witﬁ value 6 obtains the
unit if and only if 6 exceeds both 90 and the other buyers' values. Buyers
with high values still submit bids nearly equal to their values, since
b°(8) = c°(9) - 1 as 6 - 1. Buyers with high values are still paid to
participate, since p°(e) -+ fi-max(::,90)dF(z)n-1 - 1< 0 as 6 -~ 1. Buyers with
values only slightly larger than ‘90 pay positive entry fees, since
p°(eo) = (90 - cQ)F(GQ)n.1 > 0. Any buyer with value greater than 90 has
the total expected payment p (8) + b°(8)Q%(8) = fgmax(z,eo)dF(z)“'l, which,

if we call 90 the seller's (reportéd) "value," is the expectation of the

largest of the other agents' values conditional upon 6 being the largest value.

This is the same expected payment made by risk neutral buyers in a first or

second-price auction with reserve price 90 (see, e.g., [19]).
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There is a simple nonrevelation scheme that is equivalent to the one of

Corollary 3. This scheme is a first price auction in which the entry
fee depends upon the size of the bid. If the entry fee for a buyer who bids b

is
o-l
Po(b) = p°° (b)),

then no buyer with evaluation less than 60 will enter the auction, and buyers

with evaluations § 2 6 will bid b = b°(8) and pay the bid submission

gee Po(b) = p°(9).

The final corollary identifies the limiting scheme as R -+ =, It can be
shown that as R =+ =, ¢(0) converges to € and 6° converges to ¢ (see

the proof of Corollary 2). Hence Theorem 2 implies

Corollary 4: Assume R = =, Then as R -+ =, the seller’'s optimal scheme with

a unit capacity constraint converges to ( Qm,bm,pw) , Wwhere

b () = 8, and p“(e) = 0, Consequently, the seller’s maximum expected profit

approaches that obtainable by perfect price discrimination.



35

7. Summary and Discussion

Initially, an environment was considered in which buyers have the same
no-income-effects, risk averse utility function, but different private
evaluations for the good. TFor a selling scheme to maximize expected profit in
this environment, the payments made by buyers who do not obtain a unit must be
nonstochastic. On the other hand, the payments made by buyers who do obtain
units cannot generally be assumed to be nonstochastic. It was shown, however,
that attention could be restricted to schemes with deterministic payment
functions if buyers exhibit constant absolute risk aversion, which was
subsequently a maintained assumption.

One fundamental conclusion is that maximum expected profits are greater
if the buyers are risk averse rather than risk neutral. If buyers are
extremely risk averse, then expected profits from an optimal scheme
approximate those achievable by perfect price discrimination. This result can
be explained from the revelation point of view: the desire of buyers with
high values to avoid risk can be used to decrease the reward that is necessary
to prevent them from mimicking buyers with lower values.

In the case of unlimited capacity, an expected profit maximizing scheme
presents the buyers with a nontrivial, nonuniform price schedule for the
probability'of acquiring a unit. Additional payment is made by buyers who
obtain a unit. Given that buyers exhibit constant absolute risk aversion,
this conditional payment is equal to the seller’s opportunity cost.

In the case of a unit capacity constraint, the expected profit maximizing
scheme was found in "reduced form." 1In other words, only an individual’s
perceived probability of obtaining the unit (Q*(ei)), rather than his actual

probability as a function of all buyers’ values (qi(e en)), was

l,ooo,
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constructed. The functions q; were, however, cogstructed for the case

which necessarily occurs when buyers are only mildly risk averse. Then, the
optimal scheme approximates a first price auction with both a reserve price
and a bid submission fee, where the submission fee 1is positive for low bids
and negative for high bids. As long as 'the buyers are not risk neutral, the
optimal scheme is virtually unique, and it induces buyers with high values to
submit bids approximately equal to their values. In the sense that their
marginal utility of income does not depend upon obtaining a unit, buyers with
high values are nearly perfectly insured.

Schemes that perfectly insure all buyers do exist. When there is no
capacity constraint, a take-it-or—leave-it offer scheme subjects no buyers to
risk. Similarly, to sell a single unit, a first price auction found in [19]
involves paying buyers to submit bids according to a schedule that induces
each one, as a dominant strategy, to bid his true value.7 Setting the reserve

price at c_. in these schemes results in both ex ante and ex post efficiency,

o
since they subject only the risk neutral agent, the seller, to risk, and they
award units only to those who value them the most.

The schemes that have been found here are also ex ante efficient or, more

specifically, incentive-efficient in the sense of Myerson [12].8 This is

obvious, since switching to another feasible schéme must decrease the expected
profit of the seller. It is somewhat paradoxical, therefore, that they impose
risk on the risk averse buyers. It is, of course, the incentive compatibility
requirement that prevents Pareto dominating schemes from being feasible.

Risk is imposed on a buyer only to decrease the amount that must be paid
to.keep him from being mimicked by buyers with greater values. It is
therefore unnecessary to impose much risk on a buyer with a high value, since

it is unlikely that another buyer with a greater value exists. This explains
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why, in the optimal scheme with a unit capacity constraint, the difference
between a buyer’s marginal utilities in the two states "win" and "lose" is
approximately zero for buyers with high values. Thus the margiﬁal conditions
for ex ante optimality under complete information, which requires buyers to be
perfectly insured, are satisfied for buyers with the highest values. This
result 1s analogous to ones found in the optimal taxation (individuals with
the highest ability have zero marginal tax rates) and nonuniform pricing
(individuals with the highest demand curves pay a marginal price equal to

marginal cost) literatures,



APPENDIX
Al

Proof of Lemma 2:

Let - pz(e) be a buyer's certainty equivalent for - Py ¢

u( = p, () = u(-t)dI(c]o).

Let jfpg'e) then be the distribution putting all probability on p&(e).
Since uv 1s increasing and concave, pz(e) is greater than E(;&l 8).
Therefore, replacing J with J yields greater expected profit if
feasibility is maintained. A capacity constraint only involves Q,

so that any existing capacity constraint:is still satisfied. The expected

utility of a buyer with evaluation 6 who reports 6 in the original

scheme is

Q(8) fu(B - t)dH(t | 8) + (1-Q(8)) [u(-t)dI(t | 8).

By the construction of pz(e), this expression is also equal to the
expected utility of a buyer with evaluation 6 who reports 6 in the
new scheme. Hence, since they are satisfied by the original scheme, the

constraints of incentive compatibility and voluntary participation are also

satisfied by the new scheme. It is therefore feasible. 0O

Proof of Lemma 3:

Let Efpw | 8) be the distribution that puts all probab%lity on

the pw(e) defined by
P (®) - Rtan(e | o)

Since pw(e) b E(;w] 8), (q, H, P, Y, if it is feasible, yields greater

expected profits than (Q, H, P, Y . Because Q 1s unchanged, the
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new scheme still satisfies any capacity constraint. In either scheme, the

expected utility of a buyer with evaluation 6 who reports 0 is

1- a0 <®"eRauce[e) - a1 - q8))eRPe(® |

L d

Hence the new scheme satisfies the incentive compatibility and voluntary
participation constraints because the original scheme satisfies them.

So (Q, H, Py ) is feasible. 0o

Proof of Lemma 4:

Suppose first that (Q, b, p ) 1is incentive compatible. Let

92 > 61, and let Qi = Q(Gi) and bi = b(ei). Incentive compatibility
implies

Al v(6,) = U(8,,0,) = V(0,) + - 5.,Q.) - ¥(0, - b,,Q.)s
(A1) (87) = 0(8,,8,) = V(8,) +¥(8; - b;,Q,) - V(O - by,Q,),

Combining these two expressions results in

This inequality proves (12), since it can be rearranged, utilizing (10),

to yield

Rbl sz

Qle - Qze
1-9; ~ 1-q

Because y(y,Q) increases in y, expression (A1) with (1,3) = (2,1)

implies that V(62) > V(Gl). Therefore, using (Al) again with (4,1) = (1,2),



0 =V(8y)) - V(8;) =¥(9,-b,,Q,) - ¥(8; =b,,Q,) .

Consequently, since.

| : 1
(A2) vl(y,Q) = J‘4_.1-9 =1,
‘ Qu' ()

0= V(GZ)- V(Sl) =06, -9

2 1° This shows that V 1is absolutely continuous

and hence equal to the integral of its derivative. Since V(8) - U(6,8) =

with equality when 6 = 6, it is true that

8 € argmin V(8) - U(8,9).
)

Hence, whenever v'(é) exists,
V'8 = U,(8,8) = ¥, (8- b(8),Q(8)).

Therefore expression (13) holds.

Now we must show that (12) and (13) imply incentive compatibility.

Expression (13) implies

wm=v@>+fqz-wn&u»u.
¢

Subtracting (A1) with (ej,ei) = (6,8) from this expression yields

V(O - UGE,0 = Ly (2 - b(2),0@) - ¥,z - b(8),Q(6)) } dz.
0

Hence (A2) implies

A3

g,
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vV(8) - U(s,8) = /. { 1 - Q(z) N - dz.
¢ 1+ e G@ -2y 1+ 31329

Q(8)exp (b (8) - 2)

Because of (12), the expression in brackets is positive (negative) only

if z > 5 (z <:5 ). Therefore V(8) - U(8,8) = 0, which proves incentive

compatibility. o

froof of Lemma 5:

The derivatives of ¥ are

— ¥(6-b,Q) F(8)-1
ui(G:Q:b:C) = b-c + le(e-b,Q) {le(e—b,Q) + f(e) }

— : ¥, (8-b,Q)-Q |
- = _ _ 'l F(8)-1.
¥4(8,Q,b,c) ¥1,(8 b’Q){\yu(e-b,Q) + HO) }
Calculation yields \
- Qu'(y) - _uly)
Vl(YsQ) - 1-Q + Qul(y) ’ VZ(Y:Q) 1-Q + qu(y)
by, = ==, V50, =~

[1-Q + Qu'(y)1? [1-Q + Qu'(y)1?

Therefore Wz/wlz = (Wl - Q)/Wll = Qu{y) + (1 - Qu(y)/u'(y). Hence, from

the definitions of a and g,

(A3 W, (8,0,5,¢) = bc + {oa(e,b) + (1-Q)8(8,b) }¥, ,(6-b,Q)

(44 ,(8,0,b,0) = - {qa(e,b) + (1-Q)B(8,5)} ¥, ,(8-b,Q) .
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Now, fix 6 and ¢, and let g(Q,b) = Qa(8,b) + (1-Q)B8(6,b). Then, iefting
h(Q,b) =¥(8,Q,b,¢), (A3) and (44) imply h (Q,b) = b - c + 8(Q,b)¥;,(8-b,Q)
and hz(Q,b) = -g(Q,b)¢ll(e—b,Q). Inspection of a and g indicates that g, < 0
everywhere, and g, < 0 unless b = 8. Also, if Q < 1 then g(b,Q) = O has a
unique solution b = b(Q) that is decreasing. Let b(l) € [-=,»), the limiting
value of b(Q). If 0 < Q< 1, (b-b(Q))hz(Q,b) < 0 for b # b(Q), since *11 <0
and b(Q) decreases. Hence, b(Q) uniquely maximizes h for fixed 0 < Q < 1.
Since wll = 01if Q =0 or Q = 1, any b maximizes h(0,+) and h(l,*). Now,
dh(Q,b(Q))/dQ = h;(Q,b(Q)) = b(Q) - ¢, and d%h(Q,b(Q))/dQ? = b’(Q) < 0, with
strict inequality 1if b(Q) # 6. Hence h(Q,b(Q)) is strictly concave on
[0,1]. Thus h(Q,b(Q)) ha$ a unique maximizer Q*, and any (Q,b) maximizing h
has Q = Q*. Also, 1f 0 < Q* < 1 then (Q*,b(Q*)) = (Q*,c) uniquely maximizes

h. That Q* = Q(8,c) now follows by verifying that b(Q) < c for all Q if
8 < 8(c), b(Q,(8,c)) =c if B(c) < 8 < 8(c), and b(Q) > c for all Q |

Cif 8 > 8(c). Verifying these is straightforward.

If 8(c) < 6 < 9(c), then B(8,c) > a{€,c). Therefore (RC) implies

8,3, (8,0) + (1-Q(8,))8,(8,0)

F(6.c) =
21(85) B(8,c) - a(8,c)

Hence ‘6 increases in 6. Similarly, a' decreases in ¢ for

8 € (_Q(Q,E(c)) because az(e,c) < 0 and Bz(e,c) < 0. a



Proof of Theorem 1:

Without a capacity constraint, the constraints (18) and (19) can be

dropped and both ¢ and 7 set to zero. Therefore c¢(6) = ¢y = p(e) = cy

Ab

Hence (26) and lemma 5 imply that Q*(6) = E(e,c& is the unique optimizing

Q, and that b*(8) = F(e,co) = ¢, 1is an optimizing b and is the only

0
optimizing b on (_Q_(co),s(co)). Letting

* ] -y '
v (9) =£ ‘L’l(z‘co:Q(z,Co))dzs

satisfaction of (16), (17), (25) and (26) by <Q*,b*\> is immediate.

Expression (29) 1is obtained from (20) by substituting v* (o) for V(e),

*is

and is required for (Q*,b*,p*) to be incentive compatible. Since Q
nondecreasing and b* is constant, the neglected constraint (12) is
satisfied. Hence (Q*,b*-,p*) 1s feasible. The uniqueness of Q* and b*

on (_g(co) ,E(Co)) imply the uniqueness of p* on the same interval. For

8 < g(co), Q*(8)=0 1s unique -- hence p*(0) = 0 1s necessary by the
voluntary participation constraint. Hence p*(8) =0 for 8 = _e_(co) is
the unique optimizing p. For any 6 = 5((:0), pr (o) = p*(@(co)) follows
from (29). Also, incentive compatibility réquires the total payment
p(6) + b(8) to be constant on the set of ® for which Q(6) = 1. Hence

b*(8) + p*(8) = c, + p*('e'('co)) is unique on [E(CO),H o



Proof of Corollary 1:

For y> 0,

- o Ry
lim u(y) = lim _l_R_e___ =0
Roe= R

R
1im B0 g el
o &' (V) R

Hence a(e,co) -+ (F(8) - 1)/£f(8) and E(e,co) + = as R+« for any ' -

8> co. Therefore g(co) -+ ¢ and ~9-(c0) + 1 as R =+ «, Thus 1if

6 = ¢y Q*(8) =0 = Q”(») for any R. If 6 > Y then
. B(B.co)
lim Q*(6) = lim - = 1.
Roreo pow  B(8scq) = a(B,cp)

Thus Q* -+ Qm as R -+ =, Because Q*(O) =6(6,c0),

| u'(6-c,.) 1-F
e

if 0 ¢ (_Q_(CO), E(CO)). Consequently, 1f ey < 8 < 1 then

1in ¥(6-c,Q (6)) = lim -(%glogg 1-q"(e) + Q*(e)u'(e—co)z

Roveo '
'(6-¢c,)
1 1-F(p) v 0

- '—(R)log%[ f(e):] [“(e'co) ]2

R-<o

e-R(e-co)

= 1im '(':1_-')].05’s . z: 6 - ¢
B X L1 RO 0



for every R. Also if

If 6 =1, then w(e-co.q*(e)) = Y(6-c 1) = 6 - %

%<6<ltMn

*
1in wl(e-co,Q*(e)) 1im Q (©u'(6-cy)
R B2 1 - 0%(@) + Q" (®)u' (6-cy)

1 [ £@) ] A oy
= m [i:f?6f] Q (8)u(-cy) = 0.

Hence, as 0= Wl =< 1, the Dominated Convergence Theorem implies that

AR

)

lim p*(e) = lim { ¥ (6xc ,Q*(e)) - [ ¥ (z-c ,Q*(z))dz
Roe Ro= 0 o1l 0
= 9-c0--

TN

%* o
Hence p =+ p as R+ =, Finally, the convergence of expected profits

1 1
lim [ p (0)£(0)d8 = f (6- SHOLL
R+ 0 co

* ©
also follows from the Dominated Convergence Theorem, since 0 =p =p for

all R. 0

Proof of Corollary 2:

Because of (RC) there is a unique eo maximizing (G—CO)(l—F(e)).

Both Qﬁco) and e(co) converge to @, as R - 0. Hence ate,co) + Q°(8)



as R -+ 0. Since V¥(y,Q) +yQ and Wl(y,Q) +Q as R -+ 0, taking the

1imit in (29) yields

0
p°(0) = (8 - c(8) -/ Q%2)dz.
0

Hence p (8) =0 if 08< 8, If 02 Ay, P (0) = (6-cg) - (8-8,) = @

. 0 0 o°
 * * 0.0 o

Therefore {Q ,b ,p ) = (Qo,bo,po) as R -+ 0. The scheme ¢ Q ,b ,p )

is obviously incentive compatible and equivalent to posting a take-~it-or-

leave-it price 60.

Now assume buyers are risk neutral., Holding Q fixed, they are

indifferent among all schemes {Q, b, p}) having the same sum Qb + p. Hence,

*
in finding an optiaml scheme, b = c0 = bo can be set. The derivation of
3D 1is valid for R = 0. But now Wz(y,Q) =y, so that (31) is maximized by
a constant function Q—l(q) = 0 where 6. satisfies (32). This Q-l is

0’ 0
obviously nondecreasing, regardless of (RC) . Eence the optimal scheme has any

buyer with 6 2 90 purchasing a unit with probability one for the amount

c. + (e-co) = 8

0 0° This is equivalent to posting the price 6.. d

0

Proof of Theorem 2:

’ ' - *
Let VH(8) = ¥(6-b7(8),Q%(®)) - p(®), YO = HF@ T -qQ (2)1f(2)dz,
e
and p*(e) = co-b*(e). Then (39) implies that V* satisfies (16),

and Y* satisfies (19) by construction. Also by constructionm,

*
(17) 0= Q* <1 holds. Expressions (36) and (37) imply (18) Y z O.

Since b* is continuous, pf is continuous and (23) vacuously holds.
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. .
Letting N = F-1, (21) dis satisfied. The Hamiltonian composed with the
* % % _*x _% *
functions VvV ,Y ,Q ,b ,A and ¢ 1is continuous in 6 because each of
: *
these functions is continuous. Hence (25) holds. Notice that if ¢ is
* * * * — *
defined by ¢ (8) = c, =k (8), then b (8) = c (8) = b(6,c (8)) and
* — * . * *
Q (8) = Q(8,c (8)). Hence lemua 5 implies that (26) Q and b maximize
the Hamiltonian.
It remains to show (22) and (24) hold for an appropriately defined

* - % * -_—
n. If 8¢l K’ then b '(8) = 0. If 8 ¢ 12k+1’ then b '(8) = c'(8) = 0.

2
* *
Hence p ' =~-b ' exists (except at endpoints of the intervals) and is
. I3 ' . * .
nonpositive on I2k+l and zero on I2k' Let n berthe right (left
* * *
at 0 = 1) derivative of p . Then 7 2 0. If nn (8) >0, then

*
) and hence Y (8) = 0. Thus (24) holds. Expression (22) holds

& Iowsl

X % * * —_
because W ' = -7 by construction, and u (0) =c_ -b (0) = co-c(eo) = 0.

* * * .
We have shown that {Q ,b ,p ) satisfies the sufficient conditions

for the problem in Section 4. Thus it maximizes expected profit,.proviAea
it is feasible. It has been shown that b* is nondecreasing. From (37),
Q*(B) is also nondecreasing, since a'and F are both nondecreasing in 8.
Hence tﬁe neglected constraint (12) that Q*eRb*/(l - Q*) be non-
decreasing is satisfied. Lemma 3 therefore implies (Q*,b*,p*> is
incentive compatible. As mentioned in Remark 1, Q* is implementable
by {11, Theorem 7], since it is nondecreasing and satisfies (8). Hence
(Q*,b*,p*Sis feasible.

Now assume /Q,b,p) is another piecewise continuous scheme maximizing
expected profit subject to the feasibility constraints. Then {Q,b) satisfies
the coﬁstraints (16) - (19), where V is derived from p in (20). Since (Q,b,p)

* * *
results in the same expected profit as (Q ,b ,p ), (Q,b) must also maximize



All

(15) subject to (16) - (19). Thus A, u and n exist such that they and <Q,b>
satisfy the necessary conditions (21) = (26).

We first show that the multiplier u is continuous. If not, then
(23) implies that 6 exists such that u(e-) > p(e"") and either Q(e-) = F(e)n-l
or Q(6+) = F(e)n-l. For 1 ¢ {+,-}, let pi = p(ei), Q:L = Q(ei_), and

bt = b(ei). Because of (26'), (Qi,bi) maximizes

Ni(Q’b) = \y(e-b,Q) +(b—co)Q + [E(_g..)(_e:)_l.] Wl(e-b,Q) + [J-i [Q"'F(e)nw‘j )

Continuity of the Hamiltonian requires % (Q',b%) =27 (Q7,b7). 1If
- -1 - - - + - - . -
Q = F(e)™", then % (Q,b7) =x"(Q ,b"). However, 0 < F(g)" 1 <1 and

u- > p.+ imply
0= ¥ ,070) > ¥ b

Thus we have the contradiction that ?J+(Q+,b+) > ?(+(Q-,b-) = Q-(Q—,b-).

A similar argument leads to the contradiction ¥ (Q ,b ) > A’-_(Q+,b+)

=N+(Q+,b+) if Q+ = F(G)n-l. Hence p must be continuous. Since

Q(G) = E(e,co - u(8)) and b(8) = o = u(8), Q and b are also continuous.
Now we show u(0) = 0. Note that (22) and (24) 41imply u = O.

Hence, because H(e,c) decreases in ¢, Q(8) = E(e,co - u(e) = E(e,co).

But E(e,co) = 0 on a nondegenerate interval [O,Q_(CO)]. Hence Q(B8) =0

on [0,§_(co)], which in turn implies Y(6) > 0 on [O,Q(co)). Hence

(22) implies u(0) = 0.
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*
We show next that p =yp ., First, notice that if p' < 0
x. .
and p' < 0 on an interval I, then (22) and (24) imply
* * n-1
Y=Y =0 on I, and hence Q=Q =F on I. Therefore, since
— * — * —
Q(8) = Q8.c, - w(8)) and Q (&) = Q8,c - u (8)), and Q8,c)

* *
decreases in ¢, p=p on I. Consequently, if we assume | # p

and let
*
t=sup {6 | p@E*u (B},

then there exists an interval J = [s,t) wupon which p 1is constant
* . 3 . * 3

and y is strictly decreasing and g < i , or vice versa. We may assume
* . . . *

u<pp on J, as the argument is symmetric in p and p . We can then

let s be minimal, i.e.,

s = inf {6 ] (6) = u(t) }

*
We know s > 0, since p is continuous, p(0) =0, and u(s) < p (s) = 0.
Hence p 1is strictly decreasing on a nondegenerate interval (r,s). Observe
— — * *
that if x >s, then Q(x) = Qx,c_ - p(x)) = Qx,c - p (X)) =Q (),

with the inequality strict for x e J. Hence
1 -1
Y(8) = [T[F)™TT - Q(x)1f(x)dx
0

> LFre™ L - QF ) 1F()dx = Y (0) 2 0
o
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for any 6 ¢ J. 1Imn particular, Y(s) > 0. But (22), (24) and

p' < 0 almost everywhere on (r,s) imply Y(s) = 0, a contradiction.

*
Therefore p =4 .

* * *
But w=p and lemma 5 imply Q =Q . Since 0< Q (8) <1 for
*
any 6 > Qﬂco), lemma 5 also implies b(8) =b (8) for o >‘g(co).

*
Incentive compatibility now implies p=p . p

Proof of Corollary 3:

-— o (o]
Since ¢~>c¢ as R~ 0, and ¢ i1s increasing, we know immediately

* o} % o o
that Q - Q and b - b, If 6< Go, then p (8) = 0 is implied by

o :
Q () =0. If 6= 6 then integration by parts yields

G
¥(6-b°(8),°(8)) = & ¥ (z-b°(2),Q°(2))dz

G
o

]

po(e)

¢]
(6-c’NFO™! - 5 F(2)" L4z

%

8 .
- @FO™ " + J max(e_,2)dF(2)" L.«
0
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FOOTNOTES

1. In a first-price (discriminatory) auction with reserve price, the high
bidder obtains the unit and pays a price eqﬁal to his bid, provided it
exceeds the (known) reserve price. A second—priée (competitive, Vickrey)
auction with reserve price is ;he séme, exceﬁt that the price is the maximum
of the reserve price and the second highest bid.

2. The fact that first and second-price auctions generate the same expected
profit in this environment was first observed by Vickrey [25]. However,
Matthews [12] observes that a risk averse seller prefers the first-price
auction,whereas Milgrom and Weber [13] show that a risk neutral seller
prefers the second-pfice auction if buyers' types are "affiliated" rather
than independent random variables.

3. The desirability of incentive schemes yielding random outcomes has
previously been suggested by, e.g., Riley and Zeckhauser [20] and
Stiglitz [24].

4, Myerson [18] discusses the restriction to revelation selling strategies
more fully, aptly naming the idea the "Revelation Principle." The idea
dates back at least to Gibbard [2] (for dominant strategy mechanisms) and
is discussed generally in [1, 6, 171].

5. see Theorem 8 in Seierstad and Sydsaeter {22]. As is usual, attention is
restricted to piecewise continuous controls (Q and b) énd continuous,
piecewise differentiable state variables (V and Y).

6. It is an artifact of constant absolute risk aversion that E(e,c) = c.

If buyers exhibited decreasing (increasing) absolute risk aversion, then

a generalization of Lemma 5 would conclude that b(8,c) > ¢ (b(8,c) < ¢),



where b 1is a component of the optimal scheme within the class of
schemes with deterministic payment functions.

In this auction a buyer who bids b 1is paid the amount f:FKz)n-ldz,
where r 1is the reserve price.

In our context, a scheme is incentive-efficient if any other incentive

compatible scheme either decreases the seller's expected profit or, for
some evaluation 6, decreases the expected utility of some buyer having
the evaluation 6. This efficiency notion incorporates the informational
constraints of the environment. See Holmstrom [7], Myerson [17] or

Harris and Townsend [6] for original discussions of the concept.

F2
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